mteb 2.6.3__py3-none-any.whl → 2.6.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. mteb/abstasks/classification.py +2 -3
  2. mteb/abstasks/multilabel_classification.py +3 -3
  3. mteb/abstasks/regression.py +1 -1
  4. mteb/abstasks/retrieval.py +1 -1
  5. mteb/abstasks/task_metadata.py +9 -14
  6. mteb/models/model_implementations/align_models.py +1 -1
  7. mteb/models/model_implementations/andersborges.py +2 -2
  8. mteb/models/model_implementations/ara_models.py +1 -1
  9. mteb/models/model_implementations/arctic_models.py +8 -8
  10. mteb/models/model_implementations/b1ade_models.py +1 -1
  11. mteb/models/model_implementations/bge_models.py +45 -21
  12. mteb/models/model_implementations/bica_model.py +3 -3
  13. mteb/models/model_implementations/blip2_models.py +2 -2
  14. mteb/models/model_implementations/blip_models.py +8 -8
  15. mteb/models/model_implementations/bmretriever_models.py +4 -4
  16. mteb/models/model_implementations/cadet_models.py +1 -1
  17. mteb/models/model_implementations/cde_models.py +2 -2
  18. mteb/models/model_implementations/clip_models.py +3 -3
  19. mteb/models/model_implementations/clips_models.py +3 -3
  20. mteb/models/model_implementations/codefuse_models.py +5 -5
  21. mteb/models/model_implementations/codesage_models.py +3 -3
  22. mteb/models/model_implementations/cohere_models.py +4 -4
  23. mteb/models/model_implementations/colpali_models.py +3 -3
  24. mteb/models/model_implementations/colqwen_models.py +8 -8
  25. mteb/models/model_implementations/colsmol_models.py +2 -2
  26. mteb/models/model_implementations/conan_models.py +1 -1
  27. mteb/models/model_implementations/dino_models.py +19 -19
  28. mteb/models/model_implementations/e5_instruct.py +23 -4
  29. mteb/models/model_implementations/e5_models.py +9 -9
  30. mteb/models/model_implementations/e5_v.py +1 -1
  31. mteb/models/model_implementations/eagerworks_models.py +1 -1
  32. mteb/models/model_implementations/emillykkejensen_models.py +3 -3
  33. mteb/models/model_implementations/en_code_retriever.py +1 -1
  34. mteb/models/model_implementations/euler_models.py +2 -2
  35. mteb/models/model_implementations/fa_models.py +9 -9
  36. mteb/models/model_implementations/facebookai.py +14 -2
  37. mteb/models/model_implementations/geogpt_models.py +1 -1
  38. mteb/models/model_implementations/gme_v_models.py +2 -2
  39. mteb/models/model_implementations/google_models.py +1 -1
  40. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
  41. mteb/models/model_implementations/gritlm_models.py +2 -2
  42. mteb/models/model_implementations/gte_models.py +25 -13
  43. mteb/models/model_implementations/hinvec_models.py +1 -1
  44. mteb/models/model_implementations/ibm_granite_models.py +30 -6
  45. mteb/models/model_implementations/inf_models.py +2 -2
  46. mteb/models/model_implementations/jasper_models.py +2 -2
  47. mteb/models/model_implementations/jina_clip.py +1 -1
  48. mteb/models/model_implementations/jina_models.py +11 -5
  49. mteb/models/model_implementations/kblab.py +12 -6
  50. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
  51. mteb/models/model_implementations/kfst.py +1 -1
  52. mteb/models/model_implementations/kowshik24_models.py +1 -1
  53. mteb/models/model_implementations/lgai_embedding_models.py +1 -1
  54. mteb/models/model_implementations/linq_models.py +1 -1
  55. mteb/models/model_implementations/listconranker.py +1 -1
  56. mteb/models/model_implementations/llm2clip_models.py +3 -3
  57. mteb/models/model_implementations/llm2vec_models.py +8 -8
  58. mteb/models/model_implementations/mdbr_models.py +14 -2
  59. mteb/models/model_implementations/misc_models.py +68 -68
  60. mteb/models/model_implementations/mme5_models.py +1 -1
  61. mteb/models/model_implementations/moco_models.py +2 -2
  62. mteb/models/model_implementations/mod_models.py +1 -1
  63. mteb/models/model_implementations/model2vec_models.py +13 -13
  64. mteb/models/model_implementations/moka_models.py +1 -1
  65. mteb/models/model_implementations/mxbai_models.py +16 -3
  66. mteb/models/model_implementations/nbailab.py +3 -3
  67. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
  68. mteb/models/model_implementations/nomic_models.py +18 -6
  69. mteb/models/model_implementations/nomic_models_vision.py +1 -1
  70. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
  71. mteb/models/model_implementations/nvidia_models.py +3 -3
  72. mteb/models/model_implementations/octen_models.py +2 -2
  73. mteb/models/model_implementations/openclip_models.py +6 -6
  74. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
  75. mteb/models/model_implementations/ops_moa_models.py +1 -1
  76. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
  77. mteb/models/model_implementations/pawan_models.py +1 -1
  78. mteb/models/model_implementations/piccolo_models.py +1 -1
  79. mteb/models/model_implementations/promptriever_models.py +4 -4
  80. mteb/models/model_implementations/pylate_models.py +5 -5
  81. mteb/models/model_implementations/qodo_models.py +2 -2
  82. mteb/models/model_implementations/qtack_models.py +1 -1
  83. mteb/models/model_implementations/qwen3_models.py +3 -3
  84. mteb/models/model_implementations/qzhou_models.py +2 -2
  85. mteb/models/model_implementations/rasgaard_models.py +1 -1
