mteb 2.6.4__py3-none-any.whl → 2.6.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. mteb/abstasks/classification.py +2 -3
  2. mteb/abstasks/multilabel_classification.py +3 -3
  3. mteb/abstasks/regression.py +1 -1
  4. mteb/abstasks/retrieval.py +1 -1
  5. mteb/abstasks/task_metadata.py +9 -14
  6. mteb/models/model_implementations/align_models.py +1 -1
  7. mteb/models/model_implementations/andersborges.py +2 -2
  8. mteb/models/model_implementations/ara_models.py +1 -1
  9. mteb/models/model_implementations/arctic_models.py +8 -8
  10. mteb/models/model_implementations/b1ade_models.py +1 -1
  11. mteb/models/model_implementations/bge_models.py +45 -21
  12. mteb/models/model_implementations/bica_model.py +3 -3
  13. mteb/models/model_implementations/blip2_models.py +2 -2
  14. mteb/models/model_implementations/blip_models.py +8 -8
  15. mteb/models/model_implementations/bmretriever_models.py +4 -4
  16. mteb/models/model_implementations/cadet_models.py +1 -1
  17. mteb/models/model_implementations/cde_models.py +2 -2
  18. mteb/models/model_implementations/clip_models.py +3 -3
  19. mteb/models/model_implementations/clips_models.py +3 -3
  20. mteb/models/model_implementations/codefuse_models.py +5 -5
  21. mteb/models/model_implementations/codesage_models.py +3 -3
  22. mteb/models/model_implementations/cohere_models.py +4 -4
  23. mteb/models/model_implementations/colpali_models.py +3 -3
  24. mteb/models/model_implementations/colqwen_models.py +8 -8
  25. mteb/models/model_implementations/colsmol_models.py +2 -2
  26. mteb/models/model_implementations/conan_models.py +1 -1
  27. mteb/models/model_implementations/dino_models.py +19 -19
  28. mteb/models/model_implementations/e5_instruct.py +23 -4
  29. mteb/models/model_implementations/e5_models.py +9 -9
  30. mteb/models/model_implementations/e5_v.py +1 -1
  31. mteb/models/model_implementations/eagerworks_models.py +1 -1
  32. mteb/models/model_implementations/emillykkejensen_models.py +3 -3
  33. mteb/models/model_implementations/en_code_retriever.py +1 -1
  34. mteb/models/model_implementations/euler_models.py +2 -2
  35. mteb/models/model_implementations/fa_models.py +9 -9
  36. mteb/models/model_implementations/facebookai.py +14 -2
  37. mteb/models/model_implementations/geogpt_models.py +1 -1
  38. mteb/models/model_implementations/gme_v_models.py +2 -2
  39. mteb/models/model_implementations/google_models.py +1 -1
  40. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  41. mteb/models/model_implementations/gritlm_models.py +2 -2
  42. mteb/models/model_implementations/gte_models.py +25 -13
  43. mteb/models/model_implementations/hinvec_models.py +1 -1
  44. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  45. mteb/models/model_implementations/inf_models.py +2 -2
  46. mteb/models/model_implementations/jasper_models.py +2 -2
  47. mteb/models/model_implementations/jina_clip.py +1 -1
  48. mteb/models/model_implementations/jina_models.py +11 -5
  49. mteb/models/model_implementations/kblab.py +12 -6
  50. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
  51. mteb/models/model_implementations/kfst.py +1 -1
  52. mteb/models/model_implementations/kowshik24_models.py +1 -1
  53. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  54. mteb/models/model_implementations/linq_models.py +1 -1
  55. mteb/models/model_implementations/listconranker.py +1 -1
  56. mteb/models/model_implementations/llm2clip_models.py +3 -3
  57. mteb/models/model_implementations/llm2vec_models.py +8 -8
  58. mteb/models/model_implementations/mdbr_models.py +14 -2
  59. mteb/models/model_implementations/misc_models.py +68 -68
  60. mteb/models/model_implementations/mme5_models.py +1 -1
  61. mteb/models/model_implementations/moco_models.py +2 -2
  62. mteb/models/model_implementations/mod_models.py +1 -1
  63. mteb/models/model_implementations/model2vec_models.py +13 -13
  64. mteb/models/model_implementations/moka_models.py +1 -1
  65. mteb/models/model_implementations/mxbai_models.py +16 -3
  66. mteb/models/model_implementations/nbailab.py +3 -3
  67. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
  68. mteb/models/model_implementations/nomic_models.py +18 -6
  69. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  70. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
  71. mteb/models/model_implementations/nvidia_models.py +3 -3
  72. mteb/models/model_implementations/octen_models.py +2 -2
  73. mteb/models/model_implementations/openclip_models.py +6 -6
  74. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  75. mteb/models/model_implementations/ops_moa_models.py +1 -1
  76. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  77. mteb/models/model_implementations/pawan_models.py +1 -1
