mteb 2.6.4__py3-none-any.whl → 2.6.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (142) hide show
  1. mteb/abstasks/classification.py +2 -3
  2. mteb/abstasks/multilabel_classification.py +3 -3
  3. mteb/abstasks/regression.py +1 -1
  4. mteb/abstasks/retrieval.py +1 -1
  5. mteb/abstasks/task_metadata.py +9 -14
  6. mteb/descriptive_stats/Retrieval/NanoClimateFEVER-VN.json +30 -0
  7. mteb/descriptive_stats/Retrieval/NanoDBPedia-VN.json +30 -0
  8. mteb/descriptive_stats/Retrieval/NanoFEVER-VN.json +30 -0
  9. mteb/descriptive_stats/Retrieval/NanoHotpotQA-VN.json +30 -0
  10. mteb/descriptive_stats/Retrieval/NanoMSMARCO-VN.json +30 -0
  11. mteb/descriptive_stats/Retrieval/NanoNQ-VN.json +30 -0
  12. mteb/descriptive_stats/Retrieval/TVPLRetrieval.json +30 -0
  13. mteb/models/model_implementations/align_models.py +1 -1
  14. mteb/models/model_implementations/andersborges.py +2 -2
  15. mteb/models/model_implementations/ara_models.py +1 -1
  16. mteb/models/model_implementations/arctic_models.py +8 -8
  17. mteb/models/model_implementations/b1ade_models.py +1 -1
  18. mteb/models/model_implementations/bge_models.py +45 -21
  19. mteb/models/model_implementations/bica_model.py +3 -3
  20. mteb/models/model_implementations/blip2_models.py +2 -2
  21. mteb/models/model_implementations/blip_models.py +8 -8
  22. mteb/models/model_implementations/bmretriever_models.py +4 -4
  23. mteb/models/model_implementations/cadet_models.py +1 -1
  24. mteb/models/model_implementations/cde_models.py +2 -2
  25. mteb/models/model_implementations/clip_models.py +3 -3
  26. mteb/models/model_implementations/clips_models.py +3 -3
  27. mteb/models/model_implementations/codefuse_models.py +5 -5
  28. mteb/models/model_implementations/codesage_models.py +3 -3
  29. mteb/models/model_implementations/cohere_models.py +4 -4
  30. mteb/models/model_implementations/colpali_models.py +3 -3
  31. mteb/models/model_implementations/colqwen_models.py +8 -8
  32. mteb/models/model_implementations/colsmol_models.py +2 -2
  33. mteb/models/model_implementations/conan_models.py +1 -1
  34. mteb/models/model_implementations/dino_models.py +19 -19
  35. mteb/models/model_implementations/e5_instruct.py +23 -4
  36. mteb/models/model_implementations/e5_models.py +9 -9
  37. mteb/models/model_implementations/e5_v.py +1 -1
  38. mteb/models/model_implementations/eagerworks_models.py +1 -1
  39. mteb/models/model_implementations/emillykkejensen_models.py +3 -3
  40. mteb/models/model_implementations/en_code_retriever.py +1 -1
  41. mteb/models/model_implementations/euler_models.py +2 -2
  42. mteb/models/model_implementations/fa_models.py +9 -9
  43. mteb/models/model_implementations/facebookai.py +14 -2
  44. mteb/models/model_implementations/geogpt_models.py +1 -1
  45. mteb/models/model_implementations/gme_v_models.py +2 -2
  46. mteb/models/model_implementations/google_models.py +1 -1
  47. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  48. mteb/models/model_implementations/gritlm_models.py +2 -2
  49. mteb/models/model_implementations/gte_models.py +25 -13
  50. mteb/models/model_implementations/hinvec_models.py +1 -1
  51. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  52. mteb/models/model_implementations/inf_models.py +2 -2
  53. mteb/models/model_implementations/jasper_models.py +2 -2
  54. mteb/models/model_implementations/jina_clip.py +1 -1
  55. mteb/models/model_implementations/jina_models.py +11 -5
  56. mteb/models/model_implementations/kblab.py +12 -6
  57. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
  58. mteb/models/model_implementations/kfst.py +1 -1
  59. mteb/models/model_implementations/kowshik24_models.py +1 -1
  60. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  61. mteb/models/model_implementations/linq_models.py +1 -1
  62. mteb/models/model_implementations/listconranker.py +1 -1
  63. mteb/models/model_implementations/llm2clip_models.py +3 -3
  64. mteb/models/model_implementations/llm2vec_models.py +8 -8
  65. mteb/models/model_implementations/mdbr_models.py +14 -2