  86. mteb/models/model_implementations/reasonir_model.py +1 -1
  87. mteb/models/model_implementations/repllama_models.py +1 -1
  88. mteb/models/model_implementations/rerankers_custom.py +9 -3
  89. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  90. mteb/models/model_implementations/richinfoai_models.py +1 -1
  91. mteb/models/model_implementations/ru_sentence_models.py +20 -20
  92. mteb/models/model_implementations/ruri_models.py +10 -10
  93. mteb/models/model_implementations/salesforce_models.py +3 -3
  94. mteb/models/model_implementations/samilpwc_models.py +1 -1
  95. mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
  96. mteb/models/model_implementations/searchmap_models.py +1 -1
  97. mteb/models/model_implementations/sentence_transformers_models.py +58 -22
  98. mteb/models/model_implementations/shuu_model.py +1 -1
  99. mteb/models/model_implementations/siglip_models.py +10 -10
  100. mteb/models/model_implementations/slm_models.py +416 -0
  101. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
  102. mteb/models/model_implementations/stella_models.py +17 -4
  103. mteb/models/model_implementations/tarka_models.py +2 -2
  104. mteb/models/model_implementations/text2vec_models.py +9 -3
  105. mteb/models/model_implementations/ua_sentence_models.py +1 -1
  106. mteb/models/model_implementations/uae_models.py +7 -1
  107. mteb/models/model_implementations/vdr_models.py +1 -1
  108. mteb/models/model_implementations/vi_vn_models.py +6 -6
  109. mteb/models/model_implementations/vlm2vec_models.py +2 -2
  110. mteb/models/model_implementations/youtu_models.py +1 -1
  111. mteb/models/model_implementations/yuan_models.py +1 -1
  112. mteb/models/model_implementations/yuan_models_en.py +1 -1
  113. mteb/models/model_meta.py +46 -17
  114. mteb/results/benchmark_results.py +2 -2
  115. mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
  116. mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
  117. mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
  118. mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
  119. mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
  120. mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
  121. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/METADATA +3 -1
  122. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/RECORD +126 -125
  123. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/WHEEL +0 -0
  124. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/entry_points.txt +0 -0
  125. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/licenses/LICENSE +0 -0
  126. {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/top_level.txt +0 -0
@@ -98,9 +98,8 @@ class AbsTaskClassification(AbsTask):
98
98
  text: str (for text) or PIL.Image (for image). Column name can be changed via `input_column_name` attribute.
99
99
  label: int. Column name can be changed via `label_column_name` attribute.
100
100
  evaluator_model: The model to use for evaluation. Can be any sklearn compatible model. Default is `LogisticRegression`.
101
- Full details of api in [`SklearnModelProtocol`][mteb._evaluators.sklearn_evaluator.SklearnModelProtocol].
102
- samples_per_label: Number of samples per label to use for training the evaluator model. Default is 8.
103
- n_experiments: Number of experiments to run. Default is 10.
101
+ samples_per_label: Number of samples per label to use for training the evaluator model. Default is 8.
102
+ n_experiments: Number of experiments to run. Default is 10.
104
103
  train_split: Name of the split to use for training the evaluator model. Default is "train".
105
104
  label_column_name: Name of the column containing the labels. Default is "label".
106
105
  input_column_name: Name of the column containing the input data. Default is "text".
@@ -70,10 +70,10 @@ class AbsTaskMultilabelClassification(AbsTaskClassification):
70
70
  input_column_name: Name of the column containing the input text.
71
71
  label_column_name: Name of the column containing the labels.
72
72
  samples_per_label: Number of samples to use pr. label. These samples are embedded and a classifier is fit using the labels and samples.
73
- evaluator: Classifier to use for evaluation. Must implement the SklearnModelProtocol.
73
+ evaluator_model: Classifier to use for evaluation. Must implement the SklearnModelProtocol.
74
74
  """
75
75
 
76
- evaluator: SklearnModelProtocol = KNeighborsClassifier(n_neighbors=5) # type: ignore[assignment]
76
+ evaluator_model: SklearnModelProtocol = KNeighborsClassifier(n_neighbors=5)
77
77
  input_column_name: str = "text"
78
78
  label_column_name: str = "label"
79
79
 
@@ -169,7 +169,7 @@ class AbsTaskMultilabelClassification(AbsTaskClassification):
169
169
  y_train = train_split.select(sample_indices)[self.label_column_name]
170
170
  y_train = binarizer.transform(y_train)
171
171
  y_pred, current_classifier = _evaluate_classifier(
172
- X_train, y_train, X_test, self.evaluator
172
+ X_train, y_train, X_test, self.evaluator_model
173
173
  )
174
174
  if prediction_folder:
175
175
  all_predictions.append(y_pred.tolist())
@@ -84,7 +84,7 @@ class AbsTaskRegression(AbsTaskClassification):
84
84
  n_samples: Number of samples to use for training the regression model. If the dataset has fewer samples than n_samples, all samples are used.
