multipers 2.3.3b6__cp311-cp311-manylinux_2_39_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/__init__.py +33 -0
- multipers/_signed_measure_meta.py +453 -0
- multipers/_slicer_meta.py +211 -0
- multipers/array_api/__init__.py +45 -0
- multipers/array_api/numpy.py +41 -0
- multipers/array_api/torch.py +58 -0
- multipers/data/MOL2.py +458 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +113 -0
- multipers/distances.py +202 -0
- multipers/filtration_conversions.pxd +229 -0
- multipers/filtration_conversions.pxd.tp +84 -0
- multipers/filtrations/__init__.py +18 -0
- multipers/filtrations/density.py +574 -0
- multipers/filtrations/filtrations.py +361 -0
- multipers/filtrations.pxd +224 -0
- multipers/function_rips.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/function_rips.pyx +105 -0
- multipers/grids.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/grids.pyx +433 -0
- multipers/gudhi/Persistence_slices_interface.h +132 -0
- multipers/gudhi/Simplex_tree_interface.h +239 -0
- multipers/gudhi/Simplex_tree_multi_interface.h +551 -0
- multipers/gudhi/cubical_to_boundary.h +59 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
- multipers/gudhi/gudhi/Debug_utils.h +45 -0
- multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
- multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
- multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
- multipers/gudhi/gudhi/Matrix.h +2107 -0
- multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
- multipers/gudhi/gudhi/Multi_persistence/Box.h +174 -0
- multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
- multipers/gudhi/gudhi/Off_reader.h +173 -0
- multipers/gudhi/gudhi/One_critical_filtration.h +1441 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
- multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
- multipers/gudhi/gudhi/Points_off_io.h +171 -0
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
- multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
- multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
- multipers/gudhi/gudhi/distance_functions.h +62 -0
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
- multipers/gudhi/gudhi/persistence_interval.h +253 -0
- multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
- multipers/gudhi/gudhi/reader_utils.h +367 -0
- multipers/gudhi/mma_interface_coh.h +256 -0
- multipers/gudhi/mma_interface_h0.h +223 -0
- multipers/gudhi/mma_interface_matrix.h +293 -0
- multipers/gudhi/naive_merge_tree.h +536 -0
- multipers/gudhi/scc_io.h +310 -0
- multipers/gudhi/truc.h +1403 -0
- multipers/io.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/io.pyx +644 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +713 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +352 -0
- multipers/ml/signed_measures.py +1589 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/mma_structures.pxd +128 -0
- multipers/mma_structures.pyx +2786 -0
- multipers/mma_structures.pyx.tp +1094 -0
- multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
- multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
- multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
- multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
- multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation/approximation.h +2330 -0
- multipers/multiparameter_module_approximation/combinatory.h +129 -0
- multipers/multiparameter_module_approximation/debug.h +107 -0
- multipers/multiparameter_module_approximation/euler_curves.h +0 -0
- multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
- multipers/multiparameter_module_approximation/heap_column.h +238 -0
- multipers/multiparameter_module_approximation/images.h +79 -0
- multipers/multiparameter_module_approximation/list_column.h +174 -0
- multipers/multiparameter_module_approximation/list_column_2.h +232 -0
- multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
- multipers/multiparameter_module_approximation/set_column.h +135 -0
- multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
- multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
- multipers/multiparameter_module_approximation/utilities.h +403 -0
- multipers/multiparameter_module_approximation/vector_column.h +223 -0
- multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
- multipers/multiparameter_module_approximation/vineyards.h +464 -0
- multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
- multipers/multiparameter_module_approximation.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/multiparameter_module_approximation.pyx +235 -0
- multipers/pickle.py +90 -0
- multipers/plots.py +456 -0
- multipers/point_measure.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/point_measure.pyx +395 -0
