mteb 2.6.3__py3-none-any.whl → 2.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/classification.py +2 -3
- mteb/abstasks/multilabel_classification.py +3 -3
- mteb/abstasks/regression.py +1 -1
- mteb/abstasks/retrieval.py +1 -1
- mteb/abstasks/task_metadata.py +9 -14
- mteb/models/model_implementations/align_models.py +1 -1
- mteb/models/model_implementations/andersborges.py +2 -2
- mteb/models/model_implementations/ara_models.py +1 -1
- mteb/models/model_implementations/arctic_models.py +8 -8
- mteb/models/model_implementations/b1ade_models.py +1 -1
- mteb/models/model_implementations/bge_models.py +45 -21
- mteb/models/model_implementations/bica_model.py +3 -3
- mteb/models/model_implementations/blip2_models.py +2 -2
- mteb/models/model_implementations/blip_models.py +8 -8
- mteb/models/model_implementations/bmretriever_models.py +4 -4
- mteb/models/model_implementations/cadet_models.py +1 -1
- mteb/models/model_implementations/cde_models.py +2 -2
- mteb/models/model_implementations/clip_models.py +3 -3
- mteb/models/model_implementations/clips_models.py +3 -3
- mteb/models/model_implementations/codefuse_models.py +5 -5
- mteb/models/model_implementations/codesage_models.py +3 -3
- mteb/models/model_implementations/cohere_models.py +4 -4
- mteb/models/model_implementations/colpali_models.py +3 -3
- mteb/models/model_implementations/colqwen_models.py +8 -8
- mteb/models/model_implementations/colsmol_models.py +2 -2
- mteb/models/model_implementations/conan_models.py +1 -1
- mteb/models/model_implementations/dino_models.py +19 -19
- mteb/models/model_implementations/e5_instruct.py +23 -4
- mteb/models/model_implementations/e5_models.py +9 -9
- mteb/models/model_implementations/e5_v.py +1 -1
- mteb/models/model_implementations/eagerworks_models.py +1 -1
- mteb/models/model_implementations/emillykkejensen_models.py +3 -3
- mteb/models/model_implementations/en_code_retriever.py +1 -1
- mteb/models/model_implementations/euler_models.py +2 -2
- mteb/models/model_implementations/fa_models.py +9 -9
- mteb/models/model_implementations/facebookai.py +14 -2
- mteb/models/model_implementations/geogpt_models.py +1 -1
- mteb/models/model_implementations/gme_v_models.py +2 -2
- mteb/models/model_implementations/google_models.py +1 -1
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -1
- mteb/models/model_implementations/gritlm_models.py +2 -2
- mteb/models/model_implementations/gte_models.py +25 -13
- mteb/models/model_implementations/hinvec_models.py +1 -1
- mteb/models/model_implementations/ibm_granite_models.py +30 -6
- mteb/models/model_implementations/inf_models.py +2 -2
- mteb/models/model_implementations/jasper_models.py +2 -2
- mteb/models/model_implementations/jina_clip.py +1 -1
- mteb/models/model_implementations/jina_models.py +11 -5
- mteb/models/model_implementations/kblab.py +12 -6
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -2
- mteb/models/model_implementations/kfst.py +1 -1
- mteb/models/model_implementations/kowshik24_models.py +1 -1
- mteb/models/model_implementations/lgai_embedding_models.py +1 -1
- mteb/models/model_implementations/linq_models.py +1 -1
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -3
- mteb/models/model_implementations/llm2vec_models.py +8 -8
- mteb/models/model_implementations/mdbr_models.py +14 -2
- mteb/models/model_implementations/misc_models.py +68 -68
- mteb/models/model_implementations/mme5_models.py +1 -1
- mteb/models/model_implementations/moco_models.py +2 -2
- mteb/models/model_implementations/mod_models.py +1 -1
- mteb/models/model_implementations/model2vec_models.py +13 -13
- mteb/models/model_implementations/moka_models.py +1 -1
- mteb/models/model_implementations/mxbai_models.py +16 -3
- mteb/models/model_implementations/nbailab.py +3 -3
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -1
- mteb/models/model_implementations/nomic_models.py +18 -6
- mteb/models/model_implementations/nomic_models_vision.py +1 -1
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -2
- mteb/models/model_implementations/nvidia_models.py +3 -3
- mteb/models/model_implementations/octen_models.py +2 -2
- mteb/models/model_implementations/openclip_models.py +6 -6
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -5
- mteb/models/model_implementations/ops_moa_models.py +1 -1
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -1
- mteb/models/model_implementations/pawan_models.py +1 -1
- mteb/models/model_implementations/piccolo_models.py +1 -1
- mteb/models/model_implementations/promptriever_models.py +4 -4
- mteb/models/model_implementations/pylate_models.py +5 -5
- mteb/models/model_implementations/qodo_models.py +2 -2
- mteb/models/model_implementations/qtack_models.py +1 -1
- mteb/models/model_implementations/qwen3_models.py +3 -3
- mteb/models/model_implementations/qzhou_models.py +2 -2
- mteb/models/model_implementations/rasgaard_models.py +1 -1
