mteb 2.6.4__py3-none-any.whl → 2.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/classification.py +2 -3
- mteb/abstasks/multilabel_classification.py +3 -3
- mteb/abstasks/regression.py +1 -1
- mteb/abstasks/retrieval.py +1 -1
- mteb/abstasks/task_metadata.py +9 -14
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +2 -2
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +8 -8
- mteb/models/model_implementations/bmretriever_models.py +4 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +2 -2
- mteb/models/model_implementations/clip_models.py +3 -3
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +4 -4
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +19 -19
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +1 -1
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +3 -3
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +1 -1
- mteb/models/model_implementations/jina_models.py +11 -5
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -3
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mdbr_models.py +14 -2
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +2 -2
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +13 -13
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/mxbai_models.py +16 -3
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
- mteb/models/model_implementations/nomic_models.py +18 -6
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
- mteb/models/model_implementations/nvidia_models.py +3 -3
- mteb/models/model_implementations/octen_models.py +2 -2
- mteb/models/model_implementations/openclip_models.py +6 -6
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +5 -5
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/rasgaard_models.py +1 -1
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +1 -1
- mteb/models/model_implementations/rerankers_custom.py +9 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/sentence_transformers_models.py +58 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +10 -10
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +2 -2
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +46 -17
- mteb/results/benchmark_results.py +2 -2
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/METADATA +3 -1
- {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/RECORD +126 -125
- {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/WHEEL +0 -0
- {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.6.4.dist-info → mteb-2.6.5.dist-info}/top_level.txt +0 -0
|
@@ -25,7 +25,7 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
|
|
|
25
25
|
open_weights=True,
|
|
26
26
|
public_training_code=None,
|
|
27
27
|
public_training_data=None,
|
|
28
|
-
framework=["PyTorch"],
|
|
28
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
29
29
|
reference="https://huggingface.co/Haon-Chen/speed-embedding-7b-instruct",
|
|
30
30
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
31
31
|
use_instructions=None,
|
|
@@ -54,7 +54,7 @@ Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
54
54
|
open_weights=True,
|
|
55
55
|
public_training_code=None,
|
|
56
56
|
public_training_data=None,
|
|
57
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
57
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
58
58
|
reference="https://huggingface.co/Gameselo/STS-multilingual-mpnet-base-v2",
|
|
59
59
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
60
60
|
use_instructions=None,
|
|
@@ -155,7 +155,7 @@ Hum_Works__lodestone_base_4096_v1 = ModelMeta(
|
|
|
155
155
|
open_weights=True,
|
|
156
156
|
public_training_code=None,
|
|
157
157
|
public_training_data=None,
|
|
158
|
-
framework=["PyTorch"],
|
|
158
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
159
159
|
reference="https://huggingface.co/Hum-Works/lodestone-base-4096-v1",
|
|
160
160
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
161
161
|
use_instructions=None,
|
|
@@ -222,7 +222,7 @@ Jaume__gemma_2b_embeddings = ModelMeta(
|
|
|
222
222
|
open_weights=True,
|
|
223
223
|
public_training_code=None,
|
|
224
224
|
public_training_data=None,
|
|
225
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
225
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
226
226
|
reference="https://huggingface.co/Jaume/gemma-2b-embeddings",
|
|
227
227
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
228
228
|
use_instructions=None,
|
|
@@ -257,7 +257,7 @@ Lajavaness__bilingual_embedding_base = ModelMeta(
|
|
|
257
257
|
open_weights=True,
|
|
258
258
|
public_training_code=None,
|
|
259
259
|
public_training_data=None,
|
|
260