- multipers/simplex_tree_multi.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/simplex_tree_multi.pxd +134 -0
- multipers/simplex_tree_multi.pyx +10840 -0
- multipers/simplex_tree_multi.pyx.tp +2009 -0
- multipers/slicer.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/slicer.pxd +3034 -0
- multipers/slicer.pxd.tp +234 -0
- multipers/slicer.pyx +20481 -0
- multipers/slicer.pyx.tp +1088 -0
- multipers/tensor/tensor.h +672 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +62 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +240 -0
- multipers/torch/rips_density.py +310 -0
- multipers-2.3.3b6.dist-info/METADATA +128 -0
- multipers-2.3.3b6.dist-info/RECORD +182 -0
- multipers-2.3.3b6.dist-info/WHEEL +5 -0
- multipers-2.3.3b6.dist-info/licenses/LICENSE +21 -0
- multipers-2.3.3b6.dist-info/top_level.txt +1 -0
- multipers.libs/libtbb-ca48af5c.so.12.16 +0 -0
multipers/grids.pyx
ADDED
|
@@ -0,0 +1,433 @@
|
|
|
1
|
+
|
|
2
|
+
from libc.stdint cimport intptr_t, int32_t, int64_t
|
|
3
|
+
from libcpp cimport bool,int, float
|
|
4
|
+
|
|
5
|
+
cimport numpy as cnp
|
|
6
|
+
import numpy as np
|
|
7
|
+
cnp.import_array()
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
from typing import Iterable,Literal,Optional
|
|
11
|
+
from itertools import product
|
|
12
|
+
from multipers.array_api import api_from_tensor, api_from_tensors
|
|
13
|
+
from multipers.array_api import numpy as npapi
|
|
14
|
+
|
|
15
|
+
available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
|
|
16
|
+
Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
|
|
17
|
+
|
|
18
|
+
ctypedef fused some_int:
|
|
19
|
+
int32_t
|
|
20
|
+
int64_t
|
|
21
|
+
|
|
22
|
+
ctypedef fused some_float:
|
|
23
|
+
float
|
|
24
|
+
double
|
|
25
|
+
|
|
26
|
+
def sanitize_grid(grid, bool numpyfy=False):
|
|
27
|
+
if len(grid) == 0:
|
|
28
|
+
raise ValueError("empty filtration grid")
|
|
29
|
+
api = api_from_tensors(*grid)
|
|
30
|
+
if numpyfy:
|
|
31
|
+
grid = tuple(api.asnumpy(g) for g in grid)
|
|
32
|
+
else:
|
|
33
|
+
# copy here may not be necessary, but cheap
|
|
34
|
+
grid = tuple(api.astensor(g) for g in grid)
|
|
35
|
+
assert np.all([g.ndim==1 for g in grid])
|
|
36
|
+
return grid
|
|
37
|
+
|
|
38
|
+
def compute_grid(
|
|
39
|
+
x,
|
|
40
|
+
resolution:Optional[int|Iterable[int]]=None,
|
|
41
|
+
strategy:Lstrategies="exact",
|
|
42
|
+
bool unique=True,
|
|
43
|
+
some_float _q_factor=1.,
|
|
44
|
+
drop_quantiles=[0,0],
|
|
45
|
+
bool dense = False,
|
|
46
|
+
):
|
|
47
|
+
"""
|
|
48
|
+
Computes a grid from filtration values, using some strategy.
|
|
49
|
+
|
|
50
|
+
Input
|
|
51
|
+
-----
|
|
52
|
+
|
|
53
|
+
- `filtrations_values`: `Iterable[filtration of parameter for parameter]`
|
|
54
|
+
where `filtration_of_parameter` is a array[float, ndim=1]
|
|
55
|
+
- `resolution`:Optional[int|tuple[int]]
|
|
56
|
+
- `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
|
|
57
|
+
- `unique`: if true, doesn't repeat values in the output grid.
|
|
58
|
+
- `drop_quantiles` : drop some filtration values according to these quantiles
|
|
59
|
+
Output
|
|
60
|
+
------
|
|
61
|
+
|
|
62
|
+
Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
|
|
63
|
+
"""
|
|
64
|
+
|
|
65
|
+
from multipers.slicer import is_slicer
|
|
66
|
+
from multipers.simplex_tree_multi import is_simplextree_multi
|
|
67
|
+
from multipers.mma_structures import is_mma
|
|
68
|
+
|
|
69
|
+
if resolution is not None and strategy == "exact":
|
|
70
|
+
raise ValueError("The 'exact' strategy does not support resolution.")
|
|
71
|
+
if strategy != "exact":
|
|
72
|
+
assert resolution is not None, "A resolution is required for non-exact strategies"
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
cdef bool is_numpy_compatible = True
|
|
76
|
+
if (is_slicer(x) or is_simplextree_multi(x)) and x.is_squeezed:
|
|
77
|
+
initial_grid = x.filtration_grid
|
|
78
|
+
api = api_from_tensors(*initial_grid)
|
|
79
|
+
elif is_slicer(x):
|
|
80
|
+
initial_grid = x.get_filtrations_values().T
|
|
81
|
+
api = npapi
|
|
82
|
+
elif is_simplextree_multi(x):
|
|
83
|
+
initial_grid = x.get_filtration_grid()
|
|
84
|
+
api = npapi
|
|
85
|
+
elif is_mma(x):
|
|
86
|
+
initial_grid = x.get_filtration_values()
|
|
87
|
+
api = npapi
|
|
88
|
+
elif isinstance(x, np.ndarray):
|
|
89
|
+
initial_grid = x
|
|
90
|
+
api = npapi
|
|
91
|
+
else:
|
|
92
|
+
x = tuple(x)
|
|
93
|
+
if len(x) == 0: return []
|
|
94
|
+
first = x[0]
|
|
95
|
+
## is_sm, i.e., iterable tuple(pts,weights)
|
|
96
|
+
if isinstance(first, tuple) and getattr(first[0], "shape", None) is not None:
|
|
97
|
+
initial_grid = tuple(f[0].T for f in x)
|
|
98
|
+
api = api_from_tensors(*initial_grid)
|
|
99
|
+
initial_grid = api.cat(initial_grid, axis=1)
