multipers 2.2.3__cp311-cp311-win_amd64.whl → 2.3.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp311-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp311-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp311-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp311-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp311-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp311-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp311-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp311-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +301 -120
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
multipers/plots.py CHANGED
@@ -1,334 +1,342 @@
1
- from typing import Optional
2
-
3
- import matplotlib.pyplot as plt
4
- import numpy as np
5
-
6
-
7
- def _plot_rectangle(rectangle: np.ndarray, weight, **plt_kwargs):
8
- rectangle = np.asarray(rectangle)
9
- x_axis = rectangle[[0, 2]]
10
- y_axis = rectangle[[1, 3]]
11
- color = "blue" if weight > 0 else "red"
12
- plt.plot(x_axis, y_axis, c=color, **plt_kwargs)
13
-
14
-
15
- def _plot_signed_measure_2(
16
- pts, weights, temp_alpha=0.7, threshold=(np.inf, np.inf), **plt_kwargs
17
- ):
18
- import matplotlib.colors
19
-
20
- pts = np.clip(pts, a_min=-np.inf, a_max=np.asarray(threshold)[None, :])
21
- weights = np.asarray(weights)
22
- color_weights = np.array(weights, dtype=float)
23
- neg_idx = weights < 0
24
- pos_idx = weights > 0
25
- if np.any(neg_idx):
26
- current_weights = -weights[neg_idx]
27
- min_weight = np.max(current_weights)
28
- color_weights[neg_idx] /= min_weight
29
- color_weights[neg_idx] -= 1
30
- else:
31
- min_weight = 0
32
-
33
- if np.any(pos_idx):
34
- current_weights = weights[pos_idx]
35
- max_weight = np.max(current_weights)
36
- color_weights[pos_idx] /= max_weight
37
- color_weights[pos_idx] += 1
38
- else:
39
- max_weight = 1
40
-
41
- bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, 1])
42
- light_bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, temp_alpha])
43
- bleu = np.array([0.2298057, 0.29871797, 0.75368315, 1])
44
- light_bleu = np.array([0.2298057, 0.29871797, 0.75368315, temp_alpha])
45
- norm = plt.Normalize(-2, 2)
46
- cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
47
- "", [bordeaux, light_bordeaux, "white", light_bleu, bleu]
48
- )
49
- plt.scatter(
50
- pts[:, 0], pts[:, 1], c=color_weights, cmap=cmap, norm=norm, **plt_kwargs
51
- )
52
- plt.scatter([], [], color=bleu, label="positive mass", **plt_kwargs)
53
- plt.scatter([], [], color=bordeaux, label="negative mass", **plt_kwargs)
54
- plt.legend()
55
-
56
-
57
- def _plot_signed_measure_4(
58
- pts,
59
- weights,
60
- x_smoothing: float = 1,
61
- area_alpha: bool = True,
62
- threshold=(np.inf, np.inf),
63
- alpha=None,
64
- **plt_kwargs, # ignored ftm
65
- ):
66
- # compute the maximal rectangle area
67
- pts = np.clip(pts, a_min=-np.inf, a_max=np.array((*threshold, *threshold))[None, :])
68
- alpha_rescaling = 0
69
- for rectangle, weight in zip(pts, weights):
70
- if rectangle[2] > x_smoothing * rectangle[0]:
71
- alpha_rescaling = max(
72
- alpha_rescaling,
73
- (rectangle[2] / x_smoothing - rectangle[0])
74
- * (rectangle[3] - rectangle[1]),
75
- )
76
- # draw the rectangles
77
- for rectangle, weight in zip(pts, weights):
78
- # draw only the rectangles that have not been reduced to the empty set
79
- if rectangle[2] > x_smoothing * rectangle[0]:
80
- # make the alpha channel proportional to the rectangle's area
81
- if area_alpha:
82
- _plot_rectangle(
83
- rectangle=[
84
- rectangle[0],