85
85
  abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
86
86
  evaluator_model: The model to use for evaluation. Can be any sklearn compatible model. Default is `LinearRegression`.
87
- Full details of api in [`SklearnModelProtocol`][mteb._evaluators.sklearn_evaluator.SklearnModelProtocol].
87
+
88
88
  """
89
89
 
90
90
  evaluator: type[SklearnEvaluator] = SklearnEvaluator
@@ -285,7 +285,7 @@ class AbsTaskRetrieval(AbsTask):
285
285
  *,
286
286
  encode_kwargs: dict[str, Any],
287
287
  prediction_folder: Path | None = None,
288
- **kwargs,
288
+ **kwargs: Any,
289
289
  ) -> Mapping[HFSubset, ScoresDict]:
290
290
  """Evaluate the model on the retrieval task.
291
291
 
@@ -485,7 +485,6 @@ class TaskMetadata(BaseModel):
485
485
  dataset_type = [
486
486
  *self._hf_task_type(),
487
487
  *self._hf_task_category(),
488
- *self._hf_subtypes(),
489
488
  ]
490
489
  languages = self._hf_languages()
491
490
 
@@ -587,10 +586,8 @@ class TaskMetadata(BaseModel):
587
586
 
588
587
  def _hf_subtypes(self) -> list[str]:
589
588
  # to get full list of available task_ids execute
590
- # requests.post("https://huggingface.co/api/validate-yaml", json={
591
- # "content": "---\ntask_ids: 'test'\n---",
592
- # "repoType": "dataset"
593
- # })
589
+ # https://huggingface.co/api/datasets-tags-by-type?type=task_ids
590
+ # ref https://huggingface-openapi.hf.space/#tag/datasets/GET/api/datasets-tags-by-type
594
591
  mteb_to_hf_subtype = {
595
592
  "Article retrieval": ["document-retrieval"],
596
593
  "Conversational retrieval": ["conversational", "utterance-retrieval"],
@@ -612,7 +609,7 @@ class TaskMetadata(BaseModel):
612
609
  "hate-speech-detection",
613
610
  ],
614
611
  "Thematic clustering": [],
615
- "Scientific Reranking": [],
612
+ "Scientific Reranking": ["text-scoring"],
616
613
  "Claim verification": ["fact-checking", "fact-checking-retrieval"],
617
614
  "Topic classification": ["topic-classification"],
618
615
  "Code retrieval": [],
@@ -620,21 +617,21 @@ class TaskMetadata(BaseModel):
620
617
  "Cross-Lingual Semantic Discrimination": [],
621
618
  "Textual Entailment": ["natural-language-inference"],
622
619
  "Counterfactual Detection": [],
623
- "Emotion classification": [],
620
+ "Emotion classification": ["sentiment-classification"],
624
621
  "Reasoning as Retrieval": [],
625
622
  "Rendered Texts Understanding": [],
626
623
  "Image Text Retrieval": [],
627
624
  "Object recognition": [],
628
625
  "Scene recognition": [],
629
626
  "Caption Pairing": ["image-captioning"],
630
- "Emotion recognition": [],
627
+ "Emotion recognition": ["sentiment-scoring"],
631
628
  "Textures recognition": [],
632
629
  "Activity recognition": [],
633
630
  "Tumor detection": [],
634
631
  "Duplicate Detection": [],
635
632
  "Rendered semantic textual similarity": [
636
633
  "semantic-similarity-scoring",
637
- "rendered semantic textual similarity",
634
+ "semantic-similarity-classification",
638
635
  ],
639
636
  "Intent classification": [
640
637
  "intent-classification",
@@ -648,10 +645,8 @@ class TaskMetadata(BaseModel):
648
645
 
649
646
  def _hf_task_type(self) -> list[str]:
650
647
  # to get full list of task_types execute:
651
- # requests.post("https://huggingface.co/api/validate-yaml", json={
652
- # "content": "---\ntask_categories: ['test']\n---", "repoType": "dataset"
653
- # }).json()
654
- # or look at https://huggingface.co/tasks
648
+ # https://huggingface.co/api/datasets-tags-by-type?type=task_categories
649
+ # ref https://huggingface-openapi.hf.space/#tag/datasets/GET/api/datasets-tags-by-type
655
650
  mteb_task_type_to_datasets = {
656
651
  # Text
657
652
  "BitextMining": ["translation"],
@@ -670,7 +665,7 @@ class TaskMetadata(BaseModel):
670
665
  "Any2AnyRetrieval": ["visual-document-retrieval"],
671
666
  "Any2AnyMultilingualRetrieval": ["visual-document-retrieval"],
672
667
  "VisionCentricQA": ["visual-question-answering"],
673
- "ImageClustering": ["image-clustering"],
668
+ "ImageClustering": ["image-feature-extraction"],
674
669
  "ImageClassification": ["image-classification"],
675
670
  "ImageMultilabelClassification": ["image-classification"],
676
671
