mteb 2.6.4__py3-none-any.whl → 2.6.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. mteb/abstasks/classification.py +2 -3
  2. mteb/abstasks/multilabel_classification.py +3 -3
  3. mteb/abstasks/regression.py +1 -1
  4. mteb/abstasks/retrieval.py +1 -1
  5. mteb/abstasks/task_metadata.py +9 -14
  6. mteb/models/model_implementations/align_models.py +1 -1
  7. mteb/models/model_implementations/andersborges.py +2 -2
  8. mteb/models/model_implementations/ara_models.py +1 -1
  9. mteb/models/model_implementations/arctic_models.py +8 -8
  10. mteb/models/model_implementations/b1ade_models.py +1 -1
  11. mteb/models/model_implementations/bge_models.py +45 -21
  12. mteb/models/model_implementations/bica_model.py +3 -3
  13. mteb/models/model_implementations/blip2_models.py +2 -2
  14. mteb/models/model_implementations/blip_models.py +8 -8
  15. mteb/models/model_implementations/bmretriever_models.py +4 -4
  16. mteb/models/model_implementations/cadet_models.py +1 -1
  17. mteb/models/model_implementations/cde_models.py +2 -2
  18. mteb/models/model_implementations/clip_models.py +3 -3
  19. mteb/models/model_implementations/clips_models.py +3 -3
  20. mteb/models/model_implementations/codefuse_models.py +5 -5
  21. mteb/models/model_implementations/codesage_models.py +3 -3
  22. mteb/models/model_implementations/cohere_models.py +4 -4
  23. mteb/models/model_implementations/colpali_models.py +3 -3
  24. mteb/models/model_implementations/colqwen_models.py +8 -8
  25. mteb/models/model_implementations/colsmol_models.py +2 -2
  26. mteb/models/model_implementations/conan_models.py +1 -1
  27. mteb/models/model_implementations/dino_models.py +19 -19
  28. mteb/models/model_implementations/e5_instruct.py +23 -4
  29. mteb/models/model_implementations/e5_models.py +9 -9
  30. mteb/models/model_implementations/e5_v.py +1 -1
  31. mteb/models/model_implementations/eagerworks_models.py +1 -1
  32. mteb/models/model_implementations/emillykkejensen_models.py +3 -3
  33. mteb/models/model_implementations/en_code_retriever.py +1 -1
  34. mteb/models/model_implementations/euler_models.py +2 -2
  35. mteb/models/model_implementations/fa_models.py +9 -9
  36. mteb/models/model_implementations/facebookai.py +14 -2
  37. mteb/models/model_implementations/geogpt_models.py +1 -1
  38. mteb/models/model_implementations/gme_v_models.py +2 -2
  39. mteb/models/model_implementations/google_models.py +1 -1
  40. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  41. mteb/models/model_implementations/gritlm_models.py +2 -2
  42. mteb/models/model_implementations/gte_models.py +25 -13
  43. mteb/models/model_implementations/hinvec_models.py +1 -1
  44. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  45. mteb/models/model_implementations/inf_models.py +2 -2
  46. mteb/models/model_implementations/jasper_models.py +2 -2
  47. mteb/models/model_implementations/jina_clip.py +1 -1
  48. mteb/models/model_implementations/jina_models.py +11 -5
  49. mteb/models/model_implementations/kblab.py +12 -6
  50. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
  51. mteb/models/model_implementations/kfst.py +1 -1
  52. mteb/models/model_implementations/kowshik24_models.py +1 -1
  53. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  54. mteb/models/model_implementations/linq_models.py +1 -1
  55. mteb/models/model_implementations/listconranker.py +1 -1
  56. mteb/models/model_implementations/llm2clip_models.py +3 -3
  57. mteb/models/model_implementations/llm2vec_models.py +8 -8
  58. mteb/models/model_implementations/mdbr_models.py +14 -2
  59. mteb/models/model_implementations/misc_models.py +68 -68
  60. mteb/models/model_implementations/mme5_models.py +1 -1
  61. mteb/models/model_implementations/moco_models.py +2 -2
  62. mteb/models/model_implementations/mod_models.py +1 -1
  63. mteb/models/model_implementations/model2vec_models.py +13 -13
  64. mteb/models/model_implementations/moka_models.py +1 -1
  65. mteb/models/model_implementations/mxbai_models.py +16 -3
  66. mteb/models/model_implementations/nbailab.py +3 -3
  67. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
  68. mteb/models/model_implementations/nomic_models.py +18 -6
  69. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  70. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
  71. mteb/models/model_implementations/nvidia_models.py +3 -3
  72. mteb/models/model_implementations/octen_models.py +2 -2
  73. mteb/models/model_implementations/openclip_models.py +6 -6
  74. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  75. mteb/models/model_implementations/ops_moa_models.py +1 -1
  76. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  77. mteb/models/model_implementations/pawan_models.py +1 -1
  78. mteb/models/model_implementations/piccolo_models.py +1 -1
  79. mteb/models/model_implementations/promptriever_models.py +4 -4
  80. mteb/models/model_implementations/pylate_models.py +5 -5
  81. mteb/models/model_implementations/qodo_models.py +2 -2
  82. mteb/models/model_implementations/qtack_models.py +1 -1
  83. mteb/models/model_implementations/qwen3_models.py +3 -3
  84. mteb/models/model_implementations/qzhou_models.py +2 -2
  85. mteb/models/model_implementations/rasgaard_models.py +1 -1
  86. mteb/models/model_implementations/reasonir_model.py +1 -1
  87. mteb/models/model_implementations/repllama_models.py +1 -1
  88. mteb/models/model_implementations/rerankers_custom.py +9 -3
  89. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  90. mteb/models/model_implementations/richinfoai_models.py +1 -1
  91. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  92. mteb/models/model_implementations/ruri_models.py +10 -10
  93. mteb/models/model_implementations/salesforce_models.py +3 -3
  94. mteb/models/model_implementations/samilpwc_models.py +1 -1
  95. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  96. mteb/models/model_implementations/searchmap_models.py +1 -1
  97. mteb/models/model_implementations/sentence_transformers_models.py +58 -22
  98. mteb/models/model_implementations/shuu_model.py +1 -1
  99. mteb/models/model_implementations/siglip_models.py +10 -10
  100. mteb/models/model_implementations/slm_models.py +416 -0
  101. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  102. mteb/models/model_implementations/stella_models.py +17 -4
  103. mteb/models/model_implementations/tarka_models.py +2 -2
  104. mteb/models/model_implementations/text2vec_models.py +9 -3
  105. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  106. mteb/models/model_implementations/uae_models.py +7 -1
  107. mteb/models/model_implementations/vdr_models.py +1 -1
  108. mteb/models/model_implementations/vi_vn_models.py +6 -6
  109. mteb/models/model_implementations/vlm2vec_models.py +2 -2
  110. mteb/models/model_implementations/youtu_models.py +1 -1
  111. mteb/models/model_implementations/yuan_models.py +1 -1
  112. mteb/models/model_implementations/yuan_models_en.py +1 -1
  113. mteb/models/model_meta.py +46 -17
  114. mteb/results/benchmark_results.py +2 -2
  115. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  116. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  117. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  118. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  119. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  120. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  121. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/METADATA +3 -1
  122. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/RECORD +126 -125
  123. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/WHEEL +0 -0
  124. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/entry_points.txt +0 -0
  125. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/licenses/LICENSE +0 -0
  126. {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/top_level.txt +0 -0
mteb/models/model_meta.py CHANGED
@@ -17,6 +17,7 @@ from huggingface_hub import (
17
17
  get_safetensors_metadata,
18
18
  hf_hub_download,
19
19
  list_repo_commits,
20
+ model_info,
20
21
  repo_exists,
21
22
  )
22
23
  from huggingface_hub.errors import (
@@ -56,6 +57,10 @@ FRAMEWORKS = Literal[
56
57
  "PyLate",
57
58
  "ColBERT",
58
59
  "ColPali",
60
+ "GGUF",
61
+ "safetensors",
62
+ "ONNX",
63
+ "Transformers",
59
64
  ]
60
65
 
61
66
  MODEL_TYPES = Literal["dense", "cross-encoder", "late-interaction"]
@@ -82,9 +87,6 @@ def _get_loader_name(
82
87
  return loader.__name__
83
88
 
84
89
 
85
- _SENTENCE_TRANSFORMER_LIB_NAME: FRAMEWORKS = "Sentence Transformers"
86
-
87
-
88
90
  class ModelMeta(BaseModel):
89
91
  """The model metadata object.
90
92
 
@@ -319,14 +321,10 @@ class ModelMeta(BaseModel):
319
321
  model_config = None
320
322
  logger.warning(f"Can't get configuration for {model_name}. Error: {e}")
321
323
 
322
- if card_data.library_name == _SENTENCE_TRANSFORMER_LIB_NAME or (
323
- card_data.tags and _SENTENCE_TRANSFORMER_LIB_NAME in card_data.tags
324
- ):
325
- frameworks.append(_SENTENCE_TRANSFORMER_LIB_NAME)
326
- else:
327
- msg = "Model library not recognized, defaulting to Sentence Transformers loader."
328
- logger.warning(msg)
329
- warnings.warn(msg)
324
+ hf_frameworks = (
325
+ cls._get_frameworks_from_hf_tags(model_name) if model_name else []
326
+ )
327
+ frameworks.extend(hf_frameworks)
330
328
 
331
329
  if revision is None:
332
330
  revisions = _get_repo_commits(model_name, "model")
@@ -386,8 +384,6 @@ class ModelMeta(BaseModel):
386
384
  else model.model_card_data.base_model
387
385
  )
388
386
  meta = cls._from_hub(name, revision, compute_metadata)
389
- if _SENTENCE_TRANSFORMER_LIB_NAME not in meta.framework:
390
- meta.framework.append("Sentence Transformers")
391
387
  meta.revision = model.model_card_data.base_model_revision or meta.revision
392
388
  meta.max_tokens = model.max_seq_length
393
389
  meta.embed_dim = model.get_sentence_embedding_dimension()
@@ -413,8 +409,6 @@ class ModelMeta(BaseModel):
413
409
  The generated ModelMeta.
