mteb 2.6.4__py3-none-any.whl → 2.6.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (142) hide show
  1. mteb/abstasks/classification.py +2 -3
  2. mteb/abstasks/multilabel_classification.py +3 -3
  3. mteb/abstasks/regression.py +1 -1
  4. mteb/abstasks/retrieval.py +1 -1
  5. mteb/abstasks/task_metadata.py +9 -14
  6. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  7. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  8. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  9. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  10. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  11. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  12. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  13. mteb/models/model_implementations/align_models.py +1 -1
  14. mteb/models/model_implementations/andersborges.py +2 -2
  15. mteb/models/model_implementations/ara_models.py +1 -1
  16. mteb/models/model_implementations/arctic_models.py +8 -8
  17. mteb/models/model_implementations/b1ade_models.py +1 -1
  18. mteb/models/model_implementations/bge_models.py +45 -21
  19. mteb/models/model_implementations/bica_model.py +3 -3
  20. mteb/models/model_implementations/blip2_models.py +2 -2
  21. mteb/models/model_implementations/blip_models.py +8 -8
  22. mteb/models/model_implementations/bmretriever_models.py +4 -4
  23. mteb/models/model_implementations/cadet_models.py +1 -1
  24. mteb/models/model_implementations/cde_models.py +2 -2
  25. mteb/models/model_implementations/clip_models.py +3 -3
  26. mteb/models/model_implementations/clips_models.py +3 -3
  27. mteb/models/model_implementations/codefuse_models.py +5 -5
  28. mteb/models/model_implementations/codesage_models.py +3 -3
  29. mteb/models/model_implementations/cohere_models.py +4 -4
  30. mteb/models/model_implementations/colpali_models.py +3 -3
  31. mteb/models/model_implementations/colqwen_models.py +8 -8
  32. mteb/models/model_implementations/colsmol_models.py +2 -2
  33. mteb/models/model_implementations/conan_models.py +1 -1
  34. mteb/models/model_implementations/dino_models.py +19 -19
  35. mteb/models/model_implementations/e5_instruct.py +23 -4
  36. mteb/models/model_implementations/e5_models.py +9 -9
  37. mteb/models/model_implementations/e5_v.py +1 -1
  38. mteb/models/model_implementations/eagerworks_models.py +1 -1
  39. mteb/models/model_implementations/emillykkejensen_models.py +3 -3
  40. mteb/models/model_implementations/en_code_retriever.py +1 -1
  41. mteb/models/model_implementations/euler_models.py +2 -2
  42. mteb/models/model_implementations/fa_models.py +9 -9
  43. mteb/models/model_implementations/facebookai.py +14 -2
  44. mteb/models/model_implementations/geogpt_models.py +1 -1
  45. mteb/models/model_implementations/gme_v_models.py +2 -2
  46. mteb/models/model_implementations/google_models.py +1 -1
  47. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  48. mteb/models/model_implementations/gritlm_models.py +2 -2
  49. mteb/models/model_implementations/gte_models.py +25 -13
  50. mteb/models/model_implementations/hinvec_models.py +1 -1
  51. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  52. mteb/models/model_implementations/inf_models.py +2 -2
  53. mteb/models/model_implementations/jasper_models.py +2 -2
  54. mteb/models/model_implementations/jina_clip.py +1 -1
  55. mteb/models/model_implementations/jina_models.py +11 -5
  56. mteb/models/model_implementations/kblab.py +12 -6
  57. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
  58. mteb/models/model_implementations/kfst.py +1 -1
  59. mteb/models/model_implementations/kowshik24_models.py +1 -1
  60. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  61. mteb/models/model_implementations/linq_models.py +1 -1
  62. mteb/models/model_implementations/listconranker.py +1 -1
  63. mteb/models/model_implementations/llm2clip_models.py +3 -3
  64. mteb/models/model_implementations/llm2vec_models.py +8 -8
  65. mteb/models/model_implementations/mdbr_models.py +14 -2
  66. mteb/models/model_implementations/misc_models.py +68 -68
  67. mteb/models/model_implementations/mme5_models.py +1 -1
  68. mteb/models/model_implementations/moco_models.py +2 -2
  69. mteb/models/model_implementations/mod_models.py +1 -1
  70. mteb/models/model_implementations/model2vec_models.py +13 -13
  71. mteb/models/model_implementations/moka_models.py +1 -1
  72. mteb/models/model_implementations/mxbai_models.py +16 -3
  73. mteb/models/model_implementations/nbailab.py +3 -3
  74. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
  75. mteb/models/model_implementations/nomic_models.py +18 -6
  76. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  77. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
  78. mteb/models/model_implementations/nvidia_models.py +3 -3
  79. mteb/models/model_implementations/octen_models.py +3 -3
  80. mteb/models/model_implementations/openclip_models.py +6 -6
  81. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  82. mteb/models/model_implementations/ops_moa_models.py +1 -1