  "DocumentUnderstanding": ["visual-document-retrieval"],
@@ -118,7 +118,7 @@ align_base = ModelMeta(
118
118
  open_weights=True,
119
119
  public_training_code="https://github.com/kakaobrain/coyo-align",
120
120
  public_training_data=True,
121
- framework=["PyTorch"],
121
+ framework=["PyTorch", "Transformers"],
122
122
  reference="https://huggingface.co/kakaobrain/align-base",
123
123
  similarity_fn_name=ScoringFunction.COSINE,
124
124
  use_instructions=False,
@@ -17,7 +17,7 @@ model2vecdk = ModelMeta(
17
17
  embed_dim=256,
18
18
  license="mit",
19
19
  similarity_fn_name=ScoringFunction.COSINE,
20
- framework=["NumPy", "Sentence Transformers"],
20
+ framework=["NumPy", "Sentence Transformers", "safetensors"],
21
21
  reference="https://huggingface.co/andersborges/model2vecdk",
22
22
  use_instructions=False,
23
23
  adapted_from="https://huggingface.co/jealk/TTC-L2V-supervised-2",
@@ -48,7 +48,7 @@ model2vecdk_stem = ModelMeta(
48
48
  embed_dim=256,
49
49
  license="mit",
50
50
  similarity_fn_name=ScoringFunction.COSINE,
51
- framework=["NumPy", "Sentence Transformers"],
51
+ framework=["NumPy", "Sentence Transformers", "safetensors"],
52
52
  reference="https://huggingface.co/andersborges/model2vecdk",
53
53
  use_instructions=False,
54
54
  adapted_from="https://huggingface.co/jealk/TTC-L2V-supervised-2",
@@ -16,7 +16,7 @@ arabic_triplet_matryoshka = ModelMeta(
16
16
  max_tokens=768,
17
17
  reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2",
18
18
  similarity_fn_name=ScoringFunction.COSINE,
19
- framework=["Sentence Transformers", "PyTorch"],
19
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
20
20
  use_instructions=False,
21
21
  public_training_code=None,
22
22
  adapted_from="aubmindlab/bert-base-arabertv02",
@@ -145,7 +145,7 @@ arctic_embed_xs = ModelMeta(
145
145
  release_date="2024-07-08", # initial commit of hf model.
146
146
  languages=["eng-Latn"],
147
147
  open_weights=True,
148
- framework=["Sentence Transformers", "PyTorch"],
148
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
149
149
  n_parameters=22_600_000,
150
150
  memory_usage_mb=86,
151
151
  max_tokens=512,
@@ -171,7 +171,7 @@ arctic_embed_s = ModelMeta(
171
171
  release_date="2024-04-12", # initial commit of hf model.
172
172
  languages=["eng-Latn"],
173
173
  open_weights=True,
174
- framework=["Sentence Transformers", "PyTorch"],
174
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
175
175
  n_parameters=32_200_000,
176
176
  memory_usage_mb=127,
177
177
  max_tokens=512,
@@ -197,7 +197,7 @@ arctic_embed_m = ModelMeta(
197
197
  release_date="2024-04-12", # initial commit of hf model.
198
198
  languages=["eng-Latn"],
199
199
  open_weights=True,
200
- framework=["Sentence Transformers", "PyTorch"],
200
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
201
201
  n_parameters=109_000_000,
202
202
  memory_usage_mb=415,
203
203
  max_tokens=512,
@@ -223,7 +223,7 @@ arctic_embed_m_long = ModelMeta(
223
223
  release_date="2024-04-12", # initial commit of hf model.
224
224
  languages=["eng-Latn"],
225
225
  open_weights=True,
226
- framework=["Sentence Transformers", "PyTorch"],
226
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
227
227
  n_parameters=137_000_000,
228
228
  memory_usage_mb=522,
229
229
  max_tokens=2048,
@@ -248,7 +248,7 @@ arctic_embed_l = ModelMeta(
248
248
  release_date="2024-04-12", # initial commit of hf model.
249
249
  languages=["eng-Latn"],
250
250
  open_weights=True,
251
- framework=["Sentence Transformers", "PyTorch"],
251
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
252
252
  n_parameters=335_000_000,
253
253
  memory_usage_mb=1274,
254
254
  max_tokens=512,
@@ -278,7 +278,7 @@ arctic_embed_m_v1_5 = ModelMeta(
278
278
  release_date="2024-07-08", # initial commit of hf model.
279
279
  languages=["eng-Latn"],
280
280
  open_weights=True,
281
- framework=["Sentence Transformers", "PyTorch"],
281
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors", "GGUF"],
282
282
  n_parameters=109_000_000,
283
283
  memory_usage_mb=415,
284
284
  max_tokens=512,
@@ -304,7 +304,7 @@ arctic_embed_m_v2_0 = ModelMeta(
304
304
  release_date="2024-12-04", # initial commit of hf model.