  78. mteb/models/model_implementations/piccolo_models.py +1 -1
  79. mteb/models/model_implementations/promptriever_models.py +4 -4
  80. mteb/models/model_implementations/pylate_models.py +5 -5
  81. mteb/models/model_implementations/qodo_models.py +2 -2
  82. mteb/models/model_implementations/qtack_models.py +1 -1
  83. mteb/models/model_implementations/qwen3_models.py +3 -3
  84. mteb/models/model_implementations/qzhou_models.py +2 -2
  85. mteb/models/model_implementations/rasgaard_models.py +1 -1
  86. mteb/models/model_implementations/reasonir_model.py +1 -1
  87. mteb/models/model_implementations/repllama_models.py +1 -1
  88. mteb/models/model_implementations/rerankers_custom.py +9 -3
  89. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  90. mteb/models/model_implementations/richinfoai_models.py +1 -1
  91. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  92. mteb/models/model_implementations/ruri_models.py +10 -10
  93. mteb/models/model_implementations/salesforce_models.py +3 -3
  94. mteb/models/model_implementations/samilpwc_models.py +1 -1
  95. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  96. mteb/models/model_implementations/searchmap_models.py +1 -1
  97. mteb/models/model_implementations/sentence_transformers_models.py +58 -22
  98. mteb/models/model_implementations/shuu_model.py +1 -1
  99. mteb/models/model_implementations/siglip_models.py +10 -10
  100. mteb/models/model_implementations/slm_models.py +416 -0
  101. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  102. mteb/models/model_implementations/stella_models.py +17 -4
  103. mteb/models/model_implementations/tarka_models.py +2 -2
  104. mteb/models/model_implementations/text2vec_models.py +9 -3
  105. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  106. mteb/models/model_implementations/uae_models.py +7 -1
  107. mteb/models/model_implementations/vdr_models.py +1 -1
  108. mteb/models/model_implementations/vi_vn_models.py +6 -6
  109. mteb/models/model_implementations/vlm2vec_models.py +2 -2
  110. mteb/models/model_implementations/youtu_models.py +1 -1
  111. mteb/models/model_implementations/yuan_models.py +1 -1
  112. mteb/models/model_implementations/yuan_models_en.py +1 -1
  113. mteb/models/model_meta.py +46 -17
  114. mteb/results/benchmark_results.py +2 -2
  115. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  116. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  117. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  118. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  119. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  120. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  121. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/METADATA +3 -1
  122. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/RECORD +126 -125
  123. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/WHEEL +0 -0
  124. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/entry_points.txt +0 -0
  125. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/licenses/LICENSE +0 -0
  126. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/top_level.txt +0 -0
@@ -172,7 +172,7 @@ m2v_base_glove_subword = ModelMeta(
172
172
  embed_dim=256,
173
173
  license="mit",
174
174
  similarity_fn_name=ScoringFunction.COSINE,
175
- framework=["NumPy", "Sentence Transformers"],
175
+ framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
176
176
  reference="https://huggingface.co/minishlab/M2V_base_glove_subword",
177
177
  use_instructions=False,
178
178
  adapted_from="BAAI/bge-base-en-v1.5",
@@ -198,7 +198,7 @@ m2v_base_glove = ModelMeta(
198
198
  embed_dim=256,
199
199
  license="mit",
200
200
  similarity_fn_name=ScoringFunction.COSINE,
201
- framework=["NumPy", "Sentence Transformers"],
201
+ framework=["NumPy", "Sentence Transformers", "safetensors"],
202
202
  reference="https://huggingface.co/minishlab/M2V_base_glove",
203
203
  use_instructions=False,
204
204
  adapted_from="BAAI/bge-base-en-v1.5",
@@ -223,7 +223,7 @@ m2v_base_output = ModelMeta(
223
223
  embed_dim=256,
224
224
  license="mit",
225
225
  similarity_fn_name=ScoringFunction.COSINE,
226
- framework=["NumPy", "Sentence Transformers"],
226
+ framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
227
227
  reference="https://huggingface.co/minishlab/M2V_base_output",
228
228
  use_instructions=False,
229
229
  adapted_from="BAAI/bge-base-en-v1.5",
@@ -248,7 +248,7 @@ m2v_multilingual_output = ModelMeta(
248
248
  embed_dim=256,
249
249
  license="mit",
250
250
  similarity_fn_name=ScoringFunction.COSINE,
251
- framework=["NumPy", "Sentence Transformers"],
251
+ framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
252
252
  reference="https://huggingface.co/minishlab/M2V_multilingual_output",