  83. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  84. mteb/models/model_implementations/pawan_models.py +1 -1
  85. mteb/models/model_implementations/piccolo_models.py +1 -1
  86. mteb/models/model_implementations/promptriever_models.py +4 -4
  87. mteb/models/model_implementations/pylate_models.py +5 -5
  88. mteb/models/model_implementations/qodo_models.py +2 -2
  89. mteb/models/model_implementations/qtack_models.py +1 -1
  90. mteb/models/model_implementations/qwen3_models.py +3 -3
  91. mteb/models/model_implementations/qzhou_models.py +2 -2
  92. mteb/models/model_implementations/rasgaard_models.py +1 -1
  93. mteb/models/model_implementations/reasonir_model.py +1 -1
  94. mteb/models/model_implementations/repllama_models.py +1 -1
  95. mteb/models/model_implementations/rerankers_custom.py +9 -3
  96. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  97. mteb/models/model_implementations/richinfoai_models.py +1 -1
  98. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  99. mteb/models/model_implementations/ruri_models.py +10 -10
  100. mteb/models/model_implementations/salesforce_models.py +3 -3
  101. mteb/models/model_implementations/samilpwc_models.py +1 -1
  102. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  103. mteb/models/model_implementations/searchmap_models.py +1 -1
  104. mteb/models/model_implementations/sentence_transformers_models.py +58 -22
  105. mteb/models/model_implementations/shuu_model.py +1 -1
  106. mteb/models/model_implementations/siglip_models.py +10 -10
  107. mteb/models/model_implementations/slm_models.py +416 -0
  108. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  109. mteb/models/model_implementations/stella_models.py +17 -4
  110. mteb/models/model_implementations/tarka_models.py +2 -2
  111. mteb/models/model_implementations/text2vec_models.py +9 -3
  112. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  113. mteb/models/model_implementations/uae_models.py +7 -1
  114. mteb/models/model_implementations/vdr_models.py +1 -1
  115. mteb/models/model_implementations/vi_vn_models.py +6 -6
  116. mteb/models/model_implementations/vlm2vec_models.py +2 -2
  117. mteb/models/model_implementations/youtu_models.py +1 -1
  118. mteb/models/model_implementations/yuan_models.py +1 -1
  119. mteb/models/model_implementations/yuan_models_en.py +1 -1
  120. mteb/models/model_meta.py +46 -17
  121. mteb/results/benchmark_results.py +2 -2
  122. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  123. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  124. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  125. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  126. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  127. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  128. mteb/tasks/retrieval/vie/__init__.py +14 -6
  129. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
  130. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
  131. mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
  132. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
  133. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
  134. mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
  135. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  136. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  137. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/METADATA +3 -3
  138. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/RECORD +142 -133
  139. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/WHEEL +0 -0
  140. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/entry_points.txt +0 -0
  141. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/licenses/LICENSE +0 -0
  142. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/top_level.txt +0 -0
@@ -25,7 +25,7 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
25
25
  open_weights=True,
26
26
  public_training_code=None,
27
27
  public_training_data=None,
28
- framework=["PyTorch"],
28
+ framework=["PyTorch", "Transformers", "safetensors"],
29
29
  reference="https://huggingface.co/Haon-Chen/speed-embedding-7b-instruct",
30
30
  similarity_fn_name=ScoringFunction.COSINE,
31
31
  use_instructions=None,
@@ -54,7 +54,7 @@ Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
54
54
  open_weights=True,
55
55
  public_training_code=None,
56
56
  public_training_data=None,
57
- framework=["PyTorch", "Sentence Transformers"],
57
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
58
58
  reference="https://huggingface.co/Gameselo/STS-multilingual-mpnet-base-v2",
59
59
  similarity_fn_name=ScoringFunction.COSINE,
60
60
  use_instructions=None,
@@ -155,7 +155,7 @@ Hum_Works__lodestone_base_4096_v1 = ModelMeta(
155
155
  open_weights=True,
156
156
  public_training_code=None,
157
157
  public_training_data=None,
158
- framework=["PyTorch"],
158
+ framework=["PyTorch", "Sentence Transformers"],
159
159
  reference="https://huggingface.co/Hum-Works/lodestone-base-4096-v1",