- mteb/models/model_implementations/reasonir_model.py +1 -1
- mteb/models/model_implementations/repllama_models.py +1 -1
- mteb/models/model_implementations/rerankers_custom.py +9 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -1
- mteb/models/model_implementations/ru_sentence_models.py +20 -20
- mteb/models/model_implementations/ruri_models.py +10 -10
- mteb/models/model_implementations/salesforce_models.py +3 -3
- mteb/models/model_implementations/samilpwc_models.py +1 -1
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -2
- mteb/models/model_implementations/searchmap_models.py +1 -1
- mteb/models/model_implementations/sentence_transformers_models.py +58 -22
- mteb/models/model_implementations/shuu_model.py +1 -1
- mteb/models/model_implementations/siglip_models.py +10 -10
- mteb/models/model_implementations/slm_models.py +416 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -1
- mteb/models/model_implementations/stella_models.py +17 -4
- mteb/models/model_implementations/tarka_models.py +2 -2
- mteb/models/model_implementations/text2vec_models.py +9 -3
- mteb/models/model_implementations/ua_sentence_models.py +1 -1
- mteb/models/model_implementations/uae_models.py +7 -1
- mteb/models/model_implementations/vdr_models.py +1 -1
- mteb/models/model_implementations/vi_vn_models.py +6 -6
- mteb/models/model_implementations/vlm2vec_models.py +2 -2
- mteb/models/model_implementations/youtu_models.py +1 -1
- mteb/models/model_implementations/yuan_models.py +1 -1
- mteb/models/model_implementations/yuan_models_en.py +1 -1
- mteb/models/model_meta.py +46 -17
- mteb/results/benchmark_results.py +2 -2
- mteb/tasks/classification/kur/kurdish_sentiment_classification.py +2 -2
- mteb/tasks/clustering/eng/hume_wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/eng/wiki_cities_clustering.py +1 -1
- mteb/tasks/clustering/zho/cmteb_clustering.py +2 -2
- mteb/tasks/reranking/multilingual/wikipedia_reranking_multilingual.py +1 -1
- mteb/tasks/retrieval/eng/cub200_i2i_retrieval.py +1 -1
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/METADATA +3 -1
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/RECORD +126 -125
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/WHEEL +0 -0
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/entry_points.txt +0 -0
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.6.3.dist-info → mteb-2.6.5.dist-info}/top_level.txt +0 -0
mteb/abstasks/classification.py
CHANGED
|
@@ -98,9 +98,8 @@ class AbsTaskClassification(AbsTask):
|
|
|
98
98
|
text: str (for text) or PIL.Image (for image). Column name can be changed via `input_column_name` attribute.
|
|
99
99
|
label: int. Column name can be changed via `label_column_name` attribute.
|
|
100
100
|
evaluator_model: The model to use for evaluation. Can be any sklearn compatible model. Default is `LogisticRegression`.
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
n_experiments: Number of experiments to run. Default is 10.
|
|
101
|
+
samples_per_label: Number of samples per label to use for training the evaluator model. Default is 8.
|
|
102
|
+
n_experiments: Number of experiments to run. Default is 10.
|
|
104
103
|
train_split: Name of the split to use for training the evaluator model. Default is "train".
|
|
105
104
|
label_column_name: Name of the column containing the labels. Default is "label".
|
|
106
105
|
input_column_name: Name of the column containing the input data. Default is "text".
|
|
@@ -70,10 +70,10 @@ class AbsTaskMultilabelClassification(AbsTaskClassification):
|
|
|
70
70
|
input_column_name: Name of the column containing the input text.
|
|
71
71
|
label_column_name: Name of the column containing the labels.
|
|
72
72
|
samples_per_label: Number of samples to use pr. label. These samples are embedded and a classifier is fit using the labels and samples.
|
|
73
|
-
|
|
73
|
+
evaluator_model: Classifier to use for evaluation. Must implement the SklearnModelProtocol.
|
|
74
74
|
"""
|
|
75
75
|
|
|
76
|
-
|
|
76
|
+
evaluator_model: SklearnModelProtocol = KNeighborsClassifier(n_neighbors=5)
|
|
77
77
|
input_column_name: str = "text"
|
|
78
78
|
label_column_name: str = "label"
|
|
79
79
|
|
|
@@ -169,7 +169,7 @@ class AbsTaskMultilabelClassification(AbsTaskClassification):
|
|
|
169
169
|
y_train = train_split.select(sample_indices)[self.label_column_name]
|
|
170
170
|
y_train = binarizer.transform(y_train)
|
|
171
171
|
y_pred, current_classifier = _evaluate_classifier(
|
|
172
|
-
X_train, y_train, X_test, self.
|
|
172
|
+
X_train, y_train, X_test, self.evaluator_model
|
|
173
173
|
)
|
|
174
174
|
if prediction_folder:
|
|
175
175
|
all_predictions.append(y_pred.tolist())
|
mteb/abstasks/regression.py
CHANGED
|
@@ -84,7 +84,7 @@ class AbsTaskRegression(AbsTaskClassification):
|
|
|
84
84
|
n_samples: Number of samples to use for training the regression model. If the dataset has fewer samples than n_samples, all samples are used.