  66. mteb/models/model_implementations/misc_models.py +68 -68
  67. mteb/models/model_implementations/mme5_models.py +1 -1
  68. mteb/models/model_implementations/moco_models.py +2 -2
  69. mteb/models/model_implementations/mod_models.py +1 -1
  70. mteb/models/model_implementations/model2vec_models.py +13 -13
  71. mteb/models/model_implementations/moka_models.py +1 -1
  72. mteb/models/model_implementations/mxbai_models.py +16 -3
  73. mteb/models/model_implementations/nbailab.py +3 -3
  74. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
  75. mteb/models/model_implementations/nomic_models.py +18 -6
  76. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  77. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
  78. mteb/models/model_implementations/nvidia_models.py +3 -3
  79. mteb/models/model_implementations/octen_models.py +3 -3
  80. mteb/models/model_implementations/openclip_models.py +6 -6
  81. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  82. mteb/models/model_implementations/ops_moa_models.py +1 -1
  83. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  84. mteb/models/model_implementations/pawan_models.py +1 -1
  85. mteb/models/model_implementations/piccolo_models.py +1 -1
  86. mteb/models/model_implementations/promptriever_models.py +4 -4
  87. mteb/models/model_implementations/pylate_models.py +5 -5
  88. mteb/models/model_implementations/qodo_models.py +2 -2
  89. mteb/models/model_implementations/qtack_models.py +1 -1
  90. mteb/models/model_implementations/qwen3_models.py +3 -3
  91. mteb/models/model_implementations/qzhou_models.py +2 -2
  92. mteb/models/model_implementations/rasgaard_models.py +1 -1
  93. mteb/models/model_implementations/reasonir_model.py +1 -1
  94. mteb/models/model_implementations/repllama_models.py +1 -1
  95. mteb/models/model_implementations/rerankers_custom.py +9 -3
  96. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  97. mteb/models/model_implementations/richinfoai_models.py +1 -1
  98. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  99. mteb/models/model_implementations/ruri_models.py +10 -10
  100. mteb/models/model_implementations/salesforce_models.py +3 -3
  101. mteb/models/model_implementations/samilpwc_models.py +1 -1
  102. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  103. mteb/models/model_implementations/searchmap_models.py +1 -1
  104. mteb/models/model_implementations/sentence_transformers_models.py +58 -22
  105. mteb/models/model_implementations/shuu_model.py +1 -1
  106. mteb/models/model_implementations/siglip_models.py +10 -10
  107. mteb/models/model_implementations/slm_models.py +416 -0
  108. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  109. mteb/models/model_implementations/stella_models.py +17 -4
  110. mteb/models/model_implementations/tarka_models.py +2 -2
  111. mteb/models/model_implementations/text2vec_models.py +9 -3
  112. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  113. mteb/models/model_implementations/uae_models.py +7 -1
  114. mteb/models/model_implementations/vdr_models.py +1 -1
  115. mteb/models/model_implementations/vi_vn_models.py +6 -6
  116. mteb/models/model_implementations/vlm2vec_models.py +2 -2
  117. mteb/models/model_implementations/youtu_models.py +1 -1
  118. mteb/models/model_implementations/yuan_models.py +1 -1
  119. mteb/models/model_implementations/yuan_models_en.py +1 -1
  120. mteb/models/model_meta.py +46 -17
  121. mteb/results/benchmark_results.py +2 -2
  122. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  123. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  124. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  125. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  126. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  127. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  128. mteb/tasks/retrieval/vie/__init__.py +14 -6
  129. mteb/tasks/retrieval/vie/climate_fevervn_retrieval.py +39 -0
  130. mteb/tasks/retrieval/vie/db_pedia_vn_retrieval.py +39 -0