160
160
  similarity_fn_name=ScoringFunction.COSINE,
161
161
  use_instructions=None,
@@ -222,7 +222,7 @@ Jaume__gemma_2b_embeddings = ModelMeta(
222
222
  open_weights=True,
223
223
  public_training_code=None,
224
224
  public_training_data=None,
225
- framework=["PyTorch", "Sentence Transformers"],
225
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
226
226
  reference="https://huggingface.co/Jaume/gemma-2b-embeddings",
227
227
  similarity_fn_name=ScoringFunction.COSINE,
228
228
  use_instructions=None,
@@ -257,7 +257,7 @@ Lajavaness__bilingual_embedding_base = ModelMeta(
257
257
  open_weights=True,
258
258
  public_training_code=None,
259
259
  public_training_data=None,
260
- framework=["PyTorch", "Sentence Transformers"],
260
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
261
261
  reference="https://huggingface.co/Lajavaness/bilingual-embedding-base",
262
262
  similarity_fn_name=ScoringFunction.COSINE,
263
263
  use_instructions=None,
@@ -306,7 +306,7 @@ Lajavaness__bilingual_embedding_large = ModelMeta(
306
306
  open_weights=True,
307
307
  public_training_code=None,
308
308
  public_training_data=None,
309
- framework=["PyTorch", "Sentence Transformers"],
309
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
310
310
  reference="https://huggingface.co/Lajavaness/bilingual-embedding-large",
311
311
  similarity_fn_name=ScoringFunction.COSINE,
312
312
  use_instructions=None,
@@ -355,7 +355,7 @@ Lajavaness__bilingual_embedding_small = ModelMeta(
355
355
  open_weights=True,
356
356
  public_training_code=None,
357
357
  public_training_data=None,
358
- framework=["PyTorch", "Sentence Transformers"],
358
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
359
359
  reference="https://huggingface.co/Lajavaness/bilingual-embedding-small",
360
360
  similarity_fn_name=ScoringFunction.COSINE,
361
361
  use_instructions=None,
@@ -401,7 +401,7 @@ Mihaiii__Bulbasaur = ModelMeta(
401
401
  open_weights=True,
402
402
  public_training_code=None,
403
403
  public_training_data=None,
404
- framework=["PyTorch", "Sentence Transformers"],
404
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
405
405
  reference="https://huggingface.co/Mihaiii/Bulbasaur",
406
406
  similarity_fn_name=ScoringFunction.COSINE,
407
407
  use_instructions=None,
@@ -425,7 +425,7 @@ Mihaiii__Ivysaur = ModelMeta(
425
425
  open_weights=True,
426
426
  public_training_code=None,
427
427
  public_training_data=None,
428
- framework=["PyTorch", "Sentence Transformers"],
428
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
429
429
  reference="https://huggingface.co/Mihaiii/Ivysaur",
430
430
  similarity_fn_name=ScoringFunction.COSINE,
431
431
  use_instructions=None,
@@ -449,7 +449,7 @@ Mihaiii__Squirtle = ModelMeta(
449
449
  open_weights=True,
450
450
  public_training_code=None,
451
451
  public_training_data=None,
452
- framework=["PyTorch", "Sentence Transformers"],
452
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
453
453
  reference="https://huggingface.co/Mihaiii/Squirtle",
454
454
  similarity_fn_name=ScoringFunction.COSINE,
455
455
  use_instructions=None,
@@ -473,7 +473,7 @@ Mihaiii__Venusaur = ModelMeta(
473
473
  open_weights=True,
474
474
  public_training_code=None,
475
475
  public_training_data=None,
476
- framework=["PyTorch", "Sentence Transformers"],
476
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
477
477
  reference="https://huggingface.co/Mihaiii/Venusaur",
478
478
  similarity_fn_name=ScoringFunction.COSINE,
479
479
  use_instructions=None,
@@ -497,7 +497,7 @@ Mihaiii__Wartortle = ModelMeta(
497
497
  open_weights=True,
498
498
  public_training_code=None,
499
499
  public_training_data=None,
500
- framework=["PyTorch", "Sentence Transformers"],
500
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
501
501
  reference="https://huggingface.co/Mihaiii/Wartortle",
502
502
  similarity_fn_name=ScoringFunction.COSINE,
503
503
  use_instructions=None,
@@ -521,7 +521,7 @@ Mihaiii__gte_micro = ModelMeta(
521
521
  open_weights=True,
522
522
  public_training_code=None,
523
523
  public_training_data=None,
524
- framework=["PyTorch", "Sentence Transformers"],
524
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
525
525
  reference="https://huggingface.co/Mihaiii/gte-micro",
526
526
  similarity_fn_name=ScoringFunction.COSINE,
527
527
  use_instructions=None,
@@ -544,7 +544,7 @@ Mihaiii__gte_micro_v4 = ModelMeta(
544
544
  open_weights=True,
545
545
  public_training_code=None,
546
546
  public_training_data=None,
547
- framework=["PyTorch", "Sentence Transformers"],
547
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
548
548
  reference="https://huggingface.co/Mihaiii/gte-micro-v4",
549
549
  similarity_fn_name=ScoringFunction.COSINE,
550
550
  use_instructions=None,
@@ -567,7 +567,7 @@ OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
567
567
  open_weights=True,
568
568
  public_training_code=None,
569
569
  public_training_data=None,
570
