multipers 2.0.0__cp312-cp312-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (78) hide show
  1. multipers/.dylibs/libc++.1.0.dylib +0 -0
  2. multipers/.dylibs/libtbb.12.12.dylib +0 -0
  3. multipers/.dylibs/libtbbmalloc.2.12.dylib +0 -0
  4. multipers/__init__.py +11 -0
  5. multipers/_signed_measure_meta.py +268 -0
  6. multipers/_slicer_meta.py +171 -0
  7. multipers/data/MOL2.py +350 -0
  8. multipers/data/UCR.py +18 -0
  9. multipers/data/__init__.py +1 -0
  10. multipers/data/graphs.py +466 -0
  11. multipers/data/immuno_regions.py +27 -0
  12. multipers/data/minimal_presentation_to_st_bf.py +0 -0
  13. multipers/data/pytorch2simplextree.py +91 -0
  14. multipers/data/shape3d.py +101 -0
  15. multipers/data/synthetic.py +68 -0
  16. multipers/distances.py +198 -0
  17. multipers/euler_characteristic.pyx +132 -0
  18. multipers/filtration_conversions.pxd +229 -0
  19. multipers/filtrations.pxd +225 -0
  20. multipers/function_rips.cpython-312-darwin.so +0 -0
  21. multipers/function_rips.pyx +105 -0
  22. multipers/grids.cpython-312-darwin.so +0 -0
  23. multipers/grids.pyx +281 -0
  24. multipers/hilbert_function.pyi +46 -0
  25. multipers/hilbert_function.pyx +153 -0
  26. multipers/io.cpython-312-darwin.so +0 -0
  27. multipers/io.pyx +571 -0
  28. multipers/ml/__init__.py +0 -0
  29. multipers/ml/accuracies.py +90 -0
  30. multipers/ml/convolutions.py +532 -0
  31. multipers/ml/invariants_with_persistable.py +79 -0
  32. multipers/ml/kernels.py +176 -0
  33. multipers/ml/mma.py +659 -0
  34. multipers/ml/one.py +472 -0
  35. multipers/ml/point_clouds.py +238 -0
  36. multipers/ml/signed_betti.py +50 -0
  37. multipers/ml/signed_measures.py +1542 -0
  38. multipers/ml/sliced_wasserstein.py +461 -0
  39. multipers/ml/tools.py +113 -0
  40. multipers/mma_structures.cpython-312-darwin.so +0 -0
  41. multipers/mma_structures.pxd +127 -0
  42. multipers/mma_structures.pyx +2433 -0
  43. multipers/multiparameter_edge_collapse.py +41 -0
  44. multipers/multiparameter_module_approximation.cpython-312-darwin.so +0 -0
  45. multipers/multiparameter_module_approximation.pyx +211 -0
  46. multipers/pickle.py +53 -0
  47. multipers/plots.py +326 -0
  48. multipers/point_measure_integration.cpython-312-darwin.so +0 -0
  49. multipers/point_measure_integration.pyx +139 -0
  50. multipers/rank_invariant.cpython-312-darwin.so +0 -0
  51. multipers/rank_invariant.pyx +229 -0
  52. multipers/simplex_tree_multi.cpython-312-darwin.so +0 -0
  53. multipers/simplex_tree_multi.pxd +129 -0
  54. multipers/simplex_tree_multi.pyi +715 -0
  55. multipers/simplex_tree_multi.pyx +4655 -0
  56. multipers/slicer.cpython-312-darwin.so +0 -0
  57. multipers/slicer.pxd +781 -0
  58. multipers/slicer.pyx +3393 -0
  59. multipers/tensor.pxd +13 -0
  60. multipers/test.pyx +44 -0
  61. multipers/tests/__init__.py +40 -0
  62. multipers/tests/old_test_rank_invariant.py +91 -0
  63. multipers/tests/test_diff_helper.py +74 -0
  64. multipers/tests/test_hilbert_function.py +82 -0
  65. multipers/tests/test_mma.py +51 -0
  66. multipers/tests/test_point_clouds.py +59 -0
  67. multipers/tests/test_python-cpp_conversion.py +82 -0
  68. multipers/tests/test_signed_betti.py +181 -0
  69. multipers/tests/test_simplextreemulti.py +98 -0
  70. multipers/tests/test_slicer.py +63 -0
  71. multipers/torch/__init__.py +1 -0
  72. multipers/torch/diff_grids.py +217 -0
  73. multipers/torch/rips_density.py +257 -0
  74. multipers-2.0.0.dist-info/LICENSE +21 -0
  75. multipers-2.0.0.dist-info/METADATA +29 -0
  76. multipers-2.0.0.dist-info/RECORD +78 -0
  77. multipers-2.0.0.dist-info/WHEEL +5 -0
  78. multipers-2.0.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,225 @@
1
+ from libcpp.utility cimport pair
2
+ from libcpp cimport bool
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport tuple