|
|
100
|
+
# if isinstance(initial_grid[0], np.ndarray):
|
|
101
|
+
# initial_grid = np.concatenate(initial_grid, axis=1)
|
|
102
|
+
# else:
|
|
103
|
+
# is_numpy_compatible = False
|
|
104
|
+
# import torch
|
|
105
|
+
# assert isinstance(first[0], torch.Tensor), "Only numpy and torch are supported ftm."
|
|
106
|
+
# initial_grid = torch.cat(initial_grid, axis=1)
|
|
107
|
+
## is grid-like (num_params, num_pts)
|
|
108
|
+
else:
|
|
109
|
+
api = api_from_tensors(*x)
|
|
110
|
+
initial_grid = tuple(api.astensor(f) for f in x)
|
|
111
|
+
# elif isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
|
|
112
|
+
# initial_grid = tuple(f for f in x)
|
|
113
|
+
# else:
|
|
114
|
+
# is_numpy_compatible = False
|
|
115
|
+
# import torch
|
|
116
|
+
# assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
|
|
117
|
+
# initial_grid = x
|
|
118
|
+
|
|
119
|
+
num_parameters = len(initial_grid)
|
|
120
|
+
try:
|
|
121
|
+
int(resolution)
|
|
122
|
+
resolution = [resolution]*num_parameters
|
|
123
|
+
except TypeError:
|
|
124
|
+
pass
|
|
125
|
+
|
|
126
|
+
if api is npapi:
|
|
127
|
+
return _compute_grid_numpy(
|
|
128
|
+
initial_grid,
|
|
129
|
+
resolution=resolution,
|
|
130
|
+
strategy = strategy,
|
|
131
|
+
unique = unique,
|
|
132
|
+
_q_factor=_q_factor,
|
|
133
|
+
drop_quantiles=drop_quantiles,
|
|
134
|
+
dense = dense,
|
|
135
|
+
)
|
|
136
|
+
from multipers.torch.diff_grids import get_grid
|
|
137
|
+
grid = get_grid(strategy)(initial_grid,resolution)
|
|
138
|
+
if dense:
|
|
139
|
+
grid = todense(grid)
|
|
140
|
+
return grid
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def _compute_grid_numpy(
|
|
147
|
+
filtrations_values,
|
|
148
|
+
resolution=None,
|
|
149
|
+
strategy:Lstrategies="exact",
|
|
150
|
+
bool unique=True,
|
|
151
|
+
some_float _q_factor=1.,
|
|
152
|
+
drop_quantiles=[0,0],
|
|
153
|
+
bool dense = False,
|
|
154
|
+
):
|
|
155
|
+
"""
|
|
156
|
+
Computes a grid from filtration values, using some strategy.
|
|
157
|
+
|
|
158
|
+
Input
|
|
159
|
+
-----
|
|
160
|
+
- `filtrations_values`: `Iterable[filtration of parameter for parameter]`
|
|
161
|
+
where `filtration_of_parameter` is a array[float, ndim=1]
|
|
162
|
+
- `resolution`:Optional[int|tuple[int]]
|
|
163
|
+
- `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
|
|
164
|
+
- `unique`: if true, doesn't repeat values in the output grid.
