mteb 2.6.3__py3-none-any.whl → 2.6.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. mteb/abstasks/classification.py +2 -3
  2. mteb/abstasks/multilabel_classification.py +3 -3
  3. mteb/abstasks/regression.py +1 -1
  4. mteb/abstasks/retrieval.py +1 -1
  5. mteb/abstasks/task_metadata.py +9 -14
  6. mteb/models/model_implementations/align_models.py +1 -1
  7. mteb/models/model_implementations/andersborges.py +2 -2
  8. mteb/models/model_implementations/ara_models.py +1 -1
  9. mteb/models/model_implementations/arctic_models.py +8 -8
  10. mteb/models/model_implementations/b1ade_models.py +1 -1
  11. mteb/models/model_implementations/bge_models.py +45 -21
  12. mteb/models/model_implementations/bica_model.py +3 -3
  13. mteb/models/model_implementations/blip2_models.py +2 -2
  14. mteb/models/model_implementations/blip_models.py +8 -8
  15. mteb/models/model_implementations/bmretriever_models.py +4 -4
  16. mteb/models/model_implementations/cadet_models.py +1 -1
  17. mteb/models/model_implementations/cde_models.py +2 -2
  18. mteb/models/model_implementations/clip_models.py +3 -3
  19. mteb/models/model_implementations/clips_models.py +3 -3
  20. mteb/models/model_implementations/codefuse_models.py +5 -5
  21. mteb/models/model_implementations/codesage_models.py +3 -3
  22. mteb/models/model_implementations/cohere_models.py +4 -4
  23. mteb/models/model_implementations/colpali_models.py +3 -3
  24. mteb/models/model_implementations/colqwen_models.py +8 -8
  25. mteb/models/model_implementations/colsmol_models.py +2 -2
  26. mteb/models/model_implementations/conan_models.py +1 -1
  27. mteb/models/model_implementations/dino_models.py +19 -19
  28. mteb/models/model_implementations/e5_instruct.py +23 -4
  29. mteb/models/model_implementations/e5_models.py +9 -9
  30. mteb/models/model_implementations/e5_v.py +1 -1
  31. mteb/models/model_implementations/eagerworks_models.py +1 -1
  32. mteb/models/model_implementations/emillykkejensen_models.py +3 -3
  33. mteb/models/model_implementations/en_code_retriever.py +1 -1
  34. mteb/models/model_implementations/euler_models.py +2 -2
  35. mteb/models/model_implementations/fa_models.py +9 -9
  36. mteb/models/model_implementations/facebookai.py +14 -2
  37. mteb/models/model_implementations/geogpt_models.py +1 -1
  38. mteb/models/model_implementations/gme_v_models.py +2 -2
  39. mteb/models/model_implementations/google_models.py +1 -1
  40. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  41. mteb/models/model_implementations/gritlm_models.py +2 -2
  42. mteb/models/model_implementations/gte_models.py +25 -13
  43. mteb/models/model_implementations/hinvec_models.py +1 -1
  44. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  45. mteb/models/model_implementations/inf_models.py +2 -2
  46. mteb/models/model_implementations/jasper_models.py +2 -2
  47. mteb/models/model_implementations/jina_clip.py +1 -1
  48. mteb/models/model_implementations/jina_models.py +11 -5
  49. mteb/models/model_implementations/kblab.py +12 -6
  50. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
  51. mteb/models/model_implementations/kfst.py +1 -1
  52. mteb/models/model_implementations/kowshik24_models.py +1 -1
  53. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  54. mteb/models/model_implementations/linq_models.py +1 -1
  55. mteb/models/model_implementations/listconranker.py +1 -1
  56. mteb/models/model_implementations/llm2clip_models.py +3 -3
  57. mteb/models/model_implementations/llm2vec_models.py +8 -8
  58. mteb/models/model_implementations/mdbr_models.py +14 -2
  59. mteb/models/model_implementations/misc_models.py +68 -68
  60. mteb/models/model_implementations/mme5_models.py +1 -1
