multipers 2.0.0__cp312-cp312-macosx_13_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/.dylibs/libc++.1.0.dylib +0 -0
- multipers/.dylibs/libtbb.12.12.dylib +0 -0
- multipers/.dylibs/libtbbmalloc.2.12.dylib +0 -0
- multipers/__init__.py +11 -0
- multipers/_signed_measure_meta.py +268 -0
- multipers/_slicer_meta.py +171 -0
- multipers/data/MOL2.py +350 -0
- multipers/data/UCR.py +18 -0
- multipers/data/__init__.py +1 -0
- multipers/data/graphs.py +466 -0
- multipers/data/immuno_regions.py +27 -0
- multipers/data/minimal_presentation_to_st_bf.py +0 -0
- multipers/data/pytorch2simplextree.py +91 -0
- multipers/data/shape3d.py +101 -0
- multipers/data/synthetic.py +68 -0
- multipers/distances.py +198 -0
- multipers/euler_characteristic.pyx +132 -0
- multipers/filtration_conversions.pxd +229 -0
- multipers/filtrations.pxd +225 -0
- multipers/function_rips.cpython-312-darwin.so +0 -0
- multipers/function_rips.pyx +105 -0
- multipers/grids.cpython-312-darwin.so +0 -0
- multipers/grids.pyx +281 -0
- multipers/hilbert_function.pyi +46 -0
- multipers/hilbert_function.pyx +153 -0
- multipers/io.cpython-312-darwin.so +0 -0
- multipers/io.pyx +571 -0
- multipers/ml/__init__.py +0 -0
- multipers/ml/accuracies.py +90 -0
- multipers/ml/convolutions.py +532 -0
- multipers/ml/invariants_with_persistable.py +79 -0
- multipers/ml/kernels.py +176 -0
- multipers/ml/mma.py +659 -0
- multipers/ml/one.py +472 -0
- multipers/ml/point_clouds.py +238 -0
- multipers/ml/signed_betti.py +50 -0
- multipers/ml/signed_measures.py +1542 -0
- multipers/ml/sliced_wasserstein.py +461 -0
- multipers/ml/tools.py +113 -0
- multipers/mma_structures.cpython-312-darwin.so +0 -0
- multipers/mma_structures.pxd +127 -0
- multipers/mma_structures.pyx +2433 -0
- multipers/multiparameter_edge_collapse.py +41 -0
- multipers/multiparameter_module_approximation.cpython-312-darwin.so +0 -0
- multipers/multiparameter_module_approximation.pyx +211 -0
- multipers/pickle.py +53 -0
- multipers/plots.py +326 -0
- multipers/point_measure_integration.cpython-312-darwin.so +0 -0
- multipers/point_measure_integration.pyx +139 -0
- multipers/rank_invariant.cpython-312-darwin.so +0 -0
- multipers/rank_invariant.pyx +229 -0
- multipers/simplex_tree_multi.cpython-312-darwin.so +0 -0
- multipers/simplex_tree_multi.pxd +129 -0
- multipers/simplex_tree_multi.pyi +715 -0
- multipers/simplex_tree_multi.pyx +4655 -0
- multipers/slicer.cpython-312-darwin.so +0 -0
- multipers/slicer.pxd +781 -0
- multipers/slicer.pyx +3393 -0
- multipers/tensor.pxd +13 -0
- multipers/test.pyx +44 -0
- multipers/tests/__init__.py +40 -0
- multipers/tests/old_test_rank_invariant.py +91 -0
- multipers/tests/test_diff_helper.py +74 -0
- multipers/tests/test_hilbert_function.py +82 -0
- multipers/tests/test_mma.py +51 -0
- multipers/tests/test_point_clouds.py +59 -0
- multipers/tests/test_python-cpp_conversion.py +82 -0
- multipers/tests/test_signed_betti.py +181 -0
- multipers/tests/test_simplextreemulti.py +98 -0
- multipers/tests/test_slicer.py +63 -0
- multipers/torch/__init__.py +1 -0
- multipers/torch/diff_grids.py +217 -0
- multipers/torch/rips_density.py +257 -0
- multipers-2.0.0.dist-info/LICENSE +21 -0
- multipers-2.0.0.dist-info/METADATA +29 -0
- multipers-2.0.0.dist-info/RECORD +78 -0
- multipers-2.0.0.dist-info/WHEEL +5 -0
- multipers-2.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,139 @@
|
|
|
1
|
+
# cimport multipers.tensor as mt
|
|
2
|
+
from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t, int64_t
|
|
3
|
+
from libcpp.vector cimport vector
|
|
4
|
+
from libcpp cimport bool, int, float
|
|
5
|
+
import numpy as np
|
|
6
|
+
cimport numpy as cnp
|
|
7
|
+
|
|
8
|
+
from collections import defaultdict
|
|
9
|
+
cnp.import_array()
|
|
10
|
+
from scipy import sparse
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
import multipers.grids as mpg
|
|
14
|
+
|
|
15
|
+
ctypedef fused some_int:
|
|
16
|
+
int32_t
|
|
17
|
+
int64_t
|
|
18
|
+
int
|
|
19
|
+
|
|
20
|
+
ctypedef fused some_float:
|
|
21
|
+
float
|
|
22
|
+
double
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
import cython
|
|
26
|
+
cimport cython
|
|
27
|
+
@cython.boundscheck(False)
|
|
28
|
+
@cython.wraparound(False)
|
|
29
|
+
def integrate_measure(
|
|
30
|
+
some_float[:,:] pts,
|
|
31
|
+
some_int[:] weights,
|
|
32
|
+
filtration_grid:Optional[list[np.ndarray]]=None,
|
|
33
|
+
grid_strategy:str="regular",
|
|
34
|
+
resolution:int|list[int]=100,
|
|
35
|
+
bool return_grid=False,
|
|
36
|
+
**get_fitration_kwargs,
|
|
37
|
+
):
|
|
38
|
+
"""
|
|
39
|
+
Integrate a point measure on a grid.