|
|
165
|
+
- `drop_quantiles` : drop some filtration values according to these quantiles
|
|
166
|
+
Output
|
|
167
|
+
------
|
|
168
|
+
Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
|
|
169
|
+
"""
|
|
170
|
+
num_parameters = len(filtrations_values)
|
|
171
|
+
try:
|
|
172
|
+
a,b=drop_quantiles
|
|
173
|
+
except:
|
|
174
|
+
a,b=drop_quantiles,drop_quantiles
|
|
175
|
+
|
|
176
|
+
if a != 0 or b != 0:
|
|
177
|
+
boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
|
|
178
|
+
min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
|
|
179
|
+
filtrations_values = [
|
|
180
|
+
filtration[(m<filtration) * (filtration <M)]
|
|
181
|
+
for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
|
|
182
|
+
]
|
|
183
|
+
|
|
184
|
+
to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
|
|
185
|
+
## match doesn't work with cython BUG
|
|
186
|
+
if strategy == "exact":
|
|
187
|
+
F=tuple(to_unique(f) for f in filtrations_values)
|
|
188
|
+
elif strategy == "quantile":
|
|
189
|
+
F = tuple(to_unique(f) for f in filtrations_values)
|
|
190
|
+
max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
|
|
191
|
+
F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
|
|
192
|
+
if unique:
|
|
193
|
+
F = tuple(to_unique(f) for f in F)
|
|
194
|
+
if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
|
|
195
|
+
return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
|
|
196
|
+
elif strategy == "regular":
|
|
197
|
+
F = tuple(np.linspace(np.min(f),np.max(f),num=r, dtype=np.asarray(f).dtype) for f,r in zip(filtrations_values, resolution))
|
|
198
|
+
elif strategy == "regular_closest":
|
|
199
|
+
F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
200
|
+
elif strategy == "regular_left":
|
|
201
|
+
F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
202
|
+
elif strategy == "torch_regular_closest":
|
|
203
|
+
F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
204
|
+
elif strategy == "partition":
|
|
205
|
+
F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
|
|
206
|
+
elif strategy == "precomputed":
|
|
207
|
+
F=filtrations_values
|
|
208
|
+
else:
|
|
209
|
+
raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
|
|
210
|
+
if dense:
|
|
211
|
+
return todense(F)
|
|
212
|
+
return F
|
|
213
|
+
|
|
214
|
+
def todense(grid, bool product_order=False):
|
|
215
|
+
if len(grid) == 0:
|
|
216
|
+
return np.empty(0)
|
|
217
|
+
if not isinstance(grid[0], np.ndarray):
|
|
218
|
+
import torch
|
|
219
|
+
assert isinstance(grid[0], torch.Tensor)
|
|
220
|
+
from multipers.torch.diff_grids import todense
|
|
221
|
+
return todense(grid)
|
|
222
|
+
dtype = grid[0].dtype
|
|
223
|
+
if product_order:
|
|
224
|
+
return np.fromiter(product(*grid), dtype=np.dtype((dtype, len(grid))), count=np.prod([len(f) for f in grid]))
|
|
225
|
+
mesh = np.meshgrid(*grid)
|
|
226
|
+
coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
|
|
227
|
+
return coordinates
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
## TODO : optimize. Pykeops ?
|
|
232
|
+
def _todo_regular_closest(some_float[:] f, int r, bool unique):
|
|
233
|
+
f_array = np.asarray(f)
|
|
234
|
+
f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
|
|
235
|
+
f_regular_closest = np.asarray([f[<int64_t>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
|
|
236
|
+
if unique: f_regular_closest = np.unique(f_regular_closest)
|
|
237
|
+
return f_regular_closest
|
|
238
|
+
|
|
239
|
+
def _todo_regular_left(some_float[:] f, int r, bool unique):
|
|
240
|
+
sorted_f = np.sort(f)
|
|
241
|
+
f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
|
|
242
|
+
f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
|
|
243
|
+
if unique: f_regular_closest = np.unique(f_regular_closest)
|
|
244
|
+
return f_regular_closest
|
|
245
|
+
|
|
246
|
+
def _torch_regular_closest(f, int r, bool unique=True):
|
|
247
|
+
import torch
|
|
248
|
+
f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
|
|
249
|
+
f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
|
|
250
|
+
if unique: f_regular_closest = f_regular_closest.unique()
|
|
251
|
+
return f_regular_closest
|
|
252
|
+
|
|
253
|
+
def _todo_partition(some_float[:] data,int resolution, bool unique):
|
|
254
|
+
if data.shape[0] < resolution: resolution=data.shape[0]
|
|
255
|
+
k = data.shape[0] // resolution
|
|
256
|
+
partitions = np.partition(data, k)
|
|
257
|
+
f = partitions[[i*k for i in range(resolution)]]
|
|
258
|
+
if unique: f= np.unique(f)
|
|
259
|
+
return f
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
def compute_bounding_box(stuff, inflate = 0.):
|
|
263
|
+
r"""
|
|
264
|
+
Returns a array of shape (2, num_parameters)
|
|
265
|
+
such that for any filtration value $y$ of something in stuff,
|
|
266
|
+
then if (x,z) is the output of this function, we have
|
|
267
|
+
$x\le y \le z$.
|
|
268
|
+
"""
|
|
269
|
+
box = np.array(compute_grid(stuff,strategy="regular",resolution=2)).T
|
|
270
|
+
if inflate:
|
|
271
|
+
box[0] -= inflate
|
|
272
|
+
box[1] += inflate
|
|
273
|
+
return box
|
|
274
|
+
|
|
275
|
+
def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
|
|
276
|
+
"""
|
|
277
|
+
Given points and a grid (list of one parameter grids),
|
|
278
|
+
pushes the points onto the grid.