85
- rectangle[1],
86
- rectangle[2] / x_smoothing,
87
- rectangle[3],
88
- ],
89
- weight=weight,
90
- alpha=(
91
- (rectangle[2] / x_smoothing - rectangle[0])
92
- * (rectangle[3] - rectangle[1])
93
- / alpha_rescaling
94
- if alpha is None
95
- else alpha
96
- ),
97
- **plt_kwargs,
98
- )
99
- else:
100
- _plot_rectangle(
101
- rectangle=[
102
- rectangle[0],
103
- rectangle[1],
104
- rectangle[2] / x_smoothing,
105
- rectangle[3],
106
- ],
107
- weight=weight,
108
- alpha=1 if alpha is None else alpha,
109
- **plt_kwargs,
110
- )
111
-
112
-
113
- def plot_signed_measure(signed_measure, threshold=None, ax=None, **plt_kwargs):
114
- if ax is None:
115
- ax = plt.gca()
116
- else:
117
- plt.sca(ax)
118
- pts, weights = signed_measure
119
- pts = np.asarray(pts)
120
- num_pts = pts.shape[0]
121
- num_parameters = pts.shape[1]
122
- if threshold is None:
123
- if num_pts == 0:
124
- threshold = (np.inf, np.inf)
125
- else:
126
- if num_parameters == 4:
127
- pts_ = np.concatenate([pts[:, :2], pts[:, 2:]], axis=0)
128
- else:
129
- pts_ = pts
130
- threshold = np.max(np.ma.masked_invalid(pts_), axis=0)
131
- if isinstance(pts, np.ndarray):
132
- pass
133
- else:
134
- import torch
135
-
136
- if isinstance(pts, torch.Tensor):
137
- pts = pts.detach().numpy()
138
- else:
139
- raise Exception("Invalid measure type.")
140
-
141
- assert num_parameters in (2, 4)
142
- if num_parameters == 2:
143
- _plot_signed_measure_2(
144
- pts=pts, weights=weights, threshold=threshold, **plt_kwargs
145
- )
146
- else:
147
- _plot_signed_measure_4(
148
- pts=pts, weights=weights, threshold=threshold, **plt_kwargs
149
- )
150
-
151
-
152
- def plot_signed_measures(signed_measures, threshold=None, size=4):
153
- num_degrees = len(signed_measures)
154
- if num_degrees <= 1:
155
- axes = [plt.gca()]
156
- else:
157
- fig, axes = plt.subplots(
158
- nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
159
- )
160
- for ax, signed_measure in zip(axes, signed_measures):
161
- plot_signed_measure(signed_measure=signed_measure, ax=ax, threshold=threshold)
162
- plt.tight_layout()
163
-
164
-
165
- def plot_surface(
166
- grid,
167
- hf,
168
- fig=None,
169
- ax=None,
170
- cmap: Optional[str] = None,
171
- discrete_surface=False,
172
- has_negative_values=False,
173
- **plt_args,
174
- ):
175
- import matplotlib
176
-
177
- if ax is None:
178
- ax = plt.gca()
179
- else:
180
- plt.sca(ax)
181
- if hf.ndim == 3 and hf.shape[0] == 1:
182
- hf = hf[0]
183
- assert hf.ndim == 2, "Can only plot a 2d surface"
184
- fig = plt.gcf() if fig is None else fig
185
- if cmap is None:
186
- if discrete_surface:
187
- cmap = matplotlib.colormaps["gray_r"]
188
- else:
189
- cmap = matplotlib.colormaps["plasma"]
190
- if discrete_surface:
191
- if has_negative_values:
192
- bounds = np.arange(-5, 6, 1, dtype=int)
193
- else:
194
- bounds = np.arange(0, 11, 1, dtype=int)
195
- norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N, extend="max")
196
- im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, norm=norm, **plt_args)
197
- cbar = fig.colorbar(
198
- matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm),
199
- spacing="proportional",
200
- ax=ax,
201
- )
202
- cbar.set_ticks(ticks=bounds, labels=bounds)
203
- return im
204
- im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, **plt_args)
205
- return im
206
-
207
-
208
- def plot_surfaces(HF, size=4, **plt_args):
209
- grid, hf = HF
210
- assert (
211
- hf.ndim == 3
212
- ), f"Found hf.shape = {hf.shape}, expected ndim = 3 : degree, 2-parameter surface."