253
253
  use_instructions=False,
254
254
  adapted_from="sentence-transformers/LaBSE",
@@ -273,7 +273,7 @@ potion_base_2m = ModelMeta(
273
273
  embed_dim=64,
274
274
  license="mit",
275
275
  similarity_fn_name=ScoringFunction.COSINE,
276
- framework=["NumPy", "Sentence Transformers"],
276
+ framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
277
277
  reference="https://huggingface.co/minishlab/potion-base-2M",
278
278
  use_instructions=False,
279
279
  adapted_from="BAAI/bge-base-en-v1.5",
@@ -298,7 +298,7 @@ potion_base_4m = ModelMeta(
298
298
  embed_dim=128,
299
299
  license="mit",
300
300
  similarity_fn_name=ScoringFunction.COSINE,
301
- framework=["NumPy", "Sentence Transformers"],
301
+ framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
302
302
  reference="https://huggingface.co/minishlab/potion-base-4M",
303
303
  use_instructions=False,
304
304
  adapted_from="BAAI/bge-base-en-v1.5",
@@ -323,7 +323,7 @@ potion_base_8m = ModelMeta(
323
323
  embed_dim=256,
324
324
  license="mit",
325
325
  similarity_fn_name=ScoringFunction.COSINE,
326
- framework=["NumPy", "Sentence Transformers"],
326
+ framework=["NumPy", "Sentence Transformers", "ONNX", "safetensors"],
327
327
  reference="https://huggingface.co/minishlab/potion-base-8M",
328
328
  use_instructions=False,
329
329
  adapted_from="BAAI/bge-base-en-v1.5",
@@ -348,7 +348,7 @@ potion_multilingual_128m = ModelMeta(
348
348
  embed_dim=256,
349
349
  license="mit",
350
350
  similarity_fn_name="cosine",
351
- framework=["NumPy"],
351
+ framework=["NumPy", "ONNX", "safetensors", "Sentence Transformers"],
352
352
  reference="https://huggingface.co/minishlab/potion-multilingual-128M",
353
353
  use_instructions=False,
354
354
  adapted_from="BAAI/bge-m3",
@@ -373,7 +373,7 @@ pubmed_bert_100k = ModelMeta(
373
373
  embed_dim=64,
374
374
  license="apache-2.0",
375
375
  similarity_fn_name="cosine",
376
- framework=["NumPy"],
376
+ framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
377
377
  reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-100K",
378
378
  use_instructions=False,
379
379
  adapted_from="NeuML/pubmedbert-base-embeddings",
@@ -397,7 +397,7 @@ pubmed_bert_500k = ModelMeta(
397
397
  embed_dim=64,
398
398
  license="apache-2.0",
399
399
  similarity_fn_name="cosine",
400
- framework=["NumPy"],
400
+ framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
401
401
  reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-500K",
402
402
  use_instructions=False,
403
403
  adapted_from="NeuML/pubmedbert-base-embeddings",
@@ -421,7 +421,7 @@ pubmed_bert_1m = ModelMeta(
421
421
  embed_dim=64,
422
422
  license="apache-2.0",
423
423
  similarity_fn_name="cosine",
424
- framework=["NumPy"],
424
+ framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
425
425
  reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-1M",
426
426
  use_instructions=False,
427
427
  adapted_from="NeuML/pubmedbert-base-embeddings",
@@ -445,7 +445,7 @@ pubmed_bert_2m = ModelMeta(
445
445
  embed_dim=64,
446
446
  license="apache-2.0",
447
447
  similarity_fn_name="cosine",
448
- framework=["NumPy"],
448
+ framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
449
449
  reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-2M",
450
450
  use_instructions=False,
451
451
  adapted_from="NeuML/pubmedbert-base-embeddings",
@@ -469,7 +469,7 @@ pubmed_bert_8m = ModelMeta(
469
469
  embed_dim=256,
470
470
  license="apache-2.0",
471
471
  similarity_fn_name="cosine",
472
- framework=["NumPy"],
472
+ framework=["NumPy", "Sentence Transformers", "safetensors", "Transformers"],
473
473
  reference="https://huggingface.co/NeuML/pubmedbert-base-embeddings-8M",
474
474
  use_instructions=False,
475
475
  adapted_from="NeuML/pubmedbert-base-embeddings",
@@ -104,7 +104,7 @@ m3e_base = ModelMeta(
104
104
  max_tokens=512,
105
105
  reference="https://huggingface.co/moka-ai/m3e-base",
106
106
  similarity_fn_name=ScoringFunction.COSINE,
107
- framework=["Sentence Transformers", "PyTorch"],
107
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
108
108
  use_instructions=False,
109
109
  superseded_by=None,
110
110
  adapted_from=None,
@@ -33,7 +33,14 @@ mxbai_embed_large_v1 = ModelMeta(
33
33
  license="apache-2.0",
34
34
  reference="https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1",
35
35
  similarity_fn_name=ScoringFunction.COSINE,
36
- framework=["Sentence Transformers", "PyTorch"],
36
+ framework=[
37
+ "Sentence Transformers",
38
+ "PyTorch",
39
+ "ONNX",
40
+ "safetensors",
41
+ "GGUF",
42
+ "Transformers",
43
+ ],
37
44
  use_instructions=True,
38
45
  citation="""
39
46
  @online{emb2024mxbai,
@@ -70,7 +77,13 @@ mxbai_embed_2d_large_v1 = ModelMeta(