|
|
279
|
+
"""
|
|
280
|
+
num_points, num_parameters = points.shape[0], points.shape[1]
|
|
281
|
+
cdef cnp.ndarray[int64_t,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
|
|
282
|
+
for parameter in range(num_parameters):
|
|
283
|
+
coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
|
|
284
|
+
if return_coordinate:
|
|
285
|
+
return coordinates
|
|
286
|
+
out = np.empty((num_points,num_parameters), grid[0].dtype)
|
|
287
|
+
for parameter in range(num_parameters):
|
|
288
|
+
out[:,parameter] = grid[parameter][coordinates[:,parameter]]
|
|
289
|
+
return out
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
|
|
293
|
+
grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
|
|
294
|
+
if coordinate:
|
|
295
|
+
return push_to_grid(points, grid, coordinate), grid
|
|
296
|
+
return push_to_grid(points, grid, coordinate)
|
|
297
|
+
|
|
298
|
+
def _inf_value(array):
|
|
299
|
+
if isinstance(array, type|np.dtype):
|
|
300
|
+
dtype = np.dtype(array) # torch types are not types
|
|
301
|
+
elif isinstance(array, np.ndarray):
|
|
302
|
+
dtype = np.dtype(array.dtype)
|
|
303
|
+
else:
|
|
304
|
+
import torch
|
|
305
|
+
if isinstance(array, torch.Tensor):
|
|
306
|
+
dtype=array.dtype
|
|
307
|
+
elif isinstance(array, torch.dtype):
|
|
308
|
+
dtype=array
|
|
309
|
+
else:
|
|
310
|
+
raise ValueError(f"unknown input of type {type(array)=} {array=}")
|
|
311
|
+
|
|
312
|
+
if isinstance(dtype, np.dtype):
|
|
313
|
+
if dtype.kind == 'f':
|
|
314
|
+
return np.asarray(np.inf,dtype=dtype)
|
|
315
|
+
if dtype.kind == 'i':
|
|
316
|
+
return np.iinfo(dtype).max
|
|
317
|
+
# torch only here.
|
|
318
|
+
if dtype.is_floating_point:
|
|
319
|
+
return torch.tensor(torch.inf, dtype=dtype)
|
|
320
|
+
else:
|
|
321
|
+
return torch.iinfo(dtype).max
|
|
322
|
+
raise ValueError(f"Dtype must be integer or floating like (got {dtype})")
|
|
323
|
+
|
|
324
|
+
def evaluate_in_grid(pts, grid, mass_default=None):
|
|
325
|
+
"""
|
|
326
|
+
Input
|
|
327
|
+
-----
|
|
328
|
+
- pts: of the form array[int, ndim=2]
|
|
329
|
+
- grid of the form Iterable[array[float, ndim=1]]
|
|
330
|
+
"""
|
|
331
|
+
assert pts.ndim == 2
|
|
332
|
+
first_filtration = grid[0]
|
|
333
|
+
dtype = first_filtration.dtype
|
|
334
|
+
if isinstance(first_filtration, np.ndarray):
|
|
335
|
+
if mass_default is not None:
|
|
336
|
+
grid = tuple(np.concatenate([g, [m]]) for g,m in zip(grid, mass_default))
|
|
337
|
+
def empty_like(x):
|
|
338
|
+
return np.empty_like(x, dtype=dtype)
|
|
339
|
+
else:
|
|
340
|
+
import torch
|
|
341
|
+
# assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid[0])}, expected numpy or torch array."
|
|
342
|
+
if mass_default is not None:
|
|
343
|
+
grid = tuple(torch.cat([g, torch.tensor(m)[None]]) for g,m in zip(grid, mass_default))
|
|
344
|
+
def empty_like(x):
|
|
345
|
+
return torch.empty(x.shape,dtype=dtype)
|
|
346
|
+
|
|
347
|
+
coords=empty_like(pts)
|
|
348
|
+
cdef int dim = coords.shape[1]
|
|
349
|
+
pts_inf = _inf_value(pts)
|
|
350
|
+
coords_inf = _inf_value(coords)
|
|
351
|
+
idx = np.argwhere(pts == pts_inf)
|
|
352
|
+
pts[idx] == 0
|
|
353
|
+
for i in range(dim):
|
|
354
|
+
coords[:,i] = grid[i][pts[:,i]]
|
|
355
|
+
coords[idx] = coords_inf
|
|
356
|
+
return coords
|
|
357
|
+
|
|
358
|
+
def sm_in_grid(pts, weights, grid, mass_default=None):
|
|
359
|
+
"""Given a measure whose points are coordinates,
|
|
360
|
+
pushes this measure in this grid.
