mteb 2.6.4__py3-none-any.whl → 2.6.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/classification.py +2 -3
- mteb/abstasks/multilabel_classification.py +3 -3
- mteb/abstasks/regression.py +1 -1
- mteb/abstasks/retrieval.py +1 -1
- mteb/abstasks/task_metadata.py +9 -14
- mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
- mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +2 -2
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +8 -8
- mteb/models/model_implementations/bmretriever_models.py +4 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +2 -2
- mteb/models/model_implementations/clip_models.py +3 -3
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +4 -4
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +19 -19
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +1 -1
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +3 -3
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +1 -1
- mteb/models/model_implementations/jina_models.py +11 -5
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -3
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mdbr_models.py +14 -2
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +2 -2
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +13 -13
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/mxbai_models.py +16 -3
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
- mteb/models/model_implementations/nomic_models.py +18 -6
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
- mteb/models/model_implementations/nvidia_models.py +3 -3
- mteb/models/model_implementations/octen_models.py +3 -3
- mteb/models/model_implementations/openclip_models.py +6 -6
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +5 -5
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/rasgaard_models.py +1 -1
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +1 -1
- mteb/models/model_implementations/rerankers_custom.py +9 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/sentence_transformers_models.py +58 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +10 -10
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +2 -2
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +46 -17
- mteb/results/benchmark_results.py +2 -2
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- mteb/tasks/retrieval/vie/__init__.py +14 -6
- mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
- mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
- mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
- mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
- {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/METADATA +3 -3
- {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/RECORD +142 -133
- {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/WHEEL +0 -0
- {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/entry_points.txt +0 -0
- {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/top_level.txt +0 -0
|
@@ -331,7 +331,13 @@ bge_small_en_v1_5 = ModelMeta(
|
|
|
331
331
|
max_tokens=512,
|
|
332
332
|
reference="https://huggingface.co/BAAI/bge-small-en-v1.5",
|
|
333
333
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
334
|
-
framework=[
|
|
334
|
+
framework=[
|
|
335
|
+
"Sentence Transformers",
|
|
336
|
+
"PyTorch",
|
|
337
|
+
"ONNX",
|
|
338
|
+
"safetensors",
|
|
339
|
+
"Transformers",
|
|
340
|
+
],
|
|
335
341
|
use_instructions=True,
|
|
336
342
|
public_training_code=None,
|
|
337
343
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -357,7 +363,13 @@ bge_base_en_v1_5 = ModelMeta(
|
|
|
357
363
|
max_tokens=512,
|
|
358
364
|
reference="https://huggingface.co/BAAI/bge-base-en-v1.5",
|
|
359
365
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
360
|
-
framework=[
|
|
366
|
+
framework=[
|
|
367
|
+
"Sentence Transformers",
|
|
368
|
+
"PyTorch",
|
|
369
|
+
"ONNX",
|
|
370
|
+
"safetensors",
|
|
371
|
+
"Transformers",
|
|
372
|
+
],
|
|
361
373
|
use_instructions=True,
|
|
362
374
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
363
375
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -383,7 +395,13 @@ bge_large_en_v1_5 = ModelMeta(
|
|
|
383
395
|
max_tokens=512,
|
|
384
396
|
reference="https://huggingface.co/BAAI/bge-large-en-v1.5",
|
|
385
397
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
386
|
-
framework=[
|
|
398
|
+
framework=[
|
|
399
|
+
"Sentence Transformers",