  61. mteb/models/model_implementations/moco_models.py +2 -2
  62. mteb/models/model_implementations/mod_models.py +1 -1
  63. mteb/models/model_implementations/model2vec_models.py +13 -13
  64. mteb/models/model_implementations/moka_models.py +1 -1
  65. mteb/models/model_implementations/mxbai_models.py +16 -3
  66. mteb/models/model_implementations/nbailab.py +3 -3
  67. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
  68. mteb/models/model_implementations/nomic_models.py +18 -6
  69. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  70. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
  71. mteb/models/model_implementations/nvidia_models.py +3 -3
  72. mteb/models/model_implementations/octen_models.py +2 -2
  73. mteb/models/model_implementations/openclip_models.py +6 -6
  74. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  75. mteb/models/model_implementations/ops_moa_models.py +1 -1
  76. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  77. mteb/models/model_implementations/pawan_models.py +1 -1
  78. mteb/models/model_implementations/piccolo_models.py +1 -1
  79. mteb/models/model_implementations/promptriever_models.py +4 -4
  80. mteb/models/model_implementations/pylate_models.py +5 -5
  81. mteb/models/model_implementations/qodo_models.py +2 -2
  82. mteb/models/model_implementations/qtack_models.py +1 -1
  83. mteb/models/model_implementations/qwen3_models.py +3 -3
  84. mteb/models/model_implementations/qzhou_models.py +2 -2
  85. mteb/models/model_implementations/rasgaard_models.py +1 -1
  86. mteb/models/model_implementations/reasonir_model.py +1 -1
  87. mteb/models/model_implementations/repllama_models.py +1 -1
  88. mteb/models/model_implementations/rerankers_custom.py +9 -3
  89. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  90. mteb/models/model_implementations/richinfoai_models.py +1 -1
  91. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  92. mteb/models/model_implementations/ruri_models.py +10 -10
  93. mteb/models/model_implementations/salesforce_models.py +3 -3
  94. mteb/models/model_implementations/samilpwc_models.py +1 -1
  95. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  96. mteb/models/model_implementations/searchmap_models.py +1 -1
  97. mteb/models/model_implementations/sentence_transformers_models.py +58 -22
  98. mteb/models/model_implementations/shuu_model.py +1 -1
  99. mteb/models/model_implementations/siglip_models.py +10 -10
  100. mteb/models/model_implementations/slm_models.py +416 -0
  101. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  102. mteb/models/model_implementations/stella_models.py +17 -4
  103. mteb/models/model_implementations/tarka_models.py +2 -2
  104. mteb/models/model_implementations/text2vec_models.py +9 -3
  105. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  106. mteb/models/model_implementations/uae_models.py +7 -1
  107. mteb/models/model_implementations/vdr_models.py +1 -1
  108. mteb/models/model_implementations/vi_vn_models.py +6 -6
  109. mteb/models/model_implementations/vlm2vec_models.py +2 -2
  110. mteb/models/model_implementations/youtu_models.py +1 -1
  111. mteb/models/model_implementations/yuan_models.py +1 -1
  112. mteb/models/model_implementations/yuan_models_en.py +1 -1
  113. mteb/models/model_meta.py +46 -17
  114. mteb/results/benchmark_results.py +2 -2
  115. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  116. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  117. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  118. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  119. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  120. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  121. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/METADATA +3 -1