213
- num_degrees = hf.shape[0]
214
- fig, axes = plt.subplots(
215
- nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
216
- )
217
- if num_degrees == 1:
218
- axes = [axes]
219
- for ax, hf_of_degree in zip(axes, hf):
220
- plot_surface(grid=grid, hf=hf_of_degree, fig=fig, ax=ax, **plt_args)
221
- plt.tight_layout()
222
-
223
-
224
- def _rectangle(x, y, color, alpha):
225
- """
226
- Defines a rectangle patch in the format {z | x  ≤ z ≤ y} with color and alpha
227
- """
228
- from matplotlib.patches import Rectangle as RectanglePatch
229
-
230
- return RectanglePatch(
231
- x, max(y[0] - x[0], 0), max(y[1] - x[1], 0), color=color, alpha=alpha
232
- )
233
-
234
-
235
- def _d_inf(a, b):
236
- if type(a) != np.ndarray or type(b) != np.ndarray:
237
- a = np.array(a)
238
- b = np.array(b)
239
- return np.min(np.abs(b - a))
240
-
241
-
242
- def plot2d_PyModule(
243
- corners,
244
- box,
245
- *,
246
- dimension=-1,
247
- separated=False,
248
- min_persistence=0,
249
- alpha=1,
250
- verbose=False,
251
- save=False,
252
- dpi=200,
253
- shapely=True,
254
- xlabel=None,
255
- ylabel=None,
256
- cmap=None,
257
- ):
258
- import matplotlib
259
-
260
- try:
261
- from shapely import union_all
262
- from shapely.geometry import Polygon as _Polygon
263
- from shapely.geometry import box as _rectangle_box
264
-
265
- shapely = True and shapely
266
- except ImportError:
267
- from warnings import warn
268
-
269
- shapely = False
270
- warn(
271
- "Shapely not installed. Fallbacking to matplotlib. The plots may be inacurate."
272
- )
273
- cmap = (
274
- matplotlib.colormaps["Spectral"] if cmap is None else matplotlib.colormaps[cmap]
275
- )
276
- box = list(box)
277
- if not (separated):
278
- # fig, ax = plt.subplots()
279
- ax = plt.gca()
280
- ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
281
- n_summands = len(corners)
282
- for i in range(n_summands):
283
- trivial_summand = True
284
- list_of_rect = []
285
- for birth in corners[i][0]:
286
- if len(birth) == 1:
287
- birth = np.asarray([birth[0]] * 2)
288
- birth = np.asarray(birth).clip(min=box[0])
289
- for death in corners[i][1]:
290
- if len(death) == 1:
291
- death = np.asarray([death[0]] * 2)
292
- death = np.asarray(death).clip(max=box[1])
293
- if death[1] > birth[1] and death[0] > birth[0]:
294
- if trivial_summand and _d_inf(birth, death) > min_persistence:
295
- trivial_summand = False
296
- if shapely:
297
- list_of_rect.append(
298
- _rectangle_box(birth[0], birth[1], death[0], death[1])
299
- )
300
- else:
301
- list_of_rect.append(
302
- _rectangle(birth, death, cmap(i / n_summands), alpha)
303
- )
304
- if not (trivial_summand):
305
- if separated:
306
- fig, ax = plt.subplots()
307
- ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
308
- if shapely:
309
- summand_shape = union_all(list_of_rect)
310
- if type(summand_shape) is _Polygon:
311
- xs, ys = summand_shape.exterior.xy
312
- ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
313
- else:
314
- for polygon in summand_shape.geoms:
315
- xs, ys = polygon.exterior.xy
316
- ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
317
- else:
318
- for rectangle in list_of_rect:
319
- ax.add_patch(rectangle)
320
- if separated:
321
- if xlabel:
322
- plt.xlabel(xlabel)
323
- if ylabel:
324
- plt.ylabel(ylabel)
325
- if dimension >= 0:
326
- plt.title(rf"$H_{dimension}$ $2$-persistence")
327
- if not (separated):
328
- if xlabel is not None:
329
- plt.xlabel(xlabel)
330
- if ylabel is not None:
331
- plt.ylabel(ylabel)
332
- if dimension >= 0:
333
- plt.title(rf"$H_{dimension}$ $2$-persistence")
334
- return
1
+ from typing import Optional
2
+
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
+
6
+ try:
7
+ import torch
8
+ istensor = torch.is_tensor
9
+ except ImportError:
10
+ istensor = lambda x: False
11
+
12
+ def _plot_rectangle(rectangle: np.ndarray, weight, **plt_kwargs):
13
+ rectangle = np.asarray(rectangle)
14
+ x_axis = rectangle[[0, 2]]
15
+ y_axis = rectangle[[1, 3]]
16
+ color = "blue" if weight > 0 else "red"