|
|
361
|
+
Input
|
|
362
|
+
-----
|
|
363
|
+
- pts: of the form array[int, ndim=2]
|
|
364
|
+
- weights: array[int, ndim=1]
|
|
365
|
+
- grid of the form Iterable[array[float, ndim=1]]
|
|
366
|
+
- num_parameters: number of parameters
|
|
367
|
+
"""
|
|
368
|
+
if pts.ndim != 2:
|
|
369
|
+
raise ValueError(f"invalid dirac locations. got {pts.ndim=} != 2")
|
|
370
|
+
if len(grid) == 0:
|
|
371
|
+
raise ValueError(f"Empty grid given. Got {grid=}")
|
|
372
|
+
cdef int num_parameters = pts.shape[1]
|
|
373
|
+
if mass_default is None:
|
|
374
|
+
api = api_from_tensors(*grid)
|
|
375
|
+
else:
|
|
376
|
+
api = api_from_tensors(*grid, mass_default)
|
|
377
|
+
|
|
378
|
+
_grid = list(grid)
|
|
379
|
+
_mass_default = None if mass_default is None else api.astensor(mass_default)
|
|
380
|
+
while len(_grid) < num_parameters:
|
|
381
|
+
_grid += [api.cat([
|
|
382
|
+
(gt:=api.astensor(g))[1:],
|
|
383
|
+
api.astensor(_inf_value(api.asnumpy(gt))).reshape(1)
|
|
384
|
+
]) for g in grid]
|
|
385
|
+
if mass_default is not None:
|
|
386
|
+
_mass_default = api.cat([_mass_default,mass_default])
|
|
387
|
+
grid = tuple(_grid)
|
|
388
|
+
mass_default = _mass_default
|
|
389
|
+
|
|
390
|
+
coords = evaluate_in_grid(np.asarray(pts, dtype=int), grid, mass_default)
|
|
391
|
+
return (coords, weights)
|
|
392
|
+
|
|
393
|
+
# TODO : optimize with memoryviews / typing
|
|
394
|
+
def sms_in_grid(sms, grid, mass_default=None):
|
|
395
|
+
"""Given a measure whose points are coordinates,
|
|
396
|
+
pushes this measure in this grid.
|
|
397
|
+
Input
|
|
398
|
+
-----
|
|
399
|
+
- sms: of the form (signed_measure_like for num_measures)
|
|
400
|
+
where signed_measure_like = tuple(array[int, ndim=2], array[int])
|
|
401
|
+
- grid of the form Iterable[array[float, ndim=1]]
|
|
402
|
+
"""
|
|
403
|
+
sms = tuple(sm_in_grid(pts,weights,grid=grid, mass_default=mass_default) for pts,weights in sms)
|
|
404
|
+
return sms
|
|
405
|
+
|
|
406
|
+
|
|
407
|
+
def _push_pts_to_line(pts, basepoint, direction=None):
|
|
408
|
+
api = api_from_tensors(pts, basepoint)
|
|
409
|
+
pts = api.astensor(pts)
|
|
410
|
+
basepoint = api.astensor(basepoint)
|
|
411
|
+
num_parameters = basepoint.shape[0]
|
|
412
|
+
if direction is not None:
|
|
413
|
+
if not api.is_promotable(direction):
|
|
414
|
+
raise ValueError(f"Incompatible input types. Got {type(pts)=}, {type(basepoint)=}, {type(direction)=}")
|
|
415
|
+
|
|
416
|
+
direction = api.astensor(direction)
|
|
417
|
+
ok_idx = direction > 0
|
|
418
|
+
if ok_idx.sum() == 0:
|
|
419
|
+
raise ValueError(f"Got invalid direction {direction}")
|
|
420
|
+
zero_idx = None if ok_idx.all() else direction == 0
|
|
421
|
+
else:
|
|
422
|
+
direction = api.tensor([1], dtype=int)
|
|
423
|
+
ok_idx = slice(None)
|
|
424
|
+
zero_idx = None
|
|
425
|
+
xa = api.maxvalues(
|
|
426
|
+
(pts[:, ok_idx] - basepoint[ok_idx]) / direction[ok_idx], axis=1, keepdims=True
|
|
427
|
+
)
|
|
428
|
+
if zero_idx is not None:
|
|
429
|
+
xb = api.where(pts[:, zero_idx] <= basepoint[zero_idx], -np.inf, np.inf)
|
|
430
|
+
xs = api.maxvalues(api.cat([xa, xb], axis=1), axis=1, keepdims=True)
|
|
431
|
+
else:
|
|
432
|
+
xs = xa
|
|
433
|
+
return xs.squeeze()
|
|
@@ -0,0 +1,132 @@
|
|
|
1
|
+
#pragma once
|
|
2
|
+
|
|
3
|
+
#include "mma_interface_h0.h"
|
|
4
|
+
#include "mma_interface_matrix.h"
|
|
5
|
+
#include "mma_interface_coh.h"
|
|
6
|
+
#include <type_traits> // For static_assert
|
|
7
|
+
#include "truc.h"
|
|
8
|
+
#include <gudhi/Simplex_tree_multi.h>
|
|
9
|
+
#include <gudhi/One_critical_filtration.h>