414
410
  """
415
411
  meta = cls._from_hub(model, revision, compute_metadata)
416
- if _SENTENCE_TRANSFORMER_LIB_NAME not in meta.framework:
417
- meta.framework.append("Sentence Transformers")
418
412
  meta.modalities = ["text"]
419
413
 
420
414
  if model and compute_metadata and _repo_exists(model):
@@ -461,8 +455,6 @@ class ModelMeta(BaseModel):
461
455
  from mteb.models import CrossEncoderWrapper
462
456
 
463
457
  meta = cls._from_hub(model.model.name_or_path, revision, compute_metadata)
464
- if _SENTENCE_TRANSFORMER_LIB_NAME not in meta.framework:
465
- meta.framework.append("Sentence Transformers")
466
458
  meta.revision = model.config._commit_hash or meta.revision
467
459
  meta.loader = CrossEncoderWrapper
468
460
  meta.embed_dim = None
@@ -644,6 +636,43 @@ class ModelMeta(BaseModel):
644
636
  return release_date
645
637
  return None
646
638
 
639
+ @staticmethod
640
+ def _get_frameworks_from_hf_tags(model_name: str) -> list[FRAMEWORKS]:
641
+ """Extract frameworks supported by the model from HuggingFace model tags.
642
+
643
+ Args:
644
+ model_name: HuggingFace model name
645
+
646
+ Returns:
647
+ List of framework names found in tags. Defaults to empty list if no frameworks found.
648
+ """
649
+ try:
650
+ info = model_info(model_name)
651
+ if not info.tags:
652
+ return []
653
+ except Exception as e:
654
+ logger.warning(
655
+ f"Failed to fetch frameworks from HuggingFace tags for {model_name}: {e}"
656
+ )
657
+ return []
658
+
659
+ # Mapping from HuggingFace tags to MTEB framework names
660
+ tag_to_framework: dict[str, FRAMEWORKS] = {
661
+ "sentence-transformers": "Sentence Transformers",
662
+ "transformers": "Transformers",
663
+ "onnx": "ONNX",
664
+ "safetensors": "safetensors",
665
+ "gguf": "GGUF",
666
+ }
667
+
668
+ frameworks: list[FRAMEWORKS] = []
669
+
670
+ for framework_tag in tag_to_framework.keys():
671
+ if framework_tag in info.tags:
672
+ frameworks.append(tag_to_framework[framework_tag])
673
+
674
+ return frameworks
675
+
647
676
  def to_python(self) -> str:
648
677
  """Returns a string representation of the model."""
649
678
  return _pydantic_instance_to_code(self)
@@ -432,11 +432,11 @@ class BenchmarkResults(BaseModel):
432
432
  out_file.write(self.model_dump_json(indent=2))
433
433
 
434
434
  @classmethod
435
- def from_validated(cls, **data) -> BenchmarkResults:
435
+ def from_validated(cls, **data: Any) -> BenchmarkResults:
436
436
  """Create BenchmarkResults from validated data.
437
437
 
438
438
  Args:
439
- data: Dictionary containing the data.
439
+ **data: Arbitrary keyword arguments containing the data.
440
440
 
441
441
  Returns:
442
442
  An instance of BenchmarkResults.
@@ -25,7 +25,7 @@ class KurdishSentimentClassification(AbsTaskClassification):
25
25
  dialect=["Sorani"],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @article{article,
28
+ @article{badawi2024kurdisent,
29
29
  author = {Badawi, Soran and Kazemi, Arefeh and Rezaie, Vali},
30
30
  doi = {10.1007/s10579-023-09716-6},
31
31
  journal = {Language Resources and Evaluation},
@@ -62,7 +62,7 @@ class KurdishSentimentClassificationV2(AbsTaskClassification):
62
62
  dialect=["Sorani"],
63
63
  sample_creation="found",
64
64
  bibtex_citation=r"""
65
- @article{article,
65
+ @article{badawi2024kurdisent,
66
66
  author = {Badawi, Soran and Kazemi, Arefeh and Rezaie, Vali},
67
67
  doi = {10.1007/s10579-023-09716-6},
68
68
  journal = {Language Resources and Evaluation},
@@ -25,7 +25,7 @@ class HUMEWikiCitiesClustering(AbsTaskClusteringLegacy):
25
25
  dialect=[],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @online{wikidump,
28
+ @online{wikidump2024,
29
29
  author = {Wikimedia Foundation},
30
30
  title = {Wikimedia Downloads},
31
31
  url = {https://dumps.wikimedia.org},
@@ -25,7 +25,7 @@ class WikiCitiesClustering(AbsTaskClusteringLegacy):
25
25
  dialect=[],
26
26
  sample_creation="found",
27
27
  bibtex_citation=r"""
28
- @online{wikidump,
28
+ @online{wikidump2024,
29
29
  author = {Wikimedia Foundation},
30
30
  title = {Wikimedia Downloads},
31
31
  url = {https://dumps.wikimedia.org},
@@ -226,7 +226,7 @@ class ThuNewsClusteringFastS2S(AbsTaskClustering):
226
226
  dialect=[],
227
227
  sample_creation="found",
228
228
  bibtex_citation=r"""
229
- @software{THUCTC,
229
+ @software{sun2016thuctc,
230
230
  author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
231
231
  note = {THU Chinese Text Classification Toolkit},
232
232
  publisher = {THU Natural Language Processing Lab},
@@ -285,7 +285,7 @@ class ThuNewsClusteringFastP2P(AbsTaskClustering):
285
285
  dialect=[],
286
286
  sample_creation="found",
287
287
  bibtex_citation=r"""
288
- @software{THUCTC,
288
+ @software{sun2016thuctc,
289
289
  author = {Sun, M. and Li, J. and Guo, Z. and Yu, Z. and Zheng, Y. and Si, X. and Liu, Z.},
290
290
  note = {THU Chinese Text Classification Toolkit},
291
291
  publisher = {THU Natural Language Processing Lab},
@@ -44,7 +44,7 @@ class WikipediaRerankingMultilingual(AbsTaskRetrieval):
44
44
  dialect=[],
45
45
  sample_creation="LM-generated and verified",
46
46
  bibtex_citation=r"""
47
- @online{wikidump,
47
+ @online{wikidump2024,
48
48
  author = {Wikimedia Foundation},
49
49
  title = {Wikimedia Downloads},
50
50
  url = {https://dumps.wikimedia.org},
@@ -25,7 +25,7 @@ class CUB200I2I(AbsTaskRetrieval):
25
25
  modalities=["image"],
26
26
  sample_creation="created",
27
27
  bibtex_citation=r"""
28
- @article{article,
28
+ @article{welinder2010caltech,
29
29
  author = {Welinder, Peter and Branson, Steve and Mita, Takeshi and Wah, Catherine and Schroff, Florian and Belongie, Serge and Perona, Pietro},
30
30
  month = {09},
31
31
  pages = {},
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mteb
3
- Version: 2.6.4
3
+ Version: 2.6.5
4
4
  Summary: Massive Text Embedding Benchmark
5
5
  Author-email: MTEB Contributors <niklas@huggingface.co>, Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Nouamane Tazi <nouamane@huggingface.co>, Nils Reimers <info@nils-reimers.de>
6
6
  Maintainer-email: Kenneth Enevoldsen <kenneth.enevoldsen@cas.au.dk>, Roman Solomatin <risolomatin@gmail.com>, Isaac Chung <chungisaac1217@gmail.com>
@@ -97,6 +97,8 @@ Requires-Dist: colpali_engine>=0.3.12; python_full_version < "3.14" and extra ==
97
97
  Provides-Extra: colqwen3
98
98
  Requires-Dist: transformers>=4.57; extra == "colqwen3"
99
99
  Requires-Dist: torchvision>=0.22.1; extra == "colqwen3"
100
+ Provides-Extra: sauerkrautlm-colpali
101
