multipers 2.3.3b6__cp311-cp311-manylinux_2_39_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/__init__.py +33 -0
- multipers/_signed_measure_meta.py +453 -0
- multipers/_slicer_meta.py +211 -0
- multipers/array_api/__init__.py +45 -0
- multipers/array_api/numpy.py +41 -0
- multipers/array_api/torch.py +58 -0
- multipers/data/MOL2.py +458 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +113 -0
- multipers/distances.py +202 -0
- multipers/filtration_conversions.pxd +229 -0
- multipers/filtration_conversions.pxd.tp +84 -0
- multipers/filtrations/__init__.py +18 -0
- multipers/filtrations/density.py +574 -0
- multipers/filtrations/filtrations.py +361 -0
- multipers/filtrations.pxd +224 -0
- multipers/function_rips.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/function_rips.pyx +105 -0
- multipers/grids.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/grids.pyx +433 -0
- multipers/gudhi/Persistence_slices_interface.h +132 -0
- multipers/gudhi/Simplex_tree_interface.h +239 -0
- multipers/gudhi/Simplex_tree_multi_interface.h +551 -0
- multipers/gudhi/cubical_to_boundary.h +59 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -0
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -0
- multipers/gudhi/gudhi/Debug_utils.h +45 -0
- multipers/gudhi/gudhi/Fields/Multi_field.h +484 -0
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -0
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -0
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -0
- multipers/gudhi/gudhi/Fields/Z2_field.h +355 -0
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -0
- multipers/gudhi/gudhi/Fields/Zp_field.h +420 -0
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -0
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -0
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -0
- multipers/gudhi/gudhi/Matrix.h +2107 -0
- multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -0
- multipers/gudhi/gudhi/Multi_persistence/Box.h +174 -0
- multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -0
- multipers/gudhi/gudhi/Off_reader.h +173 -0
- multipers/gudhi/gudhi/One_critical_filtration.h +1441 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -0
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -0
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -0
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -0
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -0
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -0
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -0
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -0
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -0
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -0
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -0
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -0
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -0
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -0
- multipers/gudhi/gudhi/Persistent_cohomology.h +745 -0
- multipers/gudhi/gudhi/Points_off_io.h +171 -0
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -0
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -0
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -0
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -0
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -0
- multipers/gudhi/gudhi/Simplex_tree.h +2794 -0
- multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -0
- multipers/gudhi/gudhi/distance_functions.h +62 -0
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -0
- multipers/gudhi/gudhi/persistence_interval.h +253 -0
- multipers/gudhi/gudhi/persistence_matrix_options.h +170 -0
- multipers/gudhi/gudhi/reader_utils.h +367 -0
- multipers/gudhi/mma_interface_coh.h +256 -0
- multipers/gudhi/mma_interface_h0.h +223 -0
- multipers/gudhi/mma_interface_matrix.h +293 -0
- multipers/gudhi/naive_merge_tree.h +536 -0
- multipers/gudhi/scc_io.h +310 -0
- multipers/gudhi/truc.h +1403 -0
- multipers/io.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/io.pyx +644 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +713 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +352 -0
- multipers/ml/signed_measures.py +1589 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/mma_structures.pxd +128 -0
- multipers/mma_structures.pyx +2786 -0
- multipers/mma_structures.pyx.tp +1094 -0
- multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -0
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -0
- multipers/multi_parameter_rank_invariant/function_rips.h +322 -0
- multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -0
- multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -0
- multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation/approximation.h +2330 -0
- multipers/multiparameter_module_approximation/combinatory.h +129 -0
- multipers/multiparameter_module_approximation/debug.h +107 -0
- multipers/multiparameter_module_approximation/euler_curves.h +0 -0
- multipers/multiparameter_module_approximation/format_python-cpp.h +286 -0
- multipers/multiparameter_module_approximation/heap_column.h +238 -0
- multipers/multiparameter_module_approximation/images.h +79 -0