17
+ plt.plot(x_axis, y_axis, c=color, **plt_kwargs)
18
+
19
+
20
+ def _plot_signed_measure_2(
21
+ pts, weights, temp_alpha=0.7, threshold=(np.inf, np.inf), **plt_kwargs
22
+ ):
23
+ import matplotlib.colors
24
+
25
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.asarray(threshold)[None, :])
26
+ weights = np.asarray(weights)
27
+ color_weights = np.array(weights, dtype=float)
28
+ neg_idx = weights < 0
29
+ pos_idx = weights > 0
30
+ if np.any(neg_idx):
31
+ current_weights = -weights[neg_idx]
32
+ min_weight = np.max(current_weights)
33
+ color_weights[neg_idx] /= min_weight
34
+ color_weights[neg_idx] -= 1
35
+ else:
36
+ min_weight = 0
37
+
38
+ if np.any(pos_idx):
39
+ current_weights = weights[pos_idx]
40
+ max_weight = np.max(current_weights)
41
+ color_weights[pos_idx] /= max_weight
42
+ color_weights[pos_idx] += 1
43
+ else:
44
+ max_weight = 1
45
+
46
+ bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, 1])
47
+ light_bordeaux = np.array([0.70567316, 0.01555616, 0.15023281, temp_alpha])
48
+ bleu = np.array([0.2298057, 0.29871797, 0.75368315, 1])
49
+ light_bleu = np.array([0.2298057, 0.29871797, 0.75368315, temp_alpha])
50
+ norm = plt.Normalize(-2, 2)
51
+ cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
52
+ "", [bordeaux, light_bordeaux, "white", light_bleu, bleu]
53
+ )
54
+ plt.scatter(
55
+ pts[:, 0], pts[:, 1], c=color_weights, cmap=cmap, norm=norm, **plt_kwargs
56
+ )
57
+ plt.scatter([], [], color=bleu, label="positive mass", **plt_kwargs)
58
+ plt.scatter([], [], color=bordeaux, label="negative mass", **plt_kwargs)
59
+ plt.legend()
60
+
61
+
62
+ def _plot_signed_measure_4(
63
+ pts,
64
+ weights,
65
+ x_smoothing: float = 1,
66
+ area_alpha: bool = True,
67
+ threshold=(np.inf, np.inf),
68
+ alpha=None,
69
+ **plt_kwargs, # ignored ftm
70
+ ):
71
+ # compute the maximal rectangle area
72
+ pts = np.clip(pts, a_min=-np.inf, a_max=np.array((*threshold, *threshold))[None, :])
73
+ alpha_rescaling = 0
74
+ for rectangle, weight in zip(pts, weights):
75
+ if rectangle[2] > x_smoothing * rectangle[0]:
76
+ alpha_rescaling = max(
77
+ alpha_rescaling,
78
+ (rectangle[2] / x_smoothing - rectangle[0])
79
+ * (rectangle[3] - rectangle[1]),
80
+ )
81
+ # draw the rectangles
82
+ for rectangle, weight in zip(pts, weights):
83
+ # draw only the rectangles that have not been reduced to the empty set
84
+ if rectangle[2] > x_smoothing * rectangle[0]:
85
+ # make the alpha channel proportional to the rectangle's area
86
+ if area_alpha:
87
+ _plot_rectangle(
88
+ rectangle=[
89
+ rectangle[0],
90
+ rectangle[1],
91
+ rectangle[2] / x_smoothing,
92
+ rectangle[3],
93
+ ],
94
+ weight=weight,
95
+ alpha=(
96
+ (rectangle[2] / x_smoothing - rectangle[0])
97
+ * (rectangle[3] - rectangle[1])
98
+ / alpha_rescaling
99
+ if alpha is None
100
+ else alpha
101
+ ),
102
+ **plt_kwargs,
103
+ )
104
+ else:
105
+ _plot_rectangle(
106
+ rectangle=[
107
+ rectangle[0],
108
+ rectangle[1],
109
+ rectangle[2] / x_smoothing,
110
+ rectangle[3],
111
+ ],
112
+ weight=weight,
113
+ alpha=1 if alpha is None else alpha,
114
+ **plt_kwargs,
115
+ )
116
+
117
+
118
+ def plot_signed_measure(signed_measure, threshold=None, ax=None, **plt_kwargs):
119
+ if ax is None:
120
+ ax = plt.gca()
121
+ else:
122
+ plt.sca(ax)
123
+ pts, weights = signed_measure
124
+ if istensor(pts):
125
+ pts = pts.detach().numpy()
126
+ if istensor(weights):
127
+ weights = weights.detach().numpy()
128
+ pts = np.asarray(pts)
129
+ num_pts = pts.shape[0]
130
+ num_parameters = pts.shape[1]
131
+ if threshold is None:
132
+ if num_pts == 0:
133
+ threshold = (np.inf, np.inf)
134
+ else:
135
+ if num_parameters == 4:
136
+ pts_ = np.concatenate([pts[:, :2], pts[:, 2:]], axis=0)
137
+ else:
138
+ pts_ = pts
139
+ threshold = np.max(np.ma.masked_invalid(pts_), axis=0)
140
+ if isinstance(pts, np.ndarray):
141
+ pass
142
+ else:
143
+ import torch
144
+
145
+ if isinstance(pts, torch.Tensor):
146
+ pts = pts.detach().numpy()
147
+ else:
148
+ raise Exception("Invalid measure type.")