  122. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/RECORD +126 -125
  123. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/WHEEL +0 -0
  124. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/entry_points.txt +0 -0
  125. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/licenses/LICENSE +0 -0
  126. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/top_level.txt +0 -0
@@ -125,7 +125,13 @@ all_minilm_l6_v2 = ModelMeta(
125
125
  max_tokens=256,
126
126
  reference="https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
127
127
  similarity_fn_name=ScoringFunction.COSINE,
128
- framework=["Sentence Transformers", "PyTorch"],
128
+ framework=[
129
+ "Sentence Transformers",
130
+ "PyTorch",
131
+ "ONNX",
132
+ "safetensors",
133
+ "Transformers",
134
+ ],
129
135
  use_instructions=False,
130
136
  superseded_by=None,
131
137
  adapted_from=None,
@@ -150,7 +156,13 @@ all_minilm_l12_v2 = ModelMeta(
150
156
  max_tokens=256,
151
157
  reference="https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
152
158
  similarity_fn_name=ScoringFunction.COSINE,
153
- framework=["Sentence Transformers", "PyTorch"],
159
+ framework=[
160
+ "Sentence Transformers",
161
+ "PyTorch",
162
+ "ONNX",
163
+ "safetensors",
164
+ "Transformers",
165
+ ],
154
166
  use_instructions=False,
155
167
  superseded_by=None,
156
168
  adapted_from=None,
@@ -175,7 +187,13 @@ paraphrase_multilingual_minilm_l12_v2 = ModelMeta(
175
187
  max_tokens=512,
176
188
  reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
177
189
  similarity_fn_name=ScoringFunction.COSINE,
178
- framework=["Sentence Transformers", "PyTorch"],
190
+ framework=[
191
+ "Sentence Transformers",
192
+ "PyTorch",
193
+ "ONNX",
194
+ "safetensors",
195
+ "Transformers",
196
+ ],
179
197
  use_instructions=False,
180
198
  superseded_by=None,
181
199
  adapted_from=None,
@@ -200,7 +218,13 @@ paraphrase_multilingual_mpnet_base_v2 = ModelMeta(
200
218
  max_tokens=512,
201
219
  reference="https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
202
220
  similarity_fn_name=ScoringFunction.COSINE,
203
- framework=["Sentence Transformers", "PyTorch"],
221
+ framework=[
222
+ "Sentence Transformers",
223
+ "PyTorch",
224
+ "ONNX",
225
+ "safetensors",
226
+ "Transformers",
227
+ ],
204
228
  use_instructions=False,
205
229
  superseded_by=None,
206
230
  adapted_from=None,
@@ -236,7 +260,7 @@ labse = ModelMeta(
236
260
  max_tokens=512,
237
261
  reference="https://huggingface.co/sentence-transformers/LaBSE",
238
262
  similarity_fn_name=ScoringFunction.COSINE,
239
- framework=["Sentence Transformers", "PyTorch"],
263
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
240
264
  use_instructions=False,
241
265
  superseded_by=None,
242
266
  adapted_from=None,
@@ -274,7 +298,13 @@ multi_qa_minilm_l6_cos_v1 = ModelMeta(
274
298
  max_tokens=512,
275
299
  reference="https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
276
300
  similarity_fn_name=ScoringFunction.COSINE,
277
- framework=["Sentence Transformers", "PyTorch"],
301
+ framework=[
302
+ "Sentence Transformers",
303
+ "PyTorch",
304
+ "ONNX",
305
+ "safetensors",
306
+ "Transformers",
307
+ ],
278
308
  use_instructions=False,
279
309
  superseded_by=None,
280
310
  adapted_from="nreimers/MiniLM-L6-H384-uncased",
@@ -299,7 +329,13 @@ all_mpnet_base_v2 = ModelMeta(
299
329
  max_tokens=384,
300
330
  reference="https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
301
331
  similarity_fn_name=ScoringFunction.COSINE,
302
- framework=["Sentence Transformers", "PyTorch"],
332
+ framework=[
333
+ "Sentence Transformers",
334
+ "PyTorch",
335
+ "ONNX",
336
+ "safetensors",
337
+ "Transformers",