|
|
40
|
+
Measure is a sum of diracs, based on points `pts` and weights `weights`.
|
|
41
|
+
For instance, if the signed measure comes from the hilbert signed measure,
|
|
42
|
+
this integration will return the hilbert function on this grid.
|
|
43
|
+
- pts : array of points (num_pts, D)
|
|
44
|
+
- weights : array of weights (num_pts,)
|
|
45
|
+
- filtration_grid (optional) : list of 1d arrays
|
|
46
|
+
- resolution : int or list of int
|
|
47
|
+
- return_grid : return the grid of the measure
|
|
48
|
+
- **get_fitration_kwargs : arguments to compute the grid,
|
|
49
|
+
if the grid is not given.
|
|
50
|
+
"""
|
|
51
|
+
if filtration_grid is None:
|
|
52
|
+
import multipers.simplex_tree_multi
|
|
53
|
+
filtration_grid = mpg.compute_grid(
|
|
54
|
+
np.asarray(pts).T,
|
|
55
|
+
strategy=grid_strategy,
|
|
56
|
+
resolution=resolution,
|
|
57
|
+
**get_fitration_kwargs
|
|
58
|
+
)
|
|
59
|
+
resolution = np.asarray([len(f) for f in filtration_grid])
|
|
60
|
+
cdef int num_pts = pts.shape[0]
|
|
61
|
+
cdef int num_parameters = pts.shape[1]
|
|
62
|
+
assert weights.shape[0] == num_pts
|
|
63
|
+
out = np.zeros(shape=resolution, dtype=np.int32) ## dim cannot be known at compiletime
|
|
64
|
+
# cdef some_float[:] filtration_of_parameter
|
|
65
|
+
# cdef cnp.ndarray indices = np.zeros(shape=num_parameters, dtype=int)
|
|
66
|
+
#
|
|
67
|
+
pts_coords = np.empty((num_parameters, num_pts), dtype=np.int64)
|
|
68
|
+
for parameter in range(num_parameters):
|
|
69
|
+
pts_coords[parameter] = np.searchsorted(filtration_grid[parameter], pts[:,parameter])
|
|
70
|
+
for i in range(num_pts):
|
|
71
|
+
cone = tuple(slice(c,r) for r,c in zip(resolution,pts_coords[:,i]))
|
|
72
|
+
out[cone] += weights[i]
|
|
73
|
+
if return_grid:
|
|
74
|
+
return out,filtration_grid
|
|
75
|
+
return out
|
|
76
|
+
|
|
77
|
+
## for benchmark purposes
|
|
78
|
+
def integrate_measure_python(pts, weights, filtrations):
|
|
79
|
+
resolution = tuple([len(f) for f in filtrations])
|
|
80
|
+
out = np.zeros(shape=resolution, dtype=pts.dtype)
|
|
81
|
+
num_pts = pts.shape[0]
|
|
82
|
+
num_parameters = pts.shape[1]
|
|
83
|
+
for i in range(num_pts): #this is slow.
|
|
84
|
+
indices = (filtrations[parameter]>=pts[i][parameter] for parameter in range(num_parameters))
|
|
85
|
+
out[np.ix_(*indices)] += weights[i]
|
|
86
|
+
return out
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def sparsify(x):
|
|
90
|
+
"""
|
|
91
|
+
Given an arbitrary dimensional numpy array, returns (coordinates,data).