|
|
85
85
|
abstask_prompt: Prompt to use for the task for instruction model if not prompt is provided in TaskMetadata.prompt.
|
|
86
86
|
evaluator_model: The model to use for evaluation. Can be any sklearn compatible model. Default is `LinearRegression`.
|
|
87
|
-
|
|
87
|
+
|
|
88
88
|
"""
|
|
89
89
|
|
|
90
90
|
evaluator: type[SklearnEvaluator] = SklearnEvaluator
|
mteb/abstasks/retrieval.py
CHANGED
mteb/abstasks/task_metadata.py
CHANGED
|
@@ -485,7 +485,6 @@ class TaskMetadata(BaseModel):
|
|
|
485
485
|
dataset_type = [
|
|
486
486
|
*self._hf_task_type(),
|
|
487
487
|
*self._hf_task_category(),
|
|
488
|
-
*self._hf_subtypes(),
|
|
489
488
|
]
|
|
490
489
|
languages = self._hf_languages()
|
|
491
490
|
|
|
@@ -587,10 +586,8 @@ class TaskMetadata(BaseModel):
|
|
|
587
586
|
|
|
588
587
|
def _hf_subtypes(self) -> list[str]:
|
|
589
588
|
# to get full list of available task_ids execute
|
|
590
|
-
#
|
|
591
|
-
#
|
|
592
|
-
# "repoType": "dataset"
|
|
593
|
-
# })
|
|
589
|
+
# https://huggingface.co/api/datasets-tags-by-type?type=task_ids
|
|
590
|
+
# ref https://huggingface-openapi.hf.space/#tag/datasets/GET/api/datasets-tags-by-type
|
|
594
591
|
mteb_to_hf_subtype = {
|
|
595
592
|
"Article retrieval": ["document-retrieval"],
|
|
596
593
|
"Conversational retrieval": ["conversational", "utterance-retrieval"],
|
|
@@ -612,7 +609,7 @@ class TaskMetadata(BaseModel):
|
|
|
612
609
|
"hate-speech-detection",
|
|
613
610
|
],
|
|
614
611
|
"Thematic clustering": [],
|
|
615
|
-
"Scientific Reranking": [],
|
|
612
|
+
"Scientific Reranking": ["text-scoring"],
|
|
616
613
|
"Claim verification": ["fact-checking", "fact-checking-retrieval"],
|
|
617
614
|
"Topic classification": ["topic-classification"],
|
|
618
615
|
"Code retrieval": [],
|
|
@@ -620,21 +617,21 @@ class TaskMetadata(BaseModel):
|
|
|
620
617
|
"Cross-Lingual Semantic Discrimination": [],
|
|
621
618
|
"Textual Entailment": ["natural-language-inference"],
|
|
622
619
|
"Counterfactual Detection": [],
|
|
623
|
-
"Emotion classification": [],
|
|
620
|
+
"Emotion classification": ["sentiment-classification"],
|
|
624
621
|
"Reasoning as Retrieval": [],
|
|
625
622
|
"Rendered Texts Understanding": [],
|
|
626
623
|
"Image Text Retrieval": [],
|
|
627
624
|
"Object recognition": [],
|
|
628
625
|
"Scene recognition": [],
|
|
629
626
|
"Caption Pairing": ["image-captioning"],
|
|
630
|
-
"Emotion recognition": [],
|
|
627
|
+
"Emotion recognition": ["sentiment-scoring"],
|
|
631
628
|
"Textures recognition": [],
|
|
632
629
|
"Activity recognition": [],
|
|
633
630
|
"Tumor detection": [],
|
|
634
631
|
"Duplicate Detection": [],
|
|
635
632
|
"Rendered semantic textual similarity": [
|
|
636
633
|
"semantic-similarity-scoring",
|
|
637
|
-
"
|
|
634
|
+
"semantic-similarity-classification",
|
|
638
635
|
],
|
|
639
636
|
"Intent classification": [
|
|
640
637
|
"intent-classification",
|
|
@@ -648,10 +645,8 @@ class TaskMetadata(BaseModel):
|
|
|
648
645
|
|
|
649
646
|
def _hf_task_type(self) -> list[str]:
|
|
650
647
|
# to get full list of task_types execute:
|
|
651
|
-
#
|
|
652
|
-
#
|
|
653
|
-
# }).json()
|
|
654
|
-
# or look at https://huggingface.co/tasks
|
|
648
|
+
# https://huggingface.co/api/datasets-tags-by-type?type=task_categories
|
|
649
|
+
# ref https://huggingface-openapi.hf.space/#tag/datasets/GET/api/datasets-tags-by-type
|
|
655
650
|
mteb_task_type_to_datasets = {
|
|
656
651
|
# Text
|
|
657
652
|
"BitextMining": ["translation"],
|
|
@@ -670,7 +665,7 @@ class TaskMetadata(BaseModel):
|
|
|
670
665
|
"Any2AnyRetrieval": ["visual-document-retrieval"],
|
|
671
666
|
"Any2AnyMultilingualRetrieval": ["visual-document-retrieval"],
|
|
672
667
|
"VisionCentricQA": ["visual-question-answering"],
|
|
673
|
-
"ImageClustering": ["image-
|
|
668
|
+
"ImageClustering": ["image-feature-extraction"],
|
|
674
669
|
"ImageClassification": ["image-classification"],
|
|
675
670
|
"ImageMultilabelClassification": ["image-classification"],
|
|
676
671
|
"DocumentUnderstanding": ["visual-document-retrieval"],
|
|