- multipers/multiparameter_module_approximation/list_column.h +174 -0
- multipers/multiparameter_module_approximation/list_column_2.h +232 -0
- multipers/multiparameter_module_approximation/ru_matrix.h +347 -0
- multipers/multiparameter_module_approximation/set_column.h +135 -0
- multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -0
- multipers/multiparameter_module_approximation/unordered_set_column.h +166 -0
- multipers/multiparameter_module_approximation/utilities.h +403 -0
- multipers/multiparameter_module_approximation/vector_column.h +223 -0
- multipers/multiparameter_module_approximation/vector_matrix.h +331 -0
- multipers/multiparameter_module_approximation/vineyards.h +464 -0
- multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -0
- multipers/multiparameter_module_approximation.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/multiparameter_module_approximation.pyx +235 -0
- multipers/pickle.py +90 -0
- multipers/plots.py +456 -0
- multipers/point_measure.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/point_measure.pyx +395 -0
- multipers/simplex_tree_multi.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/simplex_tree_multi.pxd +134 -0
- multipers/simplex_tree_multi.pyx +10840 -0
- multipers/simplex_tree_multi.pyx.tp +2009 -0
- multipers/slicer.cpython-311-x86_64-linux-gnu.so +0 -0
- multipers/slicer.pxd +3034 -0
- multipers/slicer.pxd.tp +234 -0
- multipers/slicer.pyx +20481 -0
- multipers/slicer.pyx.tp +1088 -0
- multipers/tensor/tensor.h +672 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +62 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +240 -0
- multipers/torch/rips_density.py +310 -0
- multipers-2.3.3b6.dist-info/METADATA +128 -0
- multipers-2.3.3b6.dist-info/RECORD +182 -0
- multipers-2.3.3b6.dist-info/WHEEL +5 -0
- multipers-2.3.3b6.dist-info/licenses/LICENSE +21 -0
- multipers-2.3.3b6.dist-info/top_level.txt +1 -0
- multipers.libs/libtbb-ca48af5c.so.12.16 +0 -0
multipers/data/graphs.py
ADDED
|
@@ -0,0 +1,466 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from os.path import expanduser, exists
|
|
3
|
+
import networkx as nx
|
|
4
|
+
from warnings import warn
|
|
5
|
+
import pickle
|
|
6
|
+
from joblib import Parallel, delayed
|
|
7
|
+
from tqdm import tqdm
|
|
8
|
+
from sklearn.preprocessing import LabelEncoder
|
|
9
|
+
from scipy.spatial import distance_matrix
|
|
10
|
+
from sklearn.base import BaseEstimator, TransformerMixin, clone
|
|
11
|
+
import multipers as mp
|
|
12
|
+
from typing import Iterable, List, Optional
|
|
13
|
+
from numpy.typing import ArrayLike
|
|
14
|
+
|
|
15
|
+
DATASET_PATH = expanduser("~/Datasets/")
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def _check_installed(dataset: str):
|
|
19
|
+
from warnings import warn
|
|
20
|
+
from os.path import exists
|
|
21
|
+
|
|
22
|
+
assert dataset.startswith(
|
|
23
|
+
"graphs/"
|
|
24
|
+
), "Graph datasets have to be of the form graphs/<name>"
|
|
25
|
+
if exists(DATASET_PATH + dataset):
|
|
26
|
+
return
|
|
27
|
+
else:
|
|
28
|
+
warn(
|
|
29
|
+
f"""
|
|
30
|
+
Dataset {dataset} not installed.
|
|
31
|
+
You can find it in https://networkrepository.com
|
|
32
|
+
Then (optinally) configure multipers.data.graphs.DATASET_PATH, which is currently
|
|
33
|
+
> {DATASET_PATH=}
|
|
34
|
+
and puts this dataset in $DATASET_PATH/{dataset}
|
|
35
|
+
"""
|
|
36
|
+
)
|
|
37
|
+
raise ValueError("Unknown dataset.")
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def get(dataset: str, filtration: Optional[str] = None):
|
|
41
|
+
if filtration is None:
|
|
42
|
+
return get_graphs(dataset)
|
|
43
|
+
graphs, labels = get_graphs(dataset)
|
|
44
|
+
try:
|
|
45
|
+
for g in graphs:
|
|
46
|
+
for node in g.nodes:
|
|
47
|
+
g.nodes[node][filtration]
|
|
48
|
+
except:
|
|
49
|
+
print(
|
|
50
|
+
f"Filtration {filtration} not computed, trying to compute it ...",
|
|
51
|
+
flush=True,
|
|
52
|
+
)
|
|
53
|
+
compute_filtration(dataset, filtration)
|
|
54
|
+
return get_graphs(dataset)
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def get_from_file_old(dataset: str, label="lb"):
|
|
58
|
+
from os import walk
|
|
59
|
+
from scipy.io import loadmat
|
|
60
|
+
from warnings import warn
|
|
61
|
+
|
|
62
|
+
path = DATASET_PATH + dataset + "/mat/"
|
|
63
|
+
labels: list[int] = []
|
|
64
|
+
gs: list[nx.Graph] = []
|
|
65
|
+
for root, dir, files in walk(path):
|
|
66
|
+
for file in files:
|
|
67
|
+
file_ppties = file.split("_")
|
|
68
|
+
gid = file_ppties[5]
|
|
69
|
+
i = 0
|
|
70
|
+
while i + 1 < len(file_ppties) and file_ppties[i] != label:
|
|
71
|
+
i += 1
|
|
72
|
+
if i + 1 >= len(file_ppties):
|
|
73
|
+
warn(f"Cannot find label {label} on file {file}.")
|
|
74
|
+
else:
|
|
75
|
+
labels += [file_ppties[i + 1]]
|
|
76
|
+
adj_mat = np.array(loadmat(path + file)["A"], dtype=np.float32)
|
|
77
|
+
gs.append(nx.Graph(adj_mat))
|
|
78
|
+
return gs, labels
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def get_from_file(dataset: str):
|
|
82
|
+
from os.path import expanduser, exists
|
|
83
|
+
|
|
84
|
+
path = DATASET_PATH + f"{dataset}/{dataset[7:]}."