|
|
92
|
+
--
|
|
93
|
+
cost : scipy sparse + num_points*num_parameters^2 divisions
|
|
94
|
+
"""
|
|
95
|
+
num_parameters = x.ndim
|
|
96
|
+
sx = sparse.coo_array(x.ravel())
|
|
97
|
+
idx = sx.col
|
|
98
|
+
data = sx.data
|
|
99
|
+
coords = np.empty((data.shape[0], num_parameters), dtype=np.int64)
|
|
100
|
+
for parameter in range(num_parameters-1,-1,-1):
|
|
101
|
+
idx,coord_of_parameter = np.divmod(idx, x.shape[parameter])
|
|
102
|
+
coords[:, parameter] = coord_of_parameter
|
|
103
|
+
return coords,data
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
@cython.boundscheck(False)
|
|
109
|
+
@cython.wraparound(False)
|
|
110
|
+
def clean_signed_measure(some_float[:,:] pts, some_int[:] weights, dtype = np.float32):
|
|
111
|
+
"""
|
|
112
|
+
Sum the diracs at the same locations. i.e.,
|
|
113
|
+
returns the minimal sized measure to represent the input.
|
|
114
|
+
Mostly useful for, e.g., euler_characteristic from simplical complexes.
|
|
115
|
+
"""
|
|
116
|
+
cdef dict[tuple, int] out = {}
|
|
117
|
+
cdef int num_diracs
|
|
118
|
+
cdef int num_parameters
|
|
119
|
+
num_diracs, num_parameters = pts.shape[:2]
|
|
120
|
+
for i in range(num_diracs):
|
|
121
|
+
key = tuple(pts[i]) # size cannot be known at compiletime
|
|
122
|
+
out[tuple(pts[i])] = out.get(key,0)+ weights[i]
|
|
123
|
+
num_keys = len(out)
|
|
124
|
+
new_pts = np.fromiter(out.keys(), dtype=np.dtype((dtype,num_parameters)), count=num_keys)
|
|
125
|
+
new_weights = np.fromiter(out.values(), dtype=np.int32, count=num_keys)
|
|
126
|
+
idx = np.nonzero(new_weights)
|
|
127
|
+
new_pts = new_pts[idx]
|
|
128
|
+
new_weights = new_weights[idx]
|
|
129
|
+
return (new_pts, new_weights)
|
|
130
|
+
|
|
131
|
+
def clean_sms(sms):
|
|
132
|
+
"""
|
|
133
|
+
Sum the diracs at the same locations. i.e.,
|
|
134
|
+
returns the minimal sized measure to represent the input.
|
|
135
|
+
Mostly useful for, e.g., euler_characteristic from simplical complexes.
|
|
136
|
+
"""
|
|
137
|
+
return tuple(clean_signed_measure(pts,weights) for pts,weights in sms)
|
|
138
|
+
|
|
139
|
+
|
|
Binary file
|
|
@@ -0,0 +1,229 @@
|
|
|
1
|
+
# cimport multipers.tensor as mt
|
|
2
|
+
from libc.stdint cimport intptr_t, uint16_t, uint32_t, int32_t, int16_t, int8_t
|
|
3
|
+
from libcpp.vector cimport vector
|
|
4
|
+
from libcpp cimport bool, int, float
|
|
5
|
+
from libcpp.utility cimport pair
|
|
6
|
+
from typing import Optional,Iterable,Callable
|
|
7
|
+
from cython.operator import dereference
|
|
8
|
+
|
|
9
|
+
import numpy as np
|
|
10
|
+
cimport numpy as cnp
|
|
11
|
+
cnp.import_array()
|
|
12
|
+
|
|
13
|
+
ctypedef float value_type
|
|
14
|
+
python_value_type=np.float32
|
|
15
|
+
|
|
16
|
+
ctypedef int32_t indices_type # uint fails for some reason
|
|
17
|
+
python_indices_type=np.int32
|
|
18
|
+
|
|
19
|
+
ctypedef int32_t tensor_dtype # sizes should be less than 32k (int16), but int32 to be safe
|
|
20
|
+
python_tensor_dtype = np.int32
|
|
21
|
+
import multipers.grids as mpg
|
|
22
|
+
import multipers.slicer as mps
|
|
23
|
+
from multipers.slicer cimport *
|
|
24
|
+
|
|
25
|
+
# ctypedef pair[vector[vector[indices_type]], vector[tensor_dtype]] signed_measure_type
|
|
26
|
+
|
|
27
|
+
# cdef extern from "multi_parameter_rank_invariant/rank_invariant.h" namespace "Gudhi::multiparameter::rank_invariant":
|
|
28
|
+
# void compute_rank_invariant_python(const intptr_t, tensor_dtype* , const vector[indices_type], const vector[indices_type], indices_type, bool) except + nogil
|
|
29
|
+
|
|
30
|
+
# void compute_rank_invariant_python(GeneralNoVineTruc, tensor_dtype* , const vector[indices_type], const vector[indices_type], indices_type) except + nogil
|
|
31
|
+
# void compute_rank_invariant_python(GeneralVineTruc, tensor_dtype* , const vector[indices_type], const vector[indices_type], indices_type) except + nogil
|
|
32
|
+
# void compute_rank_invariant_python(SimplicialVineMatrixTruc, tensor_dtype* , const vector[indices_type], const vector[indices_type], indices_type) except + nogil
|
|
33
|
+
# void compute_rank_invariant_python(SimplicialVineGraphTruc, tensor_dtype* , const vector[indices_type], const vector[indices_type], indices_type) except + nogil
|
|
34
|
+
# void compute_rank_invariant_python(GeneralVineClementTruc, tensor_dtype* , const vector[indices_type], const vector[indices_type], indices_type) except + nogil
|
|
35
|
+
|
|
36
|
+
from multipers.ml.signed_betti import rank_decomposition_by_rectangles
|
|
37
|
+
from multipers.point_measure_integration import sparsify
|
|
38
|
+
|
|
39
|
+
# def rank_invariant(simplextree, vector[indices_type] degrees, mass_default=None, plot=False, indices_type n_jobs=0, bool verbose=False, bool expand_collapse=False):
