mteb 2.6.3__py3-none-any.whl → 2.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/classification.py +2 -3
- mteb/abstasks/multilabel_classification.py +3 -3
- mteb/abstasks/regression.py +1 -1
- mteb/abstasks/retrieval.py +1 -1
- mteb/abstasks/task_metadata.py +9 -14
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +2 -2
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +8 -8
- mteb/models/model_implementations/bmretriever_models.py +4 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +2 -2
- mteb/models/model_implementations/clip_models.py +3 -3
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +4 -4
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +19 -19
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +1 -1
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +3 -3
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +1 -1
- mteb/models/model_implementations/jina_models.py +11 -5
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -3
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mdbr_models.py +14 -2
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +2 -2
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +13 -13
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/mxbai_models.py +16 -3
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
- mteb/models/model_implementations/nomic_models.py +18 -6
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
- mteb/models/model_implementations/nvidia_models.py +3 -3
- mteb/models/model_implementations/octen_models.py +2 -2
- mteb/models/model_implementations/openclip_models.py +6 -6
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +5 -5
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/rasgaard_models.py +1 -1
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +1 -1
- mteb/models/model_implementations/rerankers_custom.py +9 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/sentence_transformers_models.py +58 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +10 -10
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +2 -2
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +46 -17
- mteb/results/benchmark_results.py +2 -2
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/METADATA +3 -1
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/RECORD +126 -125
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/WHEEL +0 -0
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/top_level.txt +0 -0
|
@@ -130,7 +130,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
130
130
|
open_weights=True,
|
|
131
131
|
public_training_code=None,
|
|
132
132
|
public_training_data=None,
|
|
133
|
-
framework=["PyTorch"],
|
|
133
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
134
134
|
reference="https://huggingface.co/openai/clip-vit-large-patch14",
|
|
135
135
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
136
136
|
use_instructions=False,
|
|
@@ -154,7 +154,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
154
154
|
open_weights=True,
|
|
155
155
|
public_training_code=None,
|
|
156
156
|
public_training_data=None,
|
|
157
|
-
framework=["PyTorch"],
|
|
157
|
+
framework=["PyTorch", "Transformers"],
|
|
158
158
|
reference="https://huggingface.co/openai/clip-vit-base-patch32",
|
|
159
159
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
160
160
|
use_instructions=False,
|
|
@@ -178,7 +178,7 @@ clip_vit_base_patch16 = ModelMeta(
|
|
|
178
178
|
open_weights=True,
|
|
179
179
|
public_training_code=None,
|
|
180
180
|
public_training_data=None,
|
|
181
|
-
framework=["PyTorch"],
|
|
181
|
+
framework=["PyTorch", "Transformers"],
|
|
182
182
|
reference="https://huggingface.co/openai/clip-vit-base-patch16",
|
|
183
183
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
184
184
|
use_instructions=False,
|
|
@@ -36,7 +36,7 @@ e5_nl_small = ModelMeta(
|
|
|
36
36
|
max_tokens=512,
|
|
37
37
|
reference="https://huggingface.co/clips/e5-small-trm-nl",
|
|
38
38
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
39
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
39
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
40
40
|
use_instructions=True,
|
|
41
41
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
42
42
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -63,7 +63,7 @@ e5_nl_base = ModelMeta(
|
|
|
63
63