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
260
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
261
261
|
reference="https://huggingface.co/Lajavaness/bilingual-embedding-base",
|
|
262
262
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
263
263
|
use_instructions=None,
|
|
@@ -306,7 +306,7 @@ Lajavaness__bilingual_embedding_large = ModelMeta(
|
|
|
306
306
|
open_weights=True,
|
|
307
307
|
public_training_code=None,
|
|
308
308
|
public_training_data=None,
|
|
309
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
309
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
310
310
|
reference="https://huggingface.co/Lajavaness/bilingual-embedding-large",
|
|
311
311
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
312
312
|
use_instructions=None,
|
|
@@ -355,7 +355,7 @@ Lajavaness__bilingual_embedding_small = ModelMeta(
|
|
|
355
355
|
open_weights=True,
|
|
356
356
|
public_training_code=None,
|
|
357
357
|
public_training_data=None,
|
|
358
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
358
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
359
359
|
reference="https://huggingface.co/Lajavaness/bilingual-embedding-small",
|
|
360
360
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
361
361
|
use_instructions=None,
|
|
@@ -401,7 +401,7 @@ Mihaiii__Bulbasaur = ModelMeta(
|
|
|
401
401
|
open_weights=True,
|
|
402
402
|
public_training_code=None,
|
|
403
403
|
public_training_data=None,
|
|
404
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
404
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
405
405
|
reference="https://huggingface.co/Mihaiii/Bulbasaur",
|
|
406
406
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
407
407
|
use_instructions=None,
|
|
@@ -425,7 +425,7 @@ Mihaiii__Ivysaur = ModelMeta(
|
|
|
425
425
|
open_weights=True,
|
|
426
426
|
public_training_code=None,
|
|
427
427
|
public_training_data=None,
|
|
428
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
428
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
429
429
|
reference="https://huggingface.co/Mihaiii/Ivysaur",
|
|
430
430
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
431
431
|
use_instructions=None,
|
|
@@ -449,7 +449,7 @@ Mihaiii__Squirtle = ModelMeta(
|
|
|
449
449
|
open_weights=True,
|
|
450
450
|
public_training_code=None,
|
|
451
451
|
public_training_data=None,
|
|
452
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
452
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
453
453
|
reference="https://huggingface.co/Mihaiii/Squirtle",
|
|
454
454
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
455
455
|
use_instructions=None,
|
|
@@ -473,7 +473,7 @@ Mihaiii__Venusaur = ModelMeta(
|
|
|
473
473
|
open_weights=True,
|
|
474
474
|
public_training_code=None,
|
|
475
475
|
public_training_data=None,
|
|
476
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
476
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
477
477
|
reference="https://huggingface.co/Mihaiii/Venusaur",
|
|
478
478
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
479
479
|
use_instructions=None,
|
|
@@ -497,7 +497,7 @@ Mihaiii__Wartortle = ModelMeta(
|
|
|
497
497
|
open_weights=True,
|
|
498
498
|
public_training_code=None,
|
|
499
499
|
public_training_data=None,
|
|
500
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
500
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
501
501
|
reference="https://huggingface.co/Mihaiii/Wartortle",
|
|
502
502
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
503
503
|
use_instructions=None,
|
|
@@ -521,7 +521,7 @@ Mihaiii__gte_micro = ModelMeta(
|
|
|
521
521
|
open_weights=True,
|
|
522
522
|
public_training_code=None,
|
|
523
523
|
public_training_data=None,
|
|
524
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
524
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
525
525
|
reference="https://huggingface.co/Mihaiii/gte-micro",
|
|
526
526
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
527
527
|
use_instructions=None,
|
|
@@ -544,7 +544,7 @@ Mihaiii__gte_micro_v4 = ModelMeta(
|
|
|
544
544
|
open_weights=True,
|
|
545
545
|
public_training_code=None,
|
|
546
546
|
public_training_data=None,
|
|
547
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
547
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
548
548
|
reference="https://huggingface.co/Mihaiii/gte-micro-v4",
|
|
549
549
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
550
550
|
use_instructions=None,
|
|
@@ -567,7 +567,7 @@ OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
|
|
|
567
567