+ Requires-Dist: sauerkrautlm-colpali>=0.1.0; python_full_version < "3.14" and extra == "sauerkrautlm-colpali"
100
102
  Provides-Extra: xet
101
103
  Requires-Dist: huggingface_hub>=0.32.0; extra == "xet"
102
104
  Provides-Extra: youtu
@@ -35,17 +35,17 @@ mteb/abstasks/_stratification.py,sha256=GnqYRtkFYsB-412EvMR2iMqIinFr98NCSmxHeCXc
35
35
  mteb/abstasks/abstask.py,sha256=0q6o6y_F5fe9l8V-DyQT7oJkGJHD0pjuWXxgAj-6CPc,25535
36
36
  mteb/abstasks/aggregate_task_metadata.py,sha256=nDkXU-_mxPdf_YK8d4P-fPGAzX3jBfwA19P7ZOgn0Fc,5646
37
37
  mteb/abstasks/aggregated_task.py,sha256=l7Qbr6sVKzRizlXd8Hio9LMrI545Www4fZafjylsrN0,6056
38
- mteb/abstasks/classification.py,sha256=g_Ie6poDDA6CjkeLMYYi6g1nKoq-f7rNwC6rYmksOxM,13690
38
+ mteb/abstasks/classification.py,sha256=8MyQqGBqknPaaNgsfO9wnhgPc2nI-sggZpPFA4znUNc,13570
39
39
  mteb/abstasks/clustering.py,sha256=q8EBZJGvNSXMO4YghnGjI294jSGWyxe5PEpnYYURCDo,14612
40
40
  mteb/abstasks/clustering_legacy.py,sha256=OFBmHwLIOTpzwgGLuxhmSyp13vBJog9-ZCq0Ambo6eU,8853
41
41
  mteb/abstasks/dataset_card_template.md,sha256=aD6l8qc3_jxwoIGJNYLzse-jpRa8hu92AxpnUtNgges,5122
42
- mteb/abstasks/multilabel_classification.py,sha256=uRUPGRig5K-_Lex79X2tnWOwIgC0_noezMUIBKv7B5A,9538
42
+ mteb/abstasks/multilabel_classification.py,sha256=4HWIZY2zXv_1gbcmMj04G5yEKSErS6m97KpuWXcRJyg,9528
43
43
  mteb/abstasks/pair_classification.py,sha256=vp8gJXlr11kwdg6wdgkIgouAdSKMAczVjdG8VQw-y5U,13755
44
- mteb/abstasks/regression.py,sha256=-t57ZfZzNIa8iKQgJHCs7uZcKkX-RwdBZm7bUjintas,8880
45
- mteb/abstasks/retrieval.py,sha256=dwQZcqNOD1T8k4kYdTTMCTlEuB0fFRDkzbNm45asTXw,26542
44
+ mteb/abstasks/regression.py,sha256=sROjvfasLS89KRPUTsc1ONFsBTzfoqlpxLQfIkKBQXs,8763
45
+ mteb/abstasks/retrieval.py,sha256=NirMpZYVM4jPUfpBiqlO2icwKPLN3QbBpfv0_oBrvKg,26547
46
46
  mteb/abstasks/retrieval_dataset_loaders.py,sha256=WukcFAn54rUpXULCG43eysHozXHAxo2CaPhQyL_2Yg8,9401
47
47
  mteb/abstasks/sts.py,sha256=61hb19uZnmM0-NtaMLhVjo-5kvRW2nzA3PrEafIjhJA,9233
48
- mteb/abstasks/task_metadata.py,sha256=11bkcVzINK1nX18kiugGP5kfQHc8YqPaCeYh4HckJng,27061
48
+ mteb/abstasks/task_metadata.py,sha256=7TM_ls5bzYA1dHFq3VQgeioiyLrvMQz4i3hmWIsnD4M,27029
49
49
  mteb/abstasks/zeroshot_classification.py,sha256=JeRSqEj2wILM5AziKw02-0iwzCp7g7X5ALh4LX7mhU8,6024
50
50
  mteb/abstasks/_data_filter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  mteb/abstasks/_data_filter/filters.py,sha256=znU7pjA7GYbChxUVyPGgCIdp7OvFeawBvksXki5LMcg,4611
@@ -1448,7 +1448,7 @@ mteb/models/__init__.py,sha256=ABTuoqiBjBtBWW3LYY7ItBHdylR6jWoy06HH0g6j6fU,910
1448
1448
  mteb/models/abs_encoder.py,sha256=HSJTjvcPYJRsKhhZeK2r6YP241EqpovwBcAuX1NevKE,16553
1449
1449
  mteb/models/get_model_meta.py,sha256=wVh2FaWevJ10hJlbm-FQtTQazLMfnkEV3IK7PUyBPOQ,6082
1450
1450
  mteb/models/instruct_wrapper.py,sha256=PjgDKFnc160QP9jcPkxdI3OtcljyUdapuOcKZNGkNHo,9661
1451
- mteb/models/model_meta.py,sha256=TrcE_Wwf_jQaKFU6K1oypEnEIBgdhHLDYLmvFwc2Xcg,30494
1451
+ mteb/models/model_meta.py,sha256=x8EuA8Zpc4DqhK_50v5TAZ7n2J2yhHqf5U0ldCpPnw0,31101
1452
1452
  mteb/models/models_protocols.py,sha256=LvHS14Rv22AsfY-391yau_cPAQwoKXRsvyYWCBy6VVQ,9165
1453
1453
  mteb/models/search_wrappers.py,sha256=yu3BnXLqE5JbOD14cF2mhyjvlF5LRKPfgk8uUuDhbjI,20939
1454
1454
  mteb/models/sentence_transformer_wrapper.py,sha256=KLleEFx31773zPT-5mqHGBOT5Km6fVkwwxtMYuepeZY,12829
@@ -1460,137 +1460,138 @@ mteb/models/cache_wrappers/cache_backends/_hash_utils.py,sha256=CeewRAwKr2RhFB7V
1460
1460
  mteb/models/cache_wrappers/cache_backends/faiss_cache.py,sha256=oAm5Ca7iR0AE1ivSvOF3Nbbtb_jhfCwp8O1Ck4vSk3s,3828
1461
1461
  mteb/models/cache_wrappers/cache_backends/numpy_cache.py,sha256=V275IY-0lyh2REqZjIZOgJJ7SY05yiWdHNF2kiSdRfo,8071
1462
1462
  mteb/models/model_implementations/__init__.py,sha256=BZDdde6ajKv-yroy9mqE2YS3Hw1KBdKoxBPg8aPTZEs,1164
1463
- mteb/models/model_implementations/align_models.py,sha256=hKnheWaRqpAcPo1SJa_c2vBbB1ayrKjWmSjbZ5bwGAw,4544
1463
+ mteb/models/model_implementations/align_models.py,sha256=nR-sxBHV7t-x35aihSQwzSXe09iRZutpqwFqmAnTZGA,4560
1464
1464
  mteb/models/model_implementations/amazon_models.py,sha256=a9bLYQ1ZGWDo4RdyaPNsBqadMrBm550fLIFr1Zfp2Nk,720
1465
- mteb/models/model_implementations/andersborges.py,sha256=RCLv31Bj8FzktPWnWpBoWAi1oOr-mAQibgzp83l5ABQ,2381
1466
- mteb/models/model_implementations/ara_models.py,sha256=UUTvLOZyKlF0-pTDniwQ-ItDONdH2JsyJKUdwtZ6aZI,1447
1467
- mteb/models/model_implementations/arctic_models.py,sha256=Ca4OzC89F0kKb5CRd-r2Wo65MF2dsS5GiB6bCWnjfQY,10558
1468
- mteb/models/model_implementations/b1ade_models.py,sha256=voOc0gTpqE31UxzaMZq_8AnWULJZwQBiFzViVx-m2Lk,1635
1465
+ mteb/models/model_implementations/andersborges.py,sha256=TkZFz55hn3A8qBBKW4SChOMAiVRVhUdzF1gSaiv4icc,2411
1466
+ mteb/models/model_implementations/ara_models.py,sha256=pE1aW6a4AdP2H0p6-YCyMi6kBGpDUsI7xi8qDtRVD_k,1478
1467
+ mteb/models/model_implementations/arctic_models.py,sha256=G03_fOm_pgYbT9rgMruVlI0sEN_B8fB9HAt5nzRbbRs,10750
1468
+ mteb/models/model_implementations/b1ade_models.py,sha256=oyUmA83CjiAqh51nl3c4k5NuzB-SBySyMSXsbEU--hU,1666
1469
1469
  mteb/models/model_implementations/bedrock_models.py,sha256=KKs_0_Cl6f0nzzmxmmKJ1vR2r3B7xRKMbNehov4EGjQ,8813
1470
- mteb/models/model_implementations/bge_models.py,sha256=L98iw0GkSY5BDBVC3LELf2MYwjNG_sANlVwKxObD2xY,24528
1471
- mteb/models/model_implementations/bica_model.py,sha256=Q2dg0w_lrcBhnOUjI4ej9ec9U82aWUyzNx7ezRv81vQ,1253
1472
- mteb/models/model_implementations/blip2_models.py,sha256=F55NYHrK-rprWblIfkKg3GRsOuTqBNZlOY1R33UnLms,7687
1473
- mteb/models/model_implementations/blip_models.py,sha256=LZrk5tn_9gokuZTfuv-DasJqx3UTgZsAEFmlJpQ-9xc,11596
1470
+ mteb/models/model_implementations/bge_models.py,sha256=YMatt2zsOx3EVA7DQp6m6NgnTgsVU-JxWD6iEA4-IFU,25171
1471
+ mteb/models/model_implementations/bica_model.py,sha256=vfScW0FBqWG00C7-lb9krWzWnAS7pTzDvBsqMPjeJAM,1266
1472
+ mteb/models/model_implementations/blip2_models.py,sha256=mNnWANEeQoPfgx1I3lDP4jzb3KgejohUMOQz9_KYKWM,7749
1473
+ mteb/models/model_implementations/blip_models.py,sha256=Tfsk0mEo7brFQ9paDTtGri8axZUHzNqAUK7WHEqOfWM,11754
1474
1474
  mteb/models/model_implementations/bm25.py,sha256=nSDtTXu5a5EkjuaF6V4iParwpxlnXKVNDFntp6uj1Q8,4846
1475
- mteb/models/model_implementations/bmretriever_models.py,sha256=Z4lbE0ggAp9dnHKZCrFAuClM5_ie_wirfwhU9R_ddiA,6721
1476
- mteb/models/model_implementations/cadet_models.py,sha256=wzbPmhsvBogFAEukubUir8EItlcmjcmfIGNMhtj-p7Y,2251
1477
- mteb/models/model_implementations/cde_models.py,sha256=u3G-BEWFpL1tsiONs3iaz9BJ_IEcNN0366fCQMMWr2A,9209
1478