|
|
85
|
+
try:
|
|
86
|
+
graphs_ids = np.loadtxt(path + "graph_idx")
|
|
87
|
+
except:
|
|
88
|
+
return get_from_file_old(dataset=dataset)
|
|
89
|
+
labels: list[int] = LabelEncoder().fit_transform(np.loadtxt(path + "graph_labels"))
|
|
90
|
+
edges = np.loadtxt(path + "edges", delimiter=",", dtype=int) - 1
|
|
91
|
+
has_intrinsic_filtration = exists(path + "node_attrs")
|
|
92
|
+
graphs: list[nx.Graph] = []
|
|
93
|
+
if has_intrinsic_filtration:
|
|
94
|
+
F = np.loadtxt(path + "node_attrs", delimiter=",")
|
|
95
|
+
for graph_id in tqdm(np.unique(graphs_ids), desc="Reading graphs from file"):
|
|
96
|
+
(nodes,) = np.where(graphs_ids == graph_id)
|
|
97
|
+
|
|
98
|
+
def graph_has_edge(u: int, v: int) -> bool:
|
|
99
|
+
if u in nodes or v in nodes:
|
|
100
|
+
assert u in nodes and v in nodes, f"Nodes\
|
|
101
|
+
{u} and {v} are not in the same graph"
|
|
102
|
+
return True
|
|
103
|
+
return False
|
|
104
|
+
|
|
105
|
+
graph_edges = [(u, v) for u, v in edges if graph_has_edge(u, v)]
|
|
106
|
+
g = nx.Graph(graph_edges)
|
|
107
|
+
if has_intrinsic_filtration:
|
|
108
|
+
node_attrs = {node: F[node] for node in nodes}
|
|
109
|
+
nx.set_node_attributes(g, node_attrs, "intrinsic")
|
|
110
|
+
graphs.append(g)
|
|
111
|
+
return graphs, labels
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def get_graphs(dataset: str, N: int | str = "") -> tuple[list[nx.Graph], list[int]]:
|
|
115
|
+
_check_installed(dataset)
|
|
116
|
+
graphs_path = f"{DATASET_PATH}{dataset}/graphs{N}.pkl"
|
|
117
|
+
labels_path = f"{DATASET_PATH}{dataset}/labels{N}.pkl"
|
|
118
|
+
if not exists(graphs_path) or not exists(labels_path):
|
|
119
|
+
if dataset.startswith("3dshapes/"):
|
|
120
|
+
return get_from_file_old(
|
|
121
|
+
dataset,
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
graphs, labels = get_from_file(
|
|
125
|
+
dataset,
|
|
126
|
+
)
|
|
127
|
+
print("Saving graphs at :", graphs_path)
|
|
128
|
+
set_graphs(graphs=graphs, labels=labels, dataset=dataset)
|
|
129
|
+
else:
|
|
130
|
+
graphs = pickle.load(open(graphs_path, "rb"))
|
|
131
|
+
labels = pickle.load(open(labels_path, "rb"))
|
|
132
|
+
from sklearn.preprocessing import LabelEncoder
|
|
133
|
+
|
|
134
|
+
return graphs, LabelEncoder().fit_transform(labels)
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
# saves graphs (and filtration values) into a file
|
|
138
|
+
def set_graphs(graphs: list[nx.Graph], labels: list, dataset: str, N: int | str = ""):
|
|
139
|
+
graphs_path = f"{DATASET_PATH}{dataset}/graphs{N}.pkl"
|
|
140
|
+
labels_path = f"{DATASET_PATH}{dataset}/labels{N}.pkl"
|
|
141
|
+
pickle.dump(graphs, open(graphs_path, "wb"))
|
|
142
|
+
pickle.dump(labels, open(labels_path, "wb"))
|
|
143
|
+
return
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def reset_graphs(dataset: str, N=None): # Resets filtrations values on graphs
|
|
147
|
+
graphs, labels = get_from_file(dataset)
|
|
148
|
+
set_graphs(graphs, labels, dataset)
|
|
149
|
+
return
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def compute_ricci(graphs: list[nx.Graph], alpha=0.5, progress=1):
|
|
153
|
+
from GraphRicciCurvature.OllivierRicci import OllivierRicci
|
|
154
|
+
|
|
155
|
+
def ricci(graph, alpha=alpha):
|
|
156
|
+
return OllivierRicci(graph, alpha=alpha).compute_ricci_curvature()
|
|
157
|
+
|
|
158
|
+
graphs = [
|
|
159
|
+
ricci(g) for g in tqdm(graphs, disable=not progress, desc="Computing ricci")
|
|
160
|
+
]
|
|
161
|
+
|
|
162
|
+
def push_back_node(graph):
|
|
163
|
+
# for node in graph.nodes:
|
|
164
|
+
# graph.nodes[node]['ricciCurvature'] = np.min([graph[node][node2]['ricciCurvature'] for node2 in graph[node]] + [graph.nodes[node]['ricciCurvature']])
|
|
165
|
+
node_filtrations = {
|
|
166
|
+
node: -1
|
|
167
|
+
if len(graph[node]) == 0
|
|
168
|
+
else np.min([graph[node][node2]["ricciCurvature"] for node2 in graph[node]])
|
|
169
|
+
for node in graph.nodes
|
|
170
|
+
}
|
|
171
|
+
nx.set_node_attributes(graph, node_filtrations, "ricciCurvature")
|
|
172
|
+
return graph
|
|
173
|
+
|
|
174
|
+
graphs = [push_back_node(g) for g in graphs]
|
|
175
|
+
return graphs
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
def compute_cc(graphs: list[nx.Graph], progress=1):
|