|
open_weights=True,
|
|
568
568
|
public_training_code=None,
|
|
569
569
|
public_training_data=None,
|
|
570
|
-
framework=["PyTorch"],
|
|
570
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
571
571
|
reference="https://huggingface.co/OrdalieTech/Solon-embeddings-large-0.1",
|
|
572
572
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
573
573
|
use_instructions=None,
|
|
@@ -590,7 +590,7 @@ Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
590
590
|
open_weights=True,
|
|
591
591
|
public_training_code=None,
|
|
592
592
|
public_training_data=None,
|
|
593
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
593
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
594
594
|
reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka",
|
|
595
595
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
596
596
|
use_instructions=None,
|
|
@@ -622,7 +622,7 @@ Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMet
|
|
|
622
622
|
open_weights=True,
|
|
623
623
|
public_training_code=None,
|
|
624
624
|
public_training_data=None,
|
|
625
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
625
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
626
626
|
reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet",
|
|
627
627
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
628
628
|
use_instructions=None,
|
|
@@ -647,7 +647,7 @@ Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
647
647
|
open_weights=True,
|
|
648
648
|
public_training_code=None,
|
|
649
649
|
public_training_data=None,
|
|
650
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
650
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
651
651
|
reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
|
|
652
652
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
653
653
|
use_instructions=None,
|
|
@@ -681,7 +681,7 @@ Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
|
|
|
681
681
|
open_weights=True,
|
|
682
682
|
public_training_code=None,
|
|
683
683
|
public_training_data=None,
|
|
684
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
684
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
685
685
|
reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-labse-Matryoshka",
|
|
686
686
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
687
687
|
use_instructions=None,
|
|
@@ -715,7 +715,7 @@ Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
|
|
|
715
715
|
open_weights=True,
|
|
716
716
|
public_training_code=None,
|
|
717
717
|
public_training_data=None,
|
|
718
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
718
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
719
719
|
reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet",
|
|
720
720
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
721
721
|
use_instructions=None,
|
|
@@ -749,7 +749,7 @@ Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
749
749
|
open_weights=True,
|
|
750
750
|
public_training_code=None,
|
|
751
751
|
public_training_data=None,
|
|
752
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
752
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
753
753
|
reference="https://huggingface.co/Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka",
|
|
754
754
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
755
755
|
use_instructions=None,
|
|
@@ -781,7 +781,7 @@ consciousai__cai_lunaris_text_embeddings = ModelMeta(
|
|
|
781
781
|
open_weights=True,
|
|
782
782
|
public_training_code=None,
|
|
783
783
|
public_training_data=None,
|
|
784
|
-
framework=["PyTorch"],
|
|
784
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers"],
|
|
785
785
|
reference="https://huggingface.co/consciousAI/cai-lunaris-text-embeddings",
|
|
786
786
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
787
787
|
use_instructions=None,
|
|
@@ -804,7 +804,7 @@ consciousai__cai_stellaris_text_embeddings = ModelMeta(
|
|
|
804
804
|
open_weights=True,
|
|
805
805
|
public_training_code=None,
|
|
806
806
|
public_training_data=None,
|
|
807
|
-
framework=["PyTorch"],
|
|
807
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
808
808
|
reference="https://huggingface.co/consciousAI/cai-stellaris-text-embeddings",
|
|
809
809
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
810
810
|
use_instructions=None,
|
|
@@ -836,7 +836,7 @@ manu__sentence_croissant_alpha_v0_2 = ModelMeta(
|
|
|
836
836
|
open_weights=True,
|
|
837
837
|
public_training_code=None,
|
|
838
838
|
public_training_data=None,
|
|
839
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
839