70
77
  license="apache-2.0",
71
78
  reference="https://huggingface.co/mixedbread-ai/mxbai-embed-2d-large-v1",
72
79
  similarity_fn_name=ScoringFunction.COSINE,
73
- framework=["Sentence Transformers", "PyTorch"],
80
+ framework=[
81
+ "Sentence Transformers",
82
+ "PyTorch",
83
+ "ONNX",
84
+ "safetensors",
85
+ "Transformers",
86
+ ],
74
87
  use_instructions=True,
75
88
  adapted_from=None,
76
89
  superseded_by=None,
@@ -95,7 +108,7 @@ mxbai_embed_xsmall_v1 = ModelMeta(
95
108
  license="apache-2.0",
96
109
  reference="https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1",
97
110
  similarity_fn_name=ScoringFunction.COSINE,
98
- framework=["Sentence Transformers", "PyTorch"],
111
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors", "GGUF"],
99
112
  use_instructions=True,
100
113
  adapted_from="sentence-transformers/all-MiniLM-L6-v2",
101
114
  superseded_by=None,
@@ -18,7 +18,7 @@ nb_sbert = ModelMeta(
18
18
  max_tokens=75,
19
19
  reference="https://huggingface.co/NbAiLab/nb-sbert-base",
20
20
  similarity_fn_name=ScoringFunction.COSINE,
21
- framework=["Sentence Transformers", "PyTorch"],
21
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
22
22
  use_instructions=False,
23
23
  public_training_code=None,
24
24
  public_training_data="https://huggingface.co/datasets/NbAiLab/mnli-norwegian",
@@ -40,7 +40,7 @@ nb_bert_large = ModelMeta(
40
40
  max_tokens=512,
41
41
  reference="https://huggingface.co/NbAiLab/nb-bert-large",
42
42
  similarity_fn_name=ScoringFunction.COSINE,
43
- framework=["Sentence Transformers", "PyTorch"],
43
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
44
44
  use_instructions=False,
45
45
  public_training_code=None,
46
46
  public_training_data="https://huggingface.co/NbAiLab/nb-bert-large#training-data",
@@ -62,7 +62,7 @@ nb_bert_base = ModelMeta(
62
62
  max_tokens=512,
63
63
  reference="https://huggingface.co/NbAiLab/nb-bert-base",
64
64
  similarity_fn_name=ScoringFunction.COSINE,
65
- framework=["Sentence Transformers", "PyTorch"],
65
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
66
66
  use_instructions=False,
67
67
  public_training_code=None,
68
68
  public_training_data="https://huggingface.co/NbAiLab/nb-bert-base#training-data",
@@ -109,7 +109,7 @@ no_instruct_small_v0 = ModelMeta(
109
109
  license="mit",
110
110
  reference="https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0",
111
111
  similarity_fn_name=ScoringFunction.COSINE,
112
- framework=["PyTorch"],
112
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
113
113
  use_instructions=False,
114
114
  adapted_from=None,
115
115
  superseded_by=None,
@@ -215,7 +215,13 @@ nomic_embed_v1_5 = ModelMeta(
215
215
  license="apache-2.0",
216
216
  reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1.5",
217
217
  similarity_fn_name=ScoringFunction.COSINE,
218
- framework=["Sentence Transformers", "PyTorch"],
218
+ framework=[
219
+ "Sentence Transformers",
220
+ "PyTorch",
221
+ "ONNX",
222
+ "safetensors",
223
+ "Transformers",
224
+ ],
219
225
  use_instructions=True,
220
226
  adapted_from=None,
221
227
  superseded_by=None,
@@ -243,7 +249,13 @@ nomic_embed_v1 = ModelMeta(
243
249
  license="apache-2.0",
244
250
  reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1",
245
251
  similarity_fn_name=ScoringFunction.COSINE,
246
- framework=["Sentence Transformers", "PyTorch"],
252
+ framework=[
253
+ "Sentence Transformers",
254
+ "PyTorch",
255
+ "ONNX",
256
+ "safetensors",
257
+ "Transformers",
258
+ ],
247
259
  use_instructions=True,
248
260
  citation=NOMIC_CITATION,
249
261
  adapted_from=None,
@@ -272,7 +284,7 @@ nomic_embed_v1_ablated = ModelMeta(
272
284
  license="apache-2.0",
273
285
  reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1-ablated",
274
286
  similarity_fn_name=ScoringFunction.COSINE,
275
- framework=["Sentence Transformers", "PyTorch"],
287
+ framework=["Sentence Transformers", "PyTorch", "ONNX"],
276
288
  use_instructions=True,
277
289
  adapted_from=None,
278
290
  superseded_by=None,
@@ -300,7 +312,7 @@ nomic_embed_v1_unsupervised = ModelMeta(
300
312
  license="apache-2.0",
301
313
  reference="https://huggingface.co/nomic-ai/nomic-embed-text-v1-unsupervised",
302
314
  similarity_fn_name=ScoringFunction.COSINE,
303
- framework=["Sentence Transformers", "PyTorch"],
315
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "Transformers"],
304
316
  use_instructions=True,
305
317
  adapted_from=None,
306
318
  superseded_by=None,
@@ -328,7 +340,7 @@ nomic_modern_bert_embed = ModelMeta(
328
340
  license="apache-2.0",
329
341
  reference="https://huggingface.co/nomic-ai/modernbert-embed-base",
330
342
  similarity_fn_name=ScoringFunction.COSINE,
331