|
max_tokens=514,
|
|
64
64
|
reference="https://huggingface.co/clips/e5-base-trm-nl",
|
|
65
65
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
66
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
66
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
67
67
|
use_instructions=True,
|
|
68
68
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
69
69
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -90,7 +90,7 @@ e5_nl_large = ModelMeta(
|
|
|
90
90
|
max_tokens=514,
|
|
91
91
|
reference="https://huggingface.co/clips/e5-large-trm-nl",
|
|
92
92
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
93
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
93
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
94
94
|
use_instructions=True,
|
|
95
95
|
public_training_code="https://github.com/ELotfi/e5-nl",
|
|
96
96
|
public_training_data="https://huggingface.co/collections/clips/beir-nl",
|
|
@@ -242,7 +242,7 @@ F2LLM_0B6 = ModelMeta(
|
|
|
242
242
|
max_tokens=8192,
|
|
243
243
|
reference="https://huggingface.co/codefuse-ai/F2LLM-0.6B",
|
|
244
244
|
similarity_fn_name="cosine",
|
|
245
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
245
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
246
246
|
use_instructions=True,
|
|
247
247
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
248
248
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -272,7 +272,7 @@ F2LLM_1B7 = ModelMeta(
|
|
|
272
272
|
max_tokens=8192,
|
|
273
273
|
reference="https://huggingface.co/codefuse-ai/F2LLM-1.7B",
|
|
274
274
|
similarity_fn_name="cosine",
|
|
275
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
275
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
276
276
|
use_instructions=True,
|
|
277
277
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
278
278
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -302,7 +302,7 @@ F2LLM_4B = ModelMeta(
|
|
|
302
302
|
max_tokens=8192,
|
|
303
303
|
reference="https://huggingface.co/codefuse-ai/F2LLM-4B",
|
|
304
304
|
similarity_fn_name="cosine",
|
|
305
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
305
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
306
306
|
use_instructions=True,
|
|
307
307
|
public_training_code="https://github.com/codefuse-ai/F2LLM",
|
|
308
308
|
public_training_data="https://huggingface.co/datasets/codefuse-ai/F2LLM",
|
|
@@ -325,7 +325,7 @@ C2LLM_0B5 = ModelMeta(
|
|
|
325
325
|
open_weights=True,
|
|
326
326
|
public_training_code=None,
|
|
327
327
|
public_training_data=None,
|
|
328
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
328
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
329
329
|
reference="https://huggingface.co/codefuse-ai/C2LLM-0.5B",
|
|
330
330
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
331
331
|
use_instructions=True,
|
|
@@ -353,7 +353,7 @@ C2LLM_7B = ModelMeta(
|
|
|
353
353
|
open_weights=True,
|
|
354
354
|
public_training_code=None,
|
|
355
355
|
public_training_data=None,
|
|
356
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
356
|
+
framework=["PyTorch", "Sentence Transformers", "Transformers", "safetensors"],
|
|
357
357
|
reference="https://huggingface.co/codefuse-ai/C2LLM-7B",
|
|
358
358
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
359
359
|
use_instructions=True,
|
|
@@ -35,7 +35,7 @@ codesage_large = ModelMeta(
|
|
|
35
35
|
open_weights=True,
|
|
36
36
|
public_training_code=None,
|
|
37
37
|
public_training_data=None,
|
|
38
|
-
framework=["PyTorch"],
|
|
38
|
+
framework=["PyTorch", "Transformers"],
|
|
39
39
|
reference="https://huggingface.co/codesage/codesage-large-v2",
|
|
40
40
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
41
41
|
use_instructions=False,
|
|
@@ -62,7 +62,7 @@ codesage_base = ModelMeta(
|
|
|
62
62
|
open_weights=True,
|
|
63
63
|
public_training_code=None,
|
|
64
64
|
public_training_data=None,
|
|
65
|
-
framework=["PyTorch"],
|
|
65
|
+
framework=["PyTorch", "Transformers"],
|
|
66
66
|
reference="https://huggingface.co/codesage/codesage-base-v2",
|
|
67
67
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
68
68
|
use_instructions=False,
|
|
@@ -89,7 +89,7 @@ codesage_small = ModelMeta(
|
|
|
89
89
|
open_weights=True,
|
|
90
90
|
public_training_code=None,
|
|
91
91
|
public_training_data=None,
|
|
92
|
-
framework=["PyTorch"],