|
179
|
+
def _cc(g):
|
|
180
|
+
cc = nx.closeness_centrality(g)
|
|
181
|
+
nx.set_node_attributes(g, cc, "cc")
|
|
182
|
+
edges_cc = {(u, v): max(cc[u], cc[v]) for u, v in g.edges}
|
|
183
|
+
nx.set_edge_attributes(g, edges_cc, "cc")
|
|
184
|
+
return g
|
|
185
|
+
|
|
186
|
+
graphs = Parallel(n_jobs=1, prefer="threads")(
|
|
187
|
+
delayed(_cc)(g) for g in tqdm(graphs, disable=not progress, desc="Computing cc")
|
|
188
|
+
)
|
|
189
|
+
return graphs
|
|
190
|
+
# for g in tqdm(graphs, desc="Computing cc"):
|
|
191
|
+
# _cc(g)
|
|
192
|
+
# return graphs
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def compute_degree(graphs: list[nx.Graph], progress=1):
|
|
196
|
+
def _degree(g):
|
|
197
|
+
degrees = {i: 1.1 if degree == 0 else 1 / degree for i, degree in g.degree}
|
|
198
|
+
nx.set_node_attributes(g, degrees, "degree")
|
|
199
|
+
edges_dg = {(u, v): max(degrees[u], degrees[v]) for u, v in g.edges}
|
|
200
|
+
nx.set_edge_attributes(g, edges_dg, "degree")
|
|
201
|
+
return g
|
|
202
|
+
|
|
203
|
+
graphs = Parallel(n_jobs=1, prefer="threads")(
|
|
204
|
+
delayed(_degree)(g)
|
|
205
|
+
for g in tqdm(graphs, disable=not progress, desc="Computing degree")
|
|
206
|
+
)
|
|
207
|
+
return graphs
|
|
208
|
+
# for g in tqdm(graphs, desc="Computing degree"):
|
|
209
|
+
# _degree(g)
|
|
210
|
+
# return graphs
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
# TODO : make it compatible with non-connexe graphs
|
|
214
|
+
def compute_fiedler(graphs: list[nx.Graph], progress=1):
|
|
215
|
+
def _fiedler(g):
|
|
216
|
+
connected_graphs = [
|
|
217
|
+
nx.subgraph(g, nodes) for nodes in nx.connected_components(g)
|
|
218
|
+
]
|
|
219
|
+
fiedler_vectors = [
|
|
220
|
+
nx.fiedler_vector(g) ** 2
|
|
221
|
+
if g.number_of_nodes() > 2
|
|
222
|
+
else np.zeros(
|
|
223
|
+
g.number_of_nodes(
|
|
224
|
+
# order of nx.fiedler_vector correspond to nx.laplacian -> g.nodes
|
|
225
|
+
)
|
|
226
|
+
)
|
|
227
|
+
for g in connected_graphs
|
|
228
|
+
]
|
|
229
|
+
fiedler_dict = {
|
|
230
|
+
node: fiedler_vector[node_index]
|
|
231
|
+
for g, fiedler_vector in zip(connected_graphs, fiedler_vectors)
|
|
232
|
+
for node_index, node in enumerate(list(g.nodes))
|
|
233
|
+
}
|
|
234
|
+
nx.set_node_attributes(g, fiedler_dict, "fiedler")
|
|
235
|
+
edges_fiedler = {
|
|
236
|
+
(u, v): max(fiedler_dict[u], fiedler_dict[v]) for u, v in g.edges
|
|
237
|
+
}
|
|
238
|
+
nx.set_edge_attributes(g, edges_fiedler, "fiedler")
|
|
239
|
+
return g
|
|
240
|
+
|
|
241
|
+
graphs = Parallel(n_jobs=1, prefer="threads")(
|
|
242
|
+
delayed(_fiedler)(g)
|
|
243
|
+
for g in tqdm(graphs, disable=not progress, desc="Computing fiedler")
|
|
244
|
+
)
|
|
245
|
+
return graphs
|
|
246
|
+
# for g in tqdm(graphs, desc="Computing fiedler"):
|
|
247
|
+
# _fiedler(g)
|
|
248
|
+
# return graphs
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def compute_hks(graphs: list[nx.Graph], t: float, progress=1):
|
|
252
|
+
def _hks(g: nx.Graph):
|
|
253
|
+
w, vps = np.linalg.eig(
|
|
254
|
+
nx.laplacianmatrix.normalized_laplacian_matrix(
|
|
255
|
+
g, nodelist=g.nodes()
|
|
256
|
+
).toarray()
|
|
257
|
+
) # order is given by g.nodes order
|
|
258
|
+
w = w.view(dtype=float)
|
|
259
|
+
vps = vps.view(dtype=float)
|
|
260
|
+
node_hks = {
|
|
261
|
+
node: np.sum(np.exp(-t * w) * np.square(vps[node_index, :]))
|
|
262
|
+
for node_index, node in enumerate(g.nodes)
|
|
263
|
+
}
|
|
264
|
+
nx.set_node_attributes(g, node_hks, f"hks_{t}")
|
|
265
|
+
edges_hks = {(u, v): max(node_hks[u], node_hks[v]) for u, v in g.edges}
|
|
266
|
+
nx.set_edge_attributes(g, edges_hks, f"hks_{t}")
|
|
267
|
+
return g
|
|
268
|
+
|
|
269
|
+
graphs = Parallel(n_jobs=1, prefer="threads")(
|
|
270
|
+
delayed(_hks)(g)
|
|
271
|
+
for g in tqdm(graphs, disable=not progress, desc=f"Computing hks_{t}")
|
|
272
|
+
)
|
|
273
|
+
return graphs
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
def compute_geodesic(graphs: list[nx.Graph], progress=1):
|
|
277
|
+
def _f(g: nx.Graph):
|
|
278
|
+
try:
|
|
279
|
+
nodes_intrinsic = {i: n["intrinsic"] for i, n in g.nodes.data()}
|
|
280
|
+
except:
|
|
281
|
+
warn(
|
|
282
|
+
"This graph doesn't have an intrinsic filtration, will use 0 instead ..."