|
|
400
|
+
"PyTorch",
|
|
401
|
+
"ONNX",
|
|
402
|
+
"safetensors",
|
|
403
|
+
"Transformers",
|
|
404
|
+
],
|
|
387
405
|
use_instructions=True,
|
|
388
406
|
citation=BGE_15_CITATION,
|
|
389
407
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
@@ -409,7 +427,7 @@ bge_small_zh = ModelMeta(
|
|
|
409
427
|
max_tokens=512,
|
|
410
428
|
reference="https://huggingface.co/BAAI/bge-small-zh",
|
|
411
429
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
412
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
430
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
413
431
|
use_instructions=True,
|
|
414
432
|
public_training_code=None,
|
|
415
433
|
public_training_data=None,
|
|
@@ -436,7 +454,7 @@ bge_base_zh = ModelMeta(
|
|
|
436
454
|
max_tokens=512,
|
|
437
455
|
reference="https://huggingface.co/BAAI/bge-base-zh",
|
|
438
456
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
439
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
457
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
440
458
|
use_instructions=True,
|
|
441
459
|
public_training_code=None,
|
|
442
460
|
public_training_data=None,
|
|
@@ -463,7 +481,7 @@ bge_large_zh = ModelMeta(
|
|
|
463
481
|
max_tokens=512,
|
|
464
482
|
reference="https://huggingface.co/BAAI/bge-large-zh",
|
|
465
483
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
466
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
484
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
467
485
|
use_instructions=True,
|
|
468
486
|
public_training_code=None,
|
|
469
487
|
public_training_data=None,
|
|
@@ -490,7 +508,7 @@ bge_small_en = ModelMeta(
|
|
|
490
508
|
max_tokens=512,
|
|
491
509
|
reference="https://huggingface.co/BAAI/bge-small-en",
|
|
492
510
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
493
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
511
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
494
512
|
use_instructions=True,
|
|
495
513
|
public_training_code=None,
|
|
496
514
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -517,7 +535,13 @@ bge_base_en = ModelMeta(
|
|
|
517
535
|
max_tokens=512,
|
|
518
536
|
reference="https://huggingface.co/BAAI/bge-base-en",
|
|
519
537
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
520
|
-
framework=[
|
|
538
|
+
framework=[
|
|
539
|
+
"Sentence Transformers",
|
|
540
|
+
"PyTorch",
|
|
541
|
+
"Transformers",
|
|
542
|
+
"ONNX",
|
|
543
|
+
"safetensors",
|
|
544
|
+
],
|
|
521
545
|
use_instructions=True,
|
|
522
546
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
523
547
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -544,7 +568,7 @@ bge_large_en = ModelMeta(
|
|
|
544
568
|
max_tokens=512,
|
|
545
569
|
reference="https://huggingface.co/BAAI/bge-large-en",
|
|
546
570
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
547
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
571
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
548
572
|
use_instructions=True,
|
|
549
573
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
550
574
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -572,7 +596,7 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
572
596
|
max_tokens=512,
|
|
573
597
|
reference="https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
574
598
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
575
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
599
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
576
600
|
use_instructions=True,
|
|
577
601
|
public_training_code=None,
|
|
578
602
|
public_training_data=None,
|
|
@@ -598,7 +622,7 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
598
622
|
max_tokens=512,
|
|
599
623
|
reference="https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
|
600
624
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
601
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
625
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
602
626
|
use_instructions=True,
|
|
603
627
|
public_training_code=None,
|
|
604
628
|
public_training_data=None,
|
|
@@ -624,7 +648,7 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
624
648
|
max_tokens=512,
|
|
625
649
|
reference="https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
|
626
650
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
627
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