- framework=["PyTorch"],
570
+ framework=["PyTorch", "Transformers", "safetensors"],
571
571
  reference="https://huggingface.co/OrdalieTech/Solon-embeddings-large-0.1",
572
572
  similarity_fn_name=ScoringFunction.COSINE,
573
573
  use_instructions=None,
@@ -590,7 +590,7 @@ Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
590
590
  open_weights=True,
591
591
  public_training_code=None,
592
592
  public_training_data=None,
593
- framework=["PyTorch", "Sentence Transformers"],
593
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
594
594
  reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka",
595
595
  similarity_fn_name=ScoringFunction.COSINE,
596
596
  use_instructions=None,
@@ -622,7 +622,7 @@ Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMet
622
622
  open_weights=True,
623
623
  public_training_code=None,
624
624
  public_training_data=None,
625
- framework=["PyTorch", "Sentence Transformers"],
625
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
626
626
  reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet",
627
627
  similarity_fn_name=ScoringFunction.COSINE,
628
628
  use_instructions=None,
@@ -647,7 +647,7 @@ Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
647
647
  open_weights=True,
648
648
  public_training_code=None,
649
649
  public_training_data=None,
650
- framework=["PyTorch", "Sentence Transformers"],
650
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
651
651
  reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
652
652
  similarity_fn_name=ScoringFunction.COSINE,
653
653
  use_instructions=None,
@@ -681,7 +681,7 @@ Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
681
681
  open_weights=True,
682
682
  public_training_code=None,
683
683
  public_training_data=None,
684
- framework=["PyTorch", "Sentence Transformers"],
684
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
685
685
  reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-labse-Matryoshka",
686
686
  similarity_fn_name=ScoringFunction.COSINE,
687
687
  use_instructions=None,
@@ -715,7 +715,7 @@ Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
715
715
  open_weights=True,
716
716
  public_training_code=None,
717
717
  public_training_data=None,
718
- framework=["PyTorch", "Sentence Transformers"],
718
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
719
719
  reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet",
720
720
  similarity_fn_name=ScoringFunction.COSINE,
721
721
  use_instructions=None,
@@ -749,7 +749,7 @@ Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
749
749
  open_weights=True,
750
750
  public_training_code=None,
751
751
  public_training_data=None,
752
- framework=["PyTorch", "Sentence Transformers"],
752
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
753
753
  reference="https://huggingface.co/Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka",
754
754
  similarity_fn_name=ScoringFunction.COSINE,
755
755
  use_instructions=None,
@@ -781,7 +781,7 @@ consciousai__cai_lunaris_text_embeddings = ModelMeta(
781
781
  open_weights=True,
782
782
  public_training_code=None,
783
783
  public_training_data=None,
784
- framework=["PyTorch"],
784
+ framework=["PyTorch", "Sentence Transformers", "Transformers"],
785
785
  reference="https://huggingface.co/consciousAI/cai-lunaris-text-embeddings",
786
786
  similarity_fn_name=ScoringFunction.COSINE,
787
787
  use_instructions=None,
@@ -804,7 +804,7 @@ consciousai__cai_stellaris_text_embeddings = ModelMeta(
804
804
  open_weights=True,
805
805
  public_training_code=None,
806
806
  public_training_data=None,
807
- framework=["PyTorch"],
807
+ framework=["PyTorch", "Sentence Transformers"],
808
808
  reference="https://huggingface.co/consciousAI/cai-stellaris-text-embeddings",
809
809
  similarity_fn_name=ScoringFunction.COSINE,
810
810
  use_instructions=None,
@@ -836,7 +836,7 @@ manu__sentence_croissant_alpha_v0_2 = ModelMeta(
836
836
  open_weights=True,
837
837
  public_training_code=None,
838
838
  public_training_data=None,
839
- framework=["PyTorch", "Sentence Transformers"],
839
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
840
840
  reference="https://huggingface.co/manu/sentence_croissant_alpha_v0.2",
841
841
  similarity_fn_name=ScoringFunction.COSINE,
842
842
  use_instructions=None,
@@ -859,7 +859,7 @@ manu__sentence_croissant_alpha_v0_3 = ModelMeta(
859
859
  open_weights=True,
860
860
  public_training_code=None,
861
861
  public_training_data=None,
862
- framework=["PyTorch", "Sentence Transformers"],
862
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
863
863
  reference="https://huggingface.co/manu/sentence_croissant_alpha_v0.3",
864
864
  similarity_fn_name=ScoringFunction.COSINE,
865
865
  use_instructions=None,
@@ -882,7 +882,7 @@ manu__sentence_croissant_alpha_v0_4 = ModelMeta(
882
882
  open_weights=True,
883
883
  public_training_code=None,
884
884
  public_training_data=None,
885
- framework=["PyTorch", "Sentence Transformers"],
885
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
