multipers 2.3.3b6__cp311-cp311-manylinux_2_39_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/__init__.py +33 -0
- multipers/_signed_measure_meta.py +453 -0
- multipers/_slicer_meta.py +211 -0
- multipers/array_api/__init__.py +45 -0
- multipers/array_api/numpy.py +41 -0
- multipers/array_api/torch.py +58 -0
- multipers/data/MOL2.py +458 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +113 -0
- multipers/distances.py +202 -0
- multipers/filtration_conversions.pxd +229 -0
- multipers/filtration_conversions.pxd.tp +84 -0
- multipers/filtrations/__init__.py +18 -0
- multipers/filtrations/density.py +574 -0
- multipers/filtrations/filtrations.py +361 -0
- multipers/filtrations.pxd +224 -0
- multipers/function_rips.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/function_rips.pyx +105 -0
- multipers/grids.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/grids.pyx +433 -0
- multipers/gudhi/Persistence_slices_interface.h +132 -0
- multipers/gudhi/Simplex_tree_interface.h +239 -0
- multipers/gudhi/Simplex_tree_multi_interface.h +551 -0
- multipers/gudhi/cubical_to_boundary.h +59 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
- multipers/gudhi/gudhi/Debug_utils.h +45 -0
- multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
- multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
- multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
- multipers/gudhi/gudhi/Matrix.h +2107 -0
- multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
- multipers/gudhi/gudhi/Multi_persistence/Box.h +174 -0
- multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
- multipers/gudhi/gudhi/Off_reader.h +173 -0
- multipers/gudhi/gudhi/One_critical_filtration.h +1441 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
- multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
- multipers/gudhi/gudhi/Points_off_io.h +171 -0
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
- multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
- multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
- multipers/gudhi/gudhi/distance_functions.h +62 -0
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
- multipers/gudhi/gudhi/persistence_interval.h +253 -0
- multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
- multipers/gudhi/gudhi/reader_utils.h +367 -0
- multipers/gudhi/mma_interface_coh.h +256 -0
- multipers/gudhi/mma_interface_h0.h +223 -0
- multipers/gudhi/mma_interface_matrix.h +293 -0
- multipers/gudhi/naive_merge_tree.h +536 -0
- multipers/gudhi/scc_io.h +310 -0
- multipers/gudhi/truc.h +1403 -0
- multipers/io.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/io.pyx +644 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +713 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +352 -0
- multipers/ml/signed_measures.py +1589 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/mma_structures.pxd +128 -0
- multipers/mma_structures.pyx +2786 -0
- multipers/mma_structures.pyx.tp +1094 -0
- multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
- multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
- multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
- multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
- multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation/approximation.h +2330 -0
- multipers/multiparameter_module_approximation/combinatory.h +129 -0
- multipers/multiparameter_module_approximation/debug.h +107 -0
- multipers/multiparameter_module_approximation/euler_curves.h +0 -0
- multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
- multipers/multiparameter_module_approximation/heap_column.h +238 -0
- multipers/multiparameter_module_approximation/images.h +79 -0
- multipers/multiparameter_module_approximation/list_column.h +174 -0
- multipers/multiparameter_module_approximation/list_column_2.h +232 -0
- multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
- multipers/multiparameter_module_approximation/set_column.h +135 -0
- multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
- multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
- multipers/multiparameter_module_approximation/utilities.h +403 -0
- multipers/multiparameter_module_approximation/vector_column.h +223 -0
- multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
- multipers/multiparameter_module_approximation/vineyards.h +464 -0
- multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
- multipers/multiparameter_module_approximation.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/multiparameter_module_approximation.pyx +235 -0
- multipers/pickle.py +90 -0
- multipers/plots.py +456 -0
- multipers/point_measure.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/point_measure.pyx +395 -0
- multipers/simplex_tree_multi.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/simplex_tree_multi.pxd +134 -0
- multipers/simplex_tree_multi.pyx +10840 -0
- multipers/simplex_tree_multi.pyx.tp +2009 -0
- multipers/slicer.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/slicer.pxd +3034 -0
- multipers/slicer.pxd.tp +234 -0
- multipers/slicer.pyx +20481 -0
- multipers/slicer.pyx.tp +1088 -0
- multipers/tensor/tensor.h +672 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +62 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +240 -0