651
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
628
652
|
use_instructions=True,
|
|
629
653
|
public_training_code=None,
|
|
630
654
|
public_training_data=None,
|
|
@@ -647,13 +671,13 @@ bge_m3 = ModelMeta(
|
|
|
647
671
|
max_tokens=8194,
|
|
648
672
|
reference="https://huggingface.co/BAAI/bge-m3",
|
|
649
673
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
650
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
674
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX"],
|
|
651
675
|
use_instructions=False,
|
|
652
676
|
public_training_code=None,
|
|
653
677
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
654
678
|
training_datasets=bge_m3_training_data,
|
|
655
679
|
citation="""@misc{bge-m3,
|
|
656
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
680
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
657
681
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
658
682
|
year={2024},
|
|
659
683
|
eprint={2402.03216},
|
|
@@ -743,7 +767,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
743
767
|
max_tokens=8192, # from old C-MTEB leaderboard
|
|
744
768
|
reference="https://huggingface.co/BAAI/bge-multilingual-gemma2",
|
|
745
769
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
746
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
770
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
747
771
|
use_instructions=False,
|
|
748
772
|
public_training_code=None,
|
|
749
773
|
public_training_data=None,
|
|
@@ -754,7 +778,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
754
778
|
| bge_full_data
|
|
755
779
|
| bge_m3_training_data,
|
|
756
780
|
citation="""@misc{bge-m3,
|
|
757
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
781
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
758
782
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
759
783
|
year={2024},
|
|
760
784
|
eprint={2402.03216},
|
|
@@ -764,7 +788,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
764
788
|
|
|
765
789
|
|
|
766
790
|
@misc{bge_embedding,
|
|
767
|
-
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
791
|
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
768
792
|
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
769
793
|
year={2023},
|
|
770
794
|
eprint={2309.07597},
|
|
@@ -790,7 +814,7 @@ bge_en_icl = ModelMeta(
|
|
|
790
814
|
max_tokens=32768,
|
|
791
815
|
reference="https://huggingface.co/BAAI/bge-en-icl",
|
|
792
816
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
793
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
817
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
794
818
|
use_instructions=False,
|
|
795
819
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
796
820
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
@@ -824,13 +848,13 @@ bge_m3_unsupervised = ModelMeta(
|
|
|
824
848
|
max_tokens=8192,
|
|
825
849
|
reference="https://huggingface.co/BAAI/bge-m3-unsupervised",
|
|
826
850
|
similarity_fn_name="cosine",
|
|
827
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
851
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
828
852
|
use_instructions=False,
|
|
829
853
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
830
854
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
831
855
|
training_datasets=bge_m3_training_data,
|
|
832
856
|
citation="""@misc{bge-m3,
|
|
833
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
857
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
834
858
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
835
859
|
year={2024},
|
|
836
860
|
eprint={2402.03216},
|
|
@@ -854,7 +878,7 @@ manu__bge_m3_custom_fr = ModelMeta(
|
|
|
854
878
|
open_weights=True,
|
|
855
879
|
public_training_code=None,
|
|
856
880
|
public_training_data=None,
|
|
857
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
881
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
858
882
|
reference="https://huggingface.co/manu/bge-m3-custom-fr",
|
|
859
883
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
860
884
|
use_instructions=None,
|
|
@@ -15,20 +15,20 @@ bica_base = ModelMeta(
|
|
|
15
15
|
max_tokens=512,
|
|
16
16
|
reference="https://huggingface.co/bisectgroup/BiCA-base",
|
|
17
17
|
similarity_fn_name="cosine",
|
|
18
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
18
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