886
886
  reference="https://huggingface.co/manu/sentence_croissant_alpha_v0.4",
887
887
  similarity_fn_name=ScoringFunction.COSINE,
888
888
  use_instructions=None,
@@ -906,7 +906,7 @@ thenlper__gte_base = ModelMeta(
906
906
  open_weights=True,
907
907
  public_training_code=None,
908
908
  public_training_data=None,
909
- framework=["PyTorch"],
909
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
910
910
  reference="https://huggingface.co/thenlper/gte-base",
911
911
  similarity_fn_name=ScoringFunction.COSINE,
912
912
  use_instructions=None,
@@ -935,7 +935,7 @@ thenlper__gte_large = ModelMeta(
935
935
  open_weights=True,
936
936
  public_training_code=None,
937
937
  public_training_data=None,
938
- framework=["PyTorch"],
938
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
939
939
  reference="https://huggingface.co/thenlper/gte-large",
940
940
  similarity_fn_name=ScoringFunction.COSINE,
941
941
  use_instructions=None,
@@ -964,7 +964,7 @@ thenlper__gte_small = ModelMeta(
964
964
  open_weights=True,
965
965
  public_training_code=None,
966
966
  public_training_data=None,
967
- framework=["PyTorch"],
967
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
968
968
  reference="https://huggingface.co/thenlper/gte-small",
969
969
  similarity_fn_name=ScoringFunction.COSINE,
970
970
  use_instructions=None,
@@ -1039,7 +1039,7 @@ sdadas__mmlw_e5_base = ModelMeta(
1039
1039
  open_weights=True,
1040
1040
  public_training_code=None,
1041
1041
  public_training_data=None,
1042
- framework=["PyTorch"],
1042
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
1043
1043
  reference="https://huggingface.co/sdadas/mmlw-e5-base",
1044
1044
  similarity_fn_name=ScoringFunction.COSINE,
1045
1045
  use_instructions=None,
@@ -1047,7 +1047,7 @@ sdadas__mmlw_e5_base = ModelMeta(
1047
1047
  adapted_from="intfloat/multilingual-e5-base",
1048
1048
  superseded_by=None,
1049
1049
  citation="""@article{dadas2024pirb,
1050
- title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1050
+ title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1051
1051
  author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
1052
1052
  year={2024},
1053
1053
  eprint={2402.13350},
@@ -1070,7 +1070,7 @@ dwzhu__e5_base_4k = ModelMeta(
1070
1070
  open_weights=True,
1071
1071
  public_training_code=None,
1072
1072
  public_training_data=None,
1073
- framework=["PyTorch"],
1073
+ framework=["PyTorch", "Transformers"],
1074
1074
  reference="https://huggingface.co/dwzhu/e5-base-4k",
1075
1075
  similarity_fn_name=ScoringFunction.COSINE,
1076
1076
  use_instructions=None,
@@ -1099,7 +1099,7 @@ sdadas__mmlw_e5_large = ModelMeta(
1099
1099
  open_weights=True,
1100
1100
  public_training_code=None,
1101
1101
  public_training_data=None,
1102
- framework=["PyTorch"],
1102
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
1103
1103
  reference="https://huggingface.co/sdadas/mmlw-e5-large",
1104
1104
  similarity_fn_name=ScoringFunction.COSINE,
1105
1105
  use_instructions=None,
@@ -1107,7 +1107,7 @@ sdadas__mmlw_e5_large = ModelMeta(
1107
1107
  adapted_from="intfloat/multilingual-e5-large",
1108
1108
  superseded_by=None,
1109
1109
  citation="""@article{dadas2024pirb,
1110
- title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1110
+ title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1111
1111
  author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
1112
1112
  year={2024},
1113
1113
  eprint={2402.13350},
@@ -1130,7 +1130,7 @@ sdadas__mmlw_e5_small = ModelMeta(
1130
1130
  open_weights=True,
1131
1131
  public_training_code=None,
1132
1132
  public_training_data=None,
1133
- framework=["PyTorch"],
1133
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
1134
1134
  reference="https://huggingface.co/sdadas/mmlw-e5-small",
1135
1135
  similarity_fn_name=ScoringFunction.COSINE,
1136
1136
  use_instructions=None,
@@ -1138,7 +1138,7 @@ sdadas__mmlw_e5_small = ModelMeta(
1138
1138
  adapted_from="intfloat/multilingual-e5-small",
1139
1139
  superseded_by=None,
1140
1140
  citation="""@article{dadas2024pirb,
1141
- title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1141
+ title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1142
1142
  author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
1143
1143
  year={2024},
1144
1144
  eprint={2402.13350},
@@ -1161,7 +1161,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
1161
1161
  open_weights=True,
1162
1162
  public_training_code=None,
1163
1163
  public_training_data=None,
1164
- framework=["PyTorch"],
1164
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
1165
1165
  reference="https://huggingface.co/sdadas/mmlw-roberta-base",
1166
1166
  similarity_fn_name=ScoringFunction.COSINE,
1167
1167
  use_instructions=None,
@@ -1169,7 +1169,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
1169
1169
  adapted_from="sdadas/polish-roberta-base-v2",
1170
1170
  superseded_by=None,
1171
1171
  citation="""@article{dadas2024pirb,