- multipers/torch/rips_density.py +310 -0
- multipers-2.3.3b6.dist-info/METADATA +128 -0
- multipers-2.3.3b6.dist-info/RECORD +182 -0
- multipers-2.3.3b6.dist-info/WHEEL +5 -0
- multipers-2.3.3b6.dist-info/licenses/LICENSE +21 -0
- multipers-2.3.3b6.dist-info/top_level.txt +1 -0
- multipers.libs/libtbb-ca48af5c.so.12.16 +0 -0
|
@@ -0,0 +1,461 @@
|
|
|
1
|
+
# This code was written by Mathieu Carrière.
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
from sklearn.base import BaseEstimator, TransformerMixin
|
|
5
|
+
from sklearn.metrics import pairwise_distances, pairwise_kernels
|
|
6
|
+
from joblib import Parallel, delayed
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def _pairwise(fallback, skipdiag, X, Y, metric, n_jobs):
|
|
10
|
+
if Y is not None:
|
|
11
|
+
return fallback(X, Y, metric=metric, n_jobs=n_jobs)
|
|
12
|
+
triu = np.triu_indices(len(X), k=skipdiag)
|
|
13
|
+
tril = (triu[1], triu[0])
|
|
14
|
+
par = Parallel(n_jobs=n_jobs, prefer="threads")
|
|
15
|
+
d = par(delayed(metric)([triu[0][i]], [triu[1][i]])
|
|
16
|
+
for i in range(len(triu[0])))
|
|
17
|
+
m = np.empty((len(X), len(X)))
|
|
18
|
+
m[triu] = d
|
|
19
|
+
m[tril] = d
|
|
20
|
+
if skipdiag:
|
|
21
|
+
np.fill_diagonal(m, 0)
|
|
22
|
+
return m
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def _sklearn_wrapper(metric, X, Y, **kwargs):
|
|
26
|
+
"""
|
|
27
|
+
This function is a wrapper for any metric between two signed measures that takes two numpy arrays of shapes (nxD) and (mxD) as arguments.
|
|
28
|
+
"""
|
|
29
|
+
if Y is None:
|
|
30
|
+
|
|
31
|
+
def flat_metric(a, b):
|
|
32
|
+
return metric(X[int(a[0])], X[int(b[0])], **kwargs)
|
|
33
|
+
else:
|
|
34
|
+
|
|
35
|
+
def flat_metric(a, b):
|
|
36
|
+
return metric(X[int(a[0])], Y[int(b[0])], **kwargs)
|
|
37
|
+
|
|
38
|
+
return flat_metric
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _compute_signed_measure_parts(X):
|
|
42
|
+
"""
|
|
43
|
+
This is a function for separating the positive and negative points of a list of signed measures. This function can be used as a preprocessing step in order to speed up the running time for computing all pairwise (sliced) Wasserstein distances on a list of signed measures.
|
|
44
|
+
|
|
45
|
+
Parameters:
|
|
46
|
+
X (list of n tuples): list of signed measures.
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
list of n pairs of numpy arrays of shape (num x dimension): list of positive and negative signed measures.
|
|
50
|
+
"""
|
|
51
|
+
XX = []
|
|
52
|
+
for C, M in X:
|
|
53
|
+
pos_idxs = np.argwhere(M > 0).ravel()
|
|
54
|
+
neg_idxs = np.setdiff1d(np.arange(len(M)), pos_idxs)
|
|
55
|
+
XX.append(
|
|
56
|
+
[
|
|
57
|
+
np.repeat(C[pos_idxs], M[pos_idxs], axis=0),
|
|
58
|
+
np.repeat(C[neg_idxs], -M[neg_idxs], axis=0),
|
|
59
|
+
]
|
|
60
|
+
)
|
|
61
|
+
return XX
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def _compute_signed_measure_projections(X, num_directions, scales):
|
|
65
|
+
"""
|
|
66
|
+
This is a function for projecting the points of a list of signed measures onto a fixed number of lines sampled uniformly. This function can be used as a preprocessing step in order to speed up the running time for computing all pairwise sliced Wasserstein distances on a list of signed measures.
|
|
67
|
+
|
|
68
|
+
Parameters:
|
|
69
|
+
X (list of n tuples): list of signed measures.
|
|
70
|
+
num_directions (int): number of lines evenly sampled from [-pi/2,pi/2] in order to approximate and speed up the distance computation.
|
|
71
|
+
scales (array of shape D): scales associated to the dimensions.
|
|
72
|
+
|
|
73
|
+
Returns:
|
|
74
|
+
list of n pairs of numpy arrays of shape (num x num_directions): list of positive and negative projected signed measures.