@@ -118,7 +118,7 @@ align_base = ModelMeta(
|
|
|
118
118
|
open_weights=True,
|
|
119
119
|
public_training_code="https://github.com/kakaobrain/coyo-align",
|
|
120
120
|
public_training_data=True,
|
|
121
|
-
framework=["PyTorch"],
|
|
121
|
+
framework=["PyTorch", "Transformers"],
|
|
122
122
|
reference="https://huggingface.co/kakaobrain/align-base",
|
|
123
123
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
124
124
|
use_instructions=False,
|
|
@@ -17,7 +17,7 @@ model2vecdk = ModelMeta(
|
|
|
17
17
|
embed_dim=256,
|
|
18
18
|
license="mit",
|
|
19
19
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
20
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
20
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
21
21
|
reference="https://huggingface.co/andersborges/model2vecdk",
|
|
22
22
|
use_instructions=False,
|
|
23
23
|
adapted_from="https://huggingface.co/jealk/TTC-L2V-supervised-2",
|
|
@@ -48,7 +48,7 @@ model2vecdk_stem = ModelMeta(
|
|
|
48
48
|
embed_dim=256,
|
|
49
49
|
license="mit",
|
|
50
50
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
51
|
-
framework=["NumPy", "Sentence Transformers"],
|
|
51
|
+
framework=["NumPy", "Sentence Transformers", "safetensors"],
|
|
52
52
|
reference="https://huggingface.co/andersborges/model2vecdk",
|
|
53
53
|
use_instructions=False,
|
|
54
54
|
adapted_from="https://huggingface.co/jealk/TTC-L2V-supervised-2",
|
|
@@ -16,7 +16,7 @@ arabic_triplet_matryoshka = ModelMeta(
|
|
|
16
16
|
max_tokens=768,
|
|
17
17
|
reference="https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2",
|
|
18
18
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
19
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
19
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
20
20
|
use_instructions=False,
|
|
21
21
|
public_training_code=None,
|
|
22
22
|
adapted_from="aubmindlab/bert-base-arabertv02",
|
|
@@ -145,7 +145,7 @@ arctic_embed_xs = ModelMeta(
|
|
|
145
145
|
release_date="2024-07-08", # initial commit of hf model.
|
|
146
146
|
languages=["eng-Latn"],
|
|
147
147
|
open_weights=True,
|
|
148
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
148
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
149
149
|
n_parameters=22_600_000,
|
|
150
150
|
memory_usage_mb=86,
|
|
151
151
|
max_tokens=512,
|
|
@@ -171,7 +171,7 @@ arctic_embed_s = ModelMeta(
|
|
|
171
171
|
release_date="2024-04-12", # initial commit of hf model.
|
|
172
172
|
languages=["eng-Latn"],
|
|
173
173
|
open_weights=True,
|
|
174
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
174
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
175
175
|
n_parameters=32_200_000,
|
|
176
176
|
memory_usage_mb=127,
|
|
177
177
|
max_tokens=512,
|
|
@@ -197,7 +197,7 @@ arctic_embed_m = ModelMeta(
|
|
|
197
197
|
release_date="2024-04-12", # initial commit of hf model.
|
|
198
198
|
languages=["eng-Latn"],
|
|
199
199
|
open_weights=True,
|
|
200
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
200
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
201
201
|
n_parameters=109_000_000,
|
|
202
202
|
memory_usage_mb=415,
|
|
203
203
|
max_tokens=512,
|
|
@@ -223,7 +223,7 @@ arctic_embed_m_long = ModelMeta(
|
|
|
223
223
|
release_date="2024-04-12", # initial commit of hf model.
|
|
224
224
|
languages=["eng-Latn"],
|
|
225
225
|
open_weights=True,
|
|
226
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
226
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
227
227
|
n_parameters=137_000_000,
|
|
228
228
|
memory_usage_mb=522,
|
|
229
229
|
max_tokens=2048,
|
|
@@ -248,7 +248,7 @@ arctic_embed_l = ModelMeta(
|
|
|
248
248
|
release_date="2024-04-12", # initial commit of hf model.
|
|
249
249
|
languages=["eng-Latn"],
|
|
250
250
|
open_weights=True,
|
|
251
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
251
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
252
252
|
n_parameters=335_000_000,
|
|
253
253
|
memory_usage_mb=1274,
|
|
254
254
|
max_tokens=512,
|
|
@@ -278,7 +278,7 @@ arctic_embed_m_v1_5 = ModelMeta(
|
|
|
278
278
|
release_date="2024-07-08", # initial commit of hf model.