5
+ from libc.stdint cimport uintptr_t,intptr_t
6
+ from cpython cimport Py_buffer
7
+
8
+
9
+ cdef extern from "gudhi/Simplex_tree/multi_filtrations/Finitely_critical_filtrations.h" namespace "Gudhi::multiparameter::multi_filtrations":
10
+ cdef cppclass Finitely_critical_multi_filtration[T=*]:
11
+ ## Copied from cython vector
12
+ ctypedef size_t size_type
13
+ ctypedef ptrdiff_t difference_type
14
+ ctypedef T value_type
15
+
16
+ cppclass const_iterator
17
+ cppclass iterator:
18
+ iterator() except +
19
+ iterator(iterator&) except +
20
+ value_type& operator*()
21
+ iterator operator++()
22
+ iterator operator--()
23
+ iterator operator++(int)
24
+ iterator operator--(int)
25
+ iterator operator+(size_type)
26
+ iterator operator-(size_type)
27
+ difference_type operator-(iterator)
28
+ difference_type operator-(const_iterator)
29
+ bint operator==(iterator)
30
+ bint operator==(const_iterator)
31
+ bint operator!=(iterator)
32
+ bint operator!=(const_iterator)
33
+ bint operator<(iterator)
34
+ bint operator<(const_iterator)
35
+ bint operator>(iterator)
36
+ bint operator>(const_iterator)
37
+ bint operator<=(iterator)
38
+ bint operator<=(const_iterator)
39
+ bint operator>=(iterator)
40
+ bint operator>=(const_iterator)
41
+ cppclass const_iterator:
42
+ const_iterator() except +
43
+ const_iterator(iterator&) except +
44
+ const_iterator(const_iterator&) except +
45
+ operator=(iterator&) except +
46
+ const value_type& operator*()
47
+ const_iterator operator++()
48
+ const_iterator operator--()
49
+ const_iterator operator++(int)
50
+ const_iterator operator--(int)
51
+ const_iterator operator+(size_type)
52
+ const_iterator operator-(size_type)
53
+ difference_type operator-(iterator)
54
+ difference_type operator-(const_iterator)
55
+ bint operator==(iterator)
56
+ bint operator==(const_iterator)
57
+ bint operator!=(iterator)
58
+ bint operator!=(const_iterator)
59
+ bint operator<(iterator)
60
+ bint operator<(const_iterator)
61
+ bint operator>(iterator)
62
+ bint operator>(const_iterator)
63
+ bint operator<=(iterator)
64
+ bint operator<=(const_iterator)
65
+ bint operator>=(iterator)
66
+ bint operator>=(const_iterator)
67
+
68
+ cppclass const_reverse_iterator
69
+ cppclass reverse_iterator:
70
+ reverse_iterator() except +
71
+ reverse_iterator(reverse_iterator&) except +
72
+ value_type& operator*()
73
+ reverse_iterator operator++()
74
+ reverse_iterator operator--()
75
+ reverse_iterator operator++(int)
76
+ reverse_iterator operator--(int)
77
+ reverse_iterator operator+(size_type)
78
+ reverse_iterator operator-(size_type)
79
+ difference_type operator-(iterator)
80
+ difference_type operator-(const_iterator)
81
+ bint operator==(reverse_iterator)
82
+ bint operator==(const_reverse_iterator)
83
+ bint operator!=(reverse_iterator)
84
+ bint operator!=(const_reverse_iterator)
85
+ bint operator<(reverse_iterator)
86
+ bint operator<(const_reverse_iterator)
87
+ bint operator>(reverse_iterator)
88
+ bint operator>(const_reverse_iterator)
89
+ bint operator<=(reverse_iterator)
90
+ bint operator<=(const_reverse_iterator)
91
+ bint operator>=(reverse_iterator)
92
+ bint operator>=(const_reverse_iterator)
93
+ cppclass const_reverse_iterator:
94
+ const_reverse_iterator() except +
95
+ const_reverse_iterator(reverse_iterator&) except +
96
+ operator=(reverse_iterator&) except +
97
+ const value_type& operator*()
98
+ const_reverse_iterator operator++()
99
+ const_reverse_iterator operator--()
100
+ const_reverse_iterator operator++(int)
101
+ const_reverse_iterator operator--(int)
102
+ const_reverse_iterator operator+(size_type)
103
+ const_reverse_iterator operator-(size_type)
104
+ difference_type operator-(iterator)
105
+ difference_type operator-(const_iterator)
106
+ bint operator==(reverse_iterator)
107