|
|
40
|
+
# """
|
|
41
|
+
# Computes the signed measures given by the decomposition of the hilbert function.
|
|
42
|
+
#
|
|
43
|
+
# Input
|
|
44
|
+
# -----
|
|
45
|
+
# - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
|
|
46
|
+
# - degrees:array-like of ints, the degrees to compute
|
|
47
|
+
# - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
|
|
48
|
+
# - plot:bool, plots the computed measures if true.
|
|
49
|
+
# - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
|
|
50
|
+
# - verbose:bool, prints c++ logs.
|
|
51
|
+
#
|
|
52
|
+
# Output
|
|
53
|
+
# ------
|
|
54
|
+
# `[signed_measure_of_degree for degree in degrees]`
|
|
55
|
+
# with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
|
|
56
|
+
# """
|
|
57
|
+
# assert simplextree._is_squeezed, "Squeeze grid first."
|
|
58
|
+
# assert simplextree.dtype == np.int32
|
|
59
|
+
# cdef bool zero_pad = mass_default is not None
|
|
60
|
+
# grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid]
|
|
61
|
+
# # assert simplextree.num_parameters == 2
|
|
62
|
+
# grid_shape = np.array([len(f) for f in grid_conversion])
|
|
63
|
+
#
|
|
64
|
+
# if mass_default is None:
|
|
65
|
+
# mass_default = mass_default
|
|
66
|
+
# else:
|
|
67
|
+
# mass_default = np.asarray(mass_default)
|
|
68
|
+
# assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters
|
|
69
|
+
# if zero_pad:
|
|
70
|
+
# for i, _ in enumerate(grid_shape):
|
|
71
|
+
# grid_shape[i] += 1 # adds a 0
|
|
72
|
+
# for i,f in enumerate(grid_conversion):
|
|
73
|
+
# grid_conversion[i] = np.concatenate([f, [mass_default[i]]])
|
|
74
|
+
#
|
|
75
|
+
# assert len(grid_shape) == simplextree.num_parameters, "Grid shape size has to be the number of parameters."
|
|
76
|
+
# grid_shape_with_degree = np.asarray(np.concatenate([[len(degrees)], grid_shape, grid_shape]), dtype=python_indices_type)
|
|
77
|
+
# container_array = np.ascontiguousarray(np.zeros(grid_shape_with_degree, dtype=python_tensor_dtype).flatten())
|
|
78
|
+
# assert len(container_array) < np.iinfo(python_indices_type).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
|
|
79
|
+
# cdef intptr_t simplextree_ptr = simplextree.thisptr
|
|
80
|
+
# cdef vector[indices_type] c_grid_shape = grid_shape_with_degree
|
|
81
|
+
# cdef tensor_dtype[::1] container = container_array
|
|
82
|
+
# cdef tensor_dtype* container_ptr = &container[0]
|
|
83
|
+
# with nogil:
|
|
84
|
+
# compute_rank_invariant_python(simplextree_ptr, container_ptr,c_grid_shape,degrees, n_jobs, expand_collapse)
|
|
85
|
+
# container_array = container_array.reshape(grid_shape_with_degree)
|
|
86
|
+
# if plot:
|
|
87
|
+
# from multipers.plots import plot_surfaces
|
|
88
|
+
# plot_surfaces((grid_conversion, container_array))
|
|
89
|
+
# return (grid_conversion, container_array)
|
|
90
|
+
#
|
|
91
|
+
#
|
|
92
|
+
# def signed_measure(simplextree, vector[indices_type] degrees, mass_default=None, plot=False, indices_type n_jobs=0, bool verbose=False, bool expand_collapse=False):
|
|
93
|
+
# """
|
|
94
|
+
# Computes the signed measures given by the decomposition of the hilbert function.
|
|
95
|
+
#
|
|
96
|
+
# Input
|
|
97
|
+
# -----
|
|
98
|
+
# - simplextree:SimplexTreeMulti, the multifiltered simplicial complex
|
|
99
|
+
# - degrees:array-like of ints, the degrees to compute
|
|
100
|
+
# - mass_default: Either None, or 'auto' or 'inf', or array-like of floats. Where to put the default mass to get a zero-mass measure.