- mteb/models/model_implementations/clip_models.py,sha256=snF74_5ISfrRYJwB4yHslO5SEF1cXYa6XIlNaplEqX0,6137
1479
- mteb/models/model_implementations/clips_models.py,sha256=QV9fIoyP2dKrra9aS04TE6rveUecVggr3jfXwNeSAOw,3488
1480
- mteb/models/model_implementations/codefuse_models.py,sha256=NXkFqb1Pdp-HLWkzhh0ZzjVxd45fP0cQgGZ1KvXBk_s,14053
1481
- mteb/models/model_implementations/codesage_models.py,sha256=ZPr2475aZI0vPbbLbetH2kDEY-1yNeO7OjzEfvykvg8,3076
1482
- mteb/models/model_implementations/cohere_models.py,sha256=vAN11i_YaVK_ZwTRE46AG7i1YlSlmVIlw_G6dUWvaBM,13920
1475
+ mteb/models/model_implementations/bmretriever_models.py,sha256=UMvSNK7ZgC0SfHp9nGjvdBSwDB2M-ZqpGlSIaieSl3Y,6845
1476
+ mteb/models/model_implementations/cadet_models.py,sha256=CtY4ioYb7W8LcIYRCO5dh6-Nr1QDp6UYvTUR6FGwTik,2266
1477
+ mteb/models/model_implementations/cde_models.py,sha256=rPyvpd1rEK0F_wwHoJ1GGXWEKZmoNJyR7Km7AOUT5BM,9271
1478
+ mteb/models/model_implementations/clip_models.py,sha256=fDIY9xAh2mtUgnWOlPGR98HmPNLN7-qB0wH8_9ZO_Rk,6200
1479
+ mteb/models/model_implementations/clips_models.py,sha256=RJUMc9q8ZA4HRtcUDa063Rb0GvXl_cIrjU93Xv4epys,3581
1480
+ mteb/models/model_implementations/codefuse_models.py,sha256=dwlHFA0p1oO7vX9NCFmjRa9hgp1_2EnpPCbKN6xfMAc,14208
1481
+ mteb/models/model_implementations/codesage_models.py,sha256=HQqkwv6IuhNkUfrKBa9mnwWozoRKnmYRWOdwluBYjZA,3124
1482
+ mteb/models/model_implementations/cohere_models.py,sha256=nXe2Lizql4N_FmlzyMhgMx2dBYV8EN_4lzi0Y_Z1Afo,13984
1483
1483
  mteb/models/model_implementations/cohere_v.py,sha256=bDrvREsuL1Ea3ZGCGsvXTWQ4nMJND3T0dYqOKAl1vls,15858
1484
- mteb/models/model_implementations/colpali_models.py,sha256=9SooeNDU12nsisM6RIT9B9TOe56qX5vnL1rOctA4Wrc,9219
1485
- mteb/models/model_implementations/colqwen_models.py,sha256=JOhrLlGBF1VEq-KqU6F8wAw80U96RWrGvXl3Ue6rBak,15886
1486
- mteb/models/model_implementations/colsmol_models.py,sha256=TCxNsllRkI6DIb-JLtBlD5s9SrJhVLraP-DT1CNy0EQ,3041
1487
- mteb/models/model_implementations/conan_models.py,sha256=AJJ8_Mv4QR1kQoKamjoZqgjLsosLb3AzNWNuWwvoNq4,6528
1488
- mteb/models/model_implementations/dino_models.py,sha256=P2f_iOFYK4bdDDiYmNgmtWFBaQbyE-0DHUdBAeMI2LE,25429
1489
- mteb/models/model_implementations/e5_instruct.py,sha256=6bQLMC8Nea59qSu8RSqZp9n8XuQokBJHoxfZb2l6BQM,7780
1490
- mteb/models/model_implementations/e5_models.py,sha256=18--kpfMSKxgflGjB3GvyDHOjzOpuooc3iSVe-no2U0,9607
1491
- mteb/models/model_implementations/e5_v.py,sha256=_EGSMU38BrqshKUqZfjDlXvUfrUXMZXiybQP_xpSSOQ,6769
1492
- mteb/models/model_implementations/eagerworks_models.py,sha256=7bSInJGHOUqc9N-yzq0KUAtJZDX0zZkmEkzbCG_Pz0c,5770
1493
- mteb/models/model_implementations/emillykkejensen_models.py,sha256=8TY70wiyDfjqN3BdAD9DJMnIXObTczCRYk4hYWmQOjE,3695
1494
- mteb/models/model_implementations/en_code_retriever.py,sha256=6sSJ7l8Zrf71fYlcGaWAdF0vcZ9OAFeC1IsVtM2W_i8,1069
1495
- mteb/models/model_implementations/euler_models.py,sha256=ftNTnLJ42cjvcUCuM5VyYcm3cQBHk6la5Gezj67_gt8,1132
1484
+ mteb/models/model_implementations/colpali_models.py,sha256=gTGPjk9l-AFDumrO-KdWiP_kOKUNGwmTiDSr7Z2-z_s,9264
1485
+ mteb/models/model_implementations/colqwen_models.py,sha256=lmLBnlGgpMftj1yOzE6eJ2CHfNvqWo70oTxnc_V0Uzk,16038
1486
+ mteb/models/model_implementations/colsmol_models.py,sha256=7JjepKLNIqtQVFzvFlYmx_5Sp4yYPtg48loezhRqmuw,3071
1487
+ mteb/models/model_implementations/conan_models.py,sha256=KmdhZ4l3euYPmGE_2T4F6EQctpcNdwXIHrxpmcdkAMo,6569
1488
+ mteb/models/model_implementations/dino_models.py,sha256=7ok5GpfeXtyPL2XRnPIHXnft2PiO6RPB3uTRPFp1NEI,26018
1489
+ mteb/models/model_implementations/e5_instruct.py,sha256=86Y-MeUOQeAxNhUmqtP-4bFASQSZkDLyhyP3-lzU0yc,8061
1490
+ mteb/models/model_implementations/e5_models.py,sha256=iczmJdoqfoH8dvxwmgd0xGTGR-H9XRbIhQbVqImoAb4,9798
1491
+ mteb/models/model_implementations/e5_v.py,sha256=uTvD61jTrtBdGB5MY83JnIdFi3WXs4xq08nilg1_Ujk,6800
1492
+ mteb/models/model_implementations/eagerworks_models.py,sha256=bk-Vy_BqD-Qn_rpsW4lLaBDza-KRVtfDBVHcXKaqNMQ,5785
1493
+ mteb/models/model_implementations/emillykkejensen_models.py,sha256=Qqzze2MXWioSalQ1cCdXIHRZRUfMN9IxtSU74IwkDb4,3740
1494
+ mteb/models/model_implementations/en_code_retriever.py,sha256=UTOmjnCCDOhqoMyYXKCGDPNOqR5XMmNuE9drpgMzMqs,1084
1495
+ mteb/models/model_implementations/euler_models.py,sha256=6EdpMJFFGVHGgPC44jRrsc7ywunoWN5fku-zBaa88rA,1162
1496
1496
  mteb/models/model_implementations/evaclip_models.py,sha256=oEoHnKQ4W09EQUCnNwpEd1ieDZGbth4j6lXfC-9jVBc,8104
1497
- mteb/models/model_implementations/fa_models.py,sha256=Hnw2E2D1ahleS15kkC0aGDIKW1Y-0wIMOlXtqEG6Bks,9818
1498
- mteb/models/model_implementations/facebookai.py,sha256=0x2c8LmvIFg6kGXtmDa9cbJeTmG3tia12vyr7lgycI0,4886
1499
- mteb/models/model_implementations/geogpt_models.py,sha256=X85_jeFzBZMjNRsyqwFbIQBgXXP7rZAr5PI-wbuy828,1949
1500
- mteb/models/model_implementations/gme_v_models.py,sha256=c5OAMnMsNamnjrSiOR9nAav7hXYLUWbe7mEksPJvL48,13748
1501
- mteb/models/model_implementations/google_models.py,sha256=lEpk1pOkp30kg6xljw8Gtkf-QGXAe8oJVp7JZhzWlik,11143
1502
- mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=A9yWcQezu_2yVxSm3pv0Da76Hl_uNUfrDVtPK1uqYFo,7341
1503
- mteb/models/model_implementations/gritlm_models.py,sha256=FKz9AHPaelomNMZP282F5vwsMjEBV3C2IuL3XTxXKCA,3057
1504
- mteb/models/model_implementations/gte_models.py,sha256=-4uVx1PuqmgYWo-puMcDiFPGhjyRwNTmlMSD6QiWwDo,13895
1505
- mteb/models/model_implementations/hinvec_models.py,sha256=r1ChD3cpcllHO9ZsVyV29vnjobq4Q7hAKioidbX4D4g,1601
1497
+ mteb/models/model_implementations/fa_models.py,sha256=vwEzH1EIzw0gb0cwmgoz81oYWwowVix-G47y0SiL1PQ,9988
1498
+ mteb/models/model_implementations/facebookai.py,sha256=YxJRjMtdvqCHfh3dTwxrLsr19v0N658O1cTx7GilO94,5058
1499
+ mteb/models/model_implementations/geogpt_models.py,sha256=FmvRKWmSBf6gXQ1b0VbHdSP02ZAEP68IzIq4726kync,1980
1500
+ mteb/models/model_implementations/gme_v_models.py,sha256=aPDW_NZTMGXDvIPJgp-8aMEP33cGRDmDr766QPiC_Rs,13860
1501
+ mteb/models/model_implementations/google_models.py,sha256=TtHu-RhFq72jIX4jkq3M9gIOjp5RKgUB1pX2EtgUCLM,11158
1502
+ mteb/models/model_implementations/granite_vision_embedding_models.py,sha256=_H0pphKd7CZwTmZyccYwc8VRCBuADb-2Y1NqjLyLqYg,7372
1503
+ mteb/models/model_implementations/gritlm_models.py,sha256=XmKNIyIAJUpmfT5r_cqm7DjacbLFeGygX9IIe3k3dfw,3119
1504
+ mteb/models/model_implementations/gte_models.py,sha256=A9woaY4doCb89b5dxFpJcbwmHMXiG9NnseznoWFU-Qg,14232
1505
+ mteb/models/model_implementations/hinvec_models.py,sha256=PL2lJPf8r6u4duE6B0pIYDCyX1JJuQspXBi1YXRVPOk,1632
1506
1506
  mteb/models/model_implementations/human.py,sha256=EtYa8G7Dc8fDcelBVw0xTpxGGx1YKKuprVgksY5ZOcE,558