19
19
|
use_instructions=False,
|
|
20
20
|
public_training_code="https://github.com/NiravBhattLab/BiCA",
|
|
21
21
|
public_training_data="https://huggingface.co/datasets/bisectgroup/hard-negatives-traversal",
|
|
22
22
|
adapted_from="thenlper/gte-base",
|
|
23
23
|
citation="""
|
|
24
24
|
@misc{sinha2025bicaeffectivebiomedicaldense,
|
|
25
|
-
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
25
|
+
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
26
26
|
author={Aarush Sinha and Pavan Kumar S and Roshan Balaji and Nirav Pravinbhai Bhatt},
|
|
27
27
|
year={2025},
|
|
28
28
|
eprint={2511.08029},
|
|
29
29
|
archivePrefix={arXiv},
|
|
30
30
|
primaryClass={cs.IR},
|
|
31
|
-
url={https://arxiv.org/abs/2511.08029},
|
|
31
|
+
url={https://arxiv.org/abs/2511.08029},
|
|
32
32
|
}
|
|
33
33
|
""",
|
|
34
34
|
training_datasets=set(),
|
|
@@ -179,7 +179,7 @@ blip2_opt_2_7b = ModelMeta(
|
|
|
179
179
|
open_weights=True,
|
|
180
180
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
181
181
|
public_training_data=None,
|
|
182
|
-
framework=["PyTorch"],
|
|
182
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
183
183
|
reference="https://huggingface.co/Salesforce/blip2-opt-2.7b",
|
|
184
184
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
185
185
|
use_instructions=False,
|
|
@@ -203,7 +203,7 @@ blip2_opt_6_7b_coco = ModelMeta(
|
|
|
203
203
|
open_weights=True,
|
|
204
204
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
205
205
|
public_training_data=None,
|
|
206
|
-
framework=["PyTorch"],
|
|
206
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
207
207
|
reference="https://huggingface.co/Salesforce/blip2-opt-6.7b-coco",
|
|
208
208
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
209
209
|
use_instructions=False,
|
|
@@ -143,7 +143,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
143
143
|
open_weights=True,
|
|
144
144
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
145
145
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
146
|
-
framework=["PyTorch"],
|
|
146
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
147
147
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-large",
|
|
148
148
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
149
149
|
use_instructions=False,
|
|
@@ -171,7 +171,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
171
171
|
open_weights=True,
|
|
172
172
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
173
173
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
174
|
-
framework=["PyTorch"],
|
|
174
|
+
framework=["PyTorch", "Transformers"],
|
|
175
175
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-base",
|
|
176
176
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
177
177
|
use_instructions=False,
|
|
@@ -200,7 +200,7 @@ blip_vqa_base = ModelMeta(
|
|
|
200
200
|
open_weights=True,
|
|
201
201
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
202
202
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
203
|
-
framework=["PyTorch"],
|
|
203
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
204
204
|
reference="https://huggingface.co/Salesforce/blip-vqa-base",
|
|
205
205
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
206
206
|
use_instructions=False,
|
|
@@ -227,7 +227,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
227
227
|
open_weights=True,
|
|
228
228
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
229
229
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
230
|
-
framework=["PyTorch"],
|
|
230
|
+
framework=["PyTorch", "Transformers"],
|
|
231
231
|
reference="https://huggingface.co/Salesforce/blip-vqa-capfilt-large",
|
|
232
232
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
233
233
|
use_instructions=False,
|
|
@@ -254,7 +254,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
254
254
|
open_weights=True,
|
|
255
255
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
256
256
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
257
|
-
framework=["PyTorch"],
|
|
257
|
+
framework=["PyTorch", "Transformers"],
|
|
258
258
|
reference="https://huggingface.co/Salesforce/blip-itm-base-coco",
|
|
259
259
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
260
260
|
use_instructions=False,
|
|
@@ -281,7 +281,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
281
281
|
open_weights=True,
|
|
282
282