|
|
75
|
+
"""
|
|
76
|
+
dimension = X[0][0].shape[1]
|
|
77
|
+
np.random.seed(42)
|
|
78
|
+
thetas = np.random.normal(0, 1, [num_directions, dimension])
|
|
79
|
+
lines = (thetas / np.linalg.norm(thetas, axis=1)[:, None]).T
|
|
80
|
+
weights = (
|
|
81
|
+
np.linalg.norm(np.multiply(scales[:, None], lines), axis=0)
|
|
82
|
+
if scales is not None
|
|
83
|
+
else np.ones(num_directions)
|
|
84
|
+
)
|
|
85
|
+
XX = []
|
|
86
|
+
for C, M in X:
|
|
87
|
+
pos_idxs = np.argwhere(M > 0).ravel()
|
|
88
|
+
neg_idxs = np.setdiff1d(np.arange(len(M)), pos_idxs)
|
|
89
|
+
XX.append(
|
|
90
|
+
[
|
|
91
|
+
np.matmul(np.repeat(C[pos_idxs], M[pos_idxs], axis=0), lines),
|
|
92
|
+
np.matmul(np.repeat(C[neg_idxs], -M[neg_idxs], axis=0), lines),
|
|
93
|
+
weights,
|
|
94
|
+
]
|
|
95
|
+
)
|
|
96
|
+
return XX
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def pairwise_signed_measure_distances(
|
|
100
|
+
X, Y=None, metric="sliced_wasserstein", n_jobs=None, **kwargs
|
|
101
|
+
):
|
|
102
|
+
"""
|
|
103
|
+
This function computes the distance matrix between two lists of signed measures given as numpy arrays of shape (nxD).
|
|
104
|
+
|
|
105
|
+
Parameters:
|
|
106
|
+
X (list of n tuples): first list of signed measures.
|
|
107
|
+
Y (list of m tuples): second list of signed measures (optional). If None, pairwise distances are computed from the first list only.
|
|
108
|
+
metric: distance to use. It can be either a string ("sliced_wasserstein", "wasserstein") or a function taking two tuples as inputs. If it is a function, make sure that it is symmetric and that it outputs 0 if called on the same two tuples.
|
|
109
|
+
n_jobs (int): number of jobs to use for the computation. This uses joblib.Parallel(prefer="threads"), so metrics that do not release the GIL may not scale unless run inside a `joblib.parallel_backend <https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend>`_ block.
|
|
110
|
+
**kwargs: optional keyword parameters. Any further parameters are passed directly to the distance function. See the docs of the various distance classes in this module.
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
numpy array of shape (nxm): distance matrix
|
|
114
|
+
"""
|
|
115
|
+
XX = np.reshape(np.arange(len(X)), [-1, 1])
|
|
116
|
+
YY = None if Y is None or Y is X else np.reshape(
|
|
117
|
+
np.arange(len(Y)), [-1, 1])
|
|
118
|
+
if metric == "sliced_wasserstein":
|
|
119
|
+
Xproj = _compute_signed_measure_projections(X, **kwargs)
|
|
120
|
+
Yproj = None if Y is None else _compute_signed_measure_projections(
|
|
121
|
+
Y, **kwargs)
|
|
122
|
+
return _pairwise(
|
|
123
|
+
pairwise_distances,
|
|
124
|
+
True,
|
|
125
|
+
XX,
|
|
126
|
+
YY,
|
|
127
|
+
metric=_sklearn_wrapper(
|
|
128
|
+
_sliced_wasserstein_distance_on_projections, Xproj, Yproj
|
|
129
|
+
),
|
|
130
|
+
n_jobs=n_jobs,
|
|
131
|
+
)
|
|
132
|
+
elif metric == "wasserstein":
|
|
133
|
+
Xproj = _compute_signed_measure_parts(X)
|
|
134
|
+
Yproj = None if Y is None else _compute_signed_measure_parts(Y)
|
|
135
|
+
return _pairwise(
|
|
136
|
+
pairwise_distances,
|
|
137
|
+
True,
|
|
138
|
+
XX,
|
|
139
|
+
YY,
|
|
140
|
+
metric=_sklearn_wrapper(
|
|
141
|
+
_wasserstein_distance_on_parts(**kwargs), Xproj, Yproj
|
|
142
|
+
),
|
|
143
|
+
n_jobs=n_jobs,
|
|
144
|
+
)
|
|
145
|
+
else:
|
|
146
|
+
return _pairwise(
|
|
147
|
+
pairwise_distances,
|
|
148
|
+
True,
|
|
149
|
+
XX,
|
|
150
|
+
YY,
|
|
151
|
+
metric=_sklearn_wrapper(metric, X, Y, **kwargs),
|
|
152
|
+
n_jobs=n_jobs,
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def _wasserstein_distance_on_parts(ground_norm=1, epsilon=1.0):
|
|
157
|
+
"""
|
|
158
|
+
This is a function for computing the Wasserstein distance between two signed measures that have already been separated into their positive and negative parts.
|
|
159
|
+
|
|
160
|
+
Parameters:
|
|
161
|
+
meas1: pair of (n x dimension) numpy.arrays containing the points of the positive and negative parts of the first measure.