|
|
283
|
+
)
|
|
284
|
+
nodes_intrinsic = {i: 0 for i, n in g.nodes.data()}
|
|
285
|
+
# return g
|
|
286
|
+
node_geodesic = {i: 0 for i in g.nodes}
|
|
287
|
+
nx.set_node_attributes(g, node_geodesic, f"geodesic")
|
|
288
|
+
edges_geodesic = {
|
|
289
|
+
(u, v): np.linalg.norm(nodes_intrinsic[u] - nodes_intrinsic[v])
|
|
290
|
+
for u, v in g.edges
|
|
291
|
+
}
|
|
292
|
+
nx.set_edge_attributes(g, edges_geodesic, f"geodesic")
|
|
293
|
+
return g
|
|
294
|
+
|
|
295
|
+
graphs = Parallel(n_jobs=1, prefer="threads")(
|
|
296
|
+
delayed(_f)(g)
|
|
297
|
+
for g in tqdm(
|
|
298
|
+
graphs, disable=not progress, desc=f"Computing geodesic distances on graphs"
|
|
299
|
+
)
|
|
300
|
+
)
|
|
301
|
+
return graphs
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
def compute_intrinsic(graphs: list[nx.Graph], progress=1, nowarning=False):
|
|
305
|
+
def _f(g: nx.Graph):
|
|
306
|
+
try:
|
|
307
|
+
nodes_intrinsic = {i: n["intrinsic"] for i, n in g.nodes.data()}
|
|
308
|
+
except:
|
|
309
|
+
if not nowarning:
|
|
310
|
+
raise ValueError("This graph doesn't have an intrinsic filtration.")
|
|
311
|
+
else:
|
|
312
|
+
return g
|
|
313
|
+
edges_intrinsic = {
|
|
314
|
+
(u, v): np.max([nodes_intrinsic[u], nodes_intrinsic[v]], axis=0)
|
|
315
|
+
for u, v in g.edges
|
|
316
|
+
}
|
|
317
|
+
nx.set_edge_attributes(g, edges_intrinsic, "intrinsic")
|
|
318
|
+
return g
|
|
319
|
+
|
|
320
|
+
graphs = Parallel(n_jobs=1, prefer="threads")(
|
|
321
|
+
delayed(_f)(g)
|
|
322
|
+
for g in tqdm(
|
|
323
|
+
graphs, disable=not progress, desc="Computing geodesic distances on graphs"
|
|
324
|
+
)
|
|
325
|
+
)
|
|
326
|
+
return graphs
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
def compute_filtration(dataset: str, filtration: str = "ALL", **kwargs):
|
|
330
|
+
if filtration == "ALL":
|
|
331
|
+
reset_graphs(dataset) # not necessary
|
|
332
|
+
graphs, labels = get_graphs(dataset, **kwargs)
|
|
333
|
+
graphs = compute_intrinsic(graphs, nowarning=True)
|
|
334
|
+
graphs = compute_geodesic(graphs)
|
|
335
|
+
graphs = compute_cc(graphs)
|
|
336
|
+
graphs = compute_degree(graphs)
|
|
337
|
+
graphs = compute_ricci(graphs)
|
|
338
|
+
graphs = compute_fiedler(graphs)
|
|
339
|
+
graphs = compute_hks(graphs, 10)
|
|
340
|
+
set_graphs(graphs=graphs, labels=labels, dataset=dataset)
|
|
341
|
+
return
|
|
342
|
+
graphs, labels = get_graphs(dataset, **kwargs)
|
|
343
|
+
if filtration == "dijkstra":
|
|
344
|
+
return
|
|
345
|
+
elif filtration == "cc":
|
|
346
|
+
graphs = compute_cc(graphs)
|
|
347
|
+
elif filtration == "degree":
|
|
348
|
+
graphs = compute_degree(graphs)
|
|
349
|
+
elif filtration == "ricciCurvature":
|
|
350
|
+
graphs = compute_ricci(graphs)
|
|
351
|
+
elif filtration == "fiedler":
|
|
352
|
+
graphs = compute_fiedler(graphs)
|
|
353
|
+
elif filtration == "geodesic":
|
|
354
|
+
graphs = compute_geodesic(graphs)
|
|
355
|
+
elif filtration.startswith("hks_"):
|
|
356
|
+
# don't want do deal with floats, makes dots in title...
|
|
357
|
+
t = int(filtration[4:])
|
|
358
|
+
graphs = compute_hks(graphs=graphs, t=t)
|
|
359
|
+
else:
|
|
360
|
+
warn(f"Filtration {filtration} not implemented !")
|
|
361
|
+
return
|
|
362
|
+
set_graphs(graphs=graphs, labels=labels, dataset=dataset)
|
|
363
|
+
return
|
|
364
|
+
|
|
365
|
+
|
|
366
|
+
class Graph2SimplexTrees(BaseEstimator, TransformerMixin):
|
|
367
|
+
"""
|
|
368
|
+
Transforms a list of networkx graphs into a list of simplextree multi
|
|
369
|
+
|
|
370
|
+
Usual Filtrations
|
|
371
|
+
-----------------
|
|
372
|
+
- "cc" closeness centrality
|
|
373
|
+
- "geodesic" if the graph provides data to compute it, e.g., BZR, COX2, PROTEINS
|
|
374
|
+
- "degree"
|
|
375
|
+
- "ricciCurvature" the ricci curvature
|
|
376
|
+
- "fiedler" the square of the fiedler vector
|
|
377
|
+
"""
|
|
378
|
+
|
|
379
|
+
def __init__(
|
|
380
|
+
self,