|
|
101
|
+
# - plot:bool, plots the computed measures if true.
|
|
102
|
+
# - n_jobs:int, number of jobs. Defaults to #cpu, but when doing parallel computations of signed measures, we recommend setting this to 1.
|
|
103
|
+
# - verbose:bool, prints c++ logs.
|
|
104
|
+
#
|
|
105
|
+
# Output
|
|
106
|
+
# ------
|
|
107
|
+
# `[signed_measure_of_degree for degree in degrees]`
|
|
108
|
+
# with `signed_measure_of_degree` of the form `(dirac location, dirac weights)`.
|
|
109
|
+
# """
|
|
110
|
+
# assert simplextree._is_squeezed, "Squeeze grid first."
|
|
111
|
+
# cdef bool zero_pad = mass_default is not None
|
|
112
|
+
# grid_conversion = [np.asarray(f) for f in simplextree.filtration_grid]
|
|
113
|
+
# # assert simplextree.num_parameters == 2
|
|
114
|
+
# grid_shape = np.array([len(f) for f in grid_conversion])
|
|
115
|
+
#
|
|
116
|
+
# if mass_default is None:
|
|
117
|
+
# mass_default = mass_default
|
|
118
|
+
# else:
|
|
119
|
+
# mass_default = np.asarray(mass_default)
|
|
120
|
+
# assert mass_default.ndim == 1 and mass_default.shape[0] == simplextree.num_parameters, "Mass default has to be an array like of shape (num_parameters,)"
|
|
121
|
+
# if zero_pad:
|
|
122
|
+
# for i, _ in enumerate(grid_shape):
|
|
123
|
+
# grid_shape[i] += 1 # adds a 0
|
|
124
|
+
# for i,f in enumerate(grid_conversion):
|
|
125
|
+
# grid_conversion[i] = np.concatenate([f, [mass_default[i]]])
|
|
126
|
+
#
|
|
127
|
+
# assert len(grid_shape) == simplextree.num_parameters, "Grid shape size has to be the number of parameters."
|
|
128
|
+
# grid_shape_with_degree = np.asarray(np.concatenate([[len(degrees)], grid_shape, grid_shape]), dtype=python_indices_type)