338
+ ],
303
339
  use_instructions=False,
304
340
  superseded_by=None,
305
341
  adapted_from=None,
@@ -403,7 +439,7 @@ static_similarity_mrl_multilingual_v1 = ModelMeta(
403
439
  max_tokens=None,
404
440
  reference="https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1",
405
441
  similarity_fn_name="cosine",
406
- framework=["Sentence Transformers", "PyTorch"],
442
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
407
443
  use_instructions=False,
408
444
  superseded_by=None,
409
445
  adapted_from=None,
@@ -436,7 +472,7 @@ contriever = ModelMeta(
436
472
  max_tokens=512,
437
473
  reference="https://huggingface.co/facebook/contriever-msmarco",
438
474
  similarity_fn_name=ScoringFunction.DOT_PRODUCT,
439
- framework=["Sentence Transformers", "PyTorch"],
475
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
440
476
  use_instructions=False,
441
477
  citation="""
442
478
  @misc{izacard2021contriever,
@@ -466,7 +502,7 @@ microllama_text_embedding = ModelMeta(
466
502
  max_tokens=2048,
467
503
  reference="https://huggingface.co/keeeeenw/MicroLlama-text-embedding",
468
504
  similarity_fn_name=ScoringFunction.COSINE,
469
- framework=["Sentence Transformers", "PyTorch"],
505
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
470
506
  use_instructions=False,
471
507
  superseded_by=None,
472
508
  adapted_from=None,
@@ -488,13 +524,13 @@ microllama_text_embedding = ModelMeta(
488
524
 
489
525
  SENTENCE_T5_CITATION = """
490
526
  @misc{ni2021sentencet5scalablesentenceencoders,
491
- title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
527
+ title={Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models},
492
528
  author={Jianmo Ni and Gustavo Hernández Ábrego and Noah Constant and Ji Ma and Keith B. Hall and Daniel Cer and Yinfei Yang},
493
529
  year={2021},
494
530
  eprint={2108.08877},
495
531
  archivePrefix={arXiv},
496
532
  primaryClass={cs.CL},
497
- url={https://arxiv.org/abs/2108.08877},
533
+ url={https://arxiv.org/abs/2108.08877},
498
534
  }
499
535
  """
500
536
  sentence_t5_base = ModelMeta(
@@ -512,7 +548,7 @@ sentence_t5_base = ModelMeta(
512
548
  max_tokens=512,
513
549
  reference="https://huggingface.co/sentence-transformers/sentence-t5-base",
514
550
  similarity_fn_name=ScoringFunction.COSINE,
515
- framework=["Sentence Transformers", "PyTorch"],
551
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
516
552
  use_instructions=False,
517
553
  public_training_code=None,
518
554
  public_training_data=None,
@@ -535,7 +571,7 @@ sentence_t5_large = ModelMeta(
535
571
  max_tokens=512,
536
572
  reference="https://huggingface.co/sentence-transformers/sentence-t5-large",
537
573
  similarity_fn_name=ScoringFunction.COSINE,
538
- framework=["Sentence Transformers", "PyTorch"],
574
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
539
575
  use_instructions=False,
540
576
  public_training_code=None,
541
577
  public_training_data=None,
@@ -558,7 +594,7 @@ sentence_t5_xl = ModelMeta(
558
594
  max_tokens=512,
559
595
  reference="https://huggingface.co/sentence-transformers/sentence-t5-xl",
560
596
  similarity_fn_name=ScoringFunction.COSINE,
561
- framework=["Sentence Transformers", "PyTorch"],
597
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
562
598
  use_instructions=False,
563
599
  public_training_code=None,
564
600
  public_training_data=None,
@@ -581,7 +617,7 @@ sentence_t5_xxl = ModelMeta(
581
617
  max_tokens=512,
582
618
  reference="https://huggingface.co/sentence-transformers/sentence-t5-xxl",
583
619
  similarity_fn_name=ScoringFunction.COSINE,
584
- framework=["Sentence Transformers", "PyTorch"],
620
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
585
621