  131. mteb/tasks/retrieval/vie/fevervn_retrieval.py +39 -0
  132. mteb/tasks/retrieval/vie/hotpot_qavn_retrieval.py +39 -0
  133. mteb/tasks/retrieval/vie/msmarcovn_retrieval.py +48 -0
  134. mteb/tasks/retrieval/vie/nqvn_retrieval.py +39 -0
  135. mteb/tasks/retrieval/vie/tvpl_retrieval.py +42 -0
  136. mteb/tasks/retrieval/vie/zac_legal_text_retrieval.py +15 -1
  137. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/METADATA +3 -3
  138. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/RECORD +142 -133
  139. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/WHEEL +0 -0
  140. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/entry_points.txt +0 -0
  141. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/licenses/LICENSE +0 -0
  142. {mteb-2.6.4.dist-info → mteb-2.6.6.dist-info}/top_level.txt +0 -0
mteb/models/model_meta.py CHANGED
@@ -17,6 +17,7 @@ from huggingface_hub import (
17
17
  get_safetensors_metadata,
18
18
  hf_hub_download,
19
19
  list_repo_commits,
20
+ model_info,
20
21
  repo_exists,
21
22
  )
22
23
  from huggingface_hub.errors import (
@@ -56,6 +57,10 @@ FRAMEWORKS = Literal[
56
57
  "PyLate",
57
58
  "ColBERT",
58
59
  "ColPali",
60
+ "GGUF",
61
+ "safetensors",
62
+ "ONNX",
63
+ "Transformers",
59
64
  ]
60
65
 
61
66
  MODEL_TYPES = Literal["dense", "cross-encoder", "late-interaction"]
@@ -82,9 +87,6 @@ def _get_loader_name(
82
87
  return loader.__name__
83
88
 
84
89
 
85
- _SENTENCE_TRANSFORMER_LIB_NAME: FRAMEWORKS = "Sentence Transformers"
86
-
87
-
88
90
  class ModelMeta(BaseModel):
89
91
  """The model metadata object.
90
92
 
@@ -319,14 +321,10 @@ class ModelMeta(BaseModel):
319
321
  model_config = None
320
322
  logger.warning(f"Can't get configuration for {model_name}. Error: {e}")
321
323
 
322
- if card_data.library_name == _SENTENCE_TRANSFORMER_LIB_NAME or (
323
- card_data.tags and _SENTENCE_TRANSFORMER_LIB_NAME in card_data.tags
324
- ):
325
- frameworks.append(_SENTENCE_TRANSFORMER_LIB_NAME)
326
- else:
327
- msg = "Model library not recognized, defaulting to Sentence Transformers loader."
328
- logger.warning(msg)
329
- warnings.warn(msg)
324
+ hf_frameworks = (
325
+ cls._get_frameworks_from_hf_tags(model_name) if model_name else []
326
+ )
327
+ frameworks.extend(hf_frameworks)
330
328
 
331
329
  if revision is None:
332
330
  revisions = _get_repo_commits(model_name, "model")
@@ -386,8 +384,6 @@ class ModelMeta(BaseModel):
386
384
  else model.model_card_data.base_model
387
385
  )
388
386
  meta = cls._from_hub(name, revision, compute_metadata)
389
- if _SENTENCE_TRANSFORMER_LIB_NAME not in meta.framework:
390
- meta.framework.append("Sentence Transformers")
391
387
  meta.revision = model.model_card_data.base_model_revision or meta.revision
392
388
  meta.max_tokens = model.max_seq_length
393
389
  meta.embed_dim = model.get_sentence_embedding_dimension()
@@ -413,8 +409,6 @@ class ModelMeta(BaseModel):
413
409
  The generated ModelMeta.
414
410
  """
415
411
  meta = cls._from_hub(model, revision, compute_metadata)
416
- if _SENTENCE_TRANSFORMER_LIB_NAME not in meta.framework:
417
- meta.framework.append("Sentence Transformers")
418
412
  meta.modalities = ["text"]
419
413
 
420
414
  if model and compute_metadata and _repo_exists(model):
@@ -461,8 +455,6 @@ class ModelMeta(BaseModel):
461
455
  from mteb.models import CrossEncoderWrapper
462
456
 
463
457
  meta = cls._from_hub(model.model.name_or_path, revision, compute_metadata)
464
- if _SENTENCE_TRANSFORMER_LIB_NAME not in meta.framework:
465
- meta.framework.append("Sentence Transformers")
466
458
  meta.revision = model.config._commit_hash or meta.revision
467
459
  meta.loader = CrossEncoderWrapper
468
460
  meta.embed_dim = None
@@ -644,6 +636,43 @@ class ModelMeta(BaseModel):
644
636
  return release_date
645
637
  return None
646
638
 
639
+ @staticmethod
640
+ def _get_frameworks_from_hf_tags(model_name: str) -> list[FRAMEWORKS]:
641
+ """Extract frameworks supported by the model from HuggingFace model tags.