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
840
840
|
reference="https://huggingface.co/manu/sentence_croissant_alpha_v0.2",
|
|
841
841
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
842
842
|
use_instructions=None,
|
|
@@ -859,7 +859,7 @@ manu__sentence_croissant_alpha_v0_3 = ModelMeta(
|
|
|
859
859
|
open_weights=True,
|
|
860
860
|
public_training_code=None,
|
|
861
861
|
public_training_data=None,
|
|
862
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
862
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
863
863
|
reference="https://huggingface.co/manu/sentence_croissant_alpha_v0.3",
|
|
864
864
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
865
865
|
use_instructions=None,
|
|
@@ -882,7 +882,7 @@ manu__sentence_croissant_alpha_v0_4 = ModelMeta(
|
|
|
882
882
|
open_weights=True,
|
|
883
883
|
public_training_code=None,
|
|
884
884
|
public_training_data=None,
|
|
885
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
885
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
886
886
|
reference="https://huggingface.co/manu/sentence_croissant_alpha_v0.4",
|
|
887
887
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
888
888
|
use_instructions=None,
|
|
@@ -906,7 +906,7 @@ thenlper__gte_base = ModelMeta(
|
|
|
906
906
|
open_weights=True,
|
|
907
907
|
public_training_code=None,
|
|
908
908
|
public_training_data=None,
|
|
909
|
-
framework=["PyTorch"],
|
|
909
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
910
910
|
reference="https://huggingface.co/thenlper/gte-base",
|
|
911
911
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
912
912
|
use_instructions=None,
|
|
@@ -935,7 +935,7 @@ thenlper__gte_large = ModelMeta(
|
|
|
935
935
|
open_weights=True,
|
|
936
936
|
public_training_code=None,
|
|
937
937
|
public_training_data=None,
|
|
938
|
-
framework=["PyTorch"],
|
|
938
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
939
939
|
reference="https://huggingface.co/thenlper/gte-large",
|
|
940
940
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
941
941
|
use_instructions=None,
|
|
@@ -964,7 +964,7 @@ thenlper__gte_small = ModelMeta(
|
|
|
964
964
|
open_weights=True,
|
|
965
965
|
public_training_code=None,
|
|
966
966
|
public_training_data=None,
|
|
967
|
-
framework=["PyTorch"],
|
|
967
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
968
968
|
reference="https://huggingface.co/thenlper/gte-small",
|
|
969
969
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
970
970
|
use_instructions=None,
|
|
@@ -1039,7 +1039,7 @@ sdadas__mmlw_e5_base = ModelMeta(
|
|
|
1039
1039
|
open_weights=True,
|
|
1040
1040
|
public_training_code=None,
|
|
1041
1041
|
public_training_data=None,
|
|
1042
|
-
framework=["PyTorch"],
|
|
1042
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
1043
1043
|
reference="https://huggingface.co/sdadas/mmlw-e5-base",
|
|
1044
1044
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1045
1045
|
use_instructions=None,
|
|
@@ -1047,7 +1047,7 @@ sdadas__mmlw_e5_base = ModelMeta(
|
|
|
1047
1047
|
adapted_from="intfloat/multilingual-e5-base",
|
|
1048
1048
|
superseded_by=None,
|
|
1049
1049
|
citation="""@article{dadas2024pirb,
|
|
1050
|
-
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1050
|
+
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1051
1051
|
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
|
|
1052
1052
|
year={2024},
|
|
1053
1053
|
eprint={2402.13350},
|
|
@@ -1070,7 +1070,7 @@ dwzhu__e5_base_4k = ModelMeta(
|
|
|
1070
1070
|
open_weights=True,
|
|
1071
1071
|
public_training_code=None,
|
|
1072
1072
|
public_training_data=None,
|
|
1073
|
-
framework=["PyTorch"],
|
|
1073
|
+
framework=["PyTorch", "Transformers"],
|
|
1074
1074
|
reference="https://huggingface.co/dwzhu/e5-base-4k",
|
|
1075
1075
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1076
1076
|
use_instructions=None,
|
|
@@ -1099,7 +1099,7 @@ sdadas__mmlw_e5_large = ModelMeta(
|
|
|
1099
1099
|
open_weights=True,
|
|
1100
1100
|
public_training_code=None,
|
|
1101
1101
|
public_training_data=None,
|
|
1102
|
-
framework=["PyTorch"],
|
|
1102
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
1103
1103
|
reference="https://huggingface.co/sdadas/mmlw-e5-large",
|
|
1104
1104
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1105
1105
|
use_instructions=None,
|
|
@@ -1107,7 +1107,7 @@ sdadas__mmlw_e5_large = ModelMeta(
|
|
|
1107
1107
|
adapted_from="intfloat/multilingual-e5-large",
|
|
1108
1108
|
superseded_by=None,
|
|
1109
1109
|
citation="""@article{dadas2024pirb,
|
|
1110
|
-