305
305
  languages=LANGUAGES_V2_0,
306
306
  open_weights=True,
307
- framework=["Sentence Transformers", "PyTorch"],
307
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
308
308
  n_parameters=305_000_000,
309
309
  memory_usage_mb=1165,
310
310
  max_tokens=8192,
@@ -329,7 +329,7 @@ arctic_embed_l_v2_0 = ModelMeta(
329
329
  release_date="2024-12-04", # initial commit of hf model.
330
330
  languages=LANGUAGES_V2_0,
331
331
  open_weights=True,
332
- framework=["Sentence Transformers", "PyTorch"],
332
+ framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
333
333
  n_parameters=568_000_000,
334
334
  memory_usage_mb=2166,
335
335
  max_tokens=8192,
@@ -22,7 +22,7 @@ b1ade_embed = ModelMeta(
22
22
  max_tokens=4096,
23
23
  reference="https://huggingface.co/w601sxs/b1ade-embed",
24
24
  similarity_fn_name=ScoringFunction.COSINE,
25
- framework=["Sentence Transformers", "PyTorch"],
25
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
26
26
  use_instructions=False,
27
27
  public_training_code=None,
28
28
  public_training_data=None,
@@ -331,7 +331,13 @@ bge_small_en_v1_5 = ModelMeta(
331
331
  max_tokens=512,
332
332
  reference="https://huggingface.co/BAAI/bge-small-en-v1.5",
333
333
  similarity_fn_name=ScoringFunction.COSINE,
334
- framework=["Sentence Transformers", "PyTorch"],
334
+ framework=[
335
+ "Sentence Transformers",
336
+ "PyTorch",
337
+ "ONNX",
338
+ "safetensors",
339
+ "Transformers",
340
+ ],
335
341
  use_instructions=True,
336
342
  public_training_code=None,
337
343
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -357,7 +363,13 @@ bge_base_en_v1_5 = ModelMeta(
357
363
  max_tokens=512,
358
364
  reference="https://huggingface.co/BAAI/bge-base-en-v1.5",
359
365
  similarity_fn_name=ScoringFunction.COSINE,
360
- framework=["Sentence Transformers", "PyTorch"],
366
+ framework=[
367
+ "Sentence Transformers",
368
+ "PyTorch",
369
+ "ONNX",
370
+ "safetensors",
371
+ "Transformers",
372
+ ],
361
373
  use_instructions=True,
362
374
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
363
375
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -383,7 +395,13 @@ bge_large_en_v1_5 = ModelMeta(
383
395
  max_tokens=512,
384
396
  reference="https://huggingface.co/BAAI/bge-large-en-v1.5",
385
397
  similarity_fn_name=ScoringFunction.COSINE,
386
- framework=["Sentence Transformers", "PyTorch"],
398
+ framework=[
399
+ "Sentence Transformers",
400
+ "PyTorch",
401
+ "ONNX",
402
+ "safetensors",
403
+ "Transformers",
404
+ ],
387
405
  use_instructions=True,
388
406
  citation=BGE_15_CITATION,
389
407
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
@@ -409,7 +427,7 @@ bge_small_zh = ModelMeta(
409
427
  max_tokens=512,
410
428
  reference="https://huggingface.co/BAAI/bge-small-zh",
411
429
  similarity_fn_name=ScoringFunction.COSINE,
412
- framework=["Sentence Transformers", "PyTorch"],
430
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
413
431
  use_instructions=True,
414
432
  public_training_code=None,
415
433
  public_training_data=None,
@@ -436,7 +454,7 @@ bge_base_zh = ModelMeta(
436
454
  max_tokens=512,
437
455
  reference="https://huggingface.co/BAAI/bge-base-zh",
438
456
  similarity_fn_name=ScoringFunction.COSINE,
439
- framework=["Sentence Transformers", "PyTorch"],
457
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
440
458
  use_instructions=True,
441
459
  public_training_code=None,
442
460
  public_training_data=None,
@@ -463,7 +481,7 @@ bge_large_zh = ModelMeta(
463
481
  max_tokens=512,
464
482
  reference="https://huggingface.co/BAAI/bge-large-zh",
465
483
  similarity_fn_name=ScoringFunction.COSINE,
466
- framework=["Sentence Transformers", "PyTorch"],
484
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
467
485
  use_instructions=True,
468
486
  public_training_code=None,
469
487
  public_training_data=None,
@@ -490,7 +508,7 @@ bge_small_en = ModelMeta(
490
508
  max_tokens=512,
491
509
  reference="https://huggingface.co/BAAI/bge-small-en",
492
510
  similarity_fn_name=ScoringFunction.COSINE,
493
- framework=["Sentence Transformers", "PyTorch"],
511
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
494
512
  use_instructions=True,
495
513
  public_training_code=None,
496
514
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -517,7 +535,13 @@ bge_base_en = ModelMeta(
517
535
  max_tokens=512,
518
536
  reference="https://huggingface.co/BAAI/bge-base-en",
519
537
  similarity_fn_name=ScoringFunction.COSINE,
520
- framework=["Sentence Transformers", "PyTorch"],
538
+ framework=[
539
+ "Sentence Transformers",
540
+ "PyTorch",
541
+ "Transformers",
542
+ "ONNX",
543
+ "safetensors",
544
+ ],
521
545
  use_instructions=True,
522
546