|
|
92
|
+
framework=["PyTorch", "Transformers"],
|
|
93
93
|
reference="https://huggingface.co/codesage/codesage-small-v2",
|
|
94
94
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
95
95
|
use_instructions=False,
|
|
@@ -392,7 +392,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
392
392
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
393
393
|
license=None,
|
|
394
394
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
395
|
-
framework=["API"],
|
|
395
|
+
framework=["API", "Transformers"],
|
|
396
396
|
use_instructions=True,
|
|
397
397
|
public_training_code=None,
|
|
398
398
|
public_training_data=None, # assumed
|
|
@@ -417,7 +417,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
417
417
|
embed_dim=1024,
|
|
418
418
|
license=None,
|
|
419
419
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
420
|
-
framework=["API"],
|
|
420
|
+
framework=["API", "Transformers"],
|
|
421
421
|
use_instructions=True,
|
|
422
422
|
public_training_code=None,
|
|
423
423
|
public_training_data=None, # assumed
|
|
@@ -442,7 +442,7 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
442
442
|
embed_dim=384,
|
|
443
443
|
license=None,
|
|
444
444
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
445
|
-
framework=["API"],
|
|
445
|
+
framework=["API", "Transformers"],
|
|
446
446
|
use_instructions=True,
|
|
447
447
|
public_training_code=None,
|
|
448
448
|
public_training_data=None, # assumed
|
|
@@ -467,7 +467,7 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
467
467
|
embed_dim=384,
|
|
468
468
|
license=None,
|
|
469
469
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
470
|
-
framework=["API"],
|
|
470
|
+
framework=["API", "Transformers"],
|
|
471
471
|
use_instructions=True,
|
|
472
472
|
public_training_code=None,
|
|
473
473
|
public_training_data=None, # assumed
|
|
@@ -226,7 +226,7 @@ colpali_v1_1 = ModelMeta(
|
|
|
226
226
|
open_weights=True,
|
|
227
227
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
228
228
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
229
|
-
framework=["ColPali"],
|
|
229
|
+
framework=["ColPali", "safetensors"],
|
|
230
230
|
reference="https://huggingface.co/vidore/colpali-v1.1",
|
|
231
231
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
232
232
|
use_instructions=True,
|
|
@@ -253,7 +253,7 @@ colpali_v1_2 = ModelMeta(
|
|
|
253
253
|
open_weights=True,
|
|
254
254
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
255
255
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
256
|
-
framework=["ColPali"],
|
|
256
|
+
framework=["ColPali", "safetensors"],
|
|
257
257
|
reference="https://huggingface.co/vidore/colpali-v1.2",
|
|
258
258
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
259
259
|
use_instructions=True,
|
|
@@ -280,7 +280,7 @@ colpali_v1_3 = ModelMeta(
|
|
|
280
280
|
open_weights=True,
|
|
281
281
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
282
282
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
283
|
-
framework=["ColPali"],
|
|
283
|
+
framework=["ColPali", "safetensors"],
|
|
284
284
|
reference="https://huggingface.co/vidore/colpali-v1.3",
|
|
285
285
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
286
286
|
use_instructions=True,
|
|
@@ -226,7 +226,7 @@ colqwen2 = ModelMeta(
|
|
|
226
226
|
open_weights=True,
|
|
227
227
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
228
228
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
229
|
-
framework=["ColPali"],
|
|
229
|
+
framework=["ColPali", "safetensors"],
|
|
230
230
|
reference="https://huggingface.co/vidore/colqwen2-v1.0",
|
|
231
231
|
similarity_fn_name="MaxSim",
|
|
232
232
|
use_instructions=True,
|
|
@@ -253,7 +253,7 @@ colqwen2_5 = ModelMeta(
|
|
|
253
253
|
open_weights=True,
|
|
254
254
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
255
255
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
256
|
-
framework=["ColPali"],
|
|
256
|
+
framework=["ColPali", "safetensors"],
|
|
257
257
|
reference="https://huggingface.co/vidore/colqwen2.5-v0.2",
|
|
258
258
|
similarity_fn_name="MaxSim",
|
|
259
259
|
use_instructions=True,
|
|
@@ -297,7 +297,7 @@ colqwen3_8b = ModelMeta(
|
|
|
297
297
|
open_weights=True,
|
|
298
298
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
299
299
|
public_training_data=None,
|
|
300
|
-