642
+
643
+ Args:
644
+ model_name: HuggingFace model name
645
+
646
+ Returns:
647
+ List of framework names found in tags. Defaults to empty list if no frameworks found.
648
+ """
649
+ try:
650
+ info = model_info(model_name)
651
+ if not info.tags:
652
+ return []
653
+ except Exception as e:
654
+ logger.warning(
655
+ f"Failed to fetch frameworks from HuggingFace tags for {model_name}: {e}"
656
+ )
657
+ return []
658
+
659
+ # Mapping from HuggingFace tags to MTEB framework names
660
+ tag_to_framework: dict[str, FRAMEWORKS] = {
661
+ "sentence-transformers": "Sentence Transformers",
662
+ "transformers": "Transformers",
663
+ "onnx": "ONNX",
664
+ "safetensors": "safetensors",
665
+ "gguf": "GGUF",
666
+ }
667
+
668
+ frameworks: list[FRAMEWORKS] = []
669
+
670
+ for framework_tag in tag_to_framework.keys():
671
+ if framework_tag in info.tags:
672
+ frameworks.append(tag_to_framework[framework_tag])
673
+
674
+ return frameworks
675
+
647
676
  def to_python(self) -> str:
648
677
  """Returns a string representation of the model."""
649
678
  return _pydantic_instance_to_code(self)
@@ -432,11 +432,11 @@ class BenchmarkResults(BaseModel):
432
432
  out_file.write(self.model_dump_json(indent=2))
433
433
 
434
434
  @classmethod
435
- def from_validated(cls, **data) -> BenchmarkResults:
435
+ def from_validated(cls, **data: Any) -> BenchmarkResults:
436
436
  """Create BenchmarkResults from validated data.
437
437
 
438
438
  Args:
439
- data: Dictionary containing the data.
439
+ **data: Arbitrary keyword arguments containing the data.
440
440
 
441
441
  Returns:
442
442
  An instance of BenchmarkResults.
@@ -25,7 +25,7 @@ class KurdishSentimentClassification(AbsTaskClassification):
25
25
  dialect=["Sorani"],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @article{article,
28
+ @article{badawi2024kurdisent,
29
29
  author = {Badawi, Soran and Kazemi, Arefeh and Rezaie, Vali},
30
30
  doi = {10.1007/s10579-023-09716-6},
31
31
  journal = {Language Resources and Evaluation},
@@ -62,7 +62,7 @@ class KurdishSentimentClassificationV2(AbsTaskClassification):
62
62
  dialect=["Sorani"],
63
63
  sample_creation="found",
64
64
  bibtex_citation=r"""
65
- @article{article,
65
+ @article{badawi2024kurdisent,
66
66
  author = {Badawi, Soran and Kazemi, Arefeh and Rezaie, Vali},
67
67
  doi = {10.1007/s10579-023-09716-6},
68
68
  journal = {Language Resources and Evaluation},
@@ -25,7 +25,7 @@ class HUMEWikiCitiesClustering(AbsTaskClusteringLegacy):
25
25
  dialect=[],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @online{wikidump,
28
+ @online{wikidump2024,
29
29
  author = {Wikimedia Foundation},
30
30
  title = {Wikimedia Downloads},
31
31
  url = {https://dumps.wikimedia.org},
@@ -25,7 +25,7 @@ class WikiCitiesClustering(AbsTaskClusteringLegacy):
25
25
  dialect=[],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @online{wikidump,
28
+ @online{wikidump2024,
29
29
  author = {Wikimedia Foundation},
30
30
  title = {Wikimedia Downloads},
31
31
  url = {https://dumps.wikimedia.org},
@@ -226,7 +226,7 @@ class ThuNewsClusteringFastS2S(AbsTaskClustering):
226
226
  dialect=[],
227
227
  sample_creation="found",
228
228
  bibtex_citation=r"""
229
- @software{THUCTC,
229
+ @software{sun2016thuctc,
230
230
  author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
231
231
  note = {THU Chinese Text Classification Toolkit},
232
232
  publisher = {THU Natural Language Processing Lab},
@@ -285,7 +285,7 @@ class ThuNewsClusteringFastP2P(AbsTaskClustering):