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
523
547
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -544,7 +568,7 @@ bge_large_en = ModelMeta(
544
568
  max_tokens=512,
545
569
  reference="https://huggingface.co/BAAI/bge-large-en",
546
570
  similarity_fn_name=ScoringFunction.COSINE,
547
- framework=["Sentence Transformers", "PyTorch"],
571
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
548
572
  use_instructions=True,
549
573
  public_training_code=None, # seemingly released (at least for some models, but the link is broken
550
574
  public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
@@ -572,7 +596,7 @@ bge_small_zh_v1_5 = ModelMeta(
572
596
  max_tokens=512,
573
597
  reference="https://huggingface.co/BAAI/bge-small-zh-v1.5",
574
598
  similarity_fn_name=ScoringFunction.COSINE,
575
- framework=["Sentence Transformers", "PyTorch"],
599
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
576
600
  use_instructions=True,
577
601
  public_training_code=None,
578
602
  public_training_data=None,
@@ -598,7 +622,7 @@ bge_base_zh_v1_5 = ModelMeta(
598
622
  max_tokens=512,
599
623
  reference="https://huggingface.co/BAAI/bge-base-zh-v1.5",
600
624
  similarity_fn_name=ScoringFunction.COSINE,
601
- framework=["Sentence Transformers", "PyTorch"],
625
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
602
626
  use_instructions=True,
603
627
  public_training_code=None,
604
628
  public_training_data=None,
@@ -624,7 +648,7 @@ bge_large_zh_v1_5 = ModelMeta(
624
648
  max_tokens=512,
625
649
  reference="https://huggingface.co/BAAI/bge-large-zh-v1.5",
626
650
  similarity_fn_name=ScoringFunction.COSINE,
627
- framework=["Sentence Transformers", "PyTorch"],
651
+ framework=["Sentence Transformers", "PyTorch", "Transformers"],
628
652
  use_instructions=True,
629
653
  public_training_code=None,
630
654
  public_training_data=None,
@@ -647,13 +671,13 @@ bge_m3 = ModelMeta(
647
671
  max_tokens=8194,
648
672
  reference="https://huggingface.co/BAAI/bge-m3",
649
673
  similarity_fn_name=ScoringFunction.COSINE,
650
- framework=["Sentence Transformers", "PyTorch"],
674
+ framework=["Sentence Transformers", "PyTorch", "ONNX"],
651
675
  use_instructions=False,
652
676
  public_training_code=None,
653
677
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
654
678
  training_datasets=bge_m3_training_data,
655
679
  citation="""@misc{bge-m3,
656
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
680
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
657
681
  author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
658
682
  year={2024},
659
683
  eprint={2402.03216},
@@ -743,7 +767,7 @@ bge_multilingual_gemma2 = ModelMeta(
743
767
  max_tokens=8192, # from old C-MTEB leaderboard
744
768
  reference="https://huggingface.co/BAAI/bge-multilingual-gemma2",
745
769
  similarity_fn_name=ScoringFunction.COSINE,
746
- framework=["Sentence Transformers", "PyTorch"],
770
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
747
771
  use_instructions=False,
748
772
  public_training_code=None,
749
773
  public_training_data=None,
@@ -754,7 +778,7 @@ bge_multilingual_gemma2 = ModelMeta(
754
778
  | bge_full_data
755
779
  | bge_m3_training_data,
756
780
  citation="""@misc{bge-m3,
757
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
781
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
758
782
  author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
759
783
  year={2024},
760
784
  eprint={2402.03216},
@@ -764,7 +788,7 @@ bge_multilingual_gemma2 = ModelMeta(
764
788
 
765
789
 
766
790
  @misc{bge_embedding,
767
- title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
791
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
768
792
  author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
769
793
  year={2023},
770
794
  eprint={2309.07597},
@@ -790,7 +814,7 @@ bge_en_icl = ModelMeta(
790
814
  max_tokens=32768,
791
815
  reference="https://huggingface.co/BAAI/bge-en-icl",
792
816
  similarity_fn_name=ScoringFunction.COSINE,
793
- framework=["Sentence Transformers", "PyTorch"],
817
+ framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
794
818
  use_instructions=False,
795
819
  public_training_code="https://github.com/FlagOpen/FlagEmbedding",
796
820
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
@@ -824,13 +848,13 @@ bge_m3_unsupervised = ModelMeta(
824
848
  max_tokens=8192,
825
849
  reference="https://huggingface.co/BAAI/bge-m3-unsupervised",
826
850
  similarity_fn_name="cosine",
827
- framework=["Sentence Transformers", "PyTorch"],
851
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
828
852
  use_instructions=False,
829
853
  public_training_code="https://github.com/FlagOpen/FlagEmbedding",
830