|
|
279
279
|
languages=["eng-Latn"],
|
|
280
280
|
open_weights=True,
|
|
281
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
281
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors", "GGUF"],
|
|
282
282
|
n_parameters=109_000_000,
|
|
283
283
|
memory_usage_mb=415,
|
|
284
284
|
max_tokens=512,
|
|
@@ -304,7 +304,7 @@ arctic_embed_m_v2_0 = ModelMeta(
|
|
|
304
304
|
release_date="2024-12-04", # initial commit of hf model.
|
|
305
305
|
languages=LANGUAGES_V2_0,
|
|
306
306
|
open_weights=True,
|
|
307
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
307
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
308
308
|
n_parameters=305_000_000,
|
|
309
309
|
memory_usage_mb=1165,
|
|
310
310
|
max_tokens=8192,
|
|
@@ -329,7 +329,7 @@ arctic_embed_l_v2_0 = ModelMeta(
|
|
|
329
329
|
release_date="2024-12-04", # initial commit of hf model.
|
|
330
330
|
languages=LANGUAGES_V2_0,
|
|
331
331
|
open_weights=True,
|
|
332
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
332
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX", "safetensors"],
|
|
333
333
|
n_parameters=568_000_000,
|
|
334
334
|
memory_usage_mb=2166,
|
|
335
335
|
max_tokens=8192,
|
|
@@ -22,7 +22,7 @@ b1ade_embed = ModelMeta(
|
|
|
22
22
|
max_tokens=4096,
|
|
23
23
|
reference="https://huggingface.co/w601sxs/b1ade-embed",
|
|
24
24
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
25
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
25
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
26
26
|
use_instructions=False,
|
|
27
27
|
public_training_code=None,
|
|
28
28
|
public_training_data=None,
|
|
@@ -331,7 +331,13 @@ bge_small_en_v1_5 = ModelMeta(
|
|
|
331
331
|
max_tokens=512,
|
|
332
332
|
reference="https://huggingface.co/BAAI/bge-small-en-v1.5",
|
|
333
333
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
334
|
-
framework=[
|
|
334
|
+
framework=[
|
|
335
|
+
"Sentence Transformers",
|
|
336
|
+
"PyTorch",
|
|
337
|
+
"ONNX",
|
|
338
|
+
"safetensors",
|
|
339
|
+
"Transformers",
|
|
340
|
+
],
|
|
335
341
|
use_instructions=True,
|
|
336
342
|
public_training_code=None,
|
|
337
343
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -357,7 +363,13 @@ bge_base_en_v1_5 = ModelMeta(
|
|
|
357
363
|
max_tokens=512,
|
|
358
364
|
reference="https://huggingface.co/BAAI/bge-base-en-v1.5",
|
|
359
365
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
360
|
-
framework=[
|
|
366
|
+
framework=[
|
|
367
|
+
"Sentence Transformers",
|
|
368
|
+
"PyTorch",
|
|
369
|
+
"ONNX",
|
|
370
|
+
"safetensors",
|
|
371
|
+
"Transformers",
|
|
372
|
+
],
|
|
361
373
|
use_instructions=True,
|
|
362
374
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
363
375
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -383,7 +395,13 @@ bge_large_en_v1_5 = ModelMeta(
|
|
|
383
395
|
max_tokens=512,
|
|
384
396
|
reference="https://huggingface.co/BAAI/bge-large-en-v1.5",
|
|
385
397
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
386
|
-
framework=[
|
|
398
|
+
framework=[
|
|
399
|
+
"Sentence Transformers",
|
|
400
|
+
"PyTorch",
|
|
401
|
+
"ONNX",
|
|
402
|
+
"safetensors",
|
|
403
|
+
"Transformers",
|
|
404
|
+
],
|
|
387
405
|
use_instructions=True,
|
|
388
406
|
citation=BGE_15_CITATION,
|
|
389
407
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
@@ -409,7 +427,7 @@ bge_small_zh = ModelMeta(
|
|
|
409
427
|
max_tokens=512,
|
|
410
428
|
reference="https://huggingface.co/BAAI/bge-small-zh",
|
|
411
429
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
412
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
430
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
413
431
|
use_instructions=True,
|
|
414
432
|
public_training_code=None,
|
|
415
433
|
public_training_data=None,
|
|
@@ -436,7 +454,7 @@ bge_base_zh = ModelMeta(
|
|
|
436
454
|
max_tokens=512,
|
|
437
455
|
reference="https://huggingface.co/BAAI/bge-base-zh",
|
|
438
456
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
439
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
457
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
440
458
|
use_instructions=True,
|
|
441
459
|
public_training_code=None,
|
|
442
460
|
public_training_data=None,
|
|
@@ -463,7 +481,7 @@ bge_large_zh = ModelMeta(
|
|
|
463
481
|
max_tokens=512,
|
|
464
482
|
reference="https://huggingface.co/BAAI/bge-large-zh",
|
|
465
483
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
466
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
484
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
467
485
|
use_instructions=True,
|
|
468
486
|
public_training_code=None,
|
|
469
487
|
public_training_data=None,
|
|
@@ -490,7 +508,7 @@ bge_small_en = ModelMeta(
|
|
|
490
508
|
max_tokens=512,
|
|
491
509
|
reference="https://huggingface.co/BAAI/bge-small-en",
|
|
492
510
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
493
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
511
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
494
512
|
use_instructions=True,
|
|
495
513
|
public_training_code=None,
|
|
496
514
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -517,7 +535,13 @@ bge_base_en = ModelMeta(
|
|
|
517
535
|
max_tokens=512,
|
|
518
536
|
reference="https://huggingface.co/BAAI/bge-base-en",