|
|
162
|
+
meas2: pair of (m x dimension) numpy.arrays containing the points of the positive and negative parts of the second measure.
|
|
163
|
+
|
|
164
|
+
Returns:
|
|
165
|
+
float: the sliced Wasserstein distance between the projected signed measures.
|
|
166
|
+
"""
|
|
167
|
+
|
|
168
|
+
def metric(meas1, meas2):
|
|
169
|
+
meas1_plus, meas1_minus = meas1[0], meas1[1]
|
|
170
|
+
meas2_plus, meas2_minus = meas2[0], meas2[1]
|
|
171
|
+
num_pts = len(meas1_plus) + len(meas2_minus)
|
|
172
|
+
meas_t1 = np.vstack([meas1_plus, meas2_minus])
|
|
173
|
+
meas_t2 = np.vstack([meas2_plus, meas1_minus])
|
|
174
|
+
import ot
|
|
175
|
+
|
|
176
|
+
if epsilon > 0:
|
|
177
|
+
wass = ot.sinkhorn2(
|
|
178
|
+
1 / num_pts * np.ones(num_pts),
|
|
179
|
+
1 / num_pts * np.ones(num_pts),
|
|
180
|
+
pairwise_distances(
|
|
181
|
+
meas_t1, meas_t2, metric="minkowski", p=ground_norm),
|
|
182
|
+
epsilon,
|
|
183
|
+
)
|
|
184
|
+
return wass[0]
|
|
185
|
+
else:
|
|
186
|
+
wass = ot.lp.emd2(
|
|
187
|
+
[],
|
|
188
|
+
[],
|
|
189
|
+
np.ascontiguousarray(
|
|
190
|
+
pairwise_distances(
|
|
191
|
+
meas_t1, meas_t2, metric="minkowski", p=ground_norm
|
|
192
|
+
),
|
|
193
|
+
dtype=np.float64,
|
|
194
|
+
),
|
|
195
|
+
)
|
|
196
|
+
return wass
|
|
197
|
+
|
|
198
|
+
return metric
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
def _sliced_wasserstein_distance_on_projections(meas1, meas2, scales=None):
|
|
202
|
+
"""
|
|
203
|
+
This is a function for computing the sliced Wasserstein distance between two signed measures that have already been projected onto some lines. It simply amounts to comparing the sorted projections with the 1-norm, and averaging over the lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
|
|
204
|
+
|
|
205
|
+
Parameters:
|
|
206
|
+
meas1: pair of (n x number_of_lines) numpy.arrays containing the projected points of the positive and negative parts of the first measure.
|
|
207
|
+
meas2: pair of (m x number_of_lines) numpy.arrays containing the projected points of the positive and negative parts of the second measure.
|
|
208
|
+
scales (array of shape D): scales associated to the dimensions.
|
|
209
|
+
|
|
210
|
+
Returns:
|
|
211
|
+
float: the sliced Wasserstein distance between the projected signed measures.
|
|
212
|
+
"""
|
|
213
|
+
# assert np.array_equal( meas1[2], meas2[2] )
|
|
214
|
+
weights = meas1[2]
|
|
215
|
+
meas1_plus, meas1_minus = meas1[0], meas1[1]
|
|
216
|
+
meas2_plus, meas2_minus = meas2[0], meas2[1]
|
|
217
|
+
A = np.sort(np.vstack([meas1_plus, meas2_minus]), axis=0)
|
|
218
|
+
B = np.sort(np.vstack([meas2_plus, meas1_minus]), axis=0)
|
|
219
|
+
L1 = np.sum(np.abs(A - B), axis=0)
|
|
220
|
+
return np.mean(np.multiply(L1, weights))
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
def _sliced_wasserstein_distance(meas1, meas2, num_directions, scales=None):
|
|
224
|
+
"""
|
|
225
|
+
This is a function for computing the sliced Wasserstein distance from two signed measures. The Sliced Wasserstein distance is computed by projecting the signed measures onto lines, comparing the projections with the 1-norm, and finally averaging over the lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
|
|
226
|
+
|
|
227
|
+
Parameters:
|
|
228
|
+
meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
|
|
229
|
+
meas2: ((m x D), (m)) tuple encoding the second measure.
|
|
230
|
+
num_directions (int): number of lines evenly sampled from [-pi/2,pi/2] in order to approximate and speed up the distance computation.
|
|
231
|
+
scales (array of shape D): scales associated to the dimensions.
|
|
232
|
+
|
|
233
|
+
Returns:
|
|
234
|
+
float: the sliced Wasserstein distance between signed measures.