framework=["PyTorch"],
|
|
300
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
301
301
|
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-8b",
|
|
302
302
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
303
303
|
use_instructions=True,
|
|
@@ -321,7 +321,7 @@ colqwen3_4b = ModelMeta(
|
|
|
321
321
|
open_weights=True,
|
|
322
322
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
323
323
|
public_training_data=None,
|
|
324
|
-
framework=["PyTorch"],
|
|
324
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
325
325
|
reference="https://huggingface.co/TomoroAI/tomoro-colqwen3-embed-4b",
|
|
326
326
|
similarity_fn_name=ScoringFunction.MAX_SIM,
|
|
327
327
|
use_instructions=True,
|
|
@@ -348,7 +348,7 @@ colnomic_7b = ModelMeta(
|
|
|
348
348
|
open_weights=True,
|
|
349
349
|
public_training_code="https://github.com/nomic-ai/colpali",
|
|
350
350
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
351
|
-
framework=["ColPali"],
|
|
351
|
+
framework=["ColPali", "safetensors"],
|
|
352
352
|
reference="https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b",
|
|
353
353
|
similarity_fn_name="MaxSim",
|
|
354
354
|
use_instructions=True,
|
|
@@ -393,7 +393,7 @@ colnomic_3b = ModelMeta(
|
|
|
393
393
|
open_weights=True,
|
|
394
394
|
public_training_code="https://github.com/nomic-ai/colpali",
|
|
395
395
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
396
|
-
framework=["ColPali"],
|
|
396
|
+
framework=["ColPali", "safetensors"],
|
|
397
397
|
reference="https://huggingface.co/nomic-ai/colnomic-embed-multimodal-3b",
|
|
398
398
|
similarity_fn_name="MaxSim",
|
|
399
399
|
use_instructions=True,
|
|
@@ -458,7 +458,7 @@ evoqwen25_vl_retriever_3b_v1 = ModelMeta(
|
|
|
458
458
|
open_weights=True,
|
|
459
459
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
460
460
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
461
|
-
framework=["ColPali"],
|
|
461
|
+
framework=["ColPali", "safetensors"],
|
|
462
462
|
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
|
|
463
463
|
similarity_fn_name="MaxSim",
|
|
464
464
|
use_instructions=True,
|
|
@@ -484,7 +484,7 @@ evoqwen25_vl_retriever_7b_v1 = ModelMeta(
|
|
|
484
484
|
open_weights=True,
|
|
485
485
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
486
486
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
487
|
-
framework=["ColPali"],
|
|
487
|
+
framework=["ColPali", "safetensors"],
|
|
488
488
|
reference="https://huggingface.co/ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
|
|
489
489
|
similarity_fn_name="MaxSim",
|
|
490
490
|
use_instructions=True,
|
|
@@ -67,7 +67,7 @@ colsmol_256m = ModelMeta(
|
|
|
67
67
|
open_weights=True,
|
|
68
68
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
69
69
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
70
|
-
framework=["ColPali"],
|
|
70
|
+
framework=["ColPali", "safetensors"],
|
|
71
71
|
reference="https://huggingface.co/vidore/colSmol-256M",
|
|
72
72
|
similarity_fn_name="MaxSim",
|
|
73
73
|
use_instructions=True,
|
|
@@ -94,7 +94,7 @@ colsmol_500m = ModelMeta(
|
|
|
94
94
|
open_weights=True,
|
|
95
95
|
public_training_code="https://github.com/illuin-tech/colpali",
|
|
96
96
|
public_training_data="https://huggingface.co/datasets/vidore/colpali_train_set",
|
|
97
|
-
framework=["ColPali"],
|
|
97
|
+
framework=["ColPali", "safetensors"],
|
|
98
98
|
reference="https://huggingface.co/vidore/colSmol-500M",
|
|
99
99
|
similarity_fn_name="MaxSim",
|
|
100
100
|
use_instructions=True,
|
|
@@ -209,7 +209,7 @@ Conan_embedding_v2 = ModelMeta(
|
|
|
209
209
|
license="apache-2.0",
|
|
210
210
|
reference="https://huggingface.co/TencentBAC/Conan-embedding-v2",
|
|
211
211
|
similarity_fn_name="cosine",
|
|
212
|
-
framework=["API"],
|
|
212
|
+
framework=["API", "Sentence Transformers", "Transformers"],
|
|
213
213
|
use_instructions=True,
|
|
214
214
|
training_datasets=E5_MISTRAL_TRAINING_DATA | bge_full_data | conan_zh_datasets,
|
|
215
215
|
public_training_code=None,
|
|
@@ -119,7 +119,7 @@ dinov2_small = ModelMeta(
|
|
|
119
119
|
open_weights=True,
|
|
120
120
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
121
121
|
public_training_data=None,
|
|
122
|
-
framework=["PyTorch"],
|
|
122
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
123
123
|