- framework=["Sentence Transformers", "PyTorch"],
343
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
332
344
  use_instructions=True,
333
345
  adapted_from="answerdotai/ModernBERT-base",
334
346
  public_training_code="https://github.com/nomic-ai/contrastors/blob/5f7b461e5a13b5636692d1c9f1141b27232fe966/src/contrastors/configs/train/contrastive_pretrain_modernbert.yaml",
@@ -467,7 +479,7 @@ nomic_embed_text_v2_moe = ModelMeta(
467
479
  license="apache-2.0",
468
480
  reference="https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe",
469
481
  similarity_fn_name=ScoringFunction.COSINE,
470
- framework=["Sentence Transformers", "PyTorch"],
482
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
471
483
  use_instructions=True,
472
484
  adapted_from="nomic-ai/nomic-xlm-2048",
473
485
  public_training_data="https://github.com/nomic-ai/contrastors?tab=readme-ov-file#data-access",
@@ -181,7 +181,7 @@ nomic_embed_vision_v1_5 = ModelMeta(
181
181
  open_weights=True,
182
182
  public_training_code="https://github.com/nomic-ai/contrastors",
183
183
  public_training_data=None,
184
- framework=["PyTorch"],
184
+ framework=["PyTorch", "Transformers", "ONNX", "safetensors"],
185
185
  reference="https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5",
186
186
  similarity_fn_name=ScoringFunction.COSINE,
187
187
  use_instructions=True,
@@ -159,7 +159,7 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
159
159
  open_weights=True,
160
160
  public_training_code="Proprietary Code",
161
161
  public_training_data="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1#training-dataset",
162
- framework=["PyTorch"],
162
+ framework=["PyTorch", "Transformers", "safetensors"],
163
163
  reference="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1",
164
164
  similarity_fn_name="MaxSim",
165
165
  use_instructions=True,
@@ -186,7 +186,7 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
186
186
  open_weights=True,
187
187
  public_training_code="Proprietary Code",
188
188
  public_training_data="https://huggingface.co/nvidia/llama-nemoretriever-colembed-1b-v1#training-dataset",
189
- framework=["PyTorch"],
189
+ framework=["PyTorch", "Transformers", "safetensors"],
190
190
  reference="https://huggingface.co/nvidia/llama-nemoretriever-colembed-3b-v1",
191
191
  similarity_fn_name="MaxSim",
192
192
  use_instructions=True,
@@ -123,7 +123,7 @@ NV_embed_v2 = ModelMeta(
123
123
  max_tokens=32768,
124
124
  reference="https://huggingface.co/nvidia/NV-Embed-v2",
125
125
  similarity_fn_name=ScoringFunction.COSINE,
126
- framework=["Sentence Transformers", "PyTorch"],
126
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
127
127
  use_instructions=True,
128
128
  training_datasets=nvidia_training_datasets,
129
129
  public_training_code=None,
@@ -154,7 +154,7 @@ NV_embed_v1 = ModelMeta(
154
154
  max_tokens=32768,
155
155
  reference="https://huggingface.co/nvidia/NV-Embed-v1",
156
156
  similarity_fn_name=ScoringFunction.COSINE,
157
- framework=["Sentence Transformers", "PyTorch"],
157
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
158
158
  use_instructions=True,
159
159
  training_datasets=nvidia_training_datasets,
160
160
  public_training_code=None,
@@ -543,7 +543,7 @@ llama_embed_nemotron_8b = ModelMeta(
543
543
  max_tokens=32768,
544
544
  reference="https://huggingface.co/nvidia/llama-embed-nemotron-8b",
545
545
  similarity_fn_name="cosine",
546
- framework=["PyTorch"],
546
+ framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
547
547
  use_instructions=True,
548
548
  training_datasets=llama_embed_nemotron_training_datasets,
549
549
  public_training_code=None, # Will be released later
@@ -184,7 +184,7 @@ Octen_Embedding_4B = ModelMeta(
184
184
  license="apache-2.0",
185
185
  reference="https://huggingface.co/bflhc/Octen-Embedding-4B",
186
186
  similarity_fn_name="cosine",
187
- framework=["Sentence Transformers", "PyTorch"],
187
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
188
188
  use_instructions=True,
189
189
  public_training_code=None,
190
190
  public_training_data=None,
@@ -214,7 +214,7 @@ Octen_Embedding_8B = ModelMeta(
214
214
  license="apache-2.0",
215
215
  reference="https://huggingface.co/bflhc/Octen-Embedding-8B",
216
216
  similarity_fn_name="cosine",
217
- framework=["Sentence Transformers", "PyTorch"],
217
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
218
218
  use_instructions=True,
219
219
  public_training_code=None,
220
220
  public_training_data=None,
@@ -161,7 +161,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
161
161
  open_weights=True,
162
162
  public_training_code="https://github.com/mlfoundations/open_clip",
163
163
  public_training_data="https://huggingface.co/datasets/mlfoundations/datacomp_1b",