+ bint operator==(const_reverse_iterator)
108
+ bint operator!=(reverse_iterator)
109
+ bint operator!=(const_reverse_iterator)
110
+ bint operator<(reverse_iterator)
111
+ bint operator<(const_reverse_iterator)
112
+ bint operator>(reverse_iterator)
113
+ bint operator>(const_reverse_iterator)
114
+ bint operator<=(reverse_iterator)
115
+ bint operator<=(const_reverse_iterator)
116
+ bint operator>=(reverse_iterator)
117
+ bint operator>=(const_reverse_iterator)
118
+ value_type& operator[](size_type)
119
+ #vector& operator=(vector&)
120
+ void assign(size_type, const value_type&)
121
+ void assign[InputIt](InputIt, InputIt) except +
122
+ value_type& at(size_type) except +
123
+ value_type& back()
124
+ iterator begin()
125
+ const_iterator const_begin "begin"()
126
+ const_iterator cbegin()
127
+ size_type capacity()
128
+ void clear() nogil
129
+ bint empty() nogil
130
+ iterator end()
131
+ const_iterator const_end "end"()
132
+ const_iterator cend()
133
+ iterator erase(iterator)
134
+ iterator erase(iterator, iterator)
135
+ value_type& front()
136
+ iterator insert(iterator, const value_type&) except +
137
+ iterator insert(iterator, size_type, const value_type&) except +
138
+ iterator insert[InputIt](iterator, InputIt, InputIt) except +
139
+ size_type max_size()
140
+ void pop_back()
141
+ void push_back(value_type&) except + nogil
142
+ reverse_iterator rbegin()
143
+ const_reverse_iterator const_rbegin "rbegin"()
144
+ const_reverse_iterator crbegin()
145
+ reverse_iterator rend()
146
+ const_reverse_iterator const_rend "rend"()
147
+ const_reverse_iterator crend()
148
+ void reserve(size_type) except + nogil
149
+ void resize(size_type) except + nogil
150
+ void resize(size_type, value_type&) except +
151
+ # size_type size()
152
+ size_type num_parameters()
153
+ size_type num_generators()
154
+ void swap(vector&)
155
+
156
+ # C++11 methods
157
+ value_type* data()
158
+ const value_type* const_data "data"()
159
+ void shrink_to_fit() except +
160
+ iterator emplace(const_iterator, ...) except +
161
+ value_type& emplace_back(...) except +
162
+
163
+ ## end of copied from cython vector
164
+
165
+ Finitely_critical_multi_filtration() except + nogil
166
+ Finitely_critical_multi_filtration(vector[value_type]&) except + nogil
167
+ Finitely_critical_multi_filtration(Finitely_critical_multi_filtration&) except + nogil
168
+
169
+ Finitely_critical_multi_filtration(int) nogil
170
+ Finitely_critical_multi_filtration& operator=(const Finitely_critical_multi_filtration&) except +
171
+ @staticmethod
172
+ vector[vector[value_type]] to_python(vector[Finitely_critical_multi_filtration]&) nogil const
173
+ @staticmethod
174
+ vector[value_type]& vector[value_type]() nogil
175
+
176
+
177
+
178
+ cdef cppclass KCriticalFiltration[T=*]:
179
+ ctypedef size_t size_type
180
+ ctypedef Finitely_critical_multi_filtration[T] filtration_type
181
+ KCriticalFiltration() except + nogil
182
+ KCriticalFiltration(Finitely_critical_multi_filtration[T]) except +
183
+ KCriticalFiltration[T]& operator=(const KCriticalFiltration[T]&) except +
184
+ size_type num_parameters()
185
+ size_type num_generators()
186
+ void clear() nogil
187
+ void push_back(T) nogil
188
+ void add_point(Finitely_critical_multi_filtration[T]) nogil
189
+ void reserve(size_t) nogil
190
+ void set_num_generators(size_t) nogil
191
+ Finitely_critical_multi_filtration[T]& operator[](int) nogil
192
+ # @staticmethod
193
+ # multifiltration& to_python(vector[KCriticalFiltration]&) nogil const
194
+ # @staticmethod
195
+ # vector[KCriticalFiltration]& from_python(multifiltration&) nogil const
196
+ # vector[value_type]& _convert_back() nogil
197
+ # filtration_type __filtration_type__(self):
198
+ # return self.get_vector()
199
+
200