|
|
10
|
+
#include <gudhi/Multi_critical_filtration.h>
|
|
11
|
+
|
|
12
|
+
template <typename Filtration>
|
|
13
|
+
using SimplexTreeMultiOptions = Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>;
|
|
14
|
+
|
|
15
|
+
enum Column_types_strs { LIST, SET, HEAP, VECTOR, NAIVE_VECTOR, UNORDERED_SET, INTRUSIVE_LIST, INTRUSIVE_SET };
|
|
16
|
+
|
|
17
|
+
using Available_columns = Gudhi::persistence_matrix::Column_types;
|
|
18
|
+
|
|
19
|
+
template <Available_columns col>
|
|
20
|
+
using BackendOptionsWithVine = Gudhi::multiparameter::truc_interface::Multi_persistence_options<col>;
|
|
21
|
+
template <Available_columns col>
|
|
22
|
+
using BackendOptionsWithoutVine = Gudhi::multiparameter::truc_interface::No_vine_multi_persistence_options<col>;
|
|
23
|
+
|
|
24
|
+
template <Available_columns col>
|
|
25
|
+
using ClementBackendOptionsWithVine = Gudhi::multiparameter::truc_interface::Multi_persistence_Clement_options<col>;
|
|
26
|
+
|
|
27
|
+
using SimplicialStructure = Gudhi::multiparameter::truc_interface::SimplicialStructure;
|
|
28
|
+
using PresentationStructure = Gudhi::multiparameter::truc_interface::PresentationStructure;
|
|
29
|
+
|
|
30
|
+
template <Available_columns col, class Structure = SimplicialStructure>
|
|
31
|
+
using MatrixBackendNoVine =
|
|
32
|
+
Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<BackendOptionsWithoutVine<col>, Structure>;
|
|
33
|
+
|
|
34
|
+
template <Available_columns col, class Structure = SimplicialStructure>
|
|
35
|
+
using MatrixBackendVine =
|
|
36
|
+
Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<BackendOptionsWithVine<col>, Structure>;
|
|
37
|
+
|
|
38
|
+
template <Available_columns col, class Structure = SimplicialStructure>
|
|
39
|
+
using ClementMatrixBackendVine =
|
|
40
|
+
Gudhi::multiparameter::truc_interface::Persistence_backend_matrix<ClementBackendOptionsWithVine<col>, Structure>;
|
|
41
|
+
using GraphBackendVine = Gudhi::multiparameter::truc_interface::Persistence_backend_h0<SimplicialStructure>;
|
|
42
|
+
|
|
43
|
+
using Filtration_value = Gudhi::multi_filtration::One_critical_filtration<float>;
|
|
44
|
+
|
|
45
|
+
template <Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
46
|
+
using SimplicialNoVineMatrixTruc =
|
|
47
|
+
Gudhi::multiparameter::truc_interface::Truc<MatrixBackendNoVine<col>, SimplicialStructure, Filtration_value>;
|
|
48
|
+
|
|
49
|
+
template <Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
50
|
+
using GeneralVineTruc = Gudhi::multiparameter::truc_interface::
|
|
51
|
+
Truc<MatrixBackendVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
|
|
52
|
+
|
|
53
|
+
template <Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
54
|
+
using GeneralNoVineTruc = Gudhi::multiparameter::truc_interface::
|
|
55
|
+
Truc<MatrixBackendNoVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
|
|
56
|
+
|
|
57
|
+
template <Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
58
|
+
using GeneralVineClementTruc = Gudhi::multiparameter::truc_interface::
|
|
59
|
+
Truc<ClementMatrixBackendVine<col, PresentationStructure>, PresentationStructure, Filtration_value>;
|
|
60
|
+
|
|
61
|
+
template <Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
62
|
+
using SimplicialVineMatrixTruc =
|
|
63
|
+
Gudhi::multiparameter::truc_interface::Truc<MatrixBackendVine<col>, SimplicialStructure, Filtration_value>;
|
|
64
|
+
using SimplicialVineGraphTruc =
|
|
65
|
+
Gudhi::multiparameter::truc_interface::Truc<GraphBackendVine, SimplicialStructure, Filtration_value>;
|
|
66
|
+
|
|
67
|
+
// multicrititcal
|
|
68
|
+