|
|
519
537
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
520
|
-
framework=[
|
|
538
|
+
framework=[
|
|
539
|
+
"Sentence Transformers",
|
|
540
|
+
"PyTorch",
|
|
541
|
+
"Transformers",
|
|
542
|
+
"ONNX",
|
|
543
|
+
"safetensors",
|
|
544
|
+
],
|
|
521
545
|
use_instructions=True,
|
|
522
546
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
523
547
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -544,7 +568,7 @@ bge_large_en = ModelMeta(
|
|
|
544
568
|
max_tokens=512,
|
|
545
569
|
reference="https://huggingface.co/BAAI/bge-large-en",
|
|
546
570
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
547
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
571
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
548
572
|
use_instructions=True,
|
|
549
573
|
public_training_code=None, # seemingly released (at least for some models, but the link is broken
|
|
550
574
|
public_training_data="https://data.baai.ac.cn/details/BAAI-MTP",
|
|
@@ -572,7 +596,7 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
572
596
|
max_tokens=512,
|
|
573
597
|
reference="https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
574
598
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
575
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
599
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
576
600
|
use_instructions=True,
|
|
577
601
|
public_training_code=None,
|
|
578
602
|
public_training_data=None,
|
|
@@ -598,7 +622,7 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
598
622
|
max_tokens=512,
|
|
599
623
|
reference="https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
|
600
624
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
601
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
625
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
602
626
|
use_instructions=True,
|
|
603
627
|
public_training_code=None,
|
|
604
628
|
public_training_data=None,
|
|
@@ -624,7 +648,7 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
624
648
|
max_tokens=512,
|
|
625
649
|
reference="https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
|
626
650
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
627
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
651
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers"],
|
|
628
652
|
use_instructions=True,
|
|
629
653
|
public_training_code=None,
|
|
630
654
|
public_training_data=None,
|
|
@@ -647,13 +671,13 @@ bge_m3 = ModelMeta(
|
|
|
647
671
|
max_tokens=8194,
|
|
648
672
|
reference="https://huggingface.co/BAAI/bge-m3",
|
|
649
673
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
650
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
674
|
+
framework=["Sentence Transformers", "PyTorch", "ONNX"],
|
|
651
675
|
use_instructions=False,
|
|
652
676
|
public_training_code=None,
|
|
653
677
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
654
678
|
training_datasets=bge_m3_training_data,
|
|
655
679
|
citation="""@misc{bge-m3,
|
|
656
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
680
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
657
681
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
658
682
|
year={2024},
|
|
659
683
|
eprint={2402.03216},
|
|
@@ -743,7 +767,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
743
767
|
max_tokens=8192, # from old C-MTEB leaderboard
|
|
744
768
|
reference="https://huggingface.co/BAAI/bge-multilingual-gemma2",
|
|
745
769
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
746
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
770
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
747
771
|
use_instructions=False,
|
|
748
772
|
public_training_code=None,
|
|
749
773
|
public_training_data=None,
|
|
@@ -754,7 +778,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
754
778
|
| bge_full_data
|
|
755
779
|
| bge_m3_training_data,
|
|
756
780
|
citation="""@misc{bge-m3,
|
|
757
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
781
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
758
782
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
759
783
|
year={2024},
|
|
760
784
|
eprint={2402.03216},
|
|
@@ -764,7 +788,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
764
788
|
|
|
765
789
|
|
|
766
790
|
@misc{bge_embedding,
|
|
767
|
-
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
791
|
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
|
768
792
|
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
|
769
793
|
year={2023},
|
|
770
794
|
eprint={2309.07597},
|
|
@@ -790,7 +814,7 @@ bge_en_icl = ModelMeta(
|
|
|
790
814
|
max_tokens=32768,
|
|
791
815
|
reference="https://huggingface.co/BAAI/bge-en-icl",
|
|
792
816
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
793
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
817
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors", "Transformers"],
|
|
794
818
|
use_instructions=False,
|
|
795
819
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
796
820
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
@@ -824,13 +848,13 @@ bge_m3_unsupervised = ModelMeta(
|
|
|
824
848
|
max_tokens=8192,
|
|
825
849
|
reference="https://huggingface.co/BAAI/bge-m3-unsupervised",
|
|
826
850
|
similarity_fn_name="cosine",