+ cdef extern from "gudhi/Simplex_tree/multi_filtrations/Box.h" namespace "Gudhi::multiparameter::multi_filtrations":
201
+ cdef cppclass Box[T=*]:
202
+ ctypedef vector[T] corner_type
203
+ Box() except +
204
+ Box( vector[T]&, vector[T]&) nogil
205
+ Box( pair[vector[T], vector[T]]&) nogil
206
+ void inflate(T) nogil
207
+ const Finitely_critical_multi_filtration[T]& get_bottom_corner() nogil
208
+ const Finitely_critical_multi_filtration[T]& get_upper_corner() nogil
209
+ bool contains(vector[T]&) nogil
210
+ pair[Finitely_critical_multi_filtration[T], Finitely_critical_multi_filtration[T]] get_pair() nogil
211
+
212
+ cdef extern from "gudhi/Simplex_tree/multi_filtrations/Line.h" namespace "Gudhi::multiparameter::multi_filtrations":
213
+ cdef cppclass Line[T=*]:
214
+ ctypedef Finitely_critical_multi_filtration[T] point_type
215
+ Line() except + nogil
216
+ Line(Finitely_critical_multi_filtration[T]&) except + nogil
217
+ Line(Finitely_critical_multi_filtration[T]&, Finitely_critical_multi_filtration[T]&) except + nogil
218
+
219
+
220
+
221
+
222
+
223
+ # ------ useful types:
224
+ # ctypedef Finitely_critical_multi_filtration[float] onecritical
225
+ # ctypedef KCriticalFiltration[float] kcritical
@@ -0,0 +1,105 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair, tuple
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ import numpy as np
9
+ cimport numpy as cnp
10
+ cnp.import_array()
11
+
12
+ ctypedef double value_type
13
+ python_value_type=np.float64
14
+
15
+ ctypedef int32_t indices_type # uint fails for some reason
16
+ python_indices_type=np.int32
17
+
18
+ ctypedef int32_t tensor_dtype
19
+ python_tensor_dtype = np.int32
20
+
21
+ ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
22
+
23
+
24
+ from multipers.simplex_tree_multi import SimplexTreeMulti_Ff64
25
+ from gudhi.simplex_tree import SimplexTree
26
+
27
+ cdef extern from "multi_parameter_rank_invariant/function_rips.h" namespace "Gudhi::multiparameter::function_rips":
28
+ void compute_function_rips_surface_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
29
+ signed_measure_type compute_function_rips_signed_measure_python(const intptr_t, tensor_dtype* , const vector[indices_type], indices_type,indices_type, bool, bool, indices_type) except + nogil
30
+ pair[vector[value_type],int] get_degree_rips_st_python(const intptr_t,const intptr_t, const vector[int]) except + nogil
31
+
32
+
33
+ import multipers.grids as mpg
34
+
35
+
36
+
37
+ def get_degree_rips(st, vector[int] degrees, grid_strategy="exact", resolution=0):
38
+ assert isinstance(st,SimplexTree), "Input has to be a Gudhi simplextree for now."
39
+ assert st.dimension() == 1, "Simplextree has to be of dimension 1. You can use the `prune_above_dimension` method."
40
+ degree_rips_st = SimplexTreeMulti_Ff64(num_parameters=degrees.size())
41
+ cdef intptr_t simplextree_ptr = st.thisptr
42
+ cdef intptr_t st_multi_ptr = degree_rips_st.thisptr
43
+ cdef pair[vector[value_type],int] out
44
+ with nogil:
45
+ out = get_degree_rips_st_python(simplextree_ptr, st_multi_ptr, degrees)
46
+ filtrations = np.asarray(out.first)
47
+ cdef int max_degree = out.second
48
+ cdef bool inf_flag = filtrations[-1] == np.inf
49
+ if inf_flag:
50
+ filtrations = filtrations[:-1]
51
+ filtrations, = mpg.compute_grid([filtrations],strategy=grid_strategy,resolution=resolution)
52
+ if inf_flag:
53
+ filtrations = np.concatenate([filtrations, [np.inf]])
54
+ degree_rips_st.grid_squeeze([filtrations]*degree_rips_st.num_parameters, inplace=True, coordinate_values=True)
55
+ degree_rips_st.filtration_grid = [filtrations, np.asarray(degrees)[::-1]]
56
+ degree_rips_st._is_function_simplextree=True
57
+ return degree_rips_st,max_degree
58
+
59
+ def function_rips_surface(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0):
60
+ assert st_multi._is_squeezed, "Squeeze first !"