|
|
129
|
+
# container_array = np.ascontiguousarray(np.zeros(grid_shape_with_degree, dtype=python_tensor_dtype).flatten())
|
|
130
|
+
# assert len(container_array) < np.iinfo(python_indices_type).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
|
|
131
|
+
# cdef intptr_t simplextree_ptr = simplextree.thisptr
|
|
132
|
+
# cdef vector[indices_type] c_grid_shape = grid_shape_with_degree
|
|
133
|
+
# cdef tensor_dtype[::1] container = container_array
|
|
134
|
+
# cdef tensor_dtype* container_ptr = &container[0]
|
|
135
|
+
# with nogil:
|
|
136
|
+
# compute_rank_invariant_python(simplextree_ptr, container_ptr,c_grid_shape,degrees, n_jobs, expand_collapse)
|
|
137
|
+
# rank = container_array.reshape(grid_shape_with_degree)
|
|
138
|
+
# rank = tuple(rank_decomposition_by_rectangles(rank_of_degree) for rank_of_degree in rank)
|
|
139
|
+
# out = []
|
|
140
|
+
# cdef int num_parameters = simplextree.num_parameters
|
|
141
|
+
# for rank_decomposition in rank:
|
|
142
|
+
# (coords, weights) = sparsify(np.ascontiguousarray(rank_decomposition))
|
|
143
|
+
# births = coords[:,:num_parameters]
|
|
144
|
+
# deaths = coords[:,num_parameters:]
|
|
145
|
+
# correct_indices = np.all(births<=deaths, axis=1) # TODO : correct this
|
|
146
|
+
# coords = coords[correct_indices]
|
|
147
|
+
# weights = weights[correct_indices]
|
|
148
|
+
# if len(correct_indices) == 0:
|
|
149
|
+
# pts, weights = np.empty((0, 2*num_parameters)), np.empty((0))
|
|
150
|
+
# else:
|
|
151
|
+
# pts = np.empty(shape=coords.shape, dtype=grid_conversion[0].dtype)
|
|
152
|
+
# for i in range(pts.shape[1]):
|
|
153
|
+
# pts[:,i] = grid_conversion[i % num_parameters][coords[:,i]]
|
|
154
|
+
# rank_decomposition = (pts,weights)
|
|
155
|
+
# out.append(rank_decomposition)
|
|
156
|
+
#
|
|
157
|
+
# if plot:
|
|
158
|
+
# from multipers.plots import plot_signed_measures
|
|
159
|
+
# plot_signed_measures(out)
|
|
160
|
+
# return out
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
## TODO : It is not necessary to do the Möbius inversion in python.
|
|
165
|
+
## fill rank in flipped death, then differentiate in cpp, then reflip with numpy.
|
|
166
|
+
def rank_from_slicer(
|
|
167
|
+
slicer,
|
|
168
|
+
vector[indices_type] degrees,
|
|
169
|
+
bool verbose=False,
|
|
170
|
+
indices_type n_jobs=1,
|
|
171
|
+
mass_default = None,
|
|
172
|
+
grid_shape=None,
|
|
173
|
+
grid_conversion=None,
|
|
174
|
+
bool plot=False,
|
|
175
|
+
bool return_raw=False,
|
|
176
|
+
):
|
|
177
|
+
# cdef intptr_t slicer_ptr = <intptr_t>(slicer.get_ptr())
|
|
178
|
+
if grid_shape is None:
|
|
179
|
+
grid_shape = (slicer.compute_box()[1]).astype(python_indices_type)
|
|
180
|
+
cdef int num_parameters = len(grid_shape)
|
|
181
|
+
cdef bool zero_pad = mass_default is not None
|
|
182
|
+
|
|
183
|
+
if mass_default is None:
|
|
184
|
+
mass_default = mass_default
|
|
185
|
+
else:
|
|
186
|
+
mass_default = np.asarray(mass_default)
|
|
187
|
+
assert mass_default.ndim == 1 and mass_default.shape[0] == num_parameters, "Mass default has to be an array like of shape (num_parameters,)"
|
|
188
|
+
if zero_pad:
|
|
189
|
+
for i, _ in enumerate(grid_shape):
|
|
190
|
+
grid_shape[i] += 1 # adds a 0
|
|
191
|
+
for i,f in enumerate(grid_conversion):
|
|
192
|
+
grid_conversion[i] = np.concatenate([f, [mass_default[i]]])
|
|
193
|
+
|
|
194
|
+
grid_shape_with_degree = np.asarray(np.concatenate([[len(degrees)], grid_shape, grid_shape]), dtype=python_indices_type)
|
|
195
|
+
container_array = np.ascontiguousarray(np.zeros(grid_shape_with_degree, dtype=python_tensor_dtype).flatten())
|
|
196
|
+
assert len(container_array) < np.iinfo(python_indices_type).max, "Too large container. Raise an issue on github if you encounter this issue. (Due to tensor's operator[])"
|
|
197
|
+
cdef vector[indices_type] c_grid_shape = grid_shape_with_degree
|
|
198
|
+
cdef tensor_dtype[::1] container = container_array
|
|
199
|
+
cdef tensor_dtype* container_ptr = &container[0]
|
|
200
|
+
|
|
201
|
+
## SLICERS
|
|
202
|
+
_compute_rank_invariant(slicer, container_ptr, c_grid_shape, degrees, n_jobs)
|
|
203
|
+
|
|
204
|
+
rank = container_array.reshape(grid_shape_with_degree)
|
|
205
|
+
rank = tuple(rank_decomposition_by_rectangles(rank_of_degree) for rank_of_degree in rank)
|
|
206
|
+
if return_raw:
|
|
207
|
+
return rank
|
|
208
|
+
out = []
|
|
209
|
+
def clean_rank(rank_decomposition):
|
|
210
|
+
(coords, weights) = sparsify(np.ascontiguousarray(rank_decomposition))
|
|
211
|
+
births = coords[:,:num_parameters]
|
|
212
|
+
deaths = coords[:,num_parameters:]
|
|
213
|
+
correct_indices = np.all(births<=deaths, axis=1)
|
|
214
|
+
coords = coords[correct_indices]
|
|
215
|
+
weights = weights[correct_indices]
|
|
216
|
+
return coords, weights
|
|
217
|
+
|
|
218
|
+
out = mpg.sms_in_grid(tuple(clean_rank(rank_decomposition) for rank_decomposition in rank), grid_conversion, num_parameters=num_parameters)
|
|
219
|
+
|
|
220
|
+
if plot:
|
|
221
|
+
from multipers.plots import plot_signed_measures
|
|
222
|
+
plot_signed_measures(out)
|
|
223
|
+
return out
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
|
|
Binary file
|
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
# This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is released under MIT.
|
|
2
|
+
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license details.