|
|
827
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
851
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
828
852
|
use_instructions=False,
|
|
829
853
|
public_training_code="https://github.com/FlagOpen/FlagEmbedding",
|
|
830
854
|
public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
|
|
831
855
|
training_datasets=bge_m3_training_data,
|
|
832
856
|
citation="""@misc{bge-m3,
|
|
833
|
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
857
|
+
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
|
834
858
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
|
835
859
|
year={2024},
|
|
836
860
|
eprint={2402.03216},
|
|
@@ -854,7 +878,7 @@ manu__bge_m3_custom_fr = ModelMeta(
|
|
|
854
878
|
open_weights=True,
|
|
855
879
|
public_training_code=None,
|
|
856
880
|
public_training_data=None,
|
|
857
|
-
framework=["PyTorch", "Sentence Transformers"],
|
|
881
|
+
framework=["PyTorch", "Sentence Transformers", "safetensors"],
|
|
858
882
|
reference="https://huggingface.co/manu/bge-m3-custom-fr",
|
|
859
883
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
860
884
|
use_instructions=None,
|
|
@@ -15,20 +15,20 @@ bica_base = ModelMeta(
|
|
|
15
15
|
max_tokens=512,
|
|
16
16
|
reference="https://huggingface.co/bisectgroup/BiCA-base",
|
|
17
17
|
similarity_fn_name="cosine",
|
|
18
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
18
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
19
19
|
use_instructions=False,
|
|
20
20
|
public_training_code="https://github.com/NiravBhattLab/BiCA",
|
|
21
21
|
public_training_data="https://huggingface.co/datasets/bisectgroup/hard-negatives-traversal",
|
|
22
22
|
adapted_from="thenlper/gte-base",
|
|
23
23
|
citation="""
|
|
24
24
|
@misc{sinha2025bicaeffectivebiomedicaldense,
|
|
25
|
-
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
25
|
+
title={BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives},
|
|
26
26
|
author={Aarush Sinha and Pavan Kumar S and Roshan Balaji and Nirav Pravinbhai Bhatt},
|
|
27
27
|
year={2025},
|
|
28
28
|
eprint={2511.08029},
|
|
29
29
|
archivePrefix={arXiv},
|
|
30
30
|
primaryClass={cs.IR},
|
|
31
|
-
url={https://arxiv.org/abs/2511.08029},
|
|
31
|
+
url={https://arxiv.org/abs/2511.08029},
|
|
32
32
|
}
|
|
33
33
|
""",
|
|
34
34
|
training_datasets=set(),
|
|
@@ -179,7 +179,7 @@ blip2_opt_2_7b = ModelMeta(
|
|
|
179
179
|
open_weights=True,
|
|
180
180
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
181
181
|
public_training_data=None,
|
|
182
|
-
framework=["PyTorch"],
|
|
182
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
183
183
|
reference="https://huggingface.co/Salesforce/blip2-opt-2.7b",
|
|
184
184
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
185
185
|
use_instructions=False,
|
|
@@ -203,7 +203,7 @@ blip2_opt_6_7b_coco = ModelMeta(
|
|
|
203
203
|
open_weights=True,
|
|
204
204
|
public_training_code="https://github.com/salesforce/LAVIS/tree/main/projects/blip2",
|
|
205
205
|
public_training_data=None,
|
|
206
|
-
framework=["PyTorch"],
|
|
206
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
207
207
|
reference="https://huggingface.co/Salesforce/blip2-opt-6.7b-coco",
|
|
208
208
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
209
209
|
use_instructions=False,
|
|
@@ -143,7 +143,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
143
143
|
open_weights=True,
|
|
144
144
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
145
145
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
146
|
-
framework=["PyTorch"],
|
|
146
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
147
147
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-large",
|
|
148
148
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
149
149
|
use_instructions=False,
|
|
@@ -171,7 +171,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
171
171
|
open_weights=True,
|
|
172
172
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
173
173
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
174
|
-
framework=["PyTorch"],
|
|
174
|
+
framework=["PyTorch", "Transformers"],
|
|
175
175
|
reference="https://huggingface.co/Salesforce/blip-image-captioning-base",
|
|
176
176
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
177
177
|
use_instructions=False,
|
|
@@ -200,7 +200,7 @@ blip_vqa_base = ModelMeta(
|
|
|
200
200
|
open_weights=True,
|
|
201
201
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
202
202
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
203
|
-
framework=["PyTorch"],
|
|
203
|
+
framework=["PyTorch", "Transformers", "safetensors"],
|
|
204
204
|
reference="https://huggingface.co/Salesforce/blip-vqa-base",
|
|
205
205
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
206
206
|
use_instructions=False,
|
|
@@ -227,7 +227,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
227
227
|
open_weights=True,
|
|
228
228
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
229
229
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
230
|
-
framework=["PyTorch"],
|
|
230
|
+
framework=["PyTorch", "Transformers"],
|
|
231
231
|
reference="https://huggingface.co/Salesforce/blip-vqa-capfilt-large",
|
|
232
232
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
233
233
|
use_instructions=False,