1172
- title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1172
+ title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1173
1173
  author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
1174
1174
  year={2024},
1175
1175
  eprint={2402.13350},
@@ -1192,7 +1192,7 @@ sdadas__mmlw_roberta_large = ModelMeta(
1192
1192
  open_weights=True,
1193
1193
  public_training_code=None,
1194
1194
  public_training_data=None,
1195
- framework=["PyTorch"],
1195
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
1196
1196
  reference="https://huggingface.co/sdadas/mmlw-roberta-large",
1197
1197
  similarity_fn_name=ScoringFunction.COSINE,
1198
1198
  use_instructions=None,
@@ -1200,7 +1200,7 @@ sdadas__mmlw_roberta_large = ModelMeta(
1200
1200
  adapted_from="sdadas/polish-roberta-large-v2",
1201
1201
  superseded_by=None,
1202
1202
  citation="""@article{dadas2024pirb,
1203
- title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1203
+ title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
1204
1204
  author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
1205
1205
  year={2024},
1206
1206
  eprint={2402.13350},
@@ -1278,7 +1278,7 @@ izhx__udever_bloom_1b1 = ModelMeta(
1278
1278
  open_weights=True,
1279
1279
  public_training_code=None,
1280
1280
  public_training_data=None,
1281
- framework=["PyTorch"],
1281
+ framework=["PyTorch", "Transformers"],
1282
1282
  reference="https://huggingface.co/izhx/udever-bloom-1b1",
1283
1283
  similarity_fn_name=ScoringFunction.COSINE,
1284
1284
  use_instructions=None,
@@ -1307,7 +1307,7 @@ izhx__udever_bloom_3b = ModelMeta(
1307
1307
  open_weights=True,
1308
1308
  public_training_code=None,
1309
1309
  public_training_data=None,
1310
- framework=["PyTorch"],
1310
+ framework=["PyTorch", "Transformers"],
1311
1311
  reference="https://huggingface.co/izhx/udever-bloom-3b",
1312
1312
  similarity_fn_name=ScoringFunction.COSINE,
1313
1313
  use_instructions=None,
@@ -1336,7 +1336,7 @@ izhx__udever_bloom_560m = ModelMeta(
1336
1336
  open_weights=True,
1337
1337
  public_training_code=None,
1338
1338
  public_training_data=None,
1339
- framework=["PyTorch"],
1339
+ framework=["PyTorch", "Transformers"],
1340
1340
  reference="https://huggingface.co/izhx/udever-bloom-560m",
1341
1341
  similarity_fn_name=ScoringFunction.COSINE,
1342
1342
  use_instructions=None,
@@ -1365,7 +1365,7 @@ izhx__udever_bloom_7b1 = ModelMeta(
1365
1365
  open_weights=True,
1366
1366
  public_training_code=None,
1367
1367
  public_training_data=None,
1368
- framework=["PyTorch"],
1368
+ framework=["PyTorch", "Transformers"],
1369
1369
  reference="https://huggingface.co/izhx/udever-bloom-7b1",
1370
1370
  similarity_fn_name=ScoringFunction.COSINE,
1371
1371
  use_instructions=None,
@@ -1394,7 +1394,7 @@ avsolatorio__gist_embedding_v0 = ModelMeta(
1394
1394
  open_weights=True,
1395
1395
  public_training_code=None,
1396
1396
  public_training_data=None,
1397
- framework=["PyTorch", "Sentence Transformers"],
1397
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
1398
1398
  reference="https://huggingface.co/avsolatorio/GIST-Embedding-v0",
1399
1399
  similarity_fn_name=ScoringFunction.COSINE,
1400
1400
  use_instructions=None,
@@ -1444,7 +1444,7 @@ avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
1444
1444
  open_weights=True,
1445
1445
  public_training_code=None,
1446
1446
  public_training_data=None,
1447
- framework=["PyTorch", "Sentence Transformers"],
1447
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
1448
1448
  reference="https://huggingface.co/avsolatorio/GIST-all-MiniLM-L6-v2",
1449
1449
  similarity_fn_name=ScoringFunction.COSINE,
1450
1450
  use_instructions=None,
@@ -1494,7 +1494,7 @@ avsolatorio__gist_large_embedding_v0 = ModelMeta(
1494
1494
  open_weights=True,
1495
1495
  public_training_code=None,
1496
1496
  public_training_data=None,
1497
- framework=["PyTorch", "Sentence Transformers"],
1497
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
1498
1498
  reference="https://huggingface.co/avsolatorio/GIST-large-Embedding-v0",
1499
1499
  similarity_fn_name=ScoringFunction.COSINE,
1500
1500
  use_instructions=None,
@@ -1544,7 +1544,7 @@ avsolatorio__gist_small_embedding_v0 = ModelMeta(
1544
1544
  open_weights=True,
1545
1545
  public_training_code=None,
1546
1546
  public_training_data=None,
1547
- framework=["PyTorch", "Sentence Transformers"],
1547
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
1548
1548
  reference="https://huggingface.co/avsolatorio/GIST-small-Embedding-v0",
1549
1549
  similarity_fn_name=ScoringFunction.COSINE,
1550
1550
  use_instructions=None,
@@ -1594,7 +1594,7 @@ bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
1594
1594
  open_weights=True,
1595
1595
  public_training_code=None,
1596
1596
  public_training_data=None,
1597
- framework=["PyTorch"],
1597
+ framework=["PyTorch", "Sentence Transformers"],
1598
1598
  reference="https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco",
1599
1599