using Multi_critical_filtrationValue = Gudhi::multi_filtration::Multi_critical_filtration<float>;
|
|
69
|
+
template <Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
70
|
+
using KCriticalVineTruc = Gudhi::multiparameter::truc_interface::
|
|
71
|
+
Truc<MatrixBackendVine<col, PresentationStructure>, PresentationStructure, Multi_critical_filtrationValue>;
|
|
72
|
+
|
|
73
|
+
template <bool is_vine, Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
74
|
+
using Matrix_interface = std::conditional_t<is_vine,
|
|
75
|
+
MatrixBackendVine<col, PresentationStructure>,
|
|
76
|
+
MatrixBackendNoVine<col, PresentationStructure>>;
|
|
77
|
+
|
|
78
|
+
template <bool is_kcritical, typename value_type>
|
|
79
|
+
using filtration_options = std::conditional_t<is_kcritical,
|
|
80
|
+
Gudhi::multi_filtration::Multi_critical_filtration<value_type>,
|
|
81
|
+
Gudhi::multi_filtration::One_critical_filtration<value_type>>;
|
|
82
|
+
|
|
83
|
+
template <bool is_vine,
|
|
84
|
+
bool is_kcritical,
|
|
85
|
+
typename value_type,
|
|
86
|
+
Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
87
|
+
using MatrixTrucPythonInterface = Gudhi::multiparameter::truc_interface::
|
|
88
|
+
Truc<Matrix_interface<is_vine, col>, PresentationStructure, filtration_options<is_kcritical, value_type>>;
|
|
89
|
+
|
|
90
|
+
enum class BackendsEnum { Matrix, Graph, Clement, GudhiCohomology };
|
|
91
|
+
|
|
92
|
+
// Create a template metafunction to simplify the type selection
|
|
93
|
+
template <BackendsEnum backend, bool is_vine, Available_columns col>
|
|
94
|
+
struct PersBackendOptsImpl;
|
|
95
|
+
|
|
96
|
+
template <bool is_vine, Available_columns col>
|
|
97
|
+
struct PersBackendOptsImpl<BackendsEnum::Matrix, is_vine, col> {
|
|
98
|
+
using type = Matrix_interface<is_vine, col>;
|
|
99
|
+
};
|
|
100
|
+
|
|
101
|
+
template <bool is_vine, Available_columns col>
|
|
102
|
+
struct PersBackendOptsImpl<BackendsEnum::Clement, is_vine, col> {
|
|
103
|
+
static_assert(is_vine, "Clement is vine");
|
|
104
|
+
using type = ClementMatrixBackendVine<col, PresentationStructure>;
|
|
105
|
+
};
|
|
106
|
+
|
|
107
|
+
template <bool is_vine, Available_columns col>
|
|
108
|
+
struct PersBackendOptsImpl<BackendsEnum::GudhiCohomology, is_vine, col> {
|
|
109
|
+
static_assert(!is_vine, "Gudhi is not vine");
|
|
110
|
+
using type = Gudhi::multiparameter::truc_interface::Persistence_backend_cohomology<PresentationStructure>;
|
|
111
|
+
};
|
|
112
|
+
|
|
113
|
+
template <bool is_vine, Available_columns col>
|
|
114
|
+
struct PersBackendOptsImpl<BackendsEnum::Graph, is_vine, col> {
|
|
115
|
+
static_assert(is_vine, "Graph backend requires is_vine to be true");
|
|
116
|
+
using type = GraphBackendVine;
|
|
117
|
+
};
|
|
118
|
+
|
|
119
|
+
// Helper alias to extract the type
|
|
120
|
+
template <BackendsEnum backend, bool is_vine, Available_columns col>
|
|
121
|
+
using PersBackendOpts = typename PersBackendOptsImpl<backend, is_vine, col>::type;
|
|
122
|
+
|
|
123
|
+
template <BackendsEnum backend>
|
|
124
|
+
using StructureStuff = std::conditional_t<backend == BackendsEnum::Graph, SimplicialStructure, PresentationStructure>;
|
|
125
|
+
|
|
126
|
+
template <BackendsEnum backend,
|
|
127
|
+
bool is_vine,
|
|
128
|
+
bool is_kcritical,
|
|
129
|
+
typename value_type,
|
|
130
|
+
Available_columns col = Available_columns::INTRUSIVE_SET>
|
|
131
|
+
using TrucPythonInterface = Gudhi::multiparameter::truc_interface::
|
|
132
|
+
Truc<PersBackendOpts<backend, is_vine, col>, StructureStuff<backend>, filtration_options<is_kcritical, value_type>>;
|