1507
- mteb/models/model_implementations/ibm_granite_models.py,sha256=--8N-8Nk2V5TZqGUAo9B-qoDeVTbKIU_jy03ccotmbM,8058
1508
- mteb/models/model_implementations/inf_models.py,sha256=IBC3TaEkOxrUDXkhXaVnxerjWOZZv1v1eEqhweGWKMY,2958
1509
- mteb/models/model_implementations/jasper_models.py,sha256=K2DC0JfMVG8Fa822-xemKNhtuL2fZgiKYTTpXp2yBGg,16263
1510
- mteb/models/model_implementations/jina_clip.py,sha256=xV1R5xyHqZHyzlpx7O0Pg1SwTagGEwt_kw3wWoshgNM,5128
1511
- mteb/models/model_implementations/jina_models.py,sha256=gdTGC2abKhne2nTbfX1K4S-xr3MlFJT99Iu5ynIFI7w,35004
1507
+ mteb/models/model_implementations/ibm_granite_models.py,sha256=ljHjuPuBkIwJvp5WZ3csjTOIb14nLh1h3OYkW-CEeHY,8464
1508
+ mteb/models/model_implementations/inf_models.py,sha256=SXXs3s9PWo08fzrxG_WOXGc_gvbpmkt-Blt7YoGcPRo,3020
1509
+ mteb/models/model_implementations/jasper_models.py,sha256=buJgllGIeyi7LsxDJY3UYJs_YzdDBkU3QpuQyU6VoTc,16293
1510
+ mteb/models/model_implementations/jina_clip.py,sha256=QZUe7fm0otnnPHAIYnxcRwE1VHpNt3Xs-FGlUV6Itwc,5167
1511
+ mteb/models/model_implementations/jina_models.py,sha256=kFmkAWUFoJpq_1tRQIspk54lsik2vIoQcy5DS7YKgQ0,35198
1512
1512
  mteb/models/model_implementations/kalm_models.py,sha256=SHqkw5p7HzmQrb_bIFjRp1rsuv2v531nXIk390h_ojY,62115
1513
- mteb/models/model_implementations/kblab.py,sha256=n6sMGorSIBQlRHipPC3j2UiKA3r7avriwPvw0wuQKe4,1161
1514
- mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=KvOhXDuhCtsTBGHg3ukCrQ45oz_hFylH7XjX3yjg1Ys,3013
1515
- mteb/models/model_implementations/kfst.py,sha256=sqlEUfAl84EPw1WjTZdlB4ps6GgkY3dCk3n8U9_YtV0,918
1516
- mteb/models/model_implementations/kowshik24_models.py,sha256=i8fDs8Vm5vcpRTW3kI8P1odyDbogFMlMqGK5AOqXaes,1445
1513
+ mteb/models/model_implementations/kblab.py,sha256=EisTJXijICN2pyfWT_89qUnNO7TH95t1LxCxjzJnzQo,1237
1514
+ mteb/models/model_implementations/kennethenevoldsen_models.py,sha256=YdroUdWJtSjrua93Qo950eui38qhD6KgnSND_NlTzro,3060
1515
+ mteb/models/model_implementations/kfst.py,sha256=jz0Pez-NLXy2Hxt2edvVJMm9A6yn6xQacxxr2nCyOsY,949
1516
+ mteb/models/model_implementations/kowshik24_models.py,sha256=xm2oh0Sjbvp4Aur4XUkTxp6pYtKZIbyN1r88eE4aHpQ,1460
1517
1517
  mteb/models/model_implementations/lens_models.py,sha256=sVgP-wyi7SrMVyXkS1msMEKkE2ZTheYrt3QwGezqqJk,1748
1518
- mteb/models/model_implementations/lgai_embedding_models.py,sha256=aigHsDVY1yhN4hhmaxUlsxbPXe9S8JhfpNq6XSY17s0,2359
1519
- mteb/models/model_implementations/linq_models.py,sha256=huy7c95uYmhmjf6VZtx30YtMiSNrqhm7PJE3Vb3W-5g,1898
1520
- mteb/models/model_implementations/listconranker.py,sha256=EwUAvWefDmx4x_YCIJRVsKI3j3konQIHOiJ4paG2lvY,4492
1521
- mteb/models/model_implementations/llm2clip_models.py,sha256=0dmONEknh5lmMyARmK4VFJ0mpxvly_xqQZ2OwrE8YZc,9295
1522
- mteb/models/model_implementations/llm2vec_models.py,sha256=0I_UydxopC41lKWcIpCMaKADXcFVUfPwKwk0vZFG2zY,12846
1518
+ mteb/models/model_implementations/lgai_embedding_models.py,sha256=6XSL2h4MaA8etAE8qmrDrwKBYxUBurJq-zZ8bXdW1oE,2390
1519
+ mteb/models/model_implementations/linq_models.py,sha256=O4uf7U3ahSW-VsIkCke6uNV37UYEHbJtlJWKuRttfpk,1929
1520
+ mteb/models/model_implementations/listconranker.py,sha256=Pabs6UapPmH4CeUTZskHJ-9jQ4-6fh-j6I3l4RUimZY,4548
1521
+ mteb/models/model_implementations/llm2clip_models.py,sha256=VaPRxliOMViMMpNJmaal8QFJVU9F3-yiPxJoXNHyLyk,9340
1522
+ mteb/models/model_implementations/llm2vec_models.py,sha256=qKbTMrMXYRvmzY9bsaSgQhl6PxnSEAEQypkzU_TC46Y,12966
1523
1523
  mteb/models/model_implementations/mcinext_models.py,sha256=h-X9og2Cjj8DarHkaLOfqlIHpeCGnJZv0EuwYG61uzY,19127
1524
- mteb/models/model_implementations/mdbr_models.py,sha256=knDaM_j_kL9uq1Ng5s6InsTEZ-Cu0jBux8zmrbDnrig,2561
1525
- mteb/models/model_implementations/misc_models.py,sha256=djB2ySEBiCvxwWGZUXIwzeH9eaXtlqV7ttQEDUFlKQQ,70754
1526
- mteb/models/model_implementations/mme5_models.py,sha256=Fuge1fqGbaWqw-Hbd75Xr31JTqJTL45yJ4DAw3QJuyE,1510
1527
- mteb/models/model_implementations/moco_models.py,sha256=XcYavxcNWwB9V5OA63_HuaKwfDsMv6nQ7jgvNC9vbrk,5503
1528
- mteb/models/model_implementations/mod_models.py,sha256=jt33SfV476FIQJ-W-FRi_ocyRY1u8ldRFuo-PgejJDU,6335
1529
- mteb/models/model_implementations/model2vec_models.py,sha256=scVmIw-kBysX_kiQ8j8AnsAKne-T6hJ0WyIErUEaGxw,14087
1530
- mteb/models/model_implementations/moka_models.py,sha256=xY3geXKZwefqVsDZq95AB75GlZpvA9mJKSyPMvb75Us,5073
1531
- mteb/models/model_implementations/mxbai_models.py,sha256=YcgOdcx_vv5UpPi7k7PBuq_M0eqCaktfWfQV5NTlNoc,3929
1532
- mteb/models/model_implementations/nbailab.py,sha256=DtfHjQgGX1YPnlceqZDqDr6IlFwKCJjWN-BEcNt5m-s,2474
1533
- mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=t0CtgIiZHq4KgkPYUbxHQnxnaOaPYqpatCYa5Na-SSs,3993
1534
- mteb/models/model_implementations/nomic_models.py,sha256=n5_0QCqZYq3Pzdjf9hxx15XswjmZZgWpq0GOVN9sWiQ,14895
1535
- mteb/models/model_implementations/nomic_models_vision.py,sha256=9AQRJkPkFDPjuSqdIh8wJ0-pqS2fe_oDZzPR4Y0tOSg,6831
1536
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=phbwPnRfrEuJTlrUucI1qxcViMQWogeXQkTZbUkNsQc,6388
1537
- mteb/models/model_implementations/nvidia_models.py,sha256=82hVLFRhABDVtVu_1Y3R_3IxX9ETtYJpnw4AeYBOiiM,21666
1538
- mteb/models/model_implementations/octen_models.py,sha256=v4Mk6qMkK6yoMS5QomZdDWCP7ysB7CYf3VxuuOYVpu4,7481
1524
+ mteb/models/model_implementations/mdbr_models.py,sha256=BWi7xSZuVSudwX_KXUvdLDpNhPnpj0xV0uuokUwCHp4,2733
1525
+ mteb/models/model_implementations/misc_models.py,sha256=G42am6_tdRDFQ-0dU60OLeW2qxiQLwOoA5_NBHVN1eQ,72346
1526
+ mteb/models/model_implementations/mme5_models.py,sha256=4lbFhmKAFUpZojoLBObL0wx8dA6wJ9SGYej488Q_Fdg,1541
1527
+ mteb/models/model_implementations/moco_models.py,sha256=DOFXJINU3LV0gk83PRE5bXxvXs0LiKFUcznSR5lmk6E,5565
1528
+ mteb/models/model_implementations/mod_models.py,sha256=6Cs08pqKrvSPYGNCil-T2Q151AmOCCBKMF54KkzdxJY,6350
1529
+ mteb/models/model_implementations/model2vec_models.py,sha256=7O6y-8fPtaHOoOfPn2-ZqmxSNHAG3r8-DIeK7sthzBg,14568
1530
+ mteb/models/model_implementations/moka_models.py,sha256=M3nhjDoisunpYojtU-dEZYaLjBkndOGhWByz17_x5_w,5088
1531
+ mteb/models/model_implementations/mxbai_models.py,sha256=KTGnaj6zTlWPsaUrgEpQqBxNZWI-2XlQc79SL_Gmz-4,4148
1532
+ mteb/models/model_implementations/nbailab.py,sha256=LM00HJIr4yrA45qh2O21BIDXku9KcoTz-mttczEx_qM,2567
1533
+ mteb/models/model_implementations/no_instruct_sentence_models.py,sha256=qLiMok_OxKvIYXWnP0KNWqH1monZx-OdSZrSx3QEhtI,4049
1534
+ mteb/models/model_implementations/nomic_models.py,sha256=dmQC_cWg6hAmiBHK7fXoXEiGBJnJvrq0RsnCcJ2qe1Q,15137
1535