  similarity_fn_name=ScoringFunction.COSINE,
1600
1600
  use_instructions=None,
@@ -1623,7 +1623,7 @@ aari1995__german_semantic_sts_v2 = ModelMeta(
1623
1623
  open_weights=True,
1624
1624
  public_training_code=None,
1625
1625
  public_training_data=None,
1626
- framework=["PyTorch"],
1626
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
1627
1627
  reference="https://huggingface.co/aari1995/German_Semantic_STS_V2",
1628
1628
  similarity_fn_name=ScoringFunction.COSINE,
1629
1629
  use_instructions=None,
@@ -1647,7 +1647,7 @@ abhinand__medembed_small_v0_1 = ModelMeta(
1647
1647
  open_weights=True,
1648
1648
  public_training_code=None,
1649
1649
  public_training_data=None,
1650
- framework=["PyTorch"],
1650
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
1651
1651
  reference="https://huggingface.co/abhinand/MedEmbed-small-v0.1",
1652
1652
  similarity_fn_name=ScoringFunction.COSINE,
1653
1653
  use_instructions=None,
@@ -1708,7 +1708,7 @@ brahmairesearch__slx_v0_1 = ModelMeta(
1708
1708
  open_weights=True,
1709
1709
  public_training_code=None,
1710
1710
  public_training_data=None,
1711
- framework=["PyTorch", "Sentence Transformers"],
1711
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
1712
1712
  reference="https://huggingface.co/brahmairesearch/slx-v0.1",
1713
1713
  similarity_fn_name=ScoringFunction.COSINE,
1714
1714
  use_instructions=None,
@@ -1731,7 +1731,7 @@ deepfile__embedder_100p = ModelMeta(
1731
1731
  open_weights=True,
1732
1732
  public_training_code=None,
1733
1733
  public_training_data=None,
1734
- framework=["PyTorch"],
1734
+ framework=["PyTorch", "Transformers", "safetensors"],
1735
1735
  reference="https://huggingface.co/deepfile/embedder-100p",
1736
1736
  similarity_fn_name=ScoringFunction.COSINE,
1737
1737
  use_instructions=None,
@@ -1754,7 +1754,7 @@ infgrad__stella_base_en_v2 = ModelMeta(
1754
1754
  open_weights=True,
1755
1755
  public_training_code=None,
1756
1756
  public_training_data=None,
1757
- framework=["PyTorch"],
1757
+ framework=["PyTorch", "Sentence Transformers"],
1758
1758
  reference="https://huggingface.co/infgrad/stella-base-en-v2",
1759
1759
  similarity_fn_name=ScoringFunction.COSINE,
1760
1760
  use_instructions=None,
@@ -1777,7 +1777,7 @@ malenia1__ternary_weight_embedding = ModelMeta(
1777
1777
  open_weights=True,
1778
1778
  public_training_code=None,
1779
1779
  public_training_data=None,
1780
- framework=["PyTorch"],
1780
+ framework=["PyTorch", "safetensors"],
1781
1781
  reference="https://huggingface.co/malenia1/ternary-weight-embedding",
1782
1782
  similarity_fn_name=ScoringFunction.COSINE,
1783
1783
  use_instructions=None,
@@ -1800,7 +1800,7 @@ omarelshehy__arabic_english_sts_matryoshka = ModelMeta(
1800
1800
  open_weights=True,
1801
1801
  public_training_code=None,
1802
1802
  public_training_data=None,
1803
- framework=["PyTorch", "Sentence Transformers"],
1803
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
1804
1804
  reference="https://huggingface.co/omarelshehy/arabic-english-sts-matryoshka",
1805
1805
  similarity_fn_name=ScoringFunction.COSINE,
1806
1806
  use_instructions=None,
@@ -1840,7 +1840,7 @@ openbmb__minicpm_embedding = ModelMeta(
1840
1840
  open_weights=True,
1841
1841
  public_training_code=None,
1842
1842
  public_training_data=None,
1843
- framework=["PyTorch", "Sentence Transformers"],
1843
+ framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
1844
1844
  reference="https://huggingface.co/openbmb/MiniCPM-Embedding",
1845
1845
  similarity_fn_name=ScoringFunction.COSINE,
1846
1846
  use_instructions=None,
@@ -1864,7 +1864,7 @@ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
1864
1864
  open_weights=True,
1865
1865
  public_training_code=None,
1866
1866
  public_training_data=None,
1867
- framework=["PyTorch", "Sentence Transformers"],
1867
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
1868
1868
  reference="https://huggingface.co/silma-ai/silma-embeddding-matryoshka-v0.1",
1869
1869
  similarity_fn_name=ScoringFunction.COSINE,
1870
1870
  use_instructions=None,
@@ -1895,7 +1895,7 @@ sbert_chinese_general_v1 = ModelMeta(
1895
1895
  open_weights=True,
1896
1896
  public_training_code=None,
1897
1897
  public_training_data=None,
1898
- framework=["PyTorch", "Sentence Transformers"],
1898
+ framework=["PyTorch", "Sentence Transformers", "Transformers"],
1899
1899
  reference="https://huggingface.co/DMetaSoul/sbert-chinese-general-v1",
1900
1900
  similarity_fn_name=ScoringFunction.COSINE,
1901
1901
  use_instructions=None,
@@ -1923,7 +1923,7 @@ dmeta_embedding_zh_small = ModelMeta(
1923
1923
  open_weights=True,
1924
1924
  public_training_code=None,
1925
1925
  public_training_data=None,
1926
- framework=["PyTorch", "Sentence Transformers"],
1926
+ framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
1927
1927
  reference="https://huggingface.co/DMetaSoul/Dmeta-embedding-zh-small/",
1928
1928
  similarity_fn_name=ScoringFunction.COSINE,
1929
1929
  use_instructions=None,