285
285
  dialect=[],
286
286
  sample_creation="found",
287
287
  bibtex_citation=r"""
288
- @software{THUCTC,
288
+ @software{sun2016thuctc,
289
289
  author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
290
290
  note = {THU Chinese Text Classification Toolkit},
291
291
  publisher = {THU Natural Language Processing Lab},
@@ -44,7 +44,7 @@ class WikipediaRerankingMultilingual(AbsTaskRetrieval):
44
44
  dialect=[],
45
45
  sample_creation="LM-generated and verified",
46
46
  bibtex_citation=r"""
47
- @online{wikidump,
47
+ @online{wikidump2024,
48
48
  author = {Wikimedia Foundation},
49
49
  title = {Wikimedia Downloads},
50
50
  url = {https://dumps.wikimedia.org},
@@ -25,7 +25,7 @@ class CUB200I2I(AbsTaskRetrieval):
25
25
  modalities=["image"],
26
26
  sample_creation="created",
27
27
  bibtex_citation=r"""
28
- @article{article,
28
+ @article{welinder2010caltech,
29
29
  author = {Welinder, Peter and Branson, Steve and Mita, Takeshi and Wah, Catherine and Schroff, Florian and Belongie, Serge and Perona, Pietro},
30
30
  month = {09},
31
31
  pages = {},
@@ -1,5 +1,5 @@
1
1
  from .argu_ana_vn_retrieval import ArguAnaVN
2
- from .climate_fevervn_retrieval import ClimateFEVERVN
2
+ from .climate_fevervn_retrieval import ClimateFEVERVN, NanoClimateFEVERVN
3
3
  from .cqa_dupstack_android_vn_retrieval import CQADupstackAndroidVN
4
4
  from .cqa_dupstack_gis_vn_retrieval import CQADupstackGisVN
5
5
  from .cqa_dupstack_mathematica_vn_retrieval import CQADupstackMathematicaVN
@@ -10,19 +10,20 @@ from .cqa_dupstack_tex_vn_retrieval import CQADupstackTexVN
10
10
  from .cqa_dupstack_unix_vn_retrieval import CQADupstackUnixVN
11
11
  from .cqa_dupstack_webmasters_vn_retrieval import CQADupstackWebmastersVN
12
12
  from .cqa_dupstack_wordpress_vn_retrieval import CQADupstackWordpressVN
13
- from .db_pedia_vn_retrieval import DBPediaVN
14
- from .fevervn_retrieval import FEVERVN
13
+ from .db_pedia_vn_retrieval import DBPediaVN, NanoDBPediaVN
14
+ from .fevervn_retrieval import FEVERVN, NanoFEVERVN
15
15
  from .fi_qa2018_vn_retrieval import FiQA2018VN
16
16
  from .green_node_table_markdown_retrieval import GreenNodeTableMarkdownRetrieval
17
- from .hotpot_qavn_retrieval import HotpotQAVN
18
- from .msmarcovn_retrieval import MSMARCOVN
17
+ from .hotpot_qavn_retrieval import HotpotQAVN, NanoHotpotQAVN
18
+ from .msmarcovn_retrieval import MSMARCOVN, NanoMSMARCOVN
19
19
  from .nf_corpus_vn_retrieval import NFCorpusVN
20
- from .nqvn_retrieval import NQVN
20
+ from .nqvn_retrieval import NQVN, NanoNQVN
21
21
  from .quora_vn_retrieval import QuoraVN
22
22
  from .sci_fact_vn_retrieval import SciFactVN
23
23
  from .scidocsvn_retrieval import SCIDOCSVN
24
24
  from .touche2020_vn_retrieval import Touche2020VN
25
25
  from .treccovidvn_retrieval import TRECCOVIDVN
26
+ from .tvpl_retrieval import TVPLRetrieval
26
27
  from .vie_qu_ad_retrieval import VieQuADRetrieval
27
28
  from .zac_legal_text_retrieval import ZacLegalTextRetrieval
28
29
 
@@ -49,8 +50,15 @@ __all__ = [
49
50
  "GreenNodeTableMarkdownRetrieval",
50
51
  "HotpotQAVN",
51
52
  "NFCorpusVN",
53
+ "NanoClimateFEVERVN",
54
+ "NanoDBPediaVN",
55
+ "NanoFEVERVN",
56
+ "NanoHotpotQAVN",
57
+ "NanoMSMARCOVN",
58
+ "NanoNQVN",
52
59
  "QuoraVN",
53
60
  "SciFactVN",
61
+ "TVPLRetrieval",
54
62
  "Touche2020VN",
55
63
  "VieQuADRetrieval",
56
64
  "ZacLegalTextRetrieval",
@@ -36,3 +36,42 @@ class ClimateFEVERVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["ClimateFEVER"],