reference="https://huggingface.co/facebook/dinov2-small",
|
|
124
124
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
125
125
|
use_instructions=False,
|
|
@@ -150,7 +150,7 @@ dinov2_base = ModelMeta(
|
|
|
150
150
|
open_weights=True,
|
|
151
151
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
152
152
|
public_training_data=None,
|
|
153
|
-
framework=["PyTorch"],
|
|
153
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
154
154
|
reference="https://huggingface.co/facebook/dinov2-base",
|
|
155
155
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
156
156
|
use_instructions=False,
|
|
@@ -181,7 +181,7 @@ dinov2_large = ModelMeta(
|
|
|
181
181
|
open_weights=True,
|
|
182
182
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
183
183
|
public_training_data=None,
|
|
184
|
-
framework=["PyTorch"],
|
|
184
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
185
185
|
reference="https://huggingface.co/facebook/dinov2-large",
|
|
186
186
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
187
187
|
use_instructions=False,
|
|
@@ -212,7 +212,7 @@ dinov2_giant = ModelMeta(
|
|
|
212
212
|
open_weights=True,
|
|
213
213
|
public_training_code="https://github.com/facebookresearch/dinov2",
|
|
214
214
|
public_training_data=None,
|
|
215
|
-
framework=["PyTorch"],
|
|
215
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
216
216
|
reference="https://huggingface.co/facebook/dinov2-giant",
|
|
217
217
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
218
218
|
use_instructions=False,
|
|
@@ -247,7 +247,7 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
247
247
|
open_weights=True,
|
|
248
248
|
public_training_code="",
|
|
249
249
|
public_training_data=None,
|
|
250
|
-
framework=["PyTorch"],
|
|
250
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
251
251
|
reference="https://huggingface.co/facebook/webssl-dino300m-full2b-224",
|
|
252
252
|
similarity_fn_name=None,
|
|
253
253
|
use_instructions=False,
|
|
@@ -278,7 +278,7 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
278
278
|
open_weights=True,
|
|
279
279
|
public_training_code="",
|
|
280
280
|
public_training_data=None,
|
|
281
|
-
framework=["PyTorch"],
|
|
281
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
282
282
|
reference="https://huggingface.co/facebook/webssl-dino1b-full2b-224",
|
|
283
283
|
similarity_fn_name=None,
|
|
284
284
|
use_instructions=False,
|
|
@@ -309,7 +309,7 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
309
309
|
open_weights=True,
|
|
310
310
|
public_training_code="",
|
|
311
311
|
public_training_data=None,
|
|
312
|
-
framework=["PyTorch"],
|
|
312
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
313
313
|
reference="https://huggingface.co/facebook/webssl-dino2b-full2b-224",
|
|
314
314
|
similarity_fn_name=None,
|
|
315
315
|
use_instructions=False,
|
|
@@ -340,7 +340,7 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
340
340
|
open_weights=True,
|
|
341
341
|
public_training_code="",
|
|
342
342
|
public_training_data=None,
|
|
343
|
-
framework=["PyTorch"],
|
|
343
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
344
344
|
reference="https://huggingface.co/facebook/webssl-dino3b-full2b-224",
|
|
345
345
|
similarity_fn_name=None,
|
|
346
346
|
use_instructions=False,
|
|
@@ -371,7 +371,7 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
371
371
|
open_weights=True,
|
|
372
372
|
public_training_code="",
|
|
373
373
|
public_training_data=None,
|
|
374
|
-
framework=["PyTorch"],
|
|
374
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
375
375
|
reference="https://huggingface.co/facebook/webssl-dino5b-full2b-224",
|
|
376
376
|
similarity_fn_name=None,
|
|
377
377
|
use_instructions=False,
|
|
@@ -402,7 +402,7 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
402
402
|
open_weights=True,
|
|
403
403
|
public_training_code="",
|
|
404
404
|
public_training_data=None,
|
|
405
|
-
framework=["PyTorch"],
|
|
405
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
406
406
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-224",
|
|
407
407
|
similarity_fn_name=None,
|
|
408
408
|
use_instructions=False,
|
|
@@ -433,7 +433,7 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
433
433
|
open_weights=True,
|
|
434
434
|
public_training_code="",
|
|
435
435
|
public_training_data=None,
|
|