61
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
62
+ cdef indices_type I = len(st_multi.filtration_grid[0])
63
+ cdef indices_type J = st_multi.num_parameters
64
+ container_shape = (homological_degrees.size(),I,J)
65
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
66
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
67
+ cdef tensor_dtype[::1] container = container_array
68
+ cdef tensor_dtype* container_ptr = &container[0]
69
+ with nogil:
70
+ compute_function_rips_surface_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
71
+ filtration_grid = st_multi.filtration_grid
72
+ if filtration_grid[0][-1] == np.inf:
73
+ filtration_grid[0][-1] = filtration_grid[0][-2]
74
+ return filtration_grid, container_array.reshape(container_shape)
75
+
76
+
77
+
78
+ def function_rips_signed_measure(st_multi, vector[indices_type] homological_degrees, bool mobius_inversion=True, bool zero_pad=False, indices_type n_jobs=0, bool reconvert = True):
79
+ assert st_multi._is_squeezed
80
+ cdef intptr_t st_multi_ptr = st_multi.thisptr
81
+ cdef indices_type I = len(st_multi.filtration_grid[0])
82
+ cdef indices_type J = st_multi.num_parameters
83
+ container_shape = (homological_degrees.size(),I,J)
84
+ container_array = np.ascontiguousarray(np.zeros(container_shape, dtype=python_tensor_dtype).flatten())
85
+ assert len(container_array) < np.iinfo(np.uint32).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
86
+ cdef tensor_dtype[::1] container = container_array
87
+ cdef tensor_dtype* container_ptr = &container[0]
88
+ cdef signed_measure_type out
89
+ # TODO nogil
90
+ with nogil:
91
+ out = compute_function_rips_signed_measure_python(st_multi_ptr,container_ptr, homological_degrees, I,J, mobius_inversion, zero_pad, n_jobs)
92
+ pts, weights = np.asarray(out.first, dtype=int).reshape(-1, 3), np.asarray(out.second, dtype=int)
93
+
94
+ degree_indices = [np.argwhere(pts[:,0] == degree_index).flatten() for degree_index, degree in enumerate(homological_degrees)] ## TODO : maybe optimize
95
+ sms = [(pts[id,1:],weights[id]) for id in degree_indices]
96
+ if not reconvert: return sms
97
+
98
+ grid_conversion = st_multi.filtration_grid
99
+ for degree_index,(pts,weights) in enumerate(sms):
100
+ coords = np.empty(shape=pts.shape, dtype=float)
101
+ for i in range(coords.shape[1]):
102
+ coords[:,i] = np.asarray(grid_conversion[i])[pts[:,i]]
103
+ sms[degree_index]=(coords, weights)
104
+
105
+ return sms
Binary file
multipers/grids.pyx ADDED
@@ -0,0 +1,281 @@
1
+
2
+ from libc.stdint cimport intptr_t, int32_t, int64_t
3
+ from libcpp cimport bool,int,long, float
4
+
5
+ cimport numpy as cnp
6
+ import numpy as np
7
+ cnp.import_array()
8
+
9
+
10
+ from typing import Iterable,Literal,Optional
11
+
12
+
13
+ available_strategies = ["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
14
+ Lstrategies = Literal["regular","regular_closest", "regular_left", "partition", "quantile", "precomputed"]
15
+
16
+ ctypedef fused some_int:
17
+ int32_t
18
+ int64_t
19
+ int
20
+ long
21
+
22
+ ctypedef fused some_float:
23
+ float
24
+ double
25
+
26
+
27
+ def compute_grid(
28
+ x,
29
+ resolution=None,
30
+ strategy:Lstrategies="exact",
31
+ bool unique=True,
32
+ some_float _q_factor=1.,
33
+ drop_quantiles=[0,0],
34
+ bool dense = False,
35
+ ):
36
+ """
37
+ Computes a grid from filtration values, using some strategy.