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1110
|
+
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1111
1111
|
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
|
|
1112
1112
|
year={2024},
|
|
1113
1113
|
eprint={2402.13350},
|
|
@@ -1130,7 +1130,7 @@ sdadas__mmlw_e5_small = ModelMeta(
|
|
|
1130
1130
|
open_weights=True,
|
|
1131
1131
|
public_training_code=None,
|
|
1132
1132
|
public_training_data=None,
|
|
1133
|
-
framework=["PyTorch"],
|
|
1133
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
1134
1134
|
reference="https://huggingface.co/sdadas/mmlw-e5-small",
|
|
1135
1135
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1136
1136
|
use_instructions=None,
|
|
@@ -1138,7 +1138,7 @@ sdadas__mmlw_e5_small = ModelMeta(
|
|
|
1138
1138
|
adapted_from="intfloat/multilingual-e5-small",
|
|
1139
1139
|
superseded_by=None,
|
|
1140
1140
|
citation="""@article{dadas2024pirb,
|
|
1141
|
-
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1141
|
+
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1142
1142
|
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
|
|
1143
1143
|
year={2024},
|
|
1144
1144
|
eprint={2402.13350},
|
|
@@ -1161,7 +1161,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
|
|
|
1161
1161
|
open_weights=True,
|
|
1162
1162
|
public_training_code=None,
|
|
1163
1163
|
public_training_data=None,
|
|
1164
|
-
framework=["PyTorch"],
|
|
1164
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
1165
1165
|
reference="https://huggingface.co/sdadas/mmlw-roberta-base",
|
|
1166
1166
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1167
1167
|
use_instructions=None,
|
|
@@ -1169,7 +1169,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
|
|
|
1169
1169
|
adapted_from="sdadas/polish-roberta-base-v2",
|
|
1170
1170
|
superseded_by=None,
|
|
1171
1171
|
citation="""@article{dadas2024pirb,
|
|
1172
|
-
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1172
|
+
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1173
1173
|
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
|
|
1174
1174
|
year={2024},
|
|
1175
1175
|
eprint={2402.13350},
|
|
@@ -1192,7 +1192,7 @@ sdadas__mmlw_roberta_large = ModelMeta(
|
|
|
1192
1192
|
open_weights=True,
|
|
1193
1193
|
public_training_code=None,
|
|
1194
1194
|
public_training_data=None,
|
|
1195
|
-
framework=["PyTorch"],
|
|
1195
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
1196
1196
|
reference="https://huggingface.co/sdadas/mmlw-roberta-large",
|
|
1197
1197
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1198
1198
|
use_instructions=None,
|
|
@@ -1200,7 +1200,7 @@ sdadas__mmlw_roberta_large = ModelMeta(
|
|
|
1200
1200
|
adapted_from="sdadas/polish-roberta-large-v2",
|
|
1201
1201
|
superseded_by=None,
|
|
1202
1202
|
citation="""@article{dadas2024pirb,
|
|
1203
|
-
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1203
|
+
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
|
|
1204
1204
|
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
|
|
1205
1205
|
year={2024},
|
|
1206
1206
|
eprint={2402.13350},
|
|
@@ -1278,7 +1278,7 @@ izhx__udever_bloom_1b1 = ModelMeta(
|
|
|
1278
1278
|
open_weights=True,
|
|
1279
1279
|
public_training_code=None,
|
|
1280
1280
|
public_training_data=None,
|
|
1281
|
-
framework=["PyTorch"],
|
|
1281
|
+
framework=["PyTorch", "Transformers"],
|
|
1282
1282
|
reference="https://huggingface.co/izhx/udever-bloom-1b1",
|
|
1283
1283
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1284
1284
|
use_instructions=None,
|
|
@@ -1307,7 +1307,7 @@ izhx__udever_bloom_3b = ModelMeta(
|
|
|
1307
1307
|
open_weights=True,
|
|
1308
1308
|
public_training_code=None,
|
|
1309
1309
|
public_training_data=None,
|
|
1310
|
-
framework=["PyTorch"],
|
|
1310
|
+
framework=["PyTorch", "Transformers"],
|
|
1311
1311
|
reference="https://huggingface.co/izhx/udever-bloom-3b",
|
|
1312
1312
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1313
1313
|
use_instructions=None,
|
|
@@ -1336,7 +1336,7 @@ izhx__udever_bloom_560m = ModelMeta(
|
|
|
1336
1336
|
open_weights=True,
|
|
1337
1337
|
public_training_code=None,
|
|
1338
1338
|
public_training_data=None,
|
|
1339
|
-
framework=["PyTorch"],
|
|
1339
|
+
framework=["PyTorch", "Transformers"],
|
|
1340
1340
|
reference="https://huggingface.co/izhx/udever-bloom-560m",
|
|
1341
1341
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1342
1342
|
use_instructions=None,
|
|
@@ -1365,7 +1365,7 @@ izhx__udever_bloom_7b1 = ModelMeta(
|
|
|
1365
1365
|
open_weights=True,
|
|
1366
1366
|
public_training_code=None,
|
|
1367
1367