854
  public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
831
855
  training_datasets=bge_m3_training_data,
832
856
  citation="""@misc{bge-m3,
833
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
857
+ title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
834
858
  author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
835
859
  year={2024},
836
860
  eprint={2402.03216},
@@ -854,7 +878,7 @@ manu__bge_m3_custom_fr = ModelMeta(
854
878
  open_weights=True,
855
879
  public_training_code=None,
856
880
  public_training_data=None,
857
- framework=["PyTorch", "Sentence Transformers"],
881
+ framework=["PyTorch", "Sentence Transformers", "safetensors"],
858
882
  reference="https://huggingface.co/manu/bge-m3-custom-fr",
859
883
  similarity_fn_name=ScoringFunction.COSINE,
860
884
  use_instructions=None,
@@ -15,20 +15,20 @@ bica_base = ModelMeta(
15
15
  max_tokens=512,
16
16
  reference="https://huggingface.co/bisectgroup/BiCA-base",
17
17
  similarity_fn_name="cosine",
18
- framework=["Sentence Transformers", "PyTorch"],
18
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
19
19
  use_instructions=False,
20
20
  public_training_code="https://github.com/NiravBhattLab/BiCA",
21
21
  public_training_data="https://huggingface.co/datasets/bisectgroup/hard-negatives-traversal",
22
22
  adapted_from="thenlper/gte-base",
23
23
  citation="""
24
24
  @misc{sinha2025bicaeffectivebiomedicaldense,
25
- title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
25
+ title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
26
26
  author={Aarush Sinha and Pavan Kumar S and Roshan Balaji and Nirav Pravinbhai Bhatt},
27
27
  year={2025},
28
28
  eprint={2511.08029},
29
29
  archivePrefix={arXiv},
30
30
  primaryClass={cs.IR},
31
- url={https://arxiv.org/abs/2511.08029},
31
+ url={https://arxiv.org/abs/2511.08029},
32
32
  }
33
33
  """,
34
34
  training_datasets=set(),
@@ -179,7 +179,7 @@ blip2_opt_2_7b = ModelMeta(
179
179
  open_weights=True,
180
180
  public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
181
181
  public_training_data=None,
182
- framework=["PyTorch"],
182
+ framework=["PyTorch", "Transformers", "safetensors"],
183
183
  reference="https://huggingface.co/Salesforce/blip2-opt-2.7b",
184
184
  similarity_fn_name=ScoringFunction.COSINE,
185
185
  use_instructions=False,
@@ -203,7 +203,7 @@ blip2_opt_6_7b_coco = ModelMeta(
203
203
  open_weights=True,
204
204
  public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
205
205
  public_training_data=None,
206
- framework=["PyTorch"],
206
+ framework=["PyTorch", "Transformers", "safetensors"],
207
207
  reference="https://huggingface.co/Salesforce/blip2-opt-6.7b-coco",
208
208
  similarity_fn_name=ScoringFunction.COSINE,
209
209
  use_instructions=False,
@@ -143,7 +143,7 @@ blip_image_captioning_large = ModelMeta(
143
143
  open_weights=True,
144
144
  public_training_code="https://github.com/salesforce/BLIP",
145
145
  public_training_data="https://github.com/salesforce/BLIP",
146
- framework=["PyTorch"],
146
+ framework=["PyTorch", "Transformers", "safetensors"],
147
147
  reference="https://huggingface.co/Salesforce/blip-image-captioning-large",
148
148
  similarity_fn_name=ScoringFunction.COSINE,
149
149
  use_instructions=False,
@@ -171,7 +171,7 @@ blip_image_captioning_base = ModelMeta(
171
171
  open_weights=True,
172
172
  public_training_code="https://github.com/salesforce/BLIP",
173
173
  public_training_data="https://github.com/salesforce/BLIP",
174
- framework=["PyTorch"],
174
+ framework=["PyTorch", "Transformers"],
175
175
  reference="https://huggingface.co/Salesforce/blip-image-captioning-base",
176
176
  similarity_fn_name=ScoringFunction.COSINE,
177
177
  use_instructions=False,
@@ -200,7 +200,7 @@ blip_vqa_base = ModelMeta(
200
200
  open_weights=True,
201
201
  public_training_code="https://github.com/salesforce/BLIP",
202
202
  public_training_data="https://github.com/salesforce/BLIP",
203
- framework=["PyTorch"],
203
+ framework=["PyTorch", "Transformers", "safetensors"],
204
204
  reference="https://huggingface.co/Salesforce/blip-vqa-base",
205
205
  similarity_fn_name=ScoringFunction.COSINE,
206
206
  use_instructions=False,
@@ -227,7 +227,7 @@ blip_vqa_capfilt_large = ModelMeta(
227
227
  open_weights=True,
228
228
  public_training_code="https://github.com/salesforce/BLIP",
229
229
  public_training_data="https://github.com/salesforce/BLIP",
230
- framework=["PyTorch"],
230
+ framework=["PyTorch", "Transformers"],
231
231
  reference="https://huggingface.co/Salesforce/blip-vqa-capfilt-large",
232
232
  similarity_fn_name=ScoringFunction.COSINE,
233
233
  use_instructions=False,
@@ -254,7 +254,7 @@ blip_itm_base_coco = ModelMeta(