|
|
235
|
+
"""
|
|
236
|
+
C1, M1 = meas1[0], meas1[1]
|
|
237
|
+
C2, M2 = meas2[0], meas2[1]
|
|
238
|
+
dimension = C1.shape[1]
|
|
239
|
+
C1_plus_idxs, C2_plus_idxs = (
|
|
240
|
+
np.argwhere(M1 > 0).ravel(),
|
|
241
|
+
np.argwhere(M2 > 0).ravel(),
|
|
242
|
+
)
|
|
243
|
+
C1_minus_idxs, C2_minus_idxs = (
|
|
244
|
+
np.setdiff1d(np.arange(len(M1)), C1_plus_idxs),
|
|
245
|
+
np.setdiff1d(np.arange(len(M2)), C2_plus_idxs),
|
|
246
|
+
)
|
|
247
|
+
np.random.seed(42)
|
|
248
|
+
thetas = np.random.normal(0, 1, [num_directions, dimension])
|
|
249
|
+
lines = (thetas / np.linalg.norm(thetas, axis=1)[:, None]).T
|
|
250
|
+
weights = (
|
|
251
|
+
np.linalg.norm(np.multiply(scales[:, None], lines), axis=0)
|
|
252
|
+
if scales is not None
|
|
253
|
+
else np.ones(num_directions)
|
|
254
|
+
)
|
|
255
|
+
approx1 = np.matmul(
|
|
256
|
+
np.vstack(
|
|
257
|
+
[
|
|
258
|
+
np.repeat(C1[C1_plus_idxs], M1[C1_plus_idxs], axis=0),
|
|
259
|
+
np.repeat(C2[C2_minus_idxs], -M2[C2_minus_idxs], axis=0),
|
|
260
|
+
]
|
|
261
|
+
),
|
|
262
|
+
lines,
|
|
263
|
+
)
|
|
264
|
+
approx2 = np.matmul(
|
|
265
|
+
np.vstack(
|
|
266
|
+
[
|
|
267
|
+
np.repeat(C2[C2_plus_idxs], M2[C2_plus_idxs], axis=0),
|
|
268
|
+
np.repeat(C1[C1_minus_idxs], -M1[C1_minus_idxs], axis=0),
|
|
269
|
+
]
|
|
270
|
+
),
|
|
271
|
+
lines,
|
|
272
|
+
)
|
|
273
|
+
A = np.sort(approx1, axis=0)
|
|
274
|
+
B = np.sort(approx2, axis=0)
|
|
275
|
+
L1 = np.sum(np.abs(A - B), axis=0)
|
|
276
|
+
return np.mean(np.multiply(L1, weights))
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
def _wasserstein_distance(meas1, meas2, epsilon, ground_norm):
|
|
280
|
+
"""
|
|
281
|
+
This is a function for computing the Wasserstein distance from two signed measures.
|
|
282
|
+
|
|
283
|
+
Parameters:
|
|
284
|
+
meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
|
|
285
|
+
meas2: ((m x D), (m)) tuple encoding the second measure.
|
|
286
|
+
epsilon (float): entropy regularization parameter.
|
|
287
|
+
ground_norm (int): norm to use for ground metric cost.
|
|
288
|
+
|
|
289
|
+
Returns:
|
|
290
|
+
float: the Wasserstein distance between signed measures.
|
|
291
|
+
"""
|
|
292
|
+
C1, M1 = meas1[0], meas1[1]
|
|
293
|
+
C2, M2 = meas2[0], meas2[1]
|
|
294
|
+
C1_plus_idxs, C2_plus_idxs = (
|
|
295
|
+
np.argwhere(M1 > 0).ravel(),
|
|
296
|
+
np.argwhere(M2 > 0).ravel(),
|
|
297
|
+
)
|
|
298
|
+
C1_minus_idxs, C2_minus_idxs = (
|
|
299
|
+
np.setdiff1d(np.arange(len(M1)), C1_plus_idxs),
|
|
300
|
+
np.setdiff1d(np.arange(len(M2)), C2_plus_idxs),
|
|
301
|
+
)
|
|
302
|
+
approx1 = np.vstack(
|
|
303
|
+
[
|
|
304
|
+
np.repeat(C1[C1_plus_idxs], M1[C1_plus_idxs], axis=0),
|
|
305
|
+
np.repeat(C2[C2_minus_idxs], -M2[C2_minus_idxs], axis=0),
|
|
306
|
+
]
|
|
307
|
+
)
|
|
308
|
+
approx2 = np.vstack(
|
|
309
|
+
[
|
|
310
|
+
np.repeat(C2[C2_plus_idxs], M2[C2_plus_idxs], axis=0),
|
|
311
|
+
np.repeat(C1[C1_minus_idxs], -M1[C1_minus_idxs], axis=0),
|
|
312
|
+
]
|
|
313
|
+
)
|
|
314
|
+
num_pts = len(approx1)
|
|
315
|
+
import ot
|
|
316
|
+
|
|
317
|
+
if epsilon > 0:
|
|
318
|
+
wass = ot.sinkhorn2(
|
|
319
|
+
1 / num_pts * np.ones(num_pts),
|
|
320
|
+
1 / num_pts * np.ones(num_pts),
|
|
321
|
+
pairwise_distances(
|
|
322
|
+
approx1, approx2, metric="minkowski", p=ground_norm),