38
38
  )
39
+
40
+
41
+ class NanoClimateFEVERVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoClimateFEVER-VN",
44
+ description="NanoClimateFEVERVN is a small version of A translated dataset from CLIMATE-FEVER is a dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
45
+ reference="https://www.sustainablefinance.uzh.ch/en/research/climate-fever.html",
46
+ dataset={
47
+ "path": "GreenNode/nano-climate-fever-vn",
48
+ "revision": "1852e852f07403d4529a8520d52b91ff6d57869b",
49
+ },
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Encyclopaedic", "Written"],
61
+ task_subtypes=["Claim verification"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a claim about climate change, retrieve documents that support or refute the claim"
75
+ },
76
+ adapted_from=["ClimateFEVER-VN"],
77
+ )
@@ -36,3 +36,42 @@ class DBPediaVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["DBPedia"],
38
38
  )
39
+
40
+
41
+ class NanoDBPediaVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoDBPedia-VN",
44
+ description="NanoDBPediaVN is a small version of A translated dataset from DBpedia-Entity is a standard test collection for entity search over the DBpedia knowledge base The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
45
+ reference="https://github.com/iai-group/DBpedia-Entity/",
46
+ dataset={
47
+ "path": "GreenNode/nano-dbpedia-vn",
48
+ "revision": "bbc3259bc63bf1e250d7034024092cc3230d5850",
49
+ },
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Written", "Encyclopaedic"],
61
+ task_subtypes=[],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a query, retrieve relevant entity descriptions from DBPedia"
75
+ },
76
+ adapted_from=["DBPedia-VN"],
77
+ )
@@ -36,3 +36,42 @@ class FEVERVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["FEVER"],
38
38
  )
39
+
40
+
41
+ class NanoFEVERVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoFEVER-VN",
44
+ dataset={
45
+ "path": "GreenNode/nano-fever-vn",
46
+ "revision": "457ca6b058ed19b28f2359e2d816d7527af6bef8",
47
+ },
48
+ description="NanoFEVERVN is a small version of A translated dataset from FEVER (Fact Extraction and VERification) consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
49
+ reference="https://fever.ai/",
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Encyclopaedic", "Written"],
61
+ task_subtypes=["Claim verification"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a claim, retrieve documents that support or refute the claim"
75
+ },
76
+ adapted_from=["FEVER-VN"],
77
+ )
@@ -36,3 +36,42 @@ class HotpotQAVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["HotpotQA"],
38
38
  )
39
+
40
+
41
+ class NanoHotpotQAVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoHotpotQA-VN",
44
+ dataset={
45
+ "path": "GreenNode/nano-hotpotqa-vn",
46
+ "revision": "f4de19a2fae1a582de114e5bcd178bb262183113",
47
+ },
48
+ description="NanoHotpotQAVN is a small version of A translated dataset from HotpotQA is a question answering dataset featuring natural, multi-hop questions, with strong supervision for supporting facts to enable more explainable question answering systems. The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
49
+ reference="https://hotpotqa.github.io/",
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Web", "Written"],
61
+ task_subtypes=["Question answering"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a multi-hop question, retrieve documents that can help answer the question"
75
+ },
76
+ adapted_from=["HotpotQA-VN"],