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
283
283
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
284
|
-
framework=["PyTorch"],
|
|
284
|
+
framework=["PyTorch", "Transformers"],
|
|
285
285
|
reference="https://huggingface.co/Salesforce/blip-itm-large-coco",
|
|
286
286
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
287
287
|
use_instructions=False,
|
|
@@ -309,7 +309,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
309
309
|
open_weights=True,
|
|
310
310
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
311
311
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
312
|
-
framework=["PyTorch"],
|
|
312
|
+
framework=["PyTorch", "Transformers"],
|
|
313
313
|
reference="https://huggingface.co/Salesforce/blip-itm-base-flickr",
|
|
314
314
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
315
315
|
use_instructions=False,
|
|
@@ -337,7 +337,7 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
337
337
|
open_weights=True,
|
|
338
338
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
339
339
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
340
|
-
framework=["PyTorch"],
|
|
340
|
+
framework=["PyTorch", "Transformers"],
|
|
341
341
|
reference="https://huggingface.co/Salesforce/blip-itm-large-flickr",
|
|
342
342
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
343
343
|
use_instructions=False,
|
|
@@ -104,7 +104,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
104
104
|
license="mit",
|
|
105
105
|
reference="https://huggingface.co/BMRetriever/BMRetriever-410M",
|
|
106
106
|
similarity_fn_name="cosine",
|
|
107
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
108
108
|
use_instructions=True,
|
|
109
109
|
public_training_code=None,
|
|
110
110
|
public_training_data=None,
|
|
@@ -134,7 +134,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
134
134
|
license="mit",
|
|
135
135
|
reference="https://huggingface.co/BMRetriever/BMRetriever-1B",
|
|
136
136
|
similarity_fn_name="cosine",
|
|
137
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
137
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
138
138
|
use_instructions=True,
|
|
139
139
|
public_training_code=None,
|
|
140
140
|
public_training_data=None,
|
|
@@ -164,7 +164,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
164
164
|
license="mit",
|
|
165
165
|
reference="https://huggingface.co/BMRetriever/BMRetriever-2B",
|
|
166
166
|
similarity_fn_name="cosine",
|
|
167
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
167
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
168
168
|
use_instructions=True,
|
|
169
169
|
public_training_code=None,
|
|
170
170
|
public_training_data=None,
|
|
@@ -194,7 +194,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
194
194
|
license="mit",
|
|
195
195
|
reference="https://huggingface.co/BMRetriever/BMRetriever-7B",
|
|
196
196
|
similarity_fn_name="cosine",
|
|
197
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
197
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
198
198
|
use_instructions=True,
|
|
199
199
|
public_training_code=None,
|
|
200
200
|
public_training_data=None,
|
|
@@ -47,7 +47,7 @@ cadet_embed = ModelMeta(
|
|
|
47
47
|
max_tokens=512,
|
|
48
48
|
reference="https://huggingface.co/manveertamber/cadet-embed-base-v1",
|
|
49
49
|
similarity_fn_name="cosine",
|
|
50
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
50
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
51
51
|
use_instructions=True,
|
|
52
52
|
public_training_code="https://github.com/manveertamber/cadet-dense-retrieval",
|
|
53
53
|
# we provide the code to generate the training data
|
|
@@ -227,7 +227,7 @@ cde_small_v1 = ModelMeta(
|
|
|
227
227
|
embed_dim=768,
|
|
228
228
|
license="mit",
|
|
229
229
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
230
|
-
framework=["Sentence Transformers"],
|
|
230
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
231
231
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
232
232
|
use_instructions=True,
|
|
233
233
|
adapted_from="nomic-ai/nomic-bert-2048",
|
|
@@ -256,7 +256,7 @@ cde_small_v2 = ModelMeta(
|
|
|
256
256
|
embed_dim=768,
|
|
257
257
|
license="mit",
|
|
258
258
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
259
|
-
framework=["Sentence Transformers"],
|
|
259
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
260
260