164
- framework=["PyTorch"],
164
+ framework=["PyTorch", "safetensors"],
165
165
  reference="https://huggingface.co/laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K",
166
166
  similarity_fn_name=ScoringFunction.COSINE,
167
167
  use_instructions=False,
@@ -213,7 +213,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
213
213
  open_weights=True,
214
214
  public_training_code="https://github.com/mlfoundations/open_clip",
215
215
  public_training_data="https://laion.ai/blog/laion-5b/",
216
- framework=["PyTorch"],
216
+ framework=["PyTorch", "safetensors"],
217
217
  reference="https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
218
218
  similarity_fn_name=ScoringFunction.COSINE,
219
219
  use_instructions=False,
@@ -239,7 +239,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
239
239
  open_weights=True,
240
240
  public_training_code="https://github.com/mlfoundations/open_clip",
241
241
  public_training_data="https://laion.ai/blog/laion-5b/",
242
- framework=["PyTorch"],
242
+ framework=["PyTorch", "safetensors"],
243
243
  reference="https://huggingface.co/laion/CLIP-ViT-g-14-laion2B-s34B-b88K",
244
244
  similarity_fn_name=ScoringFunction.COSINE,
245
245
  use_instructions=False,
@@ -265,7 +265,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
265
265
  open_weights=True,
266
266
  public_training_code="https://github.com/mlfoundations/open_clip",
267
267
  public_training_data="https://laion.ai/blog/laion-5b/",
268
- framework=["PyTorch"],
268
+ framework=["PyTorch", "safetensors"],
269
269
  reference="https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
270
270
  similarity_fn_name=ScoringFunction.COSINE,
271
271
  use_instructions=False,
@@ -291,7 +291,7 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
291
291
  open_weights=True,
292
292
  public_training_code="https://github.com/mlfoundations/open_clip",
293
293
  public_training_data="https://laion.ai/blog/laion-5b/",
294
- framework=["PyTorch"],
294
+ framework=["PyTorch", "safetensors"],
295
295
  reference="https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K",
296
296
  similarity_fn_name=ScoringFunction.COSINE,
297
297
  use_instructions=False,
@@ -317,7 +317,7 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
317
317
  open_weights=True,
318
318
  public_training_code="https://github.com/mlfoundations/open_clip",
319
319
  public_training_data="https://laion.ai/blog/laion-5b/",
320
- framework=["PyTorch"],
320
+ framework=["PyTorch", "safetensors"],
321
321
  reference="https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K",
322
322
  similarity_fn_name=ScoringFunction.COSINE,
323
323
  use_instructions=False,
@@ -140,7 +140,7 @@ opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
140
140
  max_tokens=8192,
141
141
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte",
142
142
  similarity_fn_name="dot",
143
- framework=["Sentence Transformers", "PyTorch"],
143
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
144
144
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
145
145
  public_training_data=True,
146
146
  use_instructions=True,
@@ -166,7 +166,7 @@ opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
166
166
  max_tokens=512,
167
167
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill",
168
168
  similarity_fn_name="dot",
169
- framework=["Sentence Transformers", "PyTorch"],
169
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
170
170
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
171
171
  public_training_data=True,
172
172
  use_instructions=True,
@@ -188,7 +188,7 @@ opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
188
188
  max_tokens=512,
189
189
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill",
190
190
  similarity_fn_name="dot",
191
- framework=["Sentence Transformers", "PyTorch"],
191
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
192
192
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
193
193
  public_training_data=True,
194
194
  use_instructions=True,
@@ -211,7 +211,7 @@ opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
211
211
  max_tokens=512,
212
212
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini",
213
213
  similarity_fn_name="dot",
214
- framework=["Sentence Transformers", "PyTorch"],
214
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
215
215
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
216
216
  public_training_data=True,
217
217
  use_instructions=True,
@@ -233,7 +233,7 @@ opensearch_neural_sparse_encoding_doc_v1 = ModelMeta(
233
233
  max_tokens=512,
234
234
  reference="https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1",
235
235
  similarity_fn_name="dot",
236
- framework=["Sentence Transformers", "PyTorch"],