+ mteb/models/model_implementations/nomic_models_vision.py,sha256=usCKfZCR7aEi_DnNmVAYjH-lXx_ipQkBVtUAmhJ90QI,6870
1536
+ mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py,sha256=6dTGtK1GiaYdpJ4IQFgCCOkGyHQyuEUatKs-Uv-1YmE,6450
1537
+ mteb/models/model_implementations/nvidia_models.py,sha256=_lLfFl4-uSKpZdj_SDpdKiI2Gb5C1GgPqWSS-QdlYMM,21768
1538
+ mteb/models/model_implementations/octen_models.py,sha256=J_-eNARXLgN8H_v5fobOr01RXK-G3oWdv02hG4L_gWY,7511
1539
1539
  mteb/models/model_implementations/openai_models.py,sha256=905BajYi_XyOZgqU3AeKpwIttLoUitaAyc48sTWI6Jg,9482
1540
- mteb/models/model_implementations/openclip_models.py,sha256=aFBWqHkWjHm8OfCB8RTNiaO03oaILAE2jVLR1VFZgPk,11532
1541
- mteb/models/model_implementations/opensearch_neural_sparse_models.py,sha256=hS33RteHexhkIekQVKsjx6czKr6YdWINaVa60J91Wnk,8481
1542
- mteb/models/model_implementations/ops_moa_models.py,sha256=EFEDwYuKiLzaSAg2_wWesyqRkaCtTcsa-B8Pu2NvEus,2465
1543
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,sha256=qGXv71qRjNCIFluZOwvfBlFlKKyN2bXBokwUPk4KHmM,1066
1544
- mteb/models/model_implementations/pawan_models.py,sha256=5Oruum3FczgkxjpCS_ilTFQd1B_aaHao_yXnOjE4qck,1177
1545
- mteb/models/model_implementations/piccolo_models.py,sha256=Y8jDNzp3VAdwIsT_fGG1ulWVyV7NTWs7_jpmWK036gw,2165
1546
- mteb/models/model_implementations/promptriever_models.py,sha256=pSlOQaem5tnLn9k9_WoJm4Cmw_Wj5oBvwfr5zMvykC0,6432
1547
- mteb/models/model_implementations/pylate_models.py,sha256=S5X8FMCVoYPU0jHhsqV1mK6OmIrx_QxbKFjRsqywoPU,16826
1548
- mteb/models/model_implementations/qodo_models.py,sha256=jMGlDYyAYp87zOwDN_WNqsU_PVLv2Tlrkbpe_sb5iiw,2089
1549
- mteb/models/model_implementations/qtack_models.py,sha256=YEuK7Qi1e3NyB1tbOmuqV-BIQIaarhQK-33WejupJiA,1250
1550
- mteb/models/model_implementations/qwen3_models.py,sha256=98yCMHTg8ueCT1fXkaNWMBleSLS-ygcJEnjQmcacGmI,5210
1551
- mteb/models/model_implementations/qzhou_models.py,sha256=TZBX9WXn2X5JyFALx2aSZLGsIseNnhrCVMycHU8LUXk,3588
1540
+ mteb/models/model_implementations/openclip_models.py,sha256=MyosgeYSrgBXGuGFtI2Tyxksxpb7bADFJVSYFCLweVA,11622
1541
+ mteb/models/model_implementations/opensearch_neural_sparse_models.py,sha256=TnIHut_IHvplvovlcTZ-PWnEldTzcru5JdUIaTH-8Do,8636
1542
+ mteb/models/model_implementations/ops_moa_models.py,sha256=W9DkHT5TwMys-vKmELrcKKfdV9HsHOBvaQAITneDdew,2480
1543
+ mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py,sha256=PJx1enAWiuiQUqA0JdfpPSBZS1h8CKy7ew-GFGj4YUM,1081
1544
+ mteb/models/model_implementations/pawan_models.py,sha256=Fwpxqool7lHOMsim0XllWjRrQwxZP2ZU3Y9OtQ0AMvA,1192
1545
+ mteb/models/model_implementations/piccolo_models.py,sha256=rIdT5pLInGyjLXpLcECLPWFJ1N-XfzCte0k3Em5Vy-M,2181
1546
+ mteb/models/model_implementations/promptriever_models.py,sha256=Ck_oEuvohgPOhSbyfDGlweKXtKZasWYUwukBMBr1YMc,6492
1547
+ mteb/models/model_implementations/pylate_models.py,sha256=Wunh4voSd6qFjHezIYrmfZA_lj5hM8ofLj2A2r4zD7I,16950
1548
+ mteb/models/model_implementations/qodo_models.py,sha256=bb2iUDdLp1sOZdYojZuzAzV4CQK68Ad1Y-VJul78uho,2151
1549
+ mteb/models/model_implementations/qtack_models.py,sha256=GJGZ0zmJw1KT39kIyrQUlEGMkY-lUa36CY_qTN6mPJU,1265
1550
+ mteb/models/model_implementations/qwen3_models.py,sha256=7uRzl8Uopi_zAAeJ0G1DUxNH4bl1h5gzMqks6ltbkHE,5303
1551
+ mteb/models/model_implementations/qzhou_models.py,sha256=iNsSGvoJJ8XByMF-vFScResLDuqEUcps95s2UvWCPjE,3618
1552
1552
  mteb/models/model_implementations/random_baseline.py,sha256=_lUTjoEl0nJEPcnN1FNWwKEnoJc29PEpaKbnx8HJnLc,7548
1553
- mteb/models/model_implementations/rasgaard_models.py,sha256=OMRmfD7m_6gudMNY7ZuKqKPxNuXHhhF_ZFSCpGIhBVc,1270
1554
- mteb/models/model_implementations/reasonir_model.py,sha256=o9-DufwMG3gutecFsX6OwTio9LKCJbAXuBV4fD-Q5p4,2244
1555
- mteb/models/model_implementations/repllama_models.py,sha256=h1vnFXUwbIjsWGDVjIu9sobBjy1OFTfnm_qGPsXDDjM,7341
1556
- mteb/models/model_implementations/rerankers_custom.py,sha256=dKDaVzyb6Tu-dkyPyY7g3vYOwkdxJrkFMUuhU5SnN40,10624
1557
- mteb/models/model_implementations/rerankers_monot5_based.py,sha256=3gtMhg7VLVnBn4-na9sOnr87VKCgjP-RwyFuDdJRt2I,34352
1558
- mteb/models/model_implementations/richinfoai_models.py,sha256=YQHVXVg2Wmb8m6nirLx6vwde_1xjOtlgftTv48asnww,1015
1559
- mteb/models/model_implementations/ru_sentence_models.py,sha256=-CbCCy5JRuDZAsWS7FBS7OOPaziFXjwiJdko9241KgI,41758
1560
- mteb/models/model_implementations/ruri_models.py,sha256=QW_Mk5_4U45RyC-CvwjT2MUWtobrZ37wHNxpJGGJmos,10303
1561
- mteb/models/model_implementations/salesforce_models.py,sha256=0miQqhSkJKfdKxLv-xl3BL-sCSgkKg1FX-gVu43cdr4,5238
1562
- mteb/models/model_implementations/samilpwc_models.py,sha256=ZcMUO_pWXARqzBa_2G6qAsSaq-_lCPo8a_XG0G_H_f0,2047
1563
- mteb/models/model_implementations/sarashina_embedding_models.py,sha256=LmJAsZ_zXywQwpQspQRB83jThRq2Lc8wxZt8K8UYzRw,8467
1564
- mteb/models/model_implementations/searchmap_models.py,sha256=WpwYwv0xWmig-rTGK0Li7m8ppADV-Qhy9BiHPlhGZug,1930
1553
+ mteb/models/model_implementations/rasgaard_models.py,sha256=iwqLW0r12RF3tyhakZu3ZPTLx0IRXeOAxptgaJCaJKQ,1285
1554
+ mteb/models/model_implementations/reasonir_model.py,sha256=881oFRknIelXBJFFJWVaETol98mjXt69IDueUg1cxNE,2275
1555
+ mteb/models/model_implementations/repllama_models.py,sha256=0_aDjQKv-Vy1PVaHulrc6ydL_N5dJQYpgDOtYWoBOtg,7356
1556
+ mteb/models/model_implementations/rerankers_custom.py,sha256=2KHRYRGDWg4W4KUnUPIzlxLeDkHdj0qY7WQTu4PDYpk,10757
1557
+ mteb/models/model_implementations/rerankers_monot5_based.py,sha256=bGGfVJob6MOGo8R3xLMcrlTqo_VHGhYiT6C17u0L0t8,34696
1558
+ mteb/models/model_implementations/richinfoai_models.py,sha256=n9m6tRq1f3sRWmiQ_9yORMSTZuk9yya3jcvNJTuKh8E,1030
1559
+ mteb/models/model_implementations/ru_sentence_models.py,sha256=nGvJV9rkfsEMp3QtYBtDnJF2jTm1C31_kCHILnAd6wg,42269
1560
+ mteb/models/model_implementations/ruri_models.py,sha256=La2z2xaqYlX6arGrPz55i3-8SYokXhitiyV7DpJQODk,10453
1561
+ mteb/models/model_implementations/salesforce_models.py,sha256=Fc8uvamRc_fzhKLQtiiLRwtzMPqkQxveosoQul76b-k,5331
1562
+ mteb/models/model_implementations/samilpwc_models.py,sha256=ZYmpjsg66eTVaA7-ChDwDAk7zBU5v5JbIDdVaxmlhOk,2078
1563
+ mteb/models/model_implementations/sarashina_embedding_models.py,sha256=ZShwUY3SuSjm6wTYqqh5aIdhadFfFHNvbM2VzZZrOUU,8529
1564
+ mteb/models/model_implementations/searchmap_models.py,sha256=xVQPkO7aLp_kBFiMDAmBOx13VIAuXjgnJ2zUg_Cmed8,1961
1565
1565
  mteb/models/model_implementations/seed_1_6_embedding_models.py,sha256=gcGKEY-n7DWGPlXYhO_kcNJ3lkBEnbw8NUxADNs3siM,18635
1566
1566
  mteb/models/model_implementations/seed_1_6_embedding_models_1215.py,sha256=OoTHcDRQGOuSzf08V62EXrSEdRsXhnMv2ZN9feJWs9s,36443