|
|
3
|
+
# Author(s): Vincent Rouvreau
|
|
4
|
+
#
|
|
5
|
+
# Copyright (C) 2016 Inria
|
|
6
|
+
#
|
|
7
|
+
# Modification(s):
|
|
8
|
+
# - 2022 David Loiseaux, Hannah Schreiber: adapt for multipersistence.
|
|
9
|
+
# - YYYY/MM Author: Description of the modification
|
|
10
|
+
|
|
11
|
+
from cython cimport numeric
|
|
12
|
+
from libcpp.vector cimport vector
|
|
13
|
+
from libcpp.utility cimport pair
|
|
14
|
+
from libcpp cimport bool
|
|
15
|
+
from libcpp.string cimport string
|
|
16
|
+
from libcpp.map cimport map
|
|
17
|
+
|
|
18
|
+
from libc.stdint cimport intptr_t, int32_t
|
|
19
|
+
|
|
20
|
+
__author__ = "Vincent Rouvreau"
|
|
21
|
+
__copyright__ = "Copyright (C) 2016 Inria"
|
|
22
|
+
__license__ = "MIT"
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
from multipers.filtrations cimport *
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
ctypedef int dimension_type
|
|
29
|
+
ctypedef vector[int] simplex_type
|
|
30
|
+
ctypedef vector[simplex_type] simplex_list
|
|
31
|
+
ctypedef vector[pair[pair[int,int], pair[double, double]]] edge_list
|
|
32
|
+
ctypedef vector[int] euler_char_list
|
|
33
|
+
|
|
34
|
+
ctypedef vector[unsigned int] boundary_type
|
|
35
|
+
ctypedef vector[boundary_type] boundary_matrix
|
|
36
|
+
|
|
37
|
+
cdef extern from "Simplex_tree_multi_interface.h" namespace "Gudhi::multiparameter::python_interface":
|
|
38
|
+
|
|
39
|
+
cdef cppclass Simplex_tree_multi_simplex_handle[F=*]:
|
|
40
|
+
pass
|
|
41
|
+
|
|
42
|
+
cdef cppclass Simplex_tree_multi_simplices_iterator[F=*]:
|
|
43
|
+
Simplex_tree_multi_simplices_iterator() nogil
|
|
44
|
+
Simplex_tree_multi_simplex_handle& operator*() nogil
|
|
45
|
+
Simplex_tree_multi_simplices_iterator operator++() nogil
|
|
46
|
+
bint operator!=(Simplex_tree_multi_simplices_iterator) nogil
|
|
47
|
+
|
|
48
|
+
cdef cppclass Simplex_tree_multi_skeleton_iterator[F=*]:
|
|
49
|
+
Simplex_tree_multi_skeleton_iterator() nogil
|
|
50
|
+
Simplex_tree_multi_simplex_handle& operator*() nogil
|
|
51
|
+
Simplex_tree_multi_skeleton_iterator operator++() nogil
|
|
52
|
+
bint operator!=(Simplex_tree_multi_skeleton_iterator) nogil
|
|
53
|
+
|
|
54
|
+
cdef cppclass Simplex_tree_multi_boundary_iterator[F=*]:
|
|
55
|
+
Simplex_tree_multi_boundary_iterator() nogil
|
|
56
|
+
Simplex_tree_multi_simplex_handle& operator*() nogil
|
|
57
|
+
Simplex_tree_multi_boundary_iterator operator++() nogil
|
|
58
|
+
bint operator!=(Simplex_tree_multi_boundary_iterator) nogil
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
cdef cppclass Simplex_tree_multi_interface[F=*, value_type=*]:
|
|
62
|
+
ctypedef pair[simplex_type, F*] simplex_filtration_type
|
|
63
|
+
Simplex_tree_multi_interface() nogil
|
|
64
|
+
Simplex_tree_multi_interface(Simplex_tree_multi_interface&) nogil
|
|
65
|
+
F* simplex_filtration(const vector[int]& simplex) nogil
|
|
66
|
+
void assign_simplex_filtration(vector[int]& simplex, const F& filtration) noexcept nogil
|
|
67
|
+
void initialize_filtration() nogil
|
|
68
|
+
int num_vertices() nogil
|
|
69
|
+
int num_simplices() nogil
|
|
70
|
+
void set_dimension(int dimension) nogil
|
|
71
|
+
dimension_type dimension() nogil
|
|
72
|
+
dimension_type upper_bound_dimension() nogil
|
|
73
|
+
bool find_simplex(vector[int]& simplex) nogil
|
|
74
|
+
bool insert(vector[int]& simplex, F& filtration) noexcept nogil
|
|
75
|
+
# vector[simplex_filtration_type] get_star(const vector[int]& simplex) nogil
|
|
76
|
+
# vector[simplex_filtration_type] get_cofaces(const vector[int]& simplex, int dimension) nogil
|
|
77
|
+
void expansion(int max_dim) except + nogil
|
|
78
|
+
void remove_maximal_simplex(simplex_type simplex) nogil