149
+
150
+ assert num_parameters in (2, 4)
151
+ if num_parameters == 2:
152
+ _plot_signed_measure_2(
153
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
154
+ )
155
+ else:
156
+ _plot_signed_measure_4(
157
+ pts=pts, weights=weights, threshold=threshold, **plt_kwargs
158
+ )
159
+
160
+
161
+ def plot_signed_measures(signed_measures, threshold=None, size=4):
162
+ num_degrees = len(signed_measures)
163
+ if num_degrees <= 1:
164
+ axes = [plt.gca()]
165
+ else:
166
+ fig, axes = plt.subplots(
167
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
168
+ )
169
+ for ax, signed_measure in zip(axes, signed_measures):
170
+ plot_signed_measure(signed_measure=signed_measure, ax=ax, threshold=threshold)
171
+ plt.tight_layout()
172
+
173
+
174
+ def plot_surface(
175
+ grid,
176
+ hf,
177
+ fig=None,
178
+ ax=None,
179
+ cmap: Optional[str] = None,
180
+ discrete_surface=False,
181
+ has_negative_values=False,
182
+ **plt_args,
183
+ ):
184
+ import matplotlib
185
+
186
+ if ax is None:
187
+ ax = plt.gca()
188
+ else:
189
+ plt.sca(ax)
190
+ if hf.ndim == 3 and hf.shape[0] == 1:
191
+ hf = hf[0]
192
+ assert hf.ndim == 2, "Can only plot a 2d surface"
193
+ fig = plt.gcf() if fig is None else fig
194
+ if cmap is None:
195
+ if discrete_surface:
196
+ cmap = matplotlib.colormaps["gray_r"]
197
+ else:
198
+ cmap = matplotlib.colormaps["plasma"]
199
+ if discrete_surface:
200
+ if has_negative_values:
201
+ bounds = np.arange(-5, 6, 1, dtype=int)
202
+ else:
203
+ bounds = np.arange(0, 11, 1, dtype=int)
204
+ norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N, extend="max")
205
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, norm=norm, **plt_args)
206
+ cbar = fig.colorbar(
207
+ matplotlib.cm.ScalarMappable(cmap=cmap, norm=norm),
208
+ spacing="proportional",
209
+ ax=ax,
210
+ )
211
+ cbar.set_ticks(ticks=bounds, labels=bounds)
212
+ return im
213
+ im = ax.pcolormesh(grid[0], grid[1], hf.T, cmap=cmap, **plt_args)
214
+ return im
215
+
216
+
217
+ def plot_surfaces(HF, size=4, **plt_args):
218
+ grid, hf = HF
219
+ assert (
220
+ hf.ndim == 3
221
+ ), f"Found hf.shape = {hf.shape}, expected ndim = 3 : degree, 2-parameter surface."