|
|
323
|
+
epsilon,
|
|
324
|
+
)
|
|
325
|
+
return wass[0]
|
|
326
|
+
else:
|
|
327
|
+
wass = ot.lp.emd2(
|
|
328
|
+
1 / num_pts * np.ones(num_pts),
|
|
329
|
+
1 / num_pts * np.ones(num_pts),
|
|
330
|
+
pairwise_distances(
|
|
331
|
+
approx1, approx2, metric="minkowski", p=ground_norm),
|
|
332
|
+
)
|
|
333
|
+
return wass
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
class SlicedWassersteinDistance(BaseEstimator, TransformerMixin):
|
|
337
|
+
"""
|
|
338
|
+
This is a class for computing the sliced Wasserstein distance matrix from a list of signed measures. The Sliced Wasserstein distance is computed by projecting the signed measures onto lines, comparing the projections with the 1-norm, and finally integrating over all possible lines. See http://proceedings.mlr.press/v70/carriere17a.html for more details.
|
|
339
|
+
"""
|
|
340
|
+
|
|
341
|
+
def __init__(self, num_directions=10, scales=None, n_jobs=None):
|
|
342
|
+
"""
|
|
343
|
+
Constructor for the SlicedWassersteinDistance class.
|
|
344
|
+
|
|
345
|
+
Parameters:
|
|
346
|
+
num_directions (int): number of lines evenly sampled in order to approximate and speed up the distance computation (default 10).
|
|
347
|
+
scales (array of shape D): scales associated to the dimensions.
|
|
348
|
+
n_jobs (int): number of jobs to use for the computation. See :func:`pairwise_signed_measure_distances` for details.
|
|
349
|
+
"""
|
|
350
|
+
self.num_directions = num_directions
|
|
351
|
+
self.scales = scales
|
|
352
|
+
self.n_jobs = n_jobs
|
|
353
|
+
|
|
354
|
+
def fit(self, X, y=None):
|
|
355
|
+
"""
|
|
356
|
+
Fit the SlicedWassersteinDistance class on a list of signed measures: signed measures are projected onto the different lines. The measures themselves are then stored in numpy arrays, called **measures_**.
|
|
357
|
+
|
|
358
|
+
Parameters:
|
|
359
|
+
X (list of tuples): input signed measures.
|
|
360
|
+
y (n x 1 array): signed measure labels (unused).
|
|
361
|
+
"""
|
|
362
|
+
self.measures_ = X
|
|
363
|
+
return self
|
|
364
|
+
|
|
365
|
+
def transform(self, X):
|
|
366
|
+
"""
|
|
367
|
+
Compute all sliced Wasserstein distances between the signed measures that were stored after calling the fit() method, and a given list of (possibly different) signed measures.
|
|
368
|
+
|
|
369
|
+
Parameters:
|
|
370
|
+
X (list of tuples): input signed measures.
|
|
371
|
+
|
|
372
|
+
Returns:
|
|
373
|
+
numpy array of shape (number of measures in **measures**) x (number of measures in X): matrix of pairwise sliced Wasserstein distances.
|
|
374
|
+
"""
|
|
375
|
+
return pairwise_signed_measure_distances(
|
|
376
|
+
X,
|
|
377
|
+
self.measures_,
|
|
378
|
+
metric="sliced_wasserstein",
|
|
379
|
+
num_directions=self.num_directions,
|
|
380
|
+
scales=self.scales,
|
|
381
|
+
n_jobs=self.n_jobs,
|
|
382
|
+
)
|
|
383
|
+
|
|
384
|
+
def __call__(self, meas1, meas2):
|
|
385
|
+
"""
|
|
386
|
+
Apply SlicedWassersteinDistance on a single pair of signed measures and outputs the result.
|
|
387
|
+
|
|
388
|
+
Parameters:
|
|
389
|
+
meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
|
|
390
|
+
meas2: ((m x D), (m)) tuple encoding the second measure.
|
|
391
|
+
|
|
392
|
+
Returns:
|
|
393
|
+
float: sliced Wasserstein distance.