|
|
381
|
+
filtrations=[],
|
|
382
|
+
delayed=False,
|
|
383
|
+
num_collapses=100,
|
|
384
|
+
progress: bool = False,
|
|
385
|
+
):
|
|
386
|
+
super().__init__()
|
|
387
|
+
self.filtrations = filtrations # filtration to search in graph
|
|
388
|
+
self.delayed = delayed # reverses the filtration #TODO
|
|
389
|
+
self.num_collapses = num_collapses
|
|
390
|
+
self.progress = progress
|
|
391
|
+
self.num_parameters: int = len(filtrations)
|
|
392
|
+
|
|
393
|
+
def fit(self, X, y=None):
|
|
394
|
+
if len(X) == 0:
|
|
395
|
+
return self
|
|
396
|
+
self.num_parameters = len(self.filtrations)
|
|
397
|
+
if "intrinsic" in self.filtrations:
|
|
398
|
+
intrinsic_size = len(X[0].nodes[0]["intrinsic"])
|
|
399
|
+
self.num_parameters += intrinsic_size - 1
|
|
400
|
+
return self
|
|
401
|
+
|
|
402
|
+
def transform(self, X: list[nx.Graph]):
|
|
403
|
+
def todo(graph, filtrations=self.filtrations) -> list[mp.SimplexTreeMulti]:
|
|
404
|
+
st = mp.SimplexTreeMulti(num_parameters=self.num_parameters)
|
|
405
|
+
nodes = np.asarray(graph.nodes, dtype=int).reshape(1, -1)
|
|
406
|
+
nodes_filtrations = np.asarray(
|
|
407
|
+
[
|
|
408
|
+
[
|
|
409
|
+
filtration
|
|
410
|
+
for filtration_ in filtrations
|
|
411
|
+
for filtration in np.asarray(
|
|
412
|
+
graph.nodes[node][filtration_]
|
|
413
|
+
).reshape(-1)
|
|
414
|
+
# this reshape is for attributes that are vectors
|
|
415
|
+
]
|
|
416
|
+
for node in graph.nodes
|
|
417
|
+
],
|
|
418
|
+
dtype=np.float32,
|
|
419
|
+
)
|
|
420
|
+
st.insert_batch(nodes, nodes_filtrations)
|
|
421
|
+
edges = np.asarray(graph.edges, dtype=int).T
|
|
422
|
+
edges_filtrations = np.asarray(
|
|
423
|
+
[
|
|
424
|
+
[
|
|
425
|
+
filtration
|
|
426
|
+
for filtration_ in filtrations
|
|
427
|
+
for filtration in np.asarray(graph[u][v][filtration_]).reshape(
|
|
428
|
+
-1
|
|
429
|
+
)
|
|
430
|
+
# this reshape is for attributes that are vectors
|
|
431
|
+
]
|
|
432
|
+
for u, v in graph.edges
|
|
433
|
+
],
|
|
434
|
+
dtype=np.float32,
|
|
435
|
+
)
|
|
436
|
+
st.insert_batch(edges, edges_filtrations)
|
|
437
|
+
if st.num_parameters == 2:
|
|
438
|
+
# TODO : wait for a filtration domination update
|
|
439
|
+
st.collapse_edges(num=self.num_collapses)
|
|
440
|
+
# st.make_filtration_non_decreasing() ## Ricci is not safe ...
|
|
441
|
+
# same output for each pipelines, some have a supplementary axis.
|
|
442
|
+
return [st]
|
|
443
|
+
|
|
444
|
+
return (
|
|
445
|
+
[delayed(todo)(graph) for graph in X]
|
|
446
|
+
if self.delayed
|
|
447
|
+
# memory bound imo
|
|
448
|
+
else [
|
|
449
|
+
todo(graph=graph)
|
|
450
|
+
for graph in tqdm(
|
|
451
|
+
X,
|
|
452
|
+
desc="Computing simplextrees from graphs",
|
|
453
|
+
disable=not self.progress,
|
|
454
|
+
)
|
|
455
|
+
]
|
|
456
|
+
# # ,
|
|
457
|
+
# )
|
|
458
|
+
# else Parallel(n_jobs=-1, prefer="threads")(
|
|
459
|
+
# delayed(todo)(graph)
|
|
460
|
+
# for graph in tqdm(
|
|
461
|
+
# X,
|
|
462
|
+
# desc="Computing simplextrees from graphs",
|
|
463
|
+
# disable=not self.progress,
|
|
464
|
+
# )
|
|
465
|
+
# )
|
|
466
|
+
)
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from pandas import read_csv
|
|
3
|
+
from os.path import expanduser
|
|
4
|
+
from os import walk
|
|
5
|
+
from sklearn.preprocessing import LabelEncoder
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def get(DATASET_PATH = expanduser("~/Datasets/")):
|
|
10
|
+
DATASET_PATH += "1.5mmRegions/"
|
|
11
|
+
X, labels = [],[]
|
|
12
|
+
for label in ["FoxP3", "CD8", "CD68"]:
|
|
13
|
+
# for label in ["FoxP3", "CD8"]:
|
|
14
|
+
for root, dirs, files in walk(DATASET_PATH + label+"/"):
|
|
15
|
+
for name in files:
|
|
16
|
+
X.append(np.array(read_csv(DATASET_PATH+label+"/"+name))/1500) ## Rescaled
|
|
17
|
+
labels.append(label)
|
|
18
|
+
return X, LabelEncoder().fit_transform(np.array(labels))
|
|
19
|
+
|
|
20
|
+