236
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
237
237
  public_training_code="https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample",
238
238
  public_training_data=True,
239
239
  use_instructions=True,
@@ -67,7 +67,7 @@ ops_moa_yuan_embedding = ModelMeta(
67
67
  open_weights=True,
68
68
  public_training_code=None,
69
69
  public_training_data=None,
70
- framework=["PyTorch", "Sentence Transformers"],
70
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
71
71
  reference="https://huggingface.co/OpenSearch-AI/Ops-MoA-Yuan-embedding-1.0",
72
72
  similarity_fn_name="cosine",
73
73
  use_instructions=False,
@@ -14,7 +14,7 @@ solon_embeddings_1_1 = ModelMeta(
14
14
  max_tokens=8192,
15
15
  reference="https://huggingface.co/OrdalieTech/Solon-embeddings-mini-beta-1.1",
16
16
  similarity_fn_name="cosine",
17
- framework=["Sentence Transformers", "PyTorch"],
17
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
18
18
  use_instructions=False,
19
19
  public_training_data=(
20
20
  "https://huggingface.co/datasets/PleIAs/common_corpus; "
@@ -26,7 +26,7 @@ pawan_embd_68m = ModelMeta(
26
26
  max_tokens=512,
27
27
  reference="https://huggingface.co/dmedhi/PawanEmbd-68M",
28
28
  similarity_fn_name=ScoringFunction.COSINE,
29
- framework=["Sentence Transformers", "PyTorch"],
29
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
30
30
  adapted_from="ibm-granite/granite-embedding-278m-multilingual",
31
31
  superseded_by=None,
32
32
  public_training_code=None,
@@ -18,7 +18,7 @@ piccolo_base_zh = ModelMeta(
18
18
  max_tokens=512,
19
19
  reference="https://huggingface.co/sensenova/piccolo-base-zh",
20
20
  similarity_fn_name=ScoringFunction.COSINE,
21
- framework=["Sentence Transformers", "PyTorch"],
21
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
22
22
  use_instructions=False,
23
23
  superseded_by=None,
24
24
  adapted_from=None,
@@ -90,7 +90,7 @@ promptriever_llama2 = ModelMeta(
90
90
  ),
91
91
  reference="https://huggingface.co/samaya-ai/promptriever-llama2-7b-v1",
92
92
  similarity_fn_name=ScoringFunction.COSINE,
93
- framework=["PyTorch", "Tevatron"],
93
+ framework=["PyTorch", "Tevatron", "safetensors"],
94
94
  use_instructions=True,
95
95
  citation=PROMPTRIEVER_CITATION,
96
96
  public_training_code=None,
@@ -123,7 +123,7 @@ promptriever_llama3 = ModelMeta(
123
123
  license="apache-2.0",
124
124
  reference="https://huggingface.co/samaya-ai/promptriever-llama3.1-8b-v1",
125
125
  similarity_fn_name=ScoringFunction.COSINE,
126
- framework=["PyTorch", "Tevatron"],
126
+ framework=["PyTorch", "Tevatron", "safetensors"],
127
127
  use_instructions=True,
128
128
  citation=PROMPTRIEVER_CITATION,
129
129
  public_training_code=None,
@@ -156,7 +156,7 @@ promptriever_llama3_instruct = ModelMeta(
156
156
  license="apache-2.0",
157
157
  reference="https://huggingface.co/samaya-ai/promptriever-llama3.1-8b-instruct-v1",
158
158
  similarity_fn_name=ScoringFunction.COSINE,
159
- framework=["PyTorch", "Tevatron"],
159
+ framework=["PyTorch", "Tevatron", "safetensors"],
160
160
  use_instructions=True,
161
161
  citation=PROMPTRIEVER_CITATION,
162
162
  public_training_code=None,
@@ -189,7 +189,7 @@ promptriever_mistral_v1 = ModelMeta(
189
189
  license="apache-2.0",
190
190
  reference="https://huggingface.co/samaya-ai/promptriever-mistral-v0.1-7b-v1",
191
191
  similarity_fn_name=ScoringFunction.COSINE,
192
- framework=["PyTorch", "Tevatron"],
192
+ framework=["PyTorch", "Tevatron", "safetensors"],
193
193
  use_instructions=True,
194
194
  citation=PROMPTRIEVER_CITATION,
195
195
  public_training_code=None,
@@ -29,7 +29,7 @@ logger = logging.getLogger(__name__)
29
29
 
30
30
 
31
31
  class PylateSearchEncoder:
32
- """Mixin class to add PyLate-based indexing and search to an encoder. Implements :class:`SearchProtocol`"""
32
+ """Mixin class to add PyLate-based indexing and search to an encoder. Implements [SearchProtocol][mteb.models.SearchProtocol]"""
33
33
 
34
34
  base_index_dir: Path | None = None
35
35
  _index_dir: Path | None = None
@@ -350,7 +350,7 @@ colbert_v2 = ModelMeta(
350
350
  embed_dim=None,
351
351
  license="mit",
352
352
  similarity_fn_name=ScoringFunction.MAX_SIM,
353
- framework=["PyLate", "ColBERT"],
353
+ framework=["PyLate", "ColBERT", "Transformers", "ONNX", "safetensors"],
354
354
  reference="https://huggingface.co/colbert-ir/colbertv2.0",
355
355
  use_instructions=False,
356
356
  adapted_from=None,
@@ -406,7 +406,7 @@ jina_colbert_v2 = ModelMeta(
406
406
  embed_dim=None,
407
407
  license="cc-by-nc-4.0",
408
408
  similarity_fn_name=ScoringFunction.MAX_SIM,
409
- framework=["PyLate", "ColBERT"],
409
+ framework=["PyLate", "ColBERT", "ONNX", "safetensors"],
410
410