77
+ )
@@ -47,3 +47,51 @@ class MSMARCOVN(AbsTaskRetrieval):
47
47
  """,
48
48
  adapted_from=["MSMARCO"],
49
49
  )
50
+
51
+
52
+ class NanoMSMARCOVN(AbsTaskRetrieval):
53
+ metadata = TaskMetadata(
54
+ name="NanoMSMARCO-VN",
55
+ dataset={
56
+ "path": "GreenNode/nano-msmarco-vn",
57
+ "revision": "f149369c82ec228b05b0f6677699ab4bfbab73f6",
58
+ },
59
+ description="NanoMSMARCOVN is a small version of A translated dataset from MS MARCO is a collection of datasets focused on deep learning in search The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
60
+ reference="https://microsoft.github.io/msmarco/",
61
+ type="Retrieval",
62
+ category="t2t",
63
+ eval_splits=["dev"],
64
+ eval_langs=["vie-Latn"],
65
+ main_score="ndcg_at_10",
66
+ date=("2025-07-29", "2025-07-30"),
67
+ license="cc-by-sa-4.0",
68
+ annotations_creators="derived",
69
+ dialect=[],
70
+ sample_creation="machine-translated and LM verified",
71
+ domains=[
72
+ "Encyclopaedic",
73
+ "Academic",
74
+ "Blog",
75
+ "News",
76
+ "Medical",
77
+ "Government",
78
+ "Reviews",
79
+ "Non-fiction",
80
+ "Social",
81
+ "Web",
82
+ ],
83
+ task_subtypes=["Question answering"],
84
+ bibtex_citation=r"""
85
+ @misc{pham2025vnmtebvietnamesemassivetext,
86
+ archiveprefix = {arXiv},
87
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
88
+ eprint = {2507.21500},
89
+ primaryclass = {cs.CL},
90
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
91
+ url = {https://arxiv.org/abs/2507.21500},
92
+ year = {2025},
93
+ }
94
+ """,
95
+ prompt={"query": "Given a query, retrieve relevant documents from MS MARCO-VN"},
96
+ adapted_from=["MSMARCO-VN"],
97
+ )
@@ -36,3 +36,42 @@ class NQVN(AbsTaskRetrieval):
36
36
  """,
37
37
  adapted_from=["NQ"],
38
38
  )
39
+
40
+
41
+ class NanoNQVN(AbsTaskRetrieval):
42
+ metadata = TaskMetadata(
43
+ name="NanoNQ-VN",
44
+ dataset={
45
+ "path": "GreenNode/nano-nq-vn",
46
+ "revision": "1ad4d6556fe0e5314994839089ce070fb0db8b19",
47
+ },
48
+ description="NanoNQVN is a small version of A translated dataset from NFCorpus: A Full-Text Learning to Rank Dataset for Medical Information Retrieval The process of creating the VN-MTEB (Vietnamese Massive Text Embedding Benchmark) from English samples involves a new automated system: - The system uses large language models (LLMs), specifically Coherence's Aya model, for translation. - Applies advanced embedding models to filter the translations. - Use LLM-as-a-judge to scoring the quality of the samples base on multiple criteria.",
49
+ reference="https://ai.google.com/research/NaturalQuestions/",
50
+ type="Retrieval",
51
+ category="t2t",
52
+ eval_splits=["test"],
53
+ eval_langs=["vie-Latn"],
54
+ main_score="ndcg_at_10",
55
+ date=("2025-07-29", "2025-07-30"),
56
+ license="cc-by-sa-4.0",
57
+ annotations_creators="derived",
58
+ dialect=[],
59
+ sample_creation="machine-translated and LM verified",
60
+ domains=["Written", "Encyclopaedic"],
61
+ task_subtypes=["Question answering"],
62
+ bibtex_citation=r"""
63
+ @misc{pham2025vnmtebvietnamesemassivetext,
64
+ archiveprefix = {arXiv},
65
+ author = {Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
66
+ eprint = {2507.21500},
67
+ primaryclass = {cs.CL},
68
+ title = {VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
69
+ url = {https://arxiv.org/abs/2507.21500},
70
+ year = {2025},
71
+ }
72
+ """,
73
+ prompt={
74
+ "query": "Given a question, retrieve Wikipedia passages that answer the question"
75
+ },
76
+ adapted_from=["NQ-VN"],