|
public_training_data=None,
|
|
1368
|
-
framework=["PyTorch"],
|
|
1368
|
+
framework=["PyTorch", "Transformers"],
|
|
1369
1369
|
reference="https://huggingface.co/izhx/udever-bloom-7b1",
|
|
1370
1370
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1371
1371
|
use_instructions=None,
|
|
@@ -1394,7 +1394,7 @@ avsolatorio__gist_embedding_v0 = ModelMeta(
|
|
|
1394
1394
|
open_weights=True,
|
|
1395
1395
|
public_training_code=None,
|
|
1396
1396
|
public_training_data=None,
|
|
1397
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1397
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
1398
1398
|
reference="https://huggingface.co/avsolatorio/GIST-Embedding-v0",
|
|
1399
1399
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1400
1400
|
use_instructions=None,
|
|
@@ -1444,7 +1444,7 @@ avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
|
|
|
1444
1444
|
open_weights=True,
|
|
1445
1445
|
public_training_code=None,
|
|
1446
1446
|
public_training_data=None,
|
|
1447
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1447
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
1448
1448
|
reference="https://huggingface.co/avsolatorio/GIST-all-MiniLM-L6-v2",
|
|
1449
1449
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1450
1450
|
use_instructions=None,
|
|
@@ -1494,7 +1494,7 @@ avsolatorio__gist_large_embedding_v0 = ModelMeta(
|
|
|
1494
1494
|
open_weights=True,
|
|
1495
1495
|
public_training_code=None,
|
|
1496
1496
|
public_training_data=None,
|
|
1497
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1497
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
1498
1498
|
reference="https://huggingface.co/avsolatorio/GIST-large-Embedding-v0",
|
|
1499
1499
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1500
1500
|
use_instructions=None,
|
|
@@ -1544,7 +1544,7 @@ avsolatorio__gist_small_embedding_v0 = ModelMeta(
|
|
|
1544
1544
|
open_weights=True,
|
|
1545
1545
|
public_training_code=None,
|
|
1546
1546
|
public_training_data=None,
|
|
1547
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1547
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
1548
1548
|
reference="https://huggingface.co/avsolatorio/GIST-small-Embedding-v0",
|
|
1549
1549
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1550
1550
|
use_instructions=None,
|
|
@@ -1594,7 +1594,7 @@ bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
|
|
|
1594
1594
|
open_weights=True,
|
|
1595
1595
|
public_training_code=None,
|
|
1596
1596
|
public_training_data=None,
|
|
1597
|
-
framework=["PyTorch"],
|
|
1597
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
1598
1598
|
reference="https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco",
|
|
1599
1599
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1600
1600
|
use_instructions=None,
|
|
@@ -1623,7 +1623,7 @@ aari1995__german_semantic_sts_v2 = ModelMeta(
|
|
|
1623
1623
|
open_weights=True,
|
|
1624
1624
|
public_training_code=None,
|
|
1625
1625
|
public_training_data=None,
|
|
1626
|
-
framework=["PyTorch"],
|
|
1626
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
1627
1627
|
reference="https://huggingface.co/aari1995/German_Semantic_STS_V2",
|
|
1628
1628
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1629
1629
|
use_instructions=None,
|
|
@@ -1647,7 +1647,7 @@ abhinand__medembed_small_v0_1 = ModelMeta(
|
|
|
1647
1647
|
open_weights=True,
|
|
1648
1648
|
public_training_code=None,
|
|
1649
1649
|
public_training_data=None,
|
|
1650
|
-
framework=["PyTorch"],
|
|
1650
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
1651
1651
|
reference="https://huggingface.co/abhinand/MedEmbed-small-v0.1",
|
|
1652
1652
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1653
1653
|
use_instructions=None,
|
|
@@ -1708,7 +1708,7 @@ brahmairesearch__slx_v0_1 = ModelMeta(
|
|
|
1708
1708
|
open_weights=True,
|
|
1709
1709
|
public_training_code=None,
|
|
1710
1710
|
public_training_data=None,
|
|
1711
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1711
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
1712
1712
|
reference="https://huggingface.co/brahmairesearch/slx-v0.1",
|
|
1713
1713
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1714
1714
|
use_instructions=None,
|
|
@@ -1731,7 +1731,7 @@ deepfile__embedder_100p = ModelMeta(
|
|
|
1731
1731
|
open_weights=True,
|
|
1732
1732
|
public_training_code=None,
|
|
1733
1733
|
public_training_data=None,
|
|
1734
|
-
framework=["PyTorch"],
|
|
1734
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
1735
1735
|
reference="https://huggingface.co/deepfile/embedder-100p",