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
261
261
|
use_instructions=True,
|
|
262
262
|
adapted_from="answerdotai/ModernBERT-base",
|
|
@@ -130,7 +130,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
130
130
|
open_weights=True,
|
|
131
131
|
public_training_code=None,
|
|
132
132
|
public_training_data=None,
|
|
133
|
-
framework=["PyTorch"],
|
|
133
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
134
134
|
reference="https://huggingface.co/openai/clip-vit-large-patch14",
|
|
135
135
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
136
136
|
use_instructions=False,
|
|
@@ -154,7 +154,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
154
154
|
open_weights=True,
|
|
155
155
|
public_training_code=None,
|
|
156
156
|
public_training_data=None,
|
|
157
|
-
framework=["PyTorch"],
|
|
157
|
+
framework=["PyTorch", "Transformers"],
|
|
158
158
|
reference="https://huggingface.co/openai/clip-vit-base-patch32",
|
|
159
159
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
160
160
|
use_instructions=False,
|
|
@@ -178,7 +178,7 @@ clip_vit_base_patch16 = ModelMeta(
|
|
|
178
178
|
open_weights=True,
|
|
179
179
|
public_training_code=None,
|
|
180
180
|
public_training_data=None,
|
|
181
|
-
framework=["PyTorch"],
|
|
181
|
+
framework=["PyTorch", "Transformers"],
|
|
182
182
|
reference="https://huggingface.co/openai/clip-vit-base-patch16",
|
|
183
183
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
184
184
|
use_instructions=False,
|
|
@@ -36,7 +36,7 @@ e5_nl_small = ModelMeta(
|
|
|
36
36
|
max_tokens=512,
|
|
37
37
|
reference="https://huggingface.co/clips/e5-small-trm-nl",
|
|
38
38
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
39
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
39
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
40
40
|
use_instructions=True,
|
|
41
41
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
42
42
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -63,7 +63,7 @@ e5_nl_base = ModelMeta(
|
|
|
63
63
|
max_tokens=514,
|
|
64
64
|
reference="https://huggingface.co/clips/e5-base-trm-nl",
|
|
65
65
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
66
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
66
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
67
67
|
use_instructions=True,
|
|
68
68
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
69
69
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -90,7 +90,7 @@ e5_nl_large = ModelMeta(
|
|
|
90
90
|
max_tokens=514,
|
|
91
91
|
reference="https://huggingface.co/clips/e5-large-trm-nl",
|
|
92
92
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
93
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
93
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
94
94
|
use_instructions=True,
|
|
95
95
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
96
96
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -242,7 +242,7 @@ F2LLM_0B6 = ModelMeta(
|
|
|
242
242
|
max_tokens=8192,
|
|
243
243
|
reference="https://huggingface.co/codefuse-ai/F2LLM-0.6B",
|
|
244
244
|
similarity_fn_name="cosine",
|
|
245
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
245
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
246
246
|
use_instructions=True,
|
|
247
247
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
248
248
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -272,7 +272,7 @@ F2LLM_1B7 = ModelMeta(
|
|
|
272
272
|
max_tokens=8192,
|
|
273
273
|
reference="https://huggingface.co/codefuse-ai/F2LLM-1.7B",
|
|
274
274
|
similarity_fn_name="cosine",
|
|
275
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
275
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
276
276
|
use_instructions=True,
|
|
277
277
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
278
278
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -302,7 +302,7 @@ F2LLM_4B = ModelMeta(
|
|
|
302
302
|
max_tokens=8192,
|
|
303
303
|
reference="https://huggingface.co/codefuse-ai/F2LLM-4B",
|
|
304
304
|
similarity_fn_name="cosine",
|
|
305
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
305
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
306
306
|
use_instructions=True,
|
|
307
307
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
308
308
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -325,7 +325,7 @@ C2LLM_0B5 = ModelMeta(
|
|
|
325
325
|
open_weights=True,