436
|
-
framework=["PyTorch"],
|
|
436
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
437
437
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-378",
|
|
438
438
|
similarity_fn_name=None,
|
|
439
439
|
use_instructions=False,
|
|
@@ -464,7 +464,7 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
464
464
|
open_weights=True,
|
|
465
465
|
public_training_code="",
|
|
466
466
|
public_training_data=None,
|
|
467
|
-
framework=["PyTorch"],
|
|
467
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
468
468
|
reference="https://huggingface.co/facebook/webssl-dino7b-full8b-518",
|
|
469
469
|
similarity_fn_name=None,
|
|
470
470
|
use_instructions=False,
|
|
@@ -496,7 +496,7 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
496
496
|
open_weights=True,
|
|
497
497
|
public_training_code="",
|
|
498
498
|
public_training_data=None,
|
|
499
|
-
framework=["PyTorch"],
|
|
499
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
500
500
|
reference="https://huggingface.co/facebook/webssl-dino2b-light2b-224",
|
|
501
501
|
similarity_fn_name=None,
|
|
502
502
|
use_instructions=False,
|
|
@@ -527,7 +527,7 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
527
527
|
open_weights=True,
|
|
528
528
|
public_training_code="",
|
|
529
529
|
public_training_data=None,
|
|
530
|
-
framework=["PyTorch"],
|
|
530
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
531
531
|
reference="https://huggingface.co/facebook/webssl-dino2b-heavy2b-224",
|
|
532
532
|
similarity_fn_name=None,
|
|
533
533
|
use_instructions=False,
|
|
@@ -558,7 +558,7 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
558
558
|
open_weights=True,
|
|
559
559
|
public_training_code="",
|
|
560
560
|
public_training_data=None,
|
|
561
|
-
framework=["PyTorch"],
|
|
561
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
562
562
|
reference="https://huggingface.co/facebook/webssl-dino3b-light2b-224",
|
|
563
563
|
similarity_fn_name=None,
|
|
564
564
|
use_instructions=False,
|
|
@@ -589,7 +589,7 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
589
589
|
open_weights=True,
|
|
590
590
|
public_training_code="",
|
|
591
591
|
public_training_data=None,
|
|
592
|
-
framework=["PyTorch"],
|
|
592
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
593
593
|
reference="https://huggingface.co/facebook/webssl-dino3b-heavy2b-224",
|
|
594
594
|
similarity_fn_name=None,
|
|
595
595
|
use_instructions=False,
|
|
@@ -620,7 +620,7 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
620
620
|
open_weights=True,
|
|
621
621
|
public_training_code="",
|
|
622
622
|
public_training_data=None,
|
|
623
|
-
framework=["PyTorch"],
|
|
623
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
624
624
|
reference="https://huggingface.co/facebook/webssl-mae300m-full2b-224",
|
|
625
625
|
similarity_fn_name=None,
|
|
626
626
|
use_instructions=False,
|
|
@@ -651,7 +651,7 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
651
651
|
open_weights=True,
|
|
652
652
|
public_training_code="",
|
|
653
653
|
public_training_data=None,
|
|
654
|
-
framework=["PyTorch"],
|
|
654
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
655
655
|
reference="https://huggingface.co/facebook/webssl-mae700m-full2b-224",
|
|
656
656
|
similarity_fn_name=None,
|
|
657
657
|
use_instructions=False,
|
|
@@ -682,7 +682,7 @@ webssl_mae1b_full2b = ModelMeta(
|
|
|
682
682
|
open_weights=True,
|
|
683
683
|
public_training_code="",
|
|
684
684
|
public_training_data=None,
|
|
685
|
-
framework=["PyTorch"],
|
|
685
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
686
686
|
reference="https://huggingface.co/facebook/webssl-mae1b-full2b-224",
|
|
687
687
|
similarity_fn_name=None,
|
|
688
688
|
use_instructions=False,
|
|
@@ -45,7 +45,14 @@ e5_instruct = ModelMeta(
|
|
|
45
45
|
open_weights=True,
|
|
46
46
|
revision="baa7be480a7de1539afce709c8f13f833a510e0a",
|
|
47
47
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
48
|
-
framework=[
|
|
48
|
+
framework=[
|
|
49
|
+
"GritLM",
|
|
50
|
+
"PyTorch",
|
|
51
|
+
"Sentence Transformers",
|
|
52
|
+
"ONNX",
|
|
53
|
+
"safetensors",
|
|
54
|
+
"Transformers",
|
|
55
|
+
],
|
|
49
56
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
50
57
|
use_instructions=True,
|
|
51
58
|
reference="https://huggingface.co/intfloat/multilingual-e5-large-instruct",