|
|
1736
1736
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1737
1737
|
use_instructions=None,
|
|
@@ -1754,7 +1754,7 @@ infgrad__stella_base_en_v2 = ModelMeta(
|
|
|
1754
1754
|
open_weights=True,
|
|
1755
1755
|
public_training_code=None,
|
|
1756
1756
|
public_training_data=None,
|
|
1757
|
-
framework=["PyTorch"],
|
|
1757
|
+
framework=["PyTorch", "Sentence Transformers"],
|
|
1758
1758
|
reference="https://huggingface.co/infgrad/stella-base-en-v2",
|
|
1759
1759
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1760
1760
|
use_instructions=None,
|
|
@@ -1777,7 +1777,7 @@ malenia1__ternary_weight_embedding = ModelMeta(
|
|
|
1777
1777
|
open_weights=True,
|
|
1778
1778
|
public_training_code=None,
|
|
1779
1779
|
public_training_data=None,
|
|
1780
|
-
framework=["PyTorch"],
|
|
1780
|
+
framework=["PyTorch", "safetensors"],
|
|
1781
1781
|
reference="https://huggingface.co/malenia1/ternary-weight-embedding",
|
|
1782
1782
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1783
1783
|
use_instructions=None,
|
|
@@ -1800,7 +1800,7 @@ omarelshehy__arabic_english_sts_matryoshka = ModelMeta(
|
|
|
1800
1800
|
open_weights=True,
|
|
1801
1801
|
public_training_code=None,
|
|
1802
1802
|
public_training_data=None,
|
|
1803
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1803
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
1804
1804
|
reference="https://huggingface.co/omarelshehy/arabic-english-sts-matryoshka",
|
|
1805
1805
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1806
1806
|
use_instructions=None,
|
|
@@ -1840,7 +1840,7 @@ openbmb__minicpm_embedding = ModelMeta(
|
|
|
1840
1840
|
open_weights=True,
|
|
1841
1841
|
public_training_code=None,
|
|
1842
1842
|
public_training_data=None,
|
|
1843
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1843
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
1844
1844
|
reference="https://huggingface.co/openbmb/MiniCPM-Embedding",
|
|
1845
1845
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1846
1846
|
use_instructions=None,
|
|
@@ -1864,7 +1864,7 @@ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
|
|
|
1864
1864
|
open_weights=True,
|
|
1865
1865
|
public_training_code=None,
|
|
1866
1866
|
public_training_data=None,
|
|
1867
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1867
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
1868
1868
|
reference="https://huggingface.co/silma-ai/silma-embeddding-matryoshka-v0.1",
|
|
1869
1869
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1870
1870
|
use_instructions=None,
|
|
@@ -1895,7 +1895,7 @@ sbert_chinese_general_v1 = ModelMeta(
|
|
|
1895
1895
|
open_weights=True,
|
|
1896
1896
|
public_training_code=None,
|
|
1897
1897
|
public_training_data=None,
|
|
1898
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1898
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers"],
|
|
1899
1899
|
reference="https://huggingface.co/DMetaSoul/sbert-chinese-general-v1",
|
|
1900
1900
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1901
1901
|
use_instructions=None,
|
|
@@ -1923,7 +1923,7 @@ dmeta_embedding_zh_small = ModelMeta(
|
|
|
1923
1923
|
open_weights=True,
|
|
1924
1924
|
public_training_code=None,
|
|
1925
1925
|
public_training_data=None,
|
|
1926
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1926
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
1927
1927
|
reference="https://huggingface.co/DMetaSoul/Dmeta-embedding-zh-small/",
|
|
1928
1928
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1929
1929
|
use_instructions=None,
|
|
@@ -1946,7 +1946,7 @@ xiaobu_embedding = ModelMeta(
|
|
|
1946
1946
|
open_weights=True,
|
|
1947
1947
|
public_training_code=None,
|
|
1948
1948
|
public_training_data=None,
|
|
1949
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1949
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers"],
|
|
1950
1950
|
reference="https://huggingface.co/lier007/xiaobu-embedding",
|
|
1951
1951
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1952
1952
|
use_instructions=None,
|
|
@@ -1970,7 +1970,7 @@ xiaobu_embedding_v2 = ModelMeta(
|
|
|
1970
1970
|
open_weights=True,
|
|
1971
1971
|
public_training_code=None,
|
|
1972
1972
|
public_training_data=None,
|
|
1973
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1973
|
+
framework=["PyTorch", "Sentence Transformers", "ONNX", "safetensors"],
|
|
1974
1974
|
reference="https://huggingface.co/lier007/xiaobu-embedding-v2",
|
|
1975
1975
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
1976
1976
|