|
|
394
|
+
"""
|
|
395
|
+
return _sliced_wasserstein_distance(
|
|
396
|
+
meas1, meas2, num_directions=self.num_directions, scales=self.scales
|
|
397
|
+
)
|
|
398
|
+
|
|
399
|
+
|
|
400
|
+
class WassersteinDistance(BaseEstimator, TransformerMixin):
|
|
401
|
+
"""
|
|
402
|
+
This is a class for computing the Wasserstein distance matrix from a list of signed measures.
|
|
403
|
+
"""
|
|
404
|
+
|
|
405
|
+
def __init__(self, epsilon=1.0, ground_norm=1, n_jobs=None):
|
|
406
|
+
"""
|
|
407
|
+
Constructor for the WassersteinDistance class.
|
|
408
|
+
|
|
409
|
+
Parameters:
|
|
410
|
+
epsilon (float): entropy regularization parameter.
|
|
411
|
+
ground_norm (int): norm to use for ground metric cost.
|
|
412
|
+
n_jobs (int): number of jobs to use for the computation. See :func:`pairwise_signed_measure_distances` for details.
|
|
413
|
+
"""
|
|
414
|
+
self.epsilon = epsilon
|
|
415
|
+
self.ground_norm = ground_norm
|
|
416
|
+
self.n_jobs = n_jobs
|
|
417
|
+
|
|
418
|
+
def fit(self, X, y=None):
|
|
419
|
+
"""
|
|
420
|
+
Fit the WassersteinDistance class on a list of signed measures. The measures themselves are then stored in numpy arrays, called **measures_**.
|
|
421
|
+
|
|
422
|
+
Parameters:
|
|
423
|
+
X (list of tuples): input signed measures.
|
|
424
|
+
y (n x 1 array): signed measure labels (unused).
|
|
425
|
+
"""
|
|
426
|
+
self.measures_ = X
|
|
427
|
+
return self
|
|
428
|
+
|
|
429
|
+
def transform(self, X):
|
|
430
|
+
"""
|
|
431
|
+
Compute all Wasserstein distances between the signed measures that were stored after calling the fit() method, and a given list of (possibly different) signed measures.
|
|
432
|
+
|
|
433
|
+
Parameters:
|
|
434
|
+
X (list of tuples): input signed measures.
|
|
435
|
+
|
|
436
|
+
Returns:
|
|
437
|
+
numpy array of shape (number of measures in **measures**) x (number of measures in X): matrix of pairwise Wasserstein distances.
|
|
438
|
+
"""
|
|
439
|
+
return pairwise_signed_measure_distances(
|
|
440
|
+
X,
|
|
441
|
+
self.measures_,
|
|
442
|
+
metric="wasserstein",
|
|
443
|
+
epsilon=self.epsilon,
|
|
444
|
+
ground_norm=self.ground_norm,
|
|
445
|
+
n_jobs=self.n_jobs,
|
|
446
|
+
)
|
|
447
|
+
|
|
448
|
+
def __call__(self, meas1, meas2):
|
|
449
|
+
"""
|
|
450
|
+
Apply WassersteinDistance on a single pair of signed measures and outputs the result.
|
|
451
|
+
|
|
452
|
+
Parameters:
|
|
453
|
+
meas1: ((n x D), (n)) tuple with numpy.array encoding the (finite points of the) first measure and their multiplicities. Must not contain essential points (i.e. with infinite coordinate).
|
|
454
|
+
meas2: ((m x D), (m)) tuple encoding the second measure.
|
|
455
|
+
|
|
456
|
+
Returns:
|
|
457
|
+
float: Wasserstein distance.
|
|
458
|
+
"""
|
|
459
|
+
return _wasserstein_distance(
|
|
460
|
+
meas1, meas2, epsilon=self.epsilon, ground_norm=self.ground_norm
|
|
461
|
+
)
|
multipers/ml/tools.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
1
|
+
from types import FunctionType
|
|
2
|
+
from typing import Iterable
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
from joblib import Parallel, delayed
|
|
6
|
+
from sklearn.base import BaseEstimator, TransformerMixin
|
|
7
|
+
|
|
8
|
+
import multipers as mp
|
|
9
|
+
from multipers.simplex_tree_multi import SimplexTreeMulti
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def get_simplex_tree_from_delayed(x) -> mp.SimplexTreeMulti:
|
|
13
|
+
f, args, kwargs = x
|
|
14
|
+
return f(*args, **kwargs)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def get_simplextree(x) -> mp.SimplexTreeMulti:
|
|
18
|
+
if isinstance(x, mp.SimplexTreeMulti):
|
|
19
|
+
return x
|
|
20
|
+
if len(x) == 3 and isinstance(x[0], FunctionType):
|
|
21
|
+
return get_simplex_tree_from_delayed(x)
|
|
22
|
+
else:
|
|
23
|
+
raise TypeError("Not a valid SimplexTree !")