|
|
@@ -254,7 +254,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
254
254
|
open_weights=True,
|
|
255
255
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
256
256
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
257
|
-
framework=["PyTorch"],
|
|
257
|
+
framework=["PyTorch", "Transformers"],
|
|
258
258
|
reference="https://huggingface.co/Salesforce/blip-itm-base-coco",
|
|
259
259
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
260
260
|
use_instructions=False,
|
|
@@ -281,7 +281,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
281
281
|
open_weights=True,
|
|
282
282
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
283
283
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
284
|
-
framework=["PyTorch"],
|
|
284
|
+
framework=["PyTorch", "Transformers"],
|
|
285
285
|
reference="https://huggingface.co/Salesforce/blip-itm-large-coco",
|
|
286
286
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
287
287
|
use_instructions=False,
|
|
@@ -309,7 +309,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
309
309
|
open_weights=True,
|
|
310
310
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
311
311
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
312
|
-
framework=["PyTorch"],
|
|
312
|
+
framework=["PyTorch", "Transformers"],
|
|
313
313
|
reference="https://huggingface.co/Salesforce/blip-itm-base-flickr",
|
|
314
314
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
315
315
|
use_instructions=False,
|
|
@@ -337,7 +337,7 @@ blip_itm_large_flickr = ModelMeta(
|
|
|
337
337
|
open_weights=True,
|
|
338
338
|
public_training_code="https://github.com/salesforce/BLIP",
|
|
339
339
|
public_training_data="https://github.com/salesforce/BLIP",
|
|
340
|
-
framework=["PyTorch"],
|
|
340
|
+
framework=["PyTorch", "Transformers"],
|
|
341
341
|
reference="https://huggingface.co/Salesforce/blip-itm-large-flickr",
|
|
342
342
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
343
343
|
use_instructions=False,
|
|
@@ -104,7 +104,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
104
104
|
license="mit",
|
|
105
105
|
reference="https://huggingface.co/BMRetriever/BMRetriever-410M",
|
|
106
106
|
similarity_fn_name="cosine",
|
|
107
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
107
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
108
108
|
use_instructions=True,
|
|
109
109
|
public_training_code=None,
|
|
110
110
|
public_training_data=None,
|
|
@@ -134,7 +134,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
134
134
|
license="mit",
|
|
135
135
|
reference="https://huggingface.co/BMRetriever/BMRetriever-1B",
|
|
136
136
|
similarity_fn_name="cosine",
|
|
137
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
137
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
138
138
|
use_instructions=True,
|
|
139
139
|
public_training_code=None,
|
|
140
140
|
public_training_data=None,
|
|
@@ -164,7 +164,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
164
164
|
license="mit",
|
|
165
165
|
reference="https://huggingface.co/BMRetriever/BMRetriever-2B",
|
|
166
166
|
similarity_fn_name="cosine",
|
|
167
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
167
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
168
168
|
use_instructions=True,
|
|
169
169
|
public_training_code=None,
|
|
170
170
|
public_training_data=None,
|
|
@@ -194,7 +194,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
194
194
|
license="mit",
|
|
195
195
|
reference="https://huggingface.co/BMRetriever/BMRetriever-7B",
|
|
196
196
|
similarity_fn_name="cosine",
|
|
197
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
197
|
+
framework=["Sentence Transformers", "PyTorch", "Transformers", "safetensors"],
|
|
198
198
|
use_instructions=True,
|
|
199
199
|
public_training_code=None,
|
|
200
200
|
public_training_data=None,
|
|
@@ -47,7 +47,7 @@ cadet_embed = ModelMeta(
|
|
|
47
47
|
max_tokens=512,
|
|
48
48
|
reference="https://huggingface.co/manveertamber/cadet-embed-base-v1",
|
|
49
49
|
similarity_fn_name="cosine",
|
|
50
|
-
framework=["Sentence Transformers", "PyTorch"],
|
|
50
|
+
framework=["Sentence Transformers", "PyTorch", "safetensors"],
|
|
51
51
|
use_instructions=True,
|
|
52
52
|
public_training_code="https://github.com/manveertamber/cadet-dense-retrieval",
|
|
53
53
|
# we provide the code to generate the training data
|
|
@@ -227,7 +227,7 @@ cde_small_v1 = ModelMeta(
|
|
|
227
227
|
embed_dim=768,
|
|
228
228
|
license="mit",
|
|
229
229
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
230
|
-
framework=["Sentence Transformers"],
|
|
230
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
231
231
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
232
232
|
use_instructions=True,
|
|
233
233
|
adapted_from="nomic-ai/nomic-bert-2048",
|
|
@@ -256,7 +256,7 @@ cde_small_v2 = ModelMeta(
|
|
|
256
256
|
embed_dim=768,
|
|
257
257
|
license="mit",
|
|
258
258
|
similarity_fn_name=ScoringFunction.COSINE,
|
|
259
|
-
framework=["Sentence Transformers"],
|
|
259
|
+
framework=["Sentence Transformers", "safetensors", "Transformers"],
|
|
260
260
|
reference="https://huggingface.co/jxm/cde-small-v1",
|
|
261
261
|
use_instructions=True,
|
|
262
262
|
adapted_from="answerdotai/ModernBERT-base",
|