|
|
326
326
|
public_training_code=None,
|
|
327
327
|
public_training_data=None,
|
|
328
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
328
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
329
329
|
reference="https://huggingface.co/codefuse-ai/C2LLM-0.5B",
|
|
330
330
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
331
331
|
use_instructions=True,
|
|
@@ -353,7 +353,7 @@ C2LLM_7B = ModelMeta(
|
|
|
353
353
|
open_weights=True,
|
|
354
354
|
public_training_code=None,
|
|
355
355
|
public_training_data=None,
|
|
356
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
356
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
357
357
|
reference="https://huggingface.co/codefuse-ai/C2LLM-7B",
|
|
358
358
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
359
359
|
use_instructions=True,
|
|
@@ -35,7 +35,7 @@ codesage_large = ModelMeta(
|
|
|
35
35
|
open_weights=True,
|
|
36
36
|
public_training_code=None,
|
|
37
37
|
public_training_data=None,
|
|
38
|
-
framework=["PyTorch"],
|
|
38
|
+
framework=["PyTorch", "Transformers"],
|
|
39
39
|
reference="https://huggingface.co/codesage/codesage-large-v2",
|
|
40
40
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
41
41
|
use_instructions=False,
|
|
@@ -62,7 +62,7 @@ codesage_base = ModelMeta(
|
|
|
62
62
|
open_weights=True,
|
|
63
63
|
public_training_code=None,
|
|
64
64
|
public_training_data=None,
|
|
65
|
-
framework=["PyTorch"],
|
|
65
|
+
framework=["PyTorch", "Transformers"],
|
|
66
66
|
reference="https://huggingface.co/codesage/codesage-base-v2",
|
|
67
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
68
68
|
use_instructions=False,
|
|
@@ -89,7 +89,7 @@ codesage_small = ModelMeta(
|
|
|
89
89
|
open_weights=True,
|
|
90
90
|
public_training_code=None,
|
|
91
91
|
public_training_data=None,
|
|
92
|
-
framework=["PyTorch"],
|
|
92
|
+
framework=["PyTorch", "Transformers"],
|
|
93
93
|
reference="https://huggingface.co/codesage/codesage-small-v2",
|
|
94
94
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
95
95
|
use_instructions=False,
|
|
@@ -392,7 +392,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
392
392
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
393
393
|
license=None,
|
|
394
394
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
395
|
-
framework=["API"],
|
|
395
|
+
framework=["API", "Transformers"],
|
|
396
396
|
use_instructions=True,
|
|
397
397
|
public_training_code=None,
|
|
398
398
|
public_training_data=None, # assumed
|
|
@@ -417,7 +417,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
417
417
|
embed_dim=1024,
|
|
418
418
|
license=None,
|
|
419
419
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
420
|
-
framework=["API"],
|
|
420
|
+
framework=["API", "Transformers"],
|
|
421
421
|
use_instructions=True,
|
|
422
422
|
public_training_code=None,
|
|
423
423
|
public_training_data=None, # assumed
|
|
@@ -442,7 +442,7 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
442
442
|
embed_dim=384,
|
|
443
443
|
license=None,
|
|
444
444
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
445
|
-
framework=["API"],
|
|
445
|
+
framework=["API", "Transformers"],
|
|
446
446
|
use_instructions=True,
|
|
447
447
|
public_training_code=None,
|
|
448
448
|
public_training_data=None, # assumed
|
|
@@ -467,7 +467,7 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
467
467
|
embed_dim=384,
|
|
468
468
|
license=None,
|
|
469
469
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
470
|
-
framework=["API"],
|
|
470
|
+
framework=["API", "Transformers"],
|
|
471
471
|
use_instructions=True,
|
|
472
472
|
public_training_code=None,
|
|
473
473
|
public_training_data=None, # assumed
|
|
@@ -226,7 +226,7 @@ colpali_v1_1 = ModelMeta(
|
|
|
226
226
|
open_weights=True,
|
|
227
227
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
228
228
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
229
|
-
framework=["ColPali"],
|
|
229
|
+
framework=["ColPali", "safetensors"],
|
|
230
230
|
reference="https://huggingface.co/vidore/colpali-v1.1",
|
|
231
231
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
232
232
|
use_instructions=True,
|
|
@@ -253,7 +253,7 @@ colpali_v1_2 = ModelMeta(
|
|
|
253
253
|
open_weights=True,
|
|
254
254
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
255
255
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