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
def filtration_grid_to_coordinates(F, return_resolution):
|
|
27
|
+
# computes the mesh as a coordinate list
|
|
28
|
+
mesh = np.meshgrid(*F)
|
|
29
|
+
coordinates = np.concatenate([stuff.flatten()[:, None] for stuff in mesh], axis=1)
|
|
30
|
+
if return_resolution:
|
|
31
|
+
return coordinates, tuple(len(f) for f in F)
|
|
32
|
+
return coordinates
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def get_filtration_weights_grid(
|
|
36
|
+
num_parameters: int = 2,
|
|
37
|
+
resolution: int | Iterable[int] = 3,
|
|
38
|
+
*,
|
|
39
|
+
min: float = 0,
|
|
40
|
+
max: float = 20,
|
|
41
|
+
dtype=float,
|
|
42
|
+
remove_homothetie: bool = True,
|
|
43
|
+
weights=None,
|
|
44
|
+
):
|
|
45
|
+
"""
|
|
46
|
+
Provides a grid of weights, for filtration rescaling.
|
|
47
|
+
- num parameter : the dimension of the grid tensor
|
|
48
|
+
- resolution : the size of each coordinate
|
|
49
|
+
- min : minimum weight
|
|
50
|
+
- max : maximum weight
|
|
51
|
+
- weights : custom weights (instead of linspace between min and max)
|
|
52
|
+
- dtype : the type of the grid values (useful for int weights)
|
|
53
|
+
"""
|
|
54
|
+
from itertools import product
|
|
55
|
+
|
|
56
|
+
# if isinstance(resolution, int):
|
|
57
|
+
try:
|
|
58
|
+
float(resolution)
|
|
59
|
+
resolution = [resolution] * num_parameters
|
|
60
|
+
except:
|
|
61
|
+
pass
|
|
62
|
+
if weights is None:
|
|
63
|
+
weights = [
|
|
64
|
+
np.linspace(start=min, stop=max, num=r, dtype=dtype) for r in resolution
|
|
65
|
+
]
|
|
66
|
+
try:
|
|
67
|
+
float(weights[0]) # same weights for each filtrations
|
|
68
|
+
weights = [weights] * num_parameters
|
|
69
|
+
except:
|
|
70
|
+
None
|
|
71
|
+
out = np.asarray(list(product(*weights)))
|
|
72
|
+
if remove_homothetie:
|
|
73
|
+
_, indices = np.unique(
|
|
74
|
+
[x / x.max() for x in out if x.max() != 0], axis=0, return_index=True
|
|
75
|
+
)
|
|
76
|
+
out = out[indices]
|
|
77
|
+
return list(out)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
class SimplexTreeEdgeCollapser(BaseEstimator, TransformerMixin):
|
|
81
|
+
def __init__(
|
|
82
|
+
self,
|
|
83
|
+
num_collapses: int = 0,
|
|
84
|
+
full: bool = False,
|
|
85
|
+
max_dimension: int | None = None,
|
|
86
|
+
n_jobs: int = 1,
|
|
87
|
+
) -> None:
|
|
88
|
+
super().__init__()
|
|
89
|
+
self.full = full
|
|
90
|
+
self.num_collapses = num_collapses
|
|
91
|
+
self.max_dimension = max_dimension
|
|
92
|
+
self.n_jobs = n_jobs
|
|
93
|
+
return
|
|
94
|
+
|
|
95
|
+
def fit(self, X: np.ndarray | list, y=None):
|
|
96
|
+
return self
|
|
97
|
+
|
|
98
|
+
def transform(self, X):
|
|
99
|
+
edges_list = Parallel(n_jobs=-1, prefer="threads")(
|
|
100
|
+
delayed(mp.SimplextreeMulti.get_edge_list)(x) for x in X
|
|
101
|
+
)
|
|
102
|
+
collapsed_edge_lists = Parallel(n_jobs=self.n_jobs)(
|
|
103
|
+
delayed(mp._collapse_edge_list)(
|
|
104
|
+
edges, full=self.full, num=self.num_collapses
|
|
105
|
+
)
|
|
106
|
+
for edges in edges_list
|
|
107
|
+
)
|
|
108
|
+
collapsed_simplextrees = Parallel(n_jobs=-1, prefer="threads")(
|
|
109
|
+
delayed(mp.SimplexTreeMulti._reconstruct_from_edge_list)(
|
|
110
|
+
collapsed_edge_lists, swap=True, expand_dim=self.max_dimension
|
|
111
|
+
)
|
|
112
|
+
)
|
|
113
|
+
return collapsed_simplextrees
|
|
Binary file
|