  reference="https://huggingface.co/jinaai/jina-colbert-v2",
411
411
  use_instructions=False,
412
412
  adapted_from=None,
@@ -439,7 +439,7 @@ jina_colbert_v2 = ModelMeta(
439
439
  url = "https://aclanthology.org/2024.mrl-1.11/",
440
440
  doi = "10.18653/v1/2024.mrl-1.11",
441
441
  pages = "159--166",
442
- abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{\%}. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,"
442
+ abstract = "Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT`s late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce a novel architecture and a training framework to support long context window and multilingual retrieval. Leveraging Matryoshka Representation Loss, we further demonstrate that the reducing the embedding dimensionality from 128 to 64 has insignificant impact on the model`s retrieval performance and cut storage requirements by up to 50{\\%}. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks,"
443
443
  }""",
444
444
  )
445
445
 
@@ -462,7 +462,7 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
462
462
  embed_dim=None,
463
463
  license="apache-2.0",
464
464
  similarity_fn_name="MaxSim",
465
- framework=["PyLate", "ColBERT"],
465
+ framework=["PyLate", "ColBERT", "safetensors", "Sentence Transformers"],
466
466
  reference="https://huggingface.co/lightonai/GTE-ModernColBERT-v1",
467
467
  use_instructions=False,
468
468
  adapted_from="Alibaba-NLP/gte-modernbert-base",
@@ -42,7 +42,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
42
42
  max_tokens=32768,
43
43
  reference="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B",
44
44
  similarity_fn_name=ScoringFunction.COSINE,
45
- framework=["Sentence Transformers", "PyTorch"],
45
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
46
46
  use_instructions=False,
47
47
  public_training_code=None,
48
48
  public_training_data=None,
@@ -65,7 +65,7 @@ Qodo_Embed_1_7B = ModelMeta(
65
65
  max_tokens=32768,
66
66
  reference="https://huggingface.co/Qodo/Qodo-Embed-1-7B",
67
67
  similarity_fn_name=ScoringFunction.COSINE,
68
- framework=["Sentence Transformers", "PyTorch"],
68
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
69
69
  use_instructions=False,
70
70
  public_training_code=None,
71
71
  public_training_data=None,
@@ -37,7 +37,7 @@ mini_gte = ModelMeta(
37
37
  max_tokens=512,
38
38
  reference="https://huggingface.co/prdev/mini-gte",
39
39
  similarity_fn_name=ScoringFunction.COSINE,
40
- framework=["Sentence Transformers", "PyTorch"],
40
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
41
41
  use_instructions=False,
42
42
  public_training_code=None,
43
43
  public_training_data=None,
@@ -146,7 +146,7 @@ Qwen3_Embedding_0B6 = ModelMeta(
146
146
  license="apache-2.0",
147
147
  reference="https://huggingface.co/Qwen/Qwen3-Embedding-0.6B",
148
148
  similarity_fn_name="cosine",
149
- framework=["Sentence Transformers", "PyTorch"],
149
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
150
150
  use_instructions=True,
151
151
  public_training_code=None,
152
152
  public_training_data=None,
@@ -169,7 +169,7 @@ Qwen3_Embedding_4B = ModelMeta(
169
169
  license="apache-2.0",
170
170
  reference="https://huggingface.co/Qwen/Qwen3-Embedding-4B",
171
171
  similarity_fn_name="cosine",
172
- framework=["Sentence Transformers", "PyTorch"],
172
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
173
173
  use_instructions=True,
174
174
  public_training_code=None,
175
175
  public_training_data=None,
@@ -192,7 +192,7 @@ Qwen3_Embedding_8B = ModelMeta(
192
192
  license="apache-2.0",
193
193
  reference="https://huggingface.co/Qwen/Qwen3-Embedding-8B",
194
194
  similarity_fn_name="cosine",
195
- framework=["Sentence Transformers", "PyTorch"],
195
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
196
196
  use_instructions=True,
197
197
  public_training_code=None,
198
198
  public_training_data=None,
@@ -70,7 +70,7 @@ QZhou_Embedding = ModelMeta(
70
70
  max_tokens=8192,
71
71
  reference="https://huggingface.co/Kingsoft-LLM/QZhou-Embedding",
72
72
  similarity_fn_name="cosine",
73
- framework=["Sentence Transformers", "PyTorch"],
73
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
74
74
  use_instructions=True,
75
75
  public_training_code=None,
76
76
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
@@ -104,7 +104,7 @@ QZhou_Embedding_Zh = ModelMeta(
104
104
  max_tokens=8192,
105
105
  reference="http://huggingface.co/Kingsoft-LLM/QZhou-Embedding-Zh",
106
106
  similarity_fn_name="cosine",
107
- framework=["Sentence Transformers", "PyTorch"],
107
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
108
108
  use_instructions=True,
109
109
  public_training_code=None,
110
110
  public_training_data=None,