1567
1567
  mteb/models/model_implementations/seed_models.py,sha256=9UF2AQ0Uue8DD73SjYhHn2hLxey_7Iq9ii9TkRaA3CM,14168
1568
- mteb/models/model_implementations/sentence_transformers_models.py,sha256=_4MbkdjZ58bell8Ss0JkyCAkLzUxTLBMofnHckRtWs0,23252
1569
- mteb/models/model_implementations/shuu_model.py,sha256=8-hoGqELHQRQ1QFhjwyuOY_8rqj_6f9vhE1Xi8OJ8aw,1162
1570
- mteb/models/model_implementations/siglip_models.py,sha256=A2ic42mlHkZKOjFfDxJBbGR96udd8dy7YtPF_B0Ju7I,12702
1568
+ mteb/models/model_implementations/sentence_transformers_models.py,sha256=WFWB7SPY9WS9b-SWiSAWSszQ7lJO-QGBxnIN8bU3kWE,23969
1569
+ mteb/models/model_implementations/shuu_model.py,sha256=1jDFFPAfbfrSzC4vbHczO4yqy3Xh4tWiDAd3FS9-T6M,1177
1570
+ mteb/models/model_implementations/siglip_models.py,sha256=SOSyp-B7w6Vvqas_10D_1rvpJcKSQuJmXGy7Wdtsw7o,13012
1571
+ mteb/models/model_implementations/slm_models.py,sha256=JXjBio-9NFHLefU4Ny1Z-fFkyvvIz0U2kQ6t5s-PzlQ,13427
1571
1572
  mteb/models/model_implementations/sonar_models.py,sha256=e0zG4ZxCM52mOtIpd43mMORZcX39utOiVDvzX_mz7oQ,4810
1572
- mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=ucTQMRhwSWzzIohVN8Zd7qehqllReG6WFTnD2rkGTLI,1239
1573
- mteb/models/model_implementations/stella_models.py,sha256=9nKuiMXkUE58KGpoDx1Ft29x80oCkLQr8GucsM6c4Fw,8218
1574
- mteb/models/model_implementations/tarka_models.py,sha256=lTA4oIKDKqU8FQ7nBDkQM-L4_945SnBGK499TkMALVk,27397
1575
- mteb/models/model_implementations/text2vec_models.py,sha256=zaHWRc2W0RYZAOetinqRzug9UGW0HmY5U-jYsLXA8wo,4160
1576
- mteb/models/model_implementations/ua_sentence_models.py,sha256=vgBJbXR8-6xau78MMTJ985Uj46_VoRIFatGW8vuOllc,1693
1577
- mteb/models/model_implementations/uae_models.py,sha256=_OLyy5veJJunBewWafkN_FUl2Hv_qqmU1zr2DGs94ek,3138
1578
- mteb/models/model_implementations/vdr_models.py,sha256=1yEkK_5w7rEd4O-8DTjQYc6Ip_h51WxkQcI3vQ2puTs,1448
1579
- mteb/models/model_implementations/vi_vn_models.py,sha256=UZ0bC-inqwL52TjWKfXijyeOyZRIycj1bHJs3t-jjrQ,6198
1573
+ mteb/models/model_implementations/spartan8806_atles_champion.py,sha256=nDfqkxdi8BlFoixWYjBQnaDyPCRb1UyPgH7792hihXs,1270
1574
+ mteb/models/model_implementations/stella_models.py,sha256=ts2BbEl-Qe8okYTneVeoWE-pu9VCkyO7a9oJofjjEok,8420
1575
+ mteb/models/model_implementations/tarka_models.py,sha256=r6H_ZLGbFwpQQrhvaepJVrsSxYXvXGChMIUDgbHaRFs,27427
1576
+ mteb/models/model_implementations/text2vec_models.py,sha256=WuwcmJ6Irhayz4V7F3JJosTsfUm6WjNPmCiqUlAj0Ac,4300
1577
+ mteb/models/model_implementations/ua_sentence_models.py,sha256=bbgwj71Y79VNiuK1hKIKq5XJy4mP71iDrd7IMeiKun8,1708
1578
+ mteb/models/model_implementations/uae_models.py,sha256=FEdM_7Pmx2bsx0xhExO6kZqeavpqlk8mDjTKUwWdNwo,3224
1579
+ mteb/models/model_implementations/vdr_models.py,sha256=8jlfABvO7Z9ebzAPFHqln3B2INFpszu_ClrcUyaVpss,1479
1580
+ mteb/models/model_implementations/vi_vn_models.py,sha256=Ep2zj4Xvjyu0a_YiLsYvolKdMGSOtzm-N-yNyXmfNwA,6328
1580
1581
  mteb/models/model_implementations/vista_models.py,sha256=GkQFHIwwjxwM0wDuo-dWJBo4dLExlHtHfXwhcdKA5uQ,10884
1581
- mteb/models/model_implementations/vlm2vec_models.py,sha256=WRj_ESrQFACJC5fTckvZblTsobXnrZZWlX0Qh83N1W8,11755
1582
+ mteb/models/model_implementations/vlm2vec_models.py,sha256=EeWl3kpS_1VDJs4t1QmpaWSuglLPL2GyZu27fVY1VT8,11802
1582
1583
  mteb/models/model_implementations/voyage_models.py,sha256=5A5RD2A6B20qLDVEpWL0TNMQOf5hnTVXdBugdh5q4d0,20214
1583
1584
  mteb/models/model_implementations/voyage_v.py,sha256=eFdSOKka5VoLjViZk5umlgTw_ETjyXv4yhZ9SoCR-p0,8124
1584
1585
  mteb/models/model_implementations/xyz_models.py,sha256=gjwCx3U4AxMcJDTSWVoYV6xeyXLw7lUZI5D6Q7JjWho,1322
1585
- mteb/models/model_implementations/youtu_models.py,sha256=U2PbAg4QnNZfQSORDm-I-uhYZr3XRQvWiOAU9uO8SQc,5964
1586
- mteb/models/model_implementations/yuan_models.py,sha256=7_nwkXwh3tyoz7wo7pCq9ryHPVX0_uE1wJBNQRsKp-o,965
1587
- mteb/models/model_implementations/yuan_models_en.py,sha256=xliuxqPPiCPLdEDhs8OsBKQgOLp3qBwO6806aKSeRdc,1680
1586
+ mteb/models/model_implementations/youtu_models.py,sha256=THwWRabutW-qC-JZOVhxXWjKHVyMElzt_xm81ixzN50,5995
1587
+ mteb/models/model_implementations/yuan_models.py,sha256=j-QIKECPg4TiBW_3Bp6g5yr2UOdFziFSeoGE4uKepSM,980
1588
+ mteb/models/model_implementations/yuan_models_en.py,sha256=V57gbJFdHW8voN-tkrwUIWv91IkjUfmoQd6SK6AeHLc,1695
1588
1589
  mteb/models/search_encoder_index/__init__.py,sha256=3QFacIuFyEiI7ocsSkb3Lp2S2L7MLkpHCMIJ201fowA,182
1589
1590
  mteb/models/search_encoder_index/search_backend_protocol.py,sha256=TSjlx88stJcMldbAeVqNCf8JsQvE-B5rf5SBRw90isY,1890
1590
1591
  mteb/models/search_encoder_index/search_indexes/__init__.py,sha256=Wm60_oUemUpFsvrCMW111dcPH2L2rt1iZrXMskXmG7o,88
1591
1592
  mteb/models/search_encoder_index/search_indexes/faiss_search_index.py,sha256=6C9e-bN6IzytwCTjNrwosZD7yDwhbZ-V7pR_IlPWQ2g,5671
1592
1593
  mteb/results/__init__.py,sha256=EXQqK4Am5eIYzD52dpcGAFSdqnC38oE6JHN302oidHc,158
1593
- mteb/results/benchmark_results.py,sha256=r6PI1UmvoRFyLzKOIHx25nw17ZpXgv-SxKRHp-4heMg,20195
1594
+ mteb/results/benchmark_results.py,sha256=Ea_JPqVIjZHgVceTO3Oa9rzYblxFZhMhpU3lr2upOY4,20219
1594
1595
  mteb/results/model_result.py,sha256=WokI7iyF3JQxawRTNQ9dJZm-5pD66oJWio0i5G9AB94,15200
1595
1596
  mteb/results/task_result.py,sha256=mmH_7jAXcOqWBaeS7FV4uJ8wO0Hr14c0QqrI_VuLXr4,32677
1596
1597
  mteb/tasks/__init__.py,sha256=izAxU0ip1F_YUwx0dFCuN35BaktdmePh6vlDiHC0kLo,503
@@ -1778,7 +1779,7 @@ mteb/tasks/classification/kor/kor_fin.py,sha256=3ZfN1BIud7joUllzsDMveU23Vjdkwzit
1778
1779
  mteb/tasks/classification/kor/kor_hate_classification.py,sha256=V_IIham-xLAE77KoKk2RM8hXpuXnN3NYDl6aB8Renws,3997
1779
1780
  mteb/tasks/classification/kor/kor_sarcasm_classification.py,sha256=P8AXvEopoX1axcx6A9IpKgDsDe2Xgmq4R3lcMMyFNus,3861
1780
1781
  mteb/tasks/classification/kur/__init__.py,sha256=kBLPJVSB512KaGbwFIUjvjKiLp8_lV6K-O-0fmUJAM4,206
1781
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py,sha256=6OWal7aXxVF6XWJO31d2vySPYgrWpDWSqJQaG2ruQbU,2736
1782
+ mteb/tasks/classification/kur/kurdish_sentiment_classification.py,sha256=p59oRCS0JhfZqP-IgKwmqb_zP48rFb069smhL74ryVM,2760
1782
1783
  mteb/tasks/classification/mal/__init__.py,sha256=oPYnbXfC_hhDorrNOVMdoKJvo_EqVx57g6AMtETiAIs,191
1783
1784
  mteb/tasks/classification/mal/malayalam_news_classification.py,sha256=KPSySBKHGlNY14ehDce3D1-RqFqz8DaapLgqwoTSmxM,3015
1784
1785
  mteb/tasks/classification/mar/__init__.py,sha256=_s9c3NJ5thW7ik8tpKlbwwAan6xNuN5UIn5MqDdC8NQ,181
@@ -1934,7 +1935,7 @@ mteb/tasks/clustering/eng/cifar.py,sha256=CgerokQwKzrtTEQNxBPFH_vlosgtgrcZY2hmW1