77
+ )
@@ -0,0 +1,42 @@
1
+ from mteb.abstasks.retrieval import AbsTaskRetrieval
2
+ from mteb.abstasks.task_metadata import TaskMetadata
3
+
4
+ TEST_SAMPLES = 2048
5
+
6
+
7
+ class TVPLRetrieval(AbsTaskRetrieval):
8
+ metadata = TaskMetadata(
9
+ name="TVPLRetrieval",
10
+ description="A Vietnamese dataset for evaluating legal text retrieval. From Thu vien phap luat (TVPL) dataset: Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models.",
11
+ reference="https://aclanthology.org/2020.coling-main.233.pdf",
12
+ dataset={
13
+ "path": "GreenNode/TVPL-Retrieval-VN",
14
+ "revision": "6661dba4dfedff606537732d9f35f2c3738b081a",
15
+ },
16
+ type="Retrieval",
17
+ category="t2t",
18
+ modalities=["text"],
19
+ eval_splits=["test"],
20
+ eval_langs=["vie-Latn"],
21
+ main_score="ndcg_at_10",
22
+ date=("2025-07-29", "2025-07-30"),
23
+ license="cc-by-sa-4.0",
24
+ dialect=[],
25
+ annotations_creators="human-annotated",
26
+ domains=["Legal"],
27
+ task_subtypes=["Question answering"],
28
+ sample_creation="found",
29
+ bibtex_citation=r"""
30
+ @article{10.1145/3732938,
31
+ address = {New York, NY, USA},
32
+ author = {Le, Huong and Luu, Ngoc and Nguyen, Thanh and Dao, Tuan and Dinh, Sang},
33
+ doi = {10.1145/3732938},
34
+ issn = {2375-4699},
35
+ journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
36
+ publisher = {Association for Computing Machinery},
37
+ title = {Optimizing Answer Generator in Vietnamese Legal Question Answering Systems Using Language Models},
38
+ url = {https://doi.org/10.1145/3732938},
39
+ year = {2025},
40
+ }
41
+ """,
42
+ )
@@ -24,5 +24,19 @@ class ZacLegalTextRetrieval(AbsTaskRetrieval):
24
24
  annotations_creators="human-annotated",
25
25
  dialect=[],
26
26
  sample_creation="found",
27
- bibtex_citation="", # TODO: Add bibtex citation when the paper is published
27
+ bibtex_citation=r"""
28
+ @inproceedings{10.1007/978-981-95-1746-6_17,
29
+ address = {Singapore},
30
+ author = {Pham, Bao Loc
31
+ and Hoang, Quoc Viet
32
+ and Luu, Quy Tung
33
+ and Vo, Trong Thu},
34
+ booktitle = {Proceedings of the Fifth International Conference on Intelligent Systems and Networks},
35
+ isbn = {978-981-95-1746-6},
36
+ pages = {153--163},
37
+ publisher = {Springer Nature Singapore},
38
+ title = {GN-TRVN: A Benchmark for Vietnamese Table Markdown Retrieval Task},
39
+ year = {2026},
40
+ }
41
+ """,
28
42
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.6.4
3
+ Version: 2.6.6
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -32,8 +32,6 @@ Requires-Dist: rich>=0.0.0
32
32
  Requires-Dist: pytrec-eval-terrier>=0.5.6
33
33
  Requires-Dist: pydantic>=2.0.0
34
34
  Requires-Dist: polars>=0.20.22
35
- Requires-Dist: torch<2.9.0; python_full_version < "3.14"
36
- Requires-Dist: torch>=2.9.0; python_full_version >= "3.14"
37
35
  Provides-Extra: image
38
36
  Requires-Dist: torchvision>0.2.1; extra == "image"
39
37
  Requires-Dist: transformers[torch-vision,vision]; extra == "image"
@@ -97,6 +95,8 @@ Requires-Dist: colpali_engine>=0.3.12; python_full_version < "3.14" and extra ==
97
95
  Provides-Extra: colqwen3
98
96
  Requires-Dist: transformers>=4.57; extra == "colqwen3"
99
97
  Requires-Dist: torchvision>=0.22.1; extra == "colqwen3"
98
+ Provides-Extra: sauerkrautlm-colpali
99
+ Requires-Dist: sauerkrautlm-colpali>=0.1.0; python_full_version < "3.14" and extra == "sauerkrautlm-colpali"
100
100
  Provides-Extra: xet
101
101
  Requires-Dist: huggingface_hub>=0.32.0; extra == "xet"
102
102
  Provides-Extra: youtu