|
|
@@ -84,7 +91,13 @@ e5_mistral = ModelMeta(
|
|
|
84
91
|
open_weights=True,
|
|
85
92
|
revision="07163b72af1488142a360786df853f237b1a3ca1",
|
|
86
93
|
release_date=E5_PAPER_RELEASE_DATE,
|
|
87
|
-
framework=[
|
|
94
|
+
framework=[
|
|
95
|
+
"GritLM",
|
|
96
|
+
"PyTorch",
|
|
97
|
+
"Sentence Transformers",
|
|
98
|
+
"safetensors",
|
|
99
|
+
"Transformers",
|
|
100
|
+
],
|
|
88
101
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
89
102
|
use_instructions=True,
|
|
90
103
|
reference="https://huggingface.co/intfloat/e5-mistral-7b-instruct",
|
|
@@ -139,7 +152,13 @@ zeta_alpha_ai__zeta_alpha_e5_mistral = ModelMeta(
|
|
|
139
152
|
open_weights=True,
|
|
140
153
|
public_training_data=None,
|
|
141
154
|
public_training_code=None,
|
|
142
|
-
framework=[
|
|
155
|
+
framework=[
|
|
156
|
+
"PyTorch",
|
|
157
|
+
"Sentence Transformers",
|
|
158
|
+
"GritLM",
|
|
159
|
+
"safetensors",
|
|
160
|
+
"Transformers",
|
|
161
|
+
],
|
|
143
162
|
reference="https://huggingface.co/zeta-alpha-ai/Zeta-Alpha-E5-Mistral",
|
|
144
163
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
145
164
|
use_instructions=True,
|
|
@@ -216,7 +235,7 @@ BeastyZ__e5_R_mistral_7b = ModelMeta(
|
|
|
216
235
|
open_weights=True,
|
|
217
236
|
public_training_code="https://github.com/LeeSureman/E5-Retrieval-Reproduction",
|
|
218
237
|
public_training_data="https://huggingface.co/datasets/BeastyZ/E5-R",
|
|
219
|
-
framework=["PyTorch"],
|
|
238
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
220
239
|
reference="https://huggingface.co/BeastyZ/e5-R-mistral-7b",
|
|
221
240
|
similarity_fn_name="cosine",
|
|
222
241
|
use_instructions=True,
|
|
@@ -82,7 +82,7 @@ e5_mult_small = ModelMeta(
|
|
|
82
82
|
max_tokens=512,
|
|
83
83
|
reference="https://huggingface.co/intfloat/multilingual-e5-small",
|
|
84
84
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
85
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
85
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
86
86
|
use_instructions=True,
|
|
87
87
|
public_training_code=None, # couldn't find
|
|
88
88
|
public_training_data=None,
|
|
@@ -109,7 +109,7 @@ e5_mult_base = ModelMeta(
|
|
|
109
109
|
max_tokens=514,
|
|
110
110
|
reference="https://huggingface.co/intfloat/multilingual-e5-base",
|
|
111
111
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
112
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
112
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
113
113
|
use_instructions=True,
|
|
114
114
|
public_training_code=None,
|
|
115
115
|
public_training_data=None,
|
|
@@ -136,7 +136,7 @@ e5_mult_large = ModelMeta(
|
|
|
136
136
|
max_tokens=514,
|
|
137
137
|
reference="https://huggingface.co/intfloat/multilingual-e5-large",
|
|
138
138
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
139
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
139
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
140
140
|
use_instructions=True,
|
|
141
141
|
public_training_code=None,
|
|
142
142
|
public_training_data=None,
|
|
@@ -163,7 +163,7 @@ e5_eng_small_v2 = ModelMeta(
|
|
|
163
163
|
max_tokens=512,
|
|
164
164
|
reference="https://huggingface.co/intfloat/e5-small-v2",
|
|
165
165
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
166
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
166
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
167
167
|
use_instructions=True,
|
|
168
168
|
public_training_code=None,
|
|
169
169
|
public_training_data=None,
|
|
@@ -190,7 +190,7 @@ e5_eng_small = ModelMeta(
|
|
|
190
190
|
max_tokens=512,
|
|
191
191
|
reference="https://huggingface.co/intfloat/e5-small",
|
|
192
192
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
193
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
193
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
194
194
|
use_instructions=True,
|
|
195
195
|
public_training_code=None,
|
|
196
196
|
public_training_data=None,
|
|
@@ -217,7 +217,7 @@ e5_eng_base_v2 = ModelMeta(
|
|
|
217
217
|
max_tokens=512,
|
|
218
218
|
reference="https://huggingface.co/intfloat/e5-base-v2",
|
|
219
219
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
220
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
220
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
221
221
|
use_instructions=True,