|
|
79
|
+
# bool prune_above_filtration(filtration_type filtration) nogil
|
|
80
|
+
bool prune_above_dimension(int dimension) nogil
|
|
81
|
+
bool make_filtration_non_decreasing() except + nogil
|
|
82
|
+
# void compute_extended_filtration() nogil
|
|
83
|
+
# Simplex_tree_multi_interface* collapse_edges(int nb_collapse_iteration) except + nogil
|
|
84
|
+
void reset_filtration(const F& filtration, int dimension) nogil
|
|
85
|
+
bint operator==(Simplex_tree_multi_interface) nogil
|
|
86
|
+
# Iterators over Simplex tree
|
|
87
|
+
pair[simplex_type,F*] get_simplex_and_filtration(Simplex_tree_multi_simplex_handle f_simplex) nogil
|
|
88
|
+
Simplex_tree_multi_simplices_iterator[F] get_simplices_iterator_begin() nogil
|
|
89
|
+
Simplex_tree_multi_simplices_iterator[F] get_simplices_iterator_end() nogil
|
|
90
|
+
vector[Simplex_tree_multi_simplex_handle[F]].const_iterator get_filtration_iterator_begin() nogil
|
|
91
|
+
vector[Simplex_tree_multi_simplex_handle[F]].const_iterator get_filtration_iterator_end() nogil
|
|
92
|
+
Simplex_tree_multi_skeleton_iterator get_skeleton_iterator_begin(int dimension) nogil
|
|
93
|
+
Simplex_tree_multi_skeleton_iterator get_skeleton_iterator_end(int dimension) nogil
|
|
94
|
+
pair[Simplex_tree_multi_boundary_iterator, Simplex_tree_multi_boundary_iterator] get_boundary_iterators(vector[int] simplex) except + nogil
|
|
95
|
+
# Expansion with blockers
|
|
96
|
+
ctypedef bool (*blocker_func_t)(vector[int], void *user_data)
|
|
97
|
+
void expansion_with_blockers_callback(int dimension, blocker_func_t user_func, void *user_data)
|
|
98
|
+
|
|
99
|
+
## MULTIPERS STUFF
|
|
100
|
+
void set_keys_to_enumerate() nogil const
|
|
101
|
+
int get_key(const simplex_type) nogil
|
|
102
|
+
void set_key(simplex_type, int) nogil
|
|
103
|
+
void fill_lowerstar(const F&, int) nogil
|
|
104
|
+
simplex_list get_simplices_of_dimension(int) nogil
|
|
105
|
+
edge_list get_edge_list() nogil
|
|
106
|
+
# euler_char_list euler_char(const vector[filtration_type]&) nogil
|
|
107
|
+
void resize_all_filtrations(int) nogil
|
|
108
|
+
void set_number_of_parameters(int) nogil
|
|
109
|
+
int get_number_of_parameters() nogil
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
void from_std(intptr_t,int, F&) nogil
|
|
113
|
+
void to_std(intptr_t, Line[double],int ) nogil
|
|
114
|
+
void to_std_linear_projection(intptr_t, vector[double]) nogil
|
|
115
|
+
void squeeze_filtration_inplace(vector[vector[double]] &, bool) nogil
|
|
116
|
+
void squeeze_filtration(intptr_t, vector[vector[double]] &) nogil
|
|
117
|
+
vector[vector[vector[value_type]]] get_filtration_values(const vector[int]&) nogil
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
pair[boundary_matrix, vector[Finitely_critical_multi_filtration[value_type]]] simplextree_to_boundary_filtration()
|
|
121
|
+
vector[pair[ vector[vector[value_type]],boundary_matrix]] simplextree_to_scc()
|
|
122
|
+
vector[pair[ vector[vector[vector[value_type]]],boundary_matrix]] kcritical_simplextree_to_scc()
|
|
123
|
+
|
|
124
|
+
vector[pair[ vector[vector[vector[value_type]]],boundary_matrix]] function_simplextree_to_scc()
|
|
125
|
+
pair[vector[vector[value_type]],boundary_matrix ] simplextree_to_ordered_bf()
|
|
126
|
+
# vector[map[value_type,int32_t]] build_idx_map(const vector[int]&) nogil
|
|
127
|
+
# pair[vector[vector[int32_t]],vector[vector[int32_t]]] get_pts_indices(const vector[map[value_type,int32_t]]&, const vector[vector[value_type]]&) nogil
|
|
128
|
+
pair[vector[vector[int32_t]],vector[vector[int32_t]]] pts_to_indices(vector[vector[value_type]]&, vector[int]&) nogil
|
|
129
|
+
|