256
|
-
framework=["ColPali"],
|
|
256
|
+
framework=["ColPali", "safetensors"],
|
|
257
257
|
reference="https://huggingface.co/vidore/colpali-v1.2",
|
|
258
258
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
259
259
|
use_instructions=True,
|
|
@@ -280,7 +280,7 @@ colpali_v1_3 = ModelMeta(
|
|
|
280
280
|
open_weights=True,
|
|
281
281
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
282
282
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
283
|
-
framework=["ColPali"],
|
|
283
|
+
framework=["ColPali", "safetensors"],
|
|
284
284
|
reference="https://huggingface.co/vidore/colpali-v1.3",
|
|
285
285
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
286
286
|
use_instructions=True,
|
|
@@ -226,7 +226,7 @@ colqwen2 = ModelMeta(
|
|
|
226
226
|
open_weights=True,
|
|
227
227
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
228
228
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
229
|
-
framework=["ColPali"],
|
|
229
|
+
framework=["ColPali", "safetensors"],
|
|
230
230
|
reference="https://huggingface.co/vidore/colqwen2-v1.0",
|
|
231
231
|
similarity_fn_name="MaxSim",
|
|
232
232
|
use_instructions=True,
|
|
@@ -253,7 +253,7 @@ colqwen2_5 = ModelMeta(
|
|
|
253
253
|
open_weights=True,
|
|
254
254
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
255
255
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
256
|
-
framework=["ColPali"],
|
|
256
|
+
framework=["ColPali", "safetensors"],
|
|
257
257
|
reference="https://huggingface.co/vidore/colqwen2.5-v0.2",
|
|
258
258
|
similarity_fn_name="MaxSim",
|
|
259
259
|
use_instructions=True,
|
|
@@ -297,7 +297,7 @@ colqwen3_8b = ModelMeta(
|
|
|
297
297
|
open_weights=True,
|
|
298
298
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
299
299
|
public_training_data=None,
|
|
300
|
-
framework=["PyTorch"],
|
|
300
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
301
301
|
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-8b",
|
|
302
302
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
303
303
|
use_instructions=True,
|
|
@@ -321,7 +321,7 @@ colqwen3_4b = ModelMeta(
|
|
|
321
321
|
open_weights=True,
|
|
322
322
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
323
323
|
public_training_data=None,
|
|
324
|
-
framework=["PyTorch"],
|
|
324
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
325
325
|
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-4b",
|
|
326
326
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
327
327
|
use_instructions=True,
|
|
@@ -348,7 +348,7 @@ colnomic_7b = ModelMeta(
|
|
|
348
348
|
open_weights=True,
|
|
349
349
|
public_training_code="https://github.com/nomic-ai/colpali",
|
|
350
350
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
351
|
-
framework=["ColPali"],
|
|
351
|
+
framework=["ColPali", "safetensors"],
|
|
352
352
|
reference="https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b",
|
|
353
353
|
similarity_fn_name="MaxSim",
|
|
354
354
|
use_instructions=True,
|
|
@@ -393,7 +393,7 @@ colnomic_3b = ModelMeta(
|
|
|
393
393
|
open_weights=True,
|
|
394
394
|
public_training_code="https://github.com/nomic-ai/colpali",
|
|
395
395
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
396
|
-
framework=["ColPali"],
|
|
396
|
+
framework=["ColPali", "safetensors"],
|
|
397
397
|
reference="https://huggingface.co/nomic-ai/colnomic-embed-multimodal-3b",
|
|
398
398
|
similarity_fn_name="MaxSim",
|
|
399
399
|
use_instructions=True,
|
|
@@ -458,7 +458,7 @@ evoqwen25_vl_retriever_3b_v1 = ModelMeta(
|
|
|
458
458
|
open_weights=True,
|
|
459
459
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
460
460
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
461
|
-
framework=["ColPali"],
|
|
461
|
+
framework=["ColPali", "safetensors"],
|
|
462
462
|
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
|
|
463
463
|
similarity_fn_name="MaxSim",
|
|
464
464
|
use_instructions=True,
|
|
@@ -484,7 +484,7 @@ evoqwen25_vl_retriever_7b_v1 = ModelMeta(
|
|
|
484
484
|
open_weights=True,
|
|
485
485
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
486
486
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
487
|
-
framework=["ColPali"],
|
|
487
|
+
framework=["ColPali", "safetensors"],
|
|
488
488
|
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
|
|
489
489
|
similarity_fn_name="MaxSim",
|
|
490
490
|
use_instructions=True,
|