  use_instructions=False,
586
622
  public_training_code=None,
587
623
  public_training_data=None,
@@ -590,13 +626,13 @@ sentence_t5_xxl = ModelMeta(
590
626
  )
591
627
  GTR_CITATION = """
592
628
  @misc{ni2021largedualencodersgeneralizable,
593
- title={Large Dual Encoders Are Generalizable Retrievers},
629
+ title={Large Dual Encoders Are Generalizable Retrievers},
594
630
  author={Jianmo Ni and Chen Qu and Jing Lu and Zhuyun Dai and Gustavo Hernández Ábrego and Ji Ma and Vincent Y. Zhao and Yi Luan and Keith B. Hall and Ming-Wei Chang and Yinfei Yang},
595
631
  year={2021},
596
632
  eprint={2112.07899},
597
633
  archivePrefix={arXiv},
598
634
  primaryClass={cs.IR},
599
- url={https://arxiv.org/abs/2112.07899},
635
+ url={https://arxiv.org/abs/2112.07899},
600
636
  }
601
637
  """
602
638
  gtr_t5_large = ModelMeta(
@@ -614,7 +650,7 @@ gtr_t5_large = ModelMeta(
614
650
  max_tokens=512,
615
651
  reference="https://huggingface.co/sentence-transformers/gtr-t5-large",
616
652
  similarity_fn_name=ScoringFunction.COSINE,
617
- framework=["Sentence Transformers", "PyTorch"],
653
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
618
654
  use_instructions=False,
619
655
  public_training_code=None,
620
656
  public_training_data=None,
@@ -649,7 +685,7 @@ gtr_t5_xl = ModelMeta(
649
685
  max_tokens=512,
650
686
  reference="https://huggingface.co/sentence-transformers/gtr-t5-xl",
651
687
  similarity_fn_name=ScoringFunction.COSINE,
652
- framework=["Sentence Transformers", "PyTorch"],
688
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
653
689
  use_instructions=False,
654
690
  public_training_code=None,
655
691
  public_training_data=None,
@@ -683,7 +719,7 @@ gtr_t5_xxl = ModelMeta(
683
719
  max_tokens=512,
684
720
  reference="https://huggingface.co/sentence-transformers/gtr-t5-xxl",
685
721
  similarity_fn_name=ScoringFunction.COSINE,
686
- framework=["Sentence Transformers", "PyTorch"],
722
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
687
723
  use_instructions=False,
688
724
  public_training_code=None,
689
725
  public_training_data=None,
@@ -718,7 +754,7 @@ gtr_t5_base = ModelMeta(
718
754
  max_tokens=512,
719
755
  reference="https://huggingface.co/sentence-transformers/gtr-t5-base",
720
756
  similarity_fn_name=ScoringFunction.COSINE,
721
- framework=["Sentence Transformers", "PyTorch"],
757
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
722
758
  use_instructions=False,
723
759
  public_training_code=None,
724
760
  public_training_data=None,
@@ -16,7 +16,7 @@ codemodernbert_crow_meta = ModelMeta(
16
16
  max_tokens=1024,
17
17
  reference="https://huggingface.co/Shuu12121/CodeSearch-ModernBERT-Crow-Plus",
18
18
  similarity_fn_name="cosine",
19
- framework=["Sentence Transformers", "PyTorch"],
19
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
20
20
  use_instructions=False,
21
21
  public_training_code=None,
22
22
  public_training_data=None,
@@ -138,7 +138,7 @@ siglip_so400m_patch14_224 = ModelMeta(
138
138
  open_weights=True,
139
139
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
140
140
  public_training_data=None,
141
- framework=["PyTorch"],
141
+ framework=["PyTorch", "Transformers", "safetensors"],
142
142
  reference="https://huggingface.co/google/siglip-so400m-patch14-224",
143
143
  similarity_fn_name=ScoringFunction.COSINE,
144
144
  use_instructions=False,
@@ -162,7 +162,7 @@ siglip_so400m_patch14_384 = ModelMeta(
162
162
  open_weights=True,
163
163
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
164
164
  public_training_data=None,
165
- framework=["PyTorch"],
165
+ framework=["PyTorch", "Transformers", "safetensors"],
166
166
  reference="https://huggingface.co/google/siglip-so400m-patch14-384",