@@ -1946,7 +1946,7 @@ xiaobu_embedding = ModelMeta(
1946
1946
  open_weights=True,
1947
1947
  public_training_code=None,
1948
1948
  public_training_data=None,
1949
- framework=["PyTorch", "Sentence Transformers"],
1949
+ framework=["PyTorch", "Sentence Transformers", "Transformers"],
1950
1950
  reference="https://huggingface.co/lier007/xiaobu-embedding",
1951
1951
  similarity_fn_name=ScoringFunction.COSINE,
1952
1952
  use_instructions=None,
@@ -1970,7 +1970,7 @@ xiaobu_embedding_v2 = ModelMeta(
1970
1970
  open_weights=True,
1971
1971
  public_training_code=None,
1972
1972
  public_training_data=None,
1973
- framework=["PyTorch", "Sentence Transformers"],
1973
+ framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
1974
1974
  reference="https://huggingface.co/lier007/xiaobu-embedding-v2",
1975
1975
  similarity_fn_name=ScoringFunction.COSINE,
1976
1976
  use_instructions=None,
@@ -1994,7 +1994,7 @@ yinka_embedding = ModelMeta(
1994
1994
  open_weights=True,
1995
1995
  public_training_code=None,
1996
1996
  public_training_data=None,
1997
- framework=["PyTorch", "Sentence Transformers"],
1997
+ framework=["PyTorch", "Sentence Transformers", "Transformers"],
1998
1998
  reference="https://huggingface.co/Classical/Yinka",
1999
1999
  similarity_fn_name=ScoringFunction.COSINE,
2000
2000
  use_instructions=None,
@@ -2017,7 +2017,7 @@ conan_embedding = ModelMeta(
2017
2017
  open_weights=True,
2018
2018
  public_training_code=None,
2019
2019
  public_training_data=None,
2020
- framework=["PyTorch", "Sentence Transformers"],
2020
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
2021
2021
  reference="https://huggingface.co/Classical/Yinka",
2022
2022
  similarity_fn_name=ScoringFunction.COSINE,
2023
2023
  use_instructions=None,
@@ -2025,13 +2025,13 @@ conan_embedding = ModelMeta(
2025
2025
  training_datasets=None, # They "scraped" things from the internet, we don't know, could be leakage
2026
2026
  superseded_by=None,
2027
2027
  citation="""@misc{li2024conanembeddinggeneraltextembedding,
2028
- title={Conan-embedding: General Text Embedding with More and Better Negative Samples},
2028
+ title={Conan-embedding: General Text Embedding with More and Better Negative Samples},
2029
2029
  author={Shiyu Li and Yang Tang and Shizhe Chen and Xi Chen},
2030
2030
  year={2024},
2031
2031
  eprint={2408.15710},
2032
2032
  archivePrefix={arXiv},
2033
2033
  primaryClass={cs.CL},
2034
- url={https://arxiv.org/abs/2408.15710},
2034
+ url={https://arxiv.org/abs/2408.15710},
2035
2035
  }""",
2036
2036
  )
2037
2037
 
@@ -2050,14 +2050,14 @@ ember_v1 = ModelMeta(
2050
2050
  open_weights=True,
2051
2051
  public_training_code=None,
2052
2052
  public_training_data=None,
2053
- framework=["PyTorch", "Sentence Transformers"],
2053
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
2054
2054
  reference="https://huggingface.co/llmrails/ember-v1",
2055
2055
  similarity_fn_name=ScoringFunction.COSINE,
2056
2056
  use_instructions=None,
2057
2057
  training_datasets=None,
2058
2058
  superseded_by=None,
2059
2059
  citation="""@misc{nur2024emberv1,
2060
- title={ember-v1: SOTA embedding model},
2060
+ title={ember-v1: SOTA embedding model},
2061
2061
  author={Enrike Nur and Anar Aliyev},
2062
2062
  year={2023},
2063
2063
  }""",
@@ -25,7 +25,7 @@ mme5_mllama = ModelMeta(
25
25
  open_weights=True,
26
26
  public_training_code=None,
27
27
  public_training_data="https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic",
28
- framework=["Sentence Transformers", "PyTorch"],
28
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
29
29
  reference="https://huggingface.co/intfloat/mmE5-mllama-11b-instruct",
30
30
  similarity_fn_name=ScoringFunction.COSINE,
31
31
  use_instructions=True,
@@ -132,7 +132,7 @@ mocov3_vit_base = ModelMeta(
132
132
  open_weights=True,
133
133
  public_training_code="https://github.com/facebookresearch/moco-v3",
134
134
  public_training_data=None,
135
- framework=["PyTorch"],
135
+ framework=["PyTorch", "Transformers", "safetensors"],
136
136
  reference="https://github.com/facebookresearch/moco-v3",
137
137
  similarity_fn_name=ScoringFunction.COSINE,
138
138
  use_instructions=False,
@@ -156,7 +156,7 @@ mocov3_vit_large = ModelMeta(
156
156
  open_weights=True,
157
157
  public_training_code="https://github.com/facebookresearch/moco-v3",
158
158
  public_training_data=None,
159
- framework=["PyTorch"],
159
+ framework=["PyTorch", "Transformers", "safetensors"],
160
160
  reference="https://github.com/facebookresearch/moco-v3",
161
161
  similarity_fn_name=ScoringFunction.COSINE,
162
162
  use_instructions=False,
@@ -181,7 +181,7 @@ MoD_Embedding = ModelMeta(
181
181
  license="apache-2.0",
182
182
  reference="https://huggingface.co/bflhc/MoD-Embedding",
183
183
  similarity_fn_name="cosine",
184
- framework=["Sentence Transformers", "PyTorch"],
184
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
185
185
  use_instructions=True,
186
186
  public_training_code=None,
187
187
  public_training_data=None,