|
|
222
222
|
superseded_by=None,
|
|
223
223
|
adapted_from="intfloat/e5-base",
|
|
@@ -245,7 +245,7 @@ e5_eng_large_v2 = ModelMeta(
|
|
|
245
245
|
max_tokens=514,
|
|
246
246
|
reference="https://huggingface.co/intfloat/e5-large-v2",
|
|
247
247
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
248
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
248
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
249
249
|
use_instructions=True,
|
|
250
250
|
superseded_by=None,
|
|
251
251
|
adapted_from="intfloat/e5-large",
|
|
@@ -273,7 +273,7 @@ e5_large = ModelMeta(
|
|
|
273
273
|
max_tokens=512,
|
|
274
274
|
reference="https://huggingface.co/intfloat/e5-large",
|
|
275
275
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
276
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
276
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
277
277
|
use_instructions=True,
|
|
278
278
|
superseded_by="intfloat/e5-large-v2",
|
|
279
279
|
adapted_from="google-bert/bert-large-uncased-whole-word-masking",
|
|
@@ -301,7 +301,7 @@ e5_base = ModelMeta(
|
|
|
301
301
|
max_tokens=512,
|
|
302
302
|
reference="https://huggingface.co/intfloat/e5-base",
|
|
303
303
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
304
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
304
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
305
305
|
use_instructions=True,
|
|
306
306
|
superseded_by="intfloat/e5-base-v2",
|
|
307
307
|
adapted_from="google-bert/bert-base-uncased",
|
|
@@ -173,7 +173,7 @@ e5_v = ModelMeta(
|
|
|
173
173
|
open_weights=True,
|
|
174
174
|
public_training_code="https://github.com/kongds/E5-V",
|
|
175
175
|
public_training_data="https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse",
|
|
176
|
-
framework=["PyTorch"],
|
|
176
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
177
177
|
reference="https://huggingface.co/royokong/e5-v",
|
|
178
178
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
179
179
|
use_instructions=True,
|
|
@@ -152,7 +152,7 @@ Eager_Embed_V1 = ModelMeta(
|
|
|
152
152
|
embed_dim=2560,
|
|
153
153
|
license="apache-2.0",
|
|
154
154
|
open_weights=True,
|
|
155
|
-
framework=["Tevatron"],
|
|
155
|
+
framework=["Tevatron", "safetensors"],
|
|
156
156
|
reference="https://huggingface.co/eagerworks/eager-embed-v1",
|
|
157
157
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
158
158
|
use_instructions=True,
|
|
@@ -14,7 +14,7 @@ embedding_gemma_300m_scandi = ModelMeta(
|
|
|
14
14
|
max_tokens=2048,
|
|
15
15
|
license="apache-2.0",
|
|
16
16
|
reference="https://huggingface.co/emillykkejensen/EmbeddingGemma-Scandi-300m",
|
|
17
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
17
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
18
18
|
use_instructions=True,
|
|
19
19
|
public_training_code=None,
|
|
20
20
|
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
@@ -48,7 +48,7 @@ qwen_scandi = ModelMeta(
|
|
|
48
48
|
max_tokens=32768,
|
|
49
49
|
license="apache-2.0",
|
|
50
50
|
reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
51
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
51
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
52
52
|
use_instructions=True,
|
|
53
53
|
public_training_code=None,
|
|
54
54
|
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
@@ -72,7 +72,7 @@ mmbert_scandi = ModelMeta(
|
|
|
72
72
|
max_tokens=8192,
|
|
73
73
|
license="apache-2.0",
|
|
74
74
|
reference="https://huggingface.co/emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
75
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
75
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
76
76
|
use_instructions=True,
|
|
77
77
|
public_training_code=None,
|
|
78
78
|
public_training_data="https://huggingface.co/datasets/DDSC/nordic-embedding-training-data",
|
|
@@ -24,7 +24,7 @@ english_code_retriever = ModelMeta(
|
|
|
24
24
|
max_tokens=8192,
|
|
25
25
|
reference="https://huggingface.co/fyaronskiy/english_code_retriever",
|
|
26
26
|
similarity_fn_name="cosine",
|
|
27
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
27
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
28
28
|
use_instructions=True,
|
|
29
29
|
public_training_code=None,
|
|
30
30
|
public_training_data="https://huggingface.co/datasets/code-search-net/code_search_net",
|