38
+
39
+ Input
40
+ -----
41
+
42
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
43
+ where `filtration_of_parameter` is a array[float, ndim=1]
44
+ - `resolution`:Optional[int|tuple[int]]
45
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
46
+ - `unique`: if true, doesn't repeat values in the output grid.
47
+ - `drop_quantiles` : drop some filtration values according to these quantiles
48
+ Output
49
+ ------
50
+
51
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
52
+ """
53
+
54
+ from multipers.slicer import is_slicer
55
+ from multipers.simplex_tree_multi import is_simplextree_multi
56
+
57
+ cdef bool is_numpy_compatible = True
58
+ if is_slicer(x):
59
+ initial_grid = x.get_filtrations_values().T
60
+ elif is_simplextree_multi(x):
61
+ initial_grid = x.get_filtration_grid()
62
+ elif isinstance(x, np.ndarray):
63
+ initial_grid = x
64
+ else:
65
+ x = tuple(x)
66
+ if len(x) == 0: return []
67
+ first = x[0]
68
+ if isinstance(first,list) or isinstance(first, tuple) or isinstance(first, np.ndarray):
69
+ initial_grid = tuple(np.asarray(f) for f in x)
70
+ else:
71
+ is_numpy_compatible = False
72
+ import torch
73
+ assert isinstance(first, torch.Tensor), "Only numpy and torch are supported ftm."
74
+ initial_grid = x
75
+
76
+ if is_numpy_compatible:
77
+ return _compute_grid_numpy(
78
+ initial_grid,
79
+ resolution=resolution,
80
+ strategy = strategy,
81
+ unique = unique,
82
+ _q_factor=_q_factor,
83
+ drop_quantiles=drop_quantiles,
84
+ dense = dense,
85
+ )
86
+ from multipers.torch.diff_grids import get_grid
87
+ return get_grid(strategy)(initial_grid,resolution)
88
+
89
+
90
+
91
+
92
+
93
+
94
+ def _compute_grid_numpy(
95
+ filtrations_values,
96
+ resolution=None,
97
+ strategy:Lstrategies="exact",
98
+ bool unique=True,
99
+ some_float _q_factor=1.,
100
+ drop_quantiles=[0,0],
101
+ bool dense = False,
102
+ ):
103
+ """
104
+ Computes a grid from filtration values, using some strategy.
105
+
106
+ Input
107
+ -----
108
+ - `filtrations_values`: `Iterable[filtration of parameter for parameter]`
109
+ where `filtration_of_parameter` is a array[float, ndim=1]
110
+ - `resolution`:Optional[int|tuple[int]]
111
+ - `strategy`: either exact, regular, regular_closest, regular_left, partition, quantile, or precomputed.
112
+ - `unique`: if true, doesn't repeat values in the output grid.
113
+ - `drop_quantiles` : drop some filtration values according to these quantiles
114
+ Output
115
+ ------
116
+ Iterable[array[float, ndim=1]] : the 1d-grid for each parameter.
117
+ """
118
+ num_parameters = len(filtrations_values)
119
+ if resolution is None and strategy not in ["exact", "precomputed"]:
120
+ raise ValueError("Resolution must be provided for this strategy.")
121
+ elif resolution is not None:
122
+ try:
123
+ int(resolution)
124
+ resolution = [resolution]*num_parameters
125
+ except:
126
+ pass
127
+ try:
128
+ a,b=drop_quantiles
129
+ except:
130
+ a,b=drop_quantiles,drop_quantiles
131
+
132
+ if a != 0 or b != 0:
133
+ boxes = np.asarray([np.quantile(filtration, [a, b], axis=1, method='closest_observation') for filtration in filtrations_values])
134
+ min_filtration, max_filtration = np.min(boxes, axis=(0,1)), np.max(boxes, axis=(0,1)) # box, birth/death, filtration
135
+ filtrations_values = [
136
+ filtration[(m<filtration) * (filtration <M)]
137
+ for filtration, m,M in zip(filtrations_values, min_filtration, max_filtration)
138
+ ]
139
+
140
+ to_unique = lambda f : np.unique(f) if isinstance(f,np.ndarray) else f.unique()
141
+ ## match doesn't work with cython BUG
142