222
+ num_degrees = hf.shape[0]
223
+ fig, axes = plt.subplots(
224
+ nrows=1, ncols=num_degrees, figsize=(num_degrees * size, size)
225
+ )
226
+ if num_degrees == 1:
227
+ axes = [axes]
228
+ for ax, hf_of_degree in zip(axes, hf):
229
+ plot_surface(grid=grid, hf=hf_of_degree, fig=fig, ax=ax, **plt_args)
230
+ plt.tight_layout()
231
+
232
+
233
+ def _rectangle(x, y, color, alpha):
234
+ """
235
+ Defines a rectangle patch in the format {z | x  ≤ z ≤ y} with color and alpha
236
+ """
237
+ from matplotlib.patches import Rectangle as RectanglePatch
238
+
239
+ return RectanglePatch(
240
+ x, max(y[0] - x[0], 0), max(y[1] - x[1], 0), color=color, alpha=alpha
241
+ )
242
+
243
+
244
+ def _d_inf(a, b):
245
+ a = np.asarray(a)
246
+ b = np.asarray(b)
247
+ return np.min(np.abs(b - a))
248
+
249
+
250
+ def plot2d_PyModule(
251
+ corners,
252
+ box,
253
+ *,
254
+ dimension=-1,
255
+ separated=False,
256
+ min_persistence=0,
257
+ alpha=.8,
258
+ verbose=False,
259
+ save=False,
260
+ dpi=200,
261
+ shapely=True,
262
+ xlabel=None,
263
+ ylabel=None,
264
+ cmap=None,
265
+ ):
266
+ import matplotlib
267
+
268
+ try:
269
+ from shapely import union_all
270
+ from shapely.geometry import Polygon as _Polygon
271
+ from shapely.geometry import box as _rectangle_box
272
+
273
+ shapely = True and shapely
274
+ except ImportError:
275
+ from warnings import warn
276
+
277
+ shapely = False
278
+ warn(
279
+ "Shapely not installed. Fallbacking to matplotlib. The plots may be inacurate."
280
+ )
281
+ cmap = (
282
+ matplotlib.colormaps["Spectral"] if cmap is None else matplotlib.colormaps[cmap]
283
+ )
284
+ box = list(box)
285
+ if not (separated):
286
+ # fig, ax = plt.subplots()
287
+ ax = plt.gca()
288
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
289
+ n_summands = len(corners)
290
+ for i in range(n_summands):
291
+ trivial_summand = True
292
+ list_of_rect = []
293
+ for birth in corners[i][0]:
294
+ if len(birth) == 1:
295
+ birth = np.asarray([birth[0]] * 2)
296
+ birth = np.asarray(birth).clip(min=box[0])
297
+ for death in corners[i][1]:
298
+ if len(death) == 1:
299
+ death = np.asarray([death[0]] * 2)
300
+ death = np.asarray(death).clip(max=box[1])
301
+ if death[1] > birth[1] and death[0] > birth[0]:
302
+ if trivial_summand and _d_inf(birth, death) > min_persistence:
303
+ trivial_summand = False
304
+ if shapely:
305
+ list_of_rect.append(
306
+ _rectangle_box(birth[0], birth[1], death[0], death[1])
307
+ )
308
+ else:
309
+ list_of_rect.append(
310
+ _rectangle(birth, death, cmap(i / n_summands), alpha)
311
+ )
312
+ if not (trivial_summand):
313
+ if separated:
314
+ fig, ax = plt.subplots()
315
+ ax.set(xlim=[box[0][0], box[1][0]], ylim=[box[0][1], box[1][1]])
316
+ if shapely:
317
+ summand_shape = union_all(list_of_rect)
318
+ if type(summand_shape) is _Polygon:
319
+ xs, ys = summand_shape.exterior.xy
320
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
321
+ else:
322
+ for polygon in summand_shape.geoms:
323
+ xs, ys = polygon.exterior.xy
324
+ ax.fill(xs, ys, alpha=alpha, fc=cmap(i / n_summands), ec="None")
325
+ else:
326
+ for rectangle in list_of_rect:
327
+ ax.add_patch(rectangle)
328
+ if separated:
329
+ if xlabel:
330
+ plt.xlabel(xlabel)
331
+ if ylabel:
332
+ plt.ylabel(ylabel)
333
+ if dimension >= 0:
334
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
335
+ if not (separated):
336
+ if xlabel is not None:
337
+ plt.xlabel(xlabel)
338
+ if ylabel is not None:
339
+ plt.ylabel(ylabel)
340
+ if dimension >= 0:
341
+ plt.title(rf"$H_{dimension}$ $2$-persistence")
342
+ return