1934
1935
  mteb/tasks/clustering/eng/clus_trec_covid.py,sha256=z6pNWYu__6o10jNpcrRUVHWKLq9vNP_a3g1cv0LHKZs,1746
1935
1936
  mteb/tasks/clustering/eng/hume_arxiv_clustering_p2p.py,sha256=Gb_OQUJblW37UTnFBUYGIhtVHupgeifhoYHyv0oPy4Q,1485
1936
1937
  mteb/tasks/clustering/eng/hume_reddit_clustering_p2p.py,sha256=kNYUGPPPA2XNDlPHzhiiN8eSwUG4wLOQvejhZ2T51Wo,1618
1937
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py,sha256=gbxmlBt_GAE1KlshGj9FYanz-tZomLh8ZqCeRDhnAw0,1336
1938
+ mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py,sha256=NCEMfMLu0lOM1Vyl7Q-OLFMOmxChJ8PvzOBQuGaSodU,1340
1938
1939
  mteb/tasks/clustering/eng/image_net.py,sha256=21eB_MYbUKFqyzAnvThKfsh4D0t9XerIKehQl5LLMe8,3183
1939
1940
  mteb/tasks/clustering/eng/medrxiv_clustering_p2p.py,sha256=sqRTwPAXg9IBeP5S8ngLm5Q0sMkTVoOEJK7Zf8i_mQo,2909
1940
1941
  mteb/tasks/clustering/eng/medrxiv_clustering_s2s.py,sha256=A0d5fjOGAYZFEukBe5DufD-BJ66KVQOSlC_Bgn4OZng,2874
@@ -1944,7 +1945,7 @@ mteb/tasks/clustering/eng/stack_exchange_clustering.py,sha256=IuUlUtmAnuSo6oLJJO
1944
1945
  mteb/tasks/clustering/eng/stack_exchange_clustering_p2p.py,sha256=1hluyxWoIWABLTjLCmXtEsh-h7oHLWegmoEU74OwXrY,4117
1945
1946
  mteb/tasks/clustering/eng/tiny_image_net.py,sha256=dRr46P37XLvRa49EJK6H1x3nJmwaYVDmLtLz-q-K5kM,1135
1946
1947
  mteb/tasks/clustering/eng/twenty_newsgroups_clustering.py,sha256=0jjIeTlDuBtOzMmGsoZye2T-l4fufsZlWeib2q00OyM,3828
1947
- mteb/tasks/clustering/eng/wiki_cities_clustering.py,sha256=82gf5BZtVf8liCi2V0bN0ZXcYh584jV4gXWVw74PCyM,1246
1948
+ mteb/tasks/clustering/eng/wiki_cities_clustering.py,sha256=-csEB6xiAGRDTi5gsseoZsODCSwzF5_LIe1eTUO4lHM,1250
1948
1949
  mteb/tasks/clustering/eng/wikipedia_chemistry_specialties_clustering.py,sha256=Shs6sYPe9s-HSGeKD9_0OEC4hUn3ODS8GFvX62XSK4U,1437
1949
1950
  mteb/tasks/clustering/eng/wikipedia_chemistry_topics_clustering.py,sha256=NQ5bmskZGElqg6vnZFKbzREufr_6IJGUwMpu6ItEWvg,1424
1950
1951
  mteb/tasks/clustering/fas/__init__.py,sha256=_jSSYKxbHl170edjvRKYtHoNkJ1I76A8DHcjSdJ4of0,315
@@ -2000,7 +2001,7 @@ mteb/tasks/clustering/vie/stack_exchange_clustering_p2p_vn.py,sha256=Do_58DiX_DV
2000
2001
  mteb/tasks/clustering/vie/stack_exchange_clustering_vn.py,sha256=bFF2iu-KBZSP6jFYLBV2ssscsaACf-noFP6wL0R5Rx4,1881
2001
2002
  mteb/tasks/clustering/vie/twenty_newsgroups_clustering_vn.py,sha256=LADX5CLncf0AlGdfypuAfglEM6D2gGnBBSTKIhPTR0w,1825
2002
2003
  mteb/tasks/clustering/zho/__init__.py,sha256=Z6AYBtGjILLiguzbSOML6Gi3OuM2NICABhcSpl4dk2g,481
2003
- mteb/tasks/clustering/zho/cmteb_clustering.py,sha256=YEceqUqwTPUB7UWE7YMdP_3ZWn8DbqJGrF8nfXwDHXE,14801
2004
+ mteb/tasks/clustering/zho/cmteb_clustering.py,sha256=Q7uYPNXuTjxeuWduvdYQT8jog-jHUJgpyJ6x7F0ILu8,14815
2004
2005
  mteb/tasks/image_text_pair_classification/__init__.py,sha256=nw_jS391ttByOsxjJWnxMInBd9GiJVN09ZcuDb7OmeY,19
2005
2006
  mteb/tasks/image_text_pair_classification/eng/__init__.py,sha256=3LhP9ZsZLyK8i077ZPFrerNFtIfo5kUcUH4hQNxpL-Y,463
2006
2007
  mteb/tasks/image_text_pair_classification/eng/aro_coco_order.py,sha256=4CrBTUKXUHuR6k7fpJKFNcwA2-cRH3gO2T7TJCEsyaQ,1746
@@ -2145,7 +2146,7 @@ mteb/tasks/reranking/multilingual/esci_reranking.py,sha256=opEtarEw8JhcqVhIZ2wQo
2145
2146
  mteb/tasks/reranking/multilingual/hume_wikipedia_reranking_multilingual.py,sha256=899WZdh3jEORdzSnprr9Nt5FVF16PSWcwTK9swOg7cc,1505
2146
2147
  mteb/tasks/reranking/multilingual/miracl_reranking.py,sha256=N4YpMCcmFjWtKy1g4LjVS_Ou0jZ2fJJomRKwJQZbus8,2283
2147
2148
  mteb/tasks/reranking/multilingual/multi_long_doc_reranking.py,sha256=igJvX4fybXUkj_qWYbc9PLh8eH7pztS9OJRonxn3ME0,2692
2148
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py,sha256=gZWigy-EEPkew6R-wcxt24_uPrOEFH-h9YT-0rPrXX4,1678
2149
+ mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py,sha256=VjNQ9Tz9fCYWxCW4PYzJT30ZEVSboZBK9dIyJNfcpEQ,1682
2149
2150
  mteb/tasks/reranking/multilingual/x_glue_wpr_reranking.py,sha256=2fXZX27xzrn0es4TKaDFaGdo08swUHEA2Ik3pbOzCd8,11360
2150
2151
  mteb/tasks/reranking/rus/__init__.py,sha256=Txjqg4_Pq5MgNsmlIKnTet3UZe_oyraHDJgx_W8aBYA,72
2151
2152
  mteb/tasks/reranking/rus/ru_bq_reranking.py,sha256=cojQO9p5jYn32RdhRmuQQ_-TJnviXR_SrrAFECoMs3g,1363
@@ -2230,7 +2231,7 @@ mteb/tasks/retrieval/eng/cqa_dupstack_tex_retrieval.py,sha256=as6ZGvtZhmwM0acxU3
2230
2231
  mteb/tasks/retrieval/eng/cqa_dupstack_unix_retrieval.py,sha256=vf8ZxjpjaQZ5irDtWLifu_pIxVFveoOLmTIqWwYCzWE,1642
2231
2232
  mteb/tasks/retrieval/eng/cqa_dupstack_webmasters_retrieval.py,sha256=zEkmPfHW2_5NEQTM0Dh3aR6dJ0PUeeiYvGCC2bLnUJM,1622
2232
2233
  mteb/tasks/retrieval/eng/cqa_dupstack_wordpress_retrieval.py,sha256=l6IkX_gHtl3PpbcLxFvcNePwZDul-dOxRX7l0bQlzgY,1634
2233
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py,sha256=sn0eN5Q9mseKVdtzN5duZGyjNB3jmLSSS2xgKvC_Icc,1251
2234
+ mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py,sha256=vqC9e3m5Pjtk5yKV2tapOQ28lkwo-UG-HfimpFQw7LQ,1263
2234
2235
  mteb/tasks/retrieval/eng/dapfam_patent_retrieval.py,sha256=3rJDG8Id-gcG8K92SwgfXC8XREhH6uUbjU3u_AyCzgQ,27254
2235
2236
  mteb/tasks/retrieval/eng/dbpedia_retrieval.py,sha256=24XDQknkp_yxLUEEyEj7JnmTpqmT8hdDaLVA1Pr9PB4,3475
2236
2237
  mteb/tasks/retrieval/eng/edis_t2it_retrieval.py,sha256=hgFPxjozfGG25YeYV1WWMNarwJAXPWuPgFPbvsX-LqY,1393
@@ -2603,9 +2604,9 @@ mteb/types/_metadata.py,sha256=NN-W0S6a5TDV7UkpRx1pyWtGF4TyyCyoPUfHOwdeci8,2290
2603
2604
  mteb/types/_result.py,sha256=UKNokV9pu3G74MGebocU512aU_fFU9I9nPKnrG9Q0iE,1035
2604
2605
  mteb/types/_string_validators.py,sha256=PY-dYq4E8O50VS3bLYdldPWp400fl_WzUjfVSkNWe8U,523
2605
2606
  mteb/types/statistics.py,sha256=GwkBPmAr18Onu-vHtzHs0PFrhCozdOMiT13HwnWL4ZM,3961
2606
- mteb-2.6.4.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2607
- mteb-2.6.4.dist-info/METADATA,sha256=YiucWKiIeOdDqvQNLIgVffTBWr3mQJWub7t86-2UPmA,14251
2608
- mteb-2.6.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2609
- mteb-2.6.4.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2610
- mteb-2.6.4.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2611
- mteb-2.6.4.dist-info/RECORD,,
2607
+ mteb-2.6.5.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
2608
+ mteb-2.6.5.dist-info/METADATA,sha256=27kspNt-a7zJ0Ihl2nB5m4Ak1-hba5xQjBuqGnCFWcQ,14397
2609
+ mteb-2.6.5.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
2610
+ mteb-2.6.5.dist-info/entry_points.txt,sha256=8IJoEJFKoDHmVnNev-qJ9pp4Ln7_1-ma9QsXnzVCzGU,39
2611
+ mteb-2.6.5.dist-info/top_level.txt,sha256=OLVIjcQAlWBz0bdmutKlWHLF42FF0hp4uVAg3ZyiG4U,5
2612
+ mteb-2.6.5.dist-info/RECORD,,
File without changes