+ if strategy == "exact":
143
+ F=tuple(to_unique(f) for f in filtrations_values)
144
+ elif strategy == "quantile":
145
+ F = tuple(to_unique(f) for f in filtrations_values)
146
+ max_resolution = [min(len(f),r) for f,r in zip(F,resolution)]
147
+ F = tuple( np.quantile(f, q=np.linspace(0,1,num=int(r*_q_factor)), axis=0, method='closest_observation') for f,r in zip(F, resolution) )
148
+ if unique:
149
+ F = tuple(to_unique(f) for f in F)
150
+ if np.all(np.asarray(max_resolution) > np.asarray([len(f) for f in F])):
151
+ return _compute_grid_numpy(filtrations_values=filtrations_values, resolution=resolution, strategy="quantile",_q_factor=1.5*_q_factor)
152
+ elif strategy == "regular":
153
+ F = tuple(np.linspace(f.min(),f.max(),num=r, dtype=f.dtype) for f,r in zip(filtrations_values, resolution))
154
+ elif strategy == "regular_closest":
155
+ F = tuple(_todo_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
156
+ elif strategy == "regular_left":
157
+ F = tuple(_todo_regular_left(f,r, unique) for f,r in zip(filtrations_values, resolution))
158
+ elif strategy == "torch_regular_closest":
159
+ F = tuple(_torch_regular_closest(f,r, unique) for f,r in zip(filtrations_values, resolution))
160
+ elif strategy == "partition":
161
+ F = tuple(_todo_partition(f,r, unique) for f,r in zip(filtrations_values, resolution))
162
+ elif strategy == "precomputed":
163
+ F=filtrations_values
164
+ else:
165
+ raise ValueError(f"Invalid strategy {strategy}. Pick something in {available_strategies}.")
166
+ if dense:
167
+ mesh = np.meshgrid(*F)
168
+ coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1)
169
+ return coordinates
170
+ return F
171
+
172
+ def todense(grid):
173
+ if len(grid) == 0:
174
+ return np.empty(0)
175
+ dtype = grid[0].dtype
176
+ mesh = np.meshgrid(*grid)
177
+ coordinates = np.concatenate(tuple(stuff.ravel()[:,None] for stuff in mesh), axis=1, dtype=dtype)
178
+ return coordinates
179
+
180
+
181
+
182
+ ## TODO : optimize. Pykeops ?
183
+ def _todo_regular_closest(some_float[:] f, int r, bool unique):
184
+ f_array = np.asarray(f)
185
+ f_regular = np.linspace(np.min(f), np.max(f),num=r, dtype=f_array.dtype)
186
+ f_regular_closest = np.asarray([f[<long>np.argmin(np.abs(f_array-f_regular[i]))] for i in range(r)])
187
+ if unique: f_regular_closest = np.unique(f_regular_closest)
188
+ return f_regular_closest
189
+
190
+ def _todo_regular_left(some_float[:] f, int r, bool unique):
191
+ sorted_f = np.sort(f)
192
+ f_regular = np.linspace(sorted_f[0],sorted_f[-1],num=r, dtype=sorted_f.dtype)
193
+ f_regular_closest = sorted_f[np.searchsorted(sorted_f,f_regular)]
194
+ if unique: f_regular_closest = np.unique(f_regular_closest)
195
+ return f_regular_closest
196
+
197
+ def _torch_regular_closest(f, int r, bool unique=True):
198
+ import torch
199
+ f_regular = torch.linspace(f.min(),f.max(), r, dtype=f.dtype)
200
+ f_regular_closest =torch.tensor([f[(f-x).abs().argmin()] for x in f_regular])
201
+ if unique: f_regular_closest = f_regular_closest.unique()
202
+ return f_regular_closest
203
+
204
+ def _todo_partition(some_float[:] data,int resolution, bool unique):
205
+ if data.shape[0] < resolution: resolution=data.shape[0]
206
+ k = data.shape[0] // resolution
207
+ partitions = np.partition(data, k)
208
+ f = partitions[[i*k for i in range(resolution)]]
209
+ if unique: f= np.unique(f)
210
+ return f
211
+
212
+
213
+ def push_to_grid(some_float[:,:] points, grid, bool return_coordinate=False):
214
+ """
215
+ Given points and a grid (list of one parameter grids),
216
+ pushes the points onto the grid.