254
254
  open_weights=True,
255
255
  public_training_code="https://github.com/salesforce/BLIP",
256
256
  public_training_data="https://github.com/salesforce/BLIP",
257
- framework=["PyTorch"],
257
+ framework=["PyTorch", "Transformers"],
258
258
  reference="https://huggingface.co/Salesforce/blip-itm-base-coco",
259
259
  similarity_fn_name=ScoringFunction.COSINE,
260
260
  use_instructions=False,
@@ -281,7 +281,7 @@ blip_itm_large_coco = ModelMeta(
281
281
  open_weights=True,
282
282
  public_training_code="https://github.com/salesforce/BLIP",
283
283
  public_training_data="https://github.com/salesforce/BLIP",
284
- framework=["PyTorch"],
284
+ framework=["PyTorch", "Transformers"],
285
285
  reference="https://huggingface.co/Salesforce/blip-itm-large-coco",
286
286
  similarity_fn_name=ScoringFunction.COSINE,
287
287
  use_instructions=False,
@@ -309,7 +309,7 @@ blip_itm_base_flickr = ModelMeta(
309
309
  open_weights=True,
310
310
  public_training_code="https://github.com/salesforce/BLIP",
311
311
  public_training_data="https://github.com/salesforce/BLIP",
312
- framework=["PyTorch"],
312
+ framework=["PyTorch", "Transformers"],
313
313
  reference="https://huggingface.co/Salesforce/blip-itm-base-flickr",
314
314
  similarity_fn_name=ScoringFunction.COSINE,
315
315
  use_instructions=False,
@@ -337,7 +337,7 @@ blip_itm_large_flickr = ModelMeta(
337
337
  open_weights=True,
338
338
  public_training_code="https://github.com/salesforce/BLIP",
339
339
  public_training_data="https://github.com/salesforce/BLIP",
340
- framework=["PyTorch"],
340
+ framework=["PyTorch", "Transformers"],
341
341
  reference="https://huggingface.co/Salesforce/blip-itm-large-flickr",
342
342
  similarity_fn_name=ScoringFunction.COSINE,
343
343
  use_instructions=False,
@@ -104,7 +104,7 @@ BMRetriever_410M = ModelMeta(
104
104
  license="mit",
105
105
  reference="https://huggingface.co/BMRetriever/BMRetriever-410M",
106
106
  similarity_fn_name="cosine",
107
- framework=["Sentence Transformers", "PyTorch"],
107
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
108
108
  use_instructions=True,
109
109
  public_training_code=None,
110
110
  public_training_data=None,
@@ -134,7 +134,7 @@ BMRetriever_1B = ModelMeta(
134
134
  license="mit",
135
135
  reference="https://huggingface.co/BMRetriever/BMRetriever-1B",
136
136
  similarity_fn_name="cosine",
137
- framework=["Sentence Transformers", "PyTorch"],
137
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
138
138
  use_instructions=True,
139
139
  public_training_code=None,
140
140
  public_training_data=None,
@@ -164,7 +164,7 @@ BMRetriever_2B = ModelMeta(
164
164
  license="mit",
165
165
  reference="https://huggingface.co/BMRetriever/BMRetriever-2B",
166
166
  similarity_fn_name="cosine",
167
- framework=["Sentence Transformers", "PyTorch"],
167
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
168
168
  use_instructions=True,
169
169
  public_training_code=None,
170
170
  public_training_data=None,
@@ -194,7 +194,7 @@ BMRetriever_7B = ModelMeta(
194
194
  license="mit",
195
195
  reference="https://huggingface.co/BMRetriever/BMRetriever-7B",
196
196
  similarity_fn_name="cosine",
197
- framework=["Sentence Transformers", "PyTorch"],
197
+ framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
198
198
  use_instructions=True,
199
199
  public_training_code=None,
200
200
  public_training_data=None,
@@ -47,7 +47,7 @@ cadet_embed = ModelMeta(
47
47
  max_tokens=512,
48
48
  reference="https://huggingface.co/manveertamber/cadet-embed-base-v1",
49
49
  similarity_fn_name="cosine",
50
- framework=["Sentence Transformers", "PyTorch"],
50
+ framework=["Sentence Transformers", "PyTorch", "safetensors"],
51
51
  use_instructions=True,
52
52
  public_training_code="https://github.com/manveertamber/cadet-dense-retrieval",
53
53
  # we provide the code to generate the training data
@@ -227,7 +227,7 @@ cde_small_v1 = ModelMeta(
227
227
  embed_dim=768,
228
228
  license="mit",
229
229
  similarity_fn_name=ScoringFunction.COSINE,
230
- framework=["Sentence Transformers"],
230
+ framework=["Sentence Transformers", "safetensors", "Transformers"],
231
231
  reference="https://huggingface.co/jxm/cde-small-v1",
232
232
  use_instructions=True,
233
233
  adapted_from="nomic-ai/nomic-bert-2048",
@@ -256,7 +256,7 @@ cde_small_v2 = ModelMeta(
256
256
  embed_dim=768,
257
257
  license="mit",
258
258
  similarity_fn_name=ScoringFunction.COSINE,
259
- framework=["Sentence Transformers"],
259
+ framework=["Sentence Transformers", "safetensors", "Transformers"],
260
260
  reference="https://huggingface.co/jxm/cde-small-v1",
261
261
  use_instructions=True,
262
262
  adapted_from="answerdotai/ModernBERT-base",