def get_immuno(i=1, DATASET_PATH = expanduser("~/Datasets/")):
|
|
21
|
+
immu_dataset = read_csv(DATASET_PATH+f"LargeHypoxicRegion{i}.csv")
|
|
22
|
+
X = np.array(immu_dataset['x'])
|
|
23
|
+
X /= np.max(X)
|
|
24
|
+
Y = np.array(immu_dataset['y'])
|
|
25
|
+
Y /= np.max(Y)
|
|
26
|
+
labels = LabelEncoder().fit_transform(immu_dataset['Celltype'])
|
|
27
|
+
return np.asarray([X,Y]).T, labels
|
|
File without changes
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
from tqdm import tqdm
|
|
2
|
+
import numpy as np
|
|
3
|
+
from torch_geometric.data.data import Data
|
|
4
|
+
import networkx as nx
|
|
5
|
+
from sklearn.base import BaseEstimator, TransformerMixin
|
|
6
|
+
from typing import Iterable
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def modelnet2pts2gs(train_dataset, test_dataset , nbr_size = 8, exp_flag = True, labels_only = False,n=100, n_jobs=1, random=False):
|
|
10
|
+
from sklearn.neighbors import kneighbors_graph
|
|
11
|
+
"""
|
|
12
|
+
sample points and create neighborhoold graph
|
|
13
|
+
"""
|
|
14
|
+
dataset = train_dataset + test_dataset
|
|
15
|
+
indices = np.random.choice(range(len(dataset)),replace=False, size=n) if random else range(n)
|
|
16
|
+
|
|
17
|
+
dataset:list[Data] = [dataset[i] for i in indices]
|
|
18
|
+
_,labels = torch_geometric_2nx(dataset, labels_only=True)
|
|
19
|
+
if labels_only: return labels
|
|
20
|
+
|
|
21
|
+
def data2graph(data:Data):
|
|
22
|
+
pos = data.pos.numpy()
|
|
23
|
+
adj = kneighbors_graph(pos, nbr_size, mode='distance', n_jobs=n_jobs)
|
|
24
|
+
g = nx.from_scipy_sparse_array(adj, edge_attribute= 'weight')
|
|
25
|
+
if exp_flag:
|
|
26
|
+
for u, v in g.edges(): # TODO optimize
|
|
27
|
+
g[u][v]['weight'] = np.exp(-g[u][v]['weight'])
|
|
28
|
+
return g
|
|
29
|
+
#TODO : nx.set_edge_attributes()
|
|
30
|
+
|
|
31
|
+
return [data2graph(data) for data in dataset], labels
|
|
32
|
+
def torch_geometric_2nx(dataset, labels_only = False, print_flag = False, weight_flag = False):
|
|
33
|
+
"""
|
|
34
|
+
:param dataset:
|
|
35
|
+
:param labels_only: return labels only
|
|
36
|
+
:param print_flag:
|
|
37
|
+
:param weight_flag: whether computing distance as weights or not
|
|
38
|
+
:return:
|
|
39
|
+
"""
|
|
40
|
+
if labels_only:
|
|
41
|
+
return None, [int(data.y) for data in dataset]
|
|
42
|
+
def data2graph(data:Data):
|
|
43
|
+
edges = np.unique(data.edge_index.numpy().T, axis=0)
|
|
44
|
+
g = nx.from_edgelist(edges)
|
|
45
|
+
edge_filtration = {(u,v):np.linalg.norm(data.pos[u] - data.pos[v]) for u,v in g.edges}
|
|
46
|
+
nx.set_node_attributes(g,{node:0 for node in g.nodes}, "geodesic")
|
|
47
|
+
nx.set_edge_attributes(g, edge_filtration, "geodesic")
|
|
48
|
+
return g
|
|
49
|
+
return [data2graph(data) for data in tqdm(dataset, desc="Turning Data to graphs")], [int(data.y) for data in dataset]
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def modelnet2graphs(version = '10', print_flag = False, labels_only = False, a = 0, b = 10, weight_flag = False):
|
|
53
|
+
""" load modelnet 10 or 40 and convert to graphs"""
|
|
54
|
+
from torch_geometric.transforms import FaceToEdge
|
|
55
|
+
from .shape3d import load_modelnet
|
|
56
|
+
train_dataset, test_dataset = load_modelnet(version, point_flag = False)
|
|
57
|
+
dataset = train_dataset + test_dataset
|
|
58
|
+
if b>0: dataset = [dataset[i] for i in range(a,b)]
|
|
59
|
+
if labels_only:
|
|
60
|
+
return torch_geometric_2nx(dataset, labels_only=True)
|
|
61
|
+
dataset = [FaceToEdge(remove_faces=False)(data) for data in dataset]
|
|
62
|
+
graphs, labels = torch_geometric_2nx(dataset, print_flag=print_flag, weight_flag= weight_flag)
|
|
63
|
+
return graphs, labels
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class Torch2SimplexTree(BaseEstimator,TransformerMixin):
|
|
69
|
+
"""
|
|
70
|
+
WARNING : build in progress
|
|
71
|
+
PyTorch Data-like to simplextree.