use_instructions=None,
|
|
@@ -1994,7 +1994,7 @@ yinka_embedding = ModelMeta(
|
|
|
1994
1994
|
open_weights=True,
|
|
1995
1995
|
public_training_code=None,
|
|
1996
1996
|
public_training_data=None,
|
|
1997
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
1997
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers"],
|
|
1998
1998
|
reference="https://huggingface.co/Classical/Yinka",
|
|
1999
1999
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
2000
2000
|
use_instructions=None,
|
|
@@ -2017,7 +2017,7 @@ conan_embedding = ModelMeta(
|
|
|
2017
2017
|
open_weights=True,
|
|
2018
2018
|
public_training_code=None,
|
|
2019
2019
|
public_training_data=None,
|
|
2020
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
2020
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
2021
2021
|
reference="https://huggingface.co/Classical/Yinka",
|
|
2022
2022
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
2023
2023
|
use_instructions=None,
|
|
@@ -2025,13 +2025,13 @@ conan_embedding = ModelMeta(
|
|
|
2025
2025
|
training_datasets=None, # They "scraped" things from the internet, we don't know, could be leakage
|
|
2026
2026
|
superseded_by=None,
|
|
2027
2027
|
citation="""@misc{li2024conanembeddinggeneraltextembedding,
|
|
2028
|
-
title={Conan-embedding: General Text Embedding with More and Better Negative Samples},
|
|
2028
|
+
title={Conan-embedding: General Text Embedding with More and Better Negative Samples},
|
|
2029
2029
|
author={Shiyu Li and Yang Tang and Shizhe Chen and Xi Chen},
|
|
2030
2030
|
year={2024},
|
|
2031
2031
|
eprint={2408.15710},
|
|
2032
2032
|
archivePrefix={arXiv},
|
|
2033
2033
|
primaryClass={cs.CL},
|
|
2034
|
-
url={https://arxiv.org/abs/2408.15710},
|
|
2034
|
+
url={https://arxiv.org/abs/2408.15710},
|
|
2035
2035
|
}""",
|
|
2036
2036
|
)
|
|
2037
2037
|
|
|
@@ -2050,14 +2050,14 @@ ember_v1 = ModelMeta(
|
|
|
2050
2050
|
open_weights=True,
|
|
2051
2051
|
public_training_code=None,
|
|
2052
2052
|
public_training_data=None,
|
|
2053
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
2053
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors", "Transformers"],
|
|
2054
2054
|
reference="https://huggingface.co/llmrails/ember-v1",
|
|
2055
2055
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
2056
2056
|
use_instructions=None,
|
|
2057
2057
|
training_datasets=None,
|
|
2058
2058
|
superseded_by=None,
|
|
2059
2059
|
citation="""@misc{nur2024emberv1,
|
|
2060
|
-
title={ember-v1: SOTA embedding model},
|
|
2060
|
+
title={ember-v1: SOTA embedding model},
|
|
2061
2061
|
author={Enrike Nur and Anar Aliyev},
|
|
2062
2062
|
year={2023},
|
|
2063
2063
|
}""",
|
|
@@ -25,7 +25,7 @@ mme5_mllama = ModelMeta(
|
|
|
25
25
|
open_weights=True,
|
|
26
26
|
public_training_code=None,
|
|
27
27
|
public_training_data="https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic",
|
|
28
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
28
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
29
29
|
reference="https://huggingface.co/intfloat/mmE5-mllama-11b-instruct",
|
|
30
30
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
31
31
|
use_instructions=True,
|
|
@@ -132,7 +132,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
132
132
|
open_weights=True,
|
|
133
133
|
public_training_code="https://github.com/facebookresearch/moco-v3",
|
|
134
134
|
public_training_data=None,
|
|
135
|
-
framework=["PyTorch"],
|
|
135
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
136
136
|
reference="https://github.com/facebookresearch/moco-v3",
|
|
137
137
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
138
138
|
use_instructions=False,
|
|
@@ -156,7 +156,7 @@ mocov3_vit_large = ModelMeta(
|
|
|
156
156
|
open_weights=True,
|
|
157
157
|
public_training_code="https://github.com/facebookresearch/moco-v3",
|
|
158
158
|
public_training_data=None,
|
|
159
|
-
framework=["PyTorch"],
|
|
159
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
160
160
|
reference="https://github.com/facebookresearch/moco-v3",
|
|
161
161
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
162
162
|
use_instructions=False,
|
|
@@ -181,7 +181,7 @@ MoD_Embedding = ModelMeta(
|
|
|
181
181
|
license="apache-2.0",
|
|
182
182
|
reference="https://huggingface.co/bflhc/MoD-Embedding",
|
|
183
183
|
similarity_fn_name="cosine",
|
|
184
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
184
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
185
185
|
use_instructions=True,
|
|
186
186
|
public_training_code=None,
|
|
187
187
|
public_training_data=None,
|