167
167
  similarity_fn_name=ScoringFunction.COSINE,
168
168
  use_instructions=False,
@@ -186,7 +186,7 @@ siglip_so400m_patch16_256_i18n = ModelMeta(
186
186
  open_weights=True,
187
187
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
188
188
  public_training_data=None,
189
- framework=["PyTorch"],
189
+ framework=["PyTorch", "Transformers", "safetensors"],
190
190
  reference="https://huggingface.co/google/siglip-so400m-patch16-256-i18n",
191
191
  similarity_fn_name=ScoringFunction.COSINE,
192
192
  use_instructions=False,
@@ -210,7 +210,7 @@ siglip_base_patch16_256_multilingual = ModelMeta(
210
210
  open_weights=True,
211
211
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
212
212
  public_training_data=None,
213
- framework=["PyTorch"],
213
+ framework=["PyTorch", "Transformers", "safetensors"],
214
214
  reference="https://huggingface.co/google/siglip-base-patch16-256-multilingual",
215
215
  similarity_fn_name=ScoringFunction.COSINE,
216
216
  use_instructions=False,
@@ -234,7 +234,7 @@ siglip_base_patch16_256 = ModelMeta(
234
234
  open_weights=True,
235
235
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
236
236
  public_training_data=None,
237
- framework=["PyTorch"],
237
+ framework=["PyTorch", "Transformers", "safetensors"],
238
238
  reference="https://huggingface.co/google/siglip-base-patch16-256",
239
239
  similarity_fn_name=ScoringFunction.COSINE,
240
240
  use_instructions=False,
@@ -258,7 +258,7 @@ siglip_base_patch16_512 = ModelMeta(
258
258
  open_weights=True,
259
259
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
260
260
  public_training_data=None,
261
- framework=["PyTorch"],
261
+ framework=["PyTorch", "Transformers", "safetensors"],
262
262
  reference="https://huggingface.co/google/siglip-base-patch16-512",
263
263
  similarity_fn_name=ScoringFunction.COSINE,
264
264
  use_instructions=False,
@@ -282,7 +282,7 @@ siglip_base_patch16_384 = ModelMeta(
282
282
  open_weights=True,
283
283
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
284
284
  public_training_data=None,
285
- framework=["PyTorch"],
285
+ framework=["PyTorch", "Transformers", "safetensors"],
286
286
  reference="https://huggingface.co/google/siglip-base-patch16-384",
287
287
  similarity_fn_name=ScoringFunction.COSINE,
288
288
  use_instructions=False,
@@ -306,7 +306,7 @@ siglip_base_patch16_224 = ModelMeta(
306
306
  open_weights=True,
307
307
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
308
308
  public_training_data=None,
309
- framework=["PyTorch"],
309
+ framework=["PyTorch", "Transformers", "safetensors"],
310
310
  reference="https://huggingface.co/google/siglip-base-patch16-224",
311
311
  similarity_fn_name=ScoringFunction.COSINE,
312
312
  use_instructions=False,
@@ -330,7 +330,7 @@ siglip_large_patch16_256 = ModelMeta(
330
330
  open_weights=True,
331
331
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
332
332
  public_training_data=None,
333
- framework=["PyTorch"],
333
+ framework=["PyTorch", "Transformers", "safetensors"],
334
334
  reference="https://huggingface.co/google/siglip-large-patch16-256",
335
335
  similarity_fn_name=ScoringFunction.COSINE,
336
336
  use_instructions=False,
@@ -354,7 +354,7 @@ siglip_large_patch16_384 = ModelMeta(
354
354
  open_weights=True,
355
355
  public_training_code="https://github.com/google-research/big_vision/blob/main/big_vision/trainers/proj/image_text/siglip.py",
356
356
  public_training_data=None,
357
- framework=["PyTorch"],
357
+ framework=["PyTorch", "Transformers", "safetensors"],
358
358
  reference="https://huggingface.co/google/siglip-large-patch16-384",
359
359
  similarity_fn_name=ScoringFunction.COSINE,
360
360
  use_instructions=False,