|
|
72
|
+
|
|
73
|
+
Input
|
|
74
|
+
-----
|
|
75
|
+
Class having `pos`, `edges`, `faces` methods
|
|
76
|
+
|
|
77
|
+
Filtrations
|
|
78
|
+
-----------
|
|
79
|
+
- Geodesic (geodesic rips)
|
|
80
|
+
- eccentricity
|
|
81
|
+
"""
|
|
82
|
+
import multipers as mp
|
|
83
|
+
|
|
84
|
+
def __init__(self, filtrations:Iterable[str]=[]):
|
|
85
|
+
super().__init__()
|
|
86
|
+
|
|
87
|
+
def fit(self, X, y=None):
|
|
88
|
+
return self
|
|
89
|
+
|
|
90
|
+
def transform(self,X:list[nx.Graph]):
|
|
91
|
+
return
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from os.path import expanduser
|
|
3
|
+
from torch_geometric.datasets import ModelNet
|
|
4
|
+
|
|
5
|
+
DATASET_PATH = expanduser("~/Datasets/")
|
|
6
|
+
import os
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
####################### MODELNET
|
|
10
|
+
def load_modelnet(version='10', sample_points = False, reset:bool=False, remove_faces=False):
|
|
11
|
+
from torch_geometric.transforms import FaceToEdge, SamplePoints
|
|
12
|
+
"""
|
|
13
|
+
:param point_flag: Sample points if point_flag true. Otherwise load mesh
|
|
14
|
+
:return: train_dataset, test_dataset
|
|
15
|
+
"""
|
|
16
|
+
assert version in ['10', '40']
|
|
17
|
+
if sample_points:
|
|
18
|
+
pre_transform, transform = FaceToEdge(remove_faces=remove_faces), SamplePoints(num=sample_points)
|
|
19
|
+
else:
|
|
20
|
+
pre_transform, transform = FaceToEdge(remove_faces=remove_faces), None
|
|
21
|
+
path = f"{DATASET_PATH}/ModelNet{version}"
|
|
22
|
+
if reset:
|
|
23
|
+
# print(f"rm -rf {path}")
|
|
24
|
+
os.system(f"rm -rf {path+'/processed/'}")
|
|
25
|
+
train_dataset = ModelNet(path, name=version, train=True, transform=transform, pre_transform=pre_transform)
|
|
26
|
+
test_dataset = ModelNet(path, name=version, train=False, transform=transform, pre_transform=pre_transform)
|
|
27
|
+
return train_dataset, test_dataset
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def get_ModelNet(dataset, num_graph, seed):
|
|
31
|
+
train,test = load_modelnet(version=dataset[8:])
|
|
32
|
+
test_size = len(test) / len(train)
|
|
33
|
+
if num_graph >0:
|
|
34
|
+
np.random.seed(seed)
|
|
35
|
+
indices = np.random.choice(len(train), num_graph, replace=False)
|
|
36
|
+
train = train[indices]
|
|
37
|
+
indices = np.random.choice(len(test), int(num_graph*test_size), replace=False)
|
|
38
|
+
test = test[indices]
|
|
39
|
+
np.random.seed() # resets seed
|
|
40
|
+
return train, test
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def get(dataset:str, num_graph=0, seed=0, node_per_graph=0):
|
|
44
|
+
if dataset.startswith("ModelNet"):
|
|
45
|
+
return get_ModelNet(dataset=dataset, num_graph=num_graph, seed=seed)
|
|
46
|
+
datasets = get_(dataset=dataset, num_sample=num_graph)
|
|
47
|
+
graphs = []
|
|
48
|
+
labels = []
|
|
49
|
+
np.random.seed(seed)
|
|
50
|
+
for data, ls in datasets:
|
|
51
|
+
nodes = np.random.choice(range(len(data.pos)), replace=False, size=node_per_graph)
|
|
52
|
+
for i,node in enumerate(nodes):
|
|
53
|
+
data_ = data # if i == 0 else None # prevents doing copies
|
|
54
|
+
graphs.append([data_, node])
|
|
55
|
+
labels.append(ls[node])
|
|
56
|
+
return graphs, labels
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def get_(dataset:str, dataset_num:int|None=None, num_sample:int=0, DATASET_PATH = expanduser("~/Datasets/")):
|
|
60
|
+
from torch_geometric.io import read_off
|
|
61
|
+
if dataset.startswith("3dshapes/"):
|
|
62
|
+
dataset_ = dataset[len("3dshapes/"):]
|
|
63
|
+
else:
|
|
64
|
+
dataset_ = dataset
|
|
65
|
+
if dataset_num is None and "/" in dataset_:
|
|
66
|
+
position = dataset_.rfind("/")
|
|
67
|
+
dataset_num = int(dataset_[position+1:-4]) # cuts the "<dataset>/" and the ".off"
|
|
68
|
+
dataset_ = dataset_[:position]
|
|
69
|
+
|
|
70
|
+
if dataset_num is None: # gets a random (available) number for this dataset
|
|
71
|
+
from os import listdir
|
|
72
|
+
from random import choice
|
|
73
|
+
files = listdir(DATASET_PATH+f"3dshapes/{dataset_}")
|
|
74
|
+
if num_sample <= 0:
|
|
75
|
+
files = [file for file in files if "label" not in file]
|
|
76
|
+
else:
|
|
77
|
+
files = np.random.choice([file for file in files if "label" not in file], replace=False, size=num_sample)
|
|
78
|
+
dataset_nums = np.sort([int("".join([char for char in file if char.isnumeric()])) for file in files])
|
|
79
|
+
|
|
80
|
+
print("Dataset nums : ", *dataset_nums)
|
|
81
|
+
out = [get_(dataset_, dataset_num=num) for num in dataset_nums]
|
|
82
|
+
return out
|
|
83
|
+
|
|
84
|
+
path = DATASET_PATH+f"3dshapes/{dataset_}/{dataset_num}.off"
|
|
85
|
+
data = read_off(path)
|
|
86
|
+
faces = data.face.numpy().T
|
|
87
|
+
# data = FaceToEdge(remove_faces=remove_faces)(data)
|
|
88
|
+
#labels
|
|
89
|
+
label_path = path.split(".")[0] + "_labels.txt"
|
|
90
|
+
f = open(label_path, "r")
|
|
91
|
+
labels = np.zeros(len(data.pos), dtype="<U10") # Assumes labels are of size at most 10 chars
|
|
92
|
+
current_label=""
|
|
93
|
+
for i, line in enumerate(f.readlines()):
|
|
94
|
+
if i % 2 == 0:
|
|
95
|
+
current_label = line.strip()
|
|
96
|
+
continue
|
|
97
|
+
faces_of_label = np.array(line.strip().split(" "), dtype=int) -1 # this starts at 1, python starts at 0
|
|
98
|
+
# print(faces_of_label.min())
|
|
99
|
+
nodes_of_label = np.unique(faces[faces_of_label].flatten())
|
|
100
|
+
labels[nodes_of_label] = current_label # les labels sont sur les faces
|
|
101
|
+
return data, labels
|