217
+ """
218
+ num_points, num_parameters = points.shape[0], points.shape[1]
219
+ cdef cnp.ndarray[long,ndim=2] coordinates = np.empty((num_points, num_parameters),dtype=np.int64)
220
+ for parameter in range(num_parameters):
221
+ coordinates[:,parameter] = np.searchsorted(grid[parameter],points[:,parameter])
222
+ if return_coordinate:
223
+ return coordinates
224
+ out = np.empty((num_points,num_parameters), grid[0].dtype)
225
+ for parameter in range(num_parameters):
226
+ out[:,parameter] = grid[parameter][coordinates[:,parameter]]
227
+ return out
228
+
229
+
230
+ def coarsen_points(some_float[:,:] points, strategy="exact", int resolution=-1, bool coordinate=False):
231
+ grid = _compute_grid_numpy(points.T, strategy=strategy, resolution=resolution)
232
+ if coordinate:
233
+ return push_to_grid(points, grid, coordinate), grid
234
+ return push_to_grid(points, grid, coordinate)
235
+
236
+
237
+
238
+ def sm_in_grid(pts, weights, grid_conversion, int num_parameters=-1):
239
+ """Given a measure whose points are coordinates,
240
+ pushes this measure in this grid.
241
+ Input
242
+ -----
243
+ - pts: of the form array[int, ndim=2]
244
+ - weights: array[int, ndim=1]
245
+ - grid_conversion of the form Iterable[array[float, ndim=1]]
246
+ - num_parameters: number of parameters
247
+ """
248
+ first_filtration = grid_conversion[0]
249
+ dtype = first_filtration.dtype
250
+ def to_int(x):
251
+ return np.asarray(x,dtype=np.int64)
252
+ if isinstance(first_filtration, np.ndarray):
253
+ def empty_like(x, weights):
254
+ return np.empty_like(x, dtype=dtype), np.asarray(weights)
255
+ else:
256
+ import torch
257
+ # assert isinstance(first_filtration, torch.Tensor), f"Invalid grid type. Got {type(grid_conversion[0])}, expected numpy or torch array."
258
+ def empty_like(x, weights):
259
+ return torch.empty(x.shape,dtype=dtype), torch.from_numpy(weights).type(torch.int64)
260
+
261
+ pts = to_int(pts)
262
+ coords,weights = empty_like(pts,weights)
263
+ for i in range(coords.shape[1]):
264
+ if num_parameters > 0:
265
+ coords[:,i] = grid_conversion[i%num_parameters][pts[:,i]]
266
+ else:
267
+ coords[:,i] = grid_conversion[i][pts[:,i]]
268
+ return (coords, weights)
269
+
270
+ # TODO : optimize with memoryviews / typing
271
+ def sms_in_grid(sms, grid_conversion, int num_parameters=-1):
272
+ """Given a measure whose points are coordinates,
273
+ pushes this measure in this grid.
274
+ Input
275
+ -----
276
+ - sms: of the form (signed_measure_like for num_measures)
277
+ where signed_measure_like = tuple(array[int, ndim=2], array[int])
278
+ - grid_conversion of the form Iterable[array[float, ndim=1]]
279
+ """
280
+ sms = tuple(sm_in_grid(pts,weights,grid_conversion,num_parameters) for pts,weights in sms)
281
+ return sms
@@ -0,0 +1,46 @@
1
+ # cimport multipers.tensor as mt
2
+ from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t
3
+ from libcpp.vector cimport vector
4
+ from libcpp cimport bool, int, float
5
+ from libcpp.utility cimport pair
6
+ from typing import Optional,Iterable,Callable
7
+
8
+ def hilbert_signed_measure(simplextree, degrees, mass_default=None, plot=False, n_jobs=0, verbose=False):
9
+ """
10
+ Computes the signed measures given by the decomposition of the hilbert function.
11
+
12
+ Input
13
+ -----
14
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
15
+ - degrees:array-like of ints, the degrees to compute
16
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
17
+ - plot:bool, plots the computed measures if true.
18
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
19
+ - verbose:bool, prints c++ logs.
20
+
21
+ Output
22
+ ------
23
+ `[signed_measure_of_degree for degree in degrees]`
24
+ with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
25
+ """
26
+ pass
27
+
28
+
29
+ def hilbert_function(simplextree, degrees, zero_pad=False, plot=False, n_jobs=0):
30
+ """
31
+ Computes the hilbert function.
32
+
33
+ Input
34
+ -----
35
+ - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
36
+ - degrees:array-like of ints, the degrees to compute
37
+ - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
38
+ - plot:bool, plots the computed measures if true.
39
+ - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
40
+ - verbose:bool, prints c++ logs.
41
+
42
+ Output
43
+ ------
44
+ Integer array of the form `(num_degrees, num_filtration_values_of_parameter 1, ..., num_filtration_values_of_parameter n)`
45
+ """
46
+ pass