mslk-cuda-nightly 2026.1.19__cp310-cp310-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mslk/__init__.py +56 -0
- mslk/attention/__init__.py +7 -0
- mslk/attention/cutlass_blackwell_fmha/__init__.py +30 -0
- mslk/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py +332 -0
- mslk/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_interface.py +533 -0
- mslk/attention/flash_attn/__init__.py +22 -0
- mslk/attention/flash_attn/ampere_helpers.py +104 -0
- mslk/attention/flash_attn/barrier.py +72 -0
- mslk/attention/flash_attn/benchmark.py +269 -0
- mslk/attention/flash_attn/blackwell_helpers.py +754 -0
- mslk/attention/flash_attn/block_info.py +109 -0
- mslk/attention/flash_attn/block_sparse_utils.py +1452 -0
- mslk/attention/flash_attn/block_sparsity.py +219 -0
- mslk/attention/flash_attn/compute_block_sparsity.py +378 -0
- mslk/attention/flash_attn/copy_utils.py +341 -0
- mslk/attention/flash_attn/cute_dsl_utils.py +135 -0
- mslk/attention/flash_attn/fast_math.py +22 -0
- mslk/attention/flash_attn/flash_bwd.py +1262 -0
- mslk/attention/flash_attn/flash_bwd_postprocess.py +464 -0
- mslk/attention/flash_attn/flash_bwd_preprocess.py +366 -0
- mslk/attention/flash_attn/flash_bwd_sm100.py +2951 -0
- mslk/attention/flash_attn/flash_bwd_sm90.py +1703 -0
- mslk/attention/flash_attn/flash_fwd.py +2471 -0
- mslk/attention/flash_attn/flash_fwd_combine.py +705 -0
- mslk/attention/flash_attn/flash_fwd_sm100.py +2727 -0
- mslk/attention/flash_attn/hopper_helpers.py +102 -0
- mslk/attention/flash_attn/interface.py +1771 -0
- mslk/attention/flash_attn/mask.py +610 -0
- mslk/attention/flash_attn/mma_sm100_desc.py +292 -0
- mslk/attention/flash_attn/named_barrier.py +32 -0
- mslk/attention/flash_attn/pack_gqa.py +165 -0
- mslk/attention/flash_attn/paged_kv.py +176 -0
- mslk/attention/flash_attn/pipeline.py +273 -0
- mslk/attention/flash_attn/seqlen_info.py +139 -0
- mslk/attention/flash_attn/softmax.py +583 -0
- mslk/attention/flash_attn/testing.py +424 -0
- mslk/attention/flash_attn/tile_scheduler.py +720 -0
- mslk/attention/flash_attn/utils.py +860 -0
- mslk/attention/fmha/__init__.py +967 -0
- mslk/attention/fmha/_triton/__init__.py +6 -0
- mslk/attention/fmha/_triton/available.py +50 -0
- mslk/attention/fmha/_triton/splitk_kernels.py +1534 -0
- mslk/attention/fmha/_triton/vararg_kernel.py +262 -0
- mslk/attention/fmha/attn_bias.py +2186 -0
- mslk/attention/fmha/attn_bias_utils.py +536 -0
- mslk/attention/fmha/ck.py +508 -0
- mslk/attention/fmha/ck_decoder.py +141 -0
- mslk/attention/fmha/ck_splitk.py +204 -0
- mslk/attention/fmha/common.py +598 -0
- mslk/attention/fmha/cutlass.py +461 -0
- mslk/attention/fmha/cutlass_blackwell.py +560 -0
- mslk/attention/fmha/dispatch.py +224 -0
- mslk/attention/fmha/flash.py +862 -0
- mslk/attention/fmha/flash3.py +858 -0
- mslk/attention/fmha/flash_mtia.py +245 -0
- mslk/attention/fmha/merge_training.py +192 -0
- mslk/attention/fmha/split_blocks_fairinternal.py +329 -0
- mslk/attention/fmha/torch_attention_compat.py +154 -0
- mslk/attention/fmha/tree_attention.py +718 -0
- mslk/attention/fmha/triton_splitk.py +1378 -0
- mslk/attention/fmha/unbind.py +130 -0
- mslk/attention/fmha/utils/__init__.py +6 -0
- mslk/attention/fmha/utils/bench.py +74 -0
- mslk/attention/fmha/utils/cpp_lib.py +148 -0
- mslk/attention/fmha/utils/op_common.py +65 -0
- mslk/attention/gqa_attn_splitk/__init__.py +11 -0
- mslk/bench/comm/__init__.py +7 -0
- mslk/bench/comm/comm_bench.py +255 -0
- mslk/bench/common/__init__.py +5 -0
- mslk/bench/common/utils.py +148 -0
- mslk/bench/conv/__init__.py +7 -0
- mslk/bench/conv/conv_bench.py +551 -0
- mslk/bench/conv/conv_ops.py +213 -0
- mslk/bench/gemm/__init__.py +7 -0
- mslk/bench/gemm/gemm_bench.py +859 -0
- mslk/bench/gemm/gemm_ops.py +3342 -0
- mslk/bench/gemm/grouped_gemm_bias_scale_benchmark.py +177 -0
- mslk/bench/moe/__init__.py +7 -0
- mslk/bench/moe/gather_scatter_bench.py +356 -0
- mslk/bench/quantize/quantize_bench.py +345 -0
- mslk/bench/quantize/quantize_ops.py +266 -0
- mslk/comm/__init__.py +11 -0
- mslk/conv/__init__.py +11 -0
- mslk/gemm/__init__.py +18 -0
- mslk/gemm/triton/__init__.py +7 -0
- mslk/gemm/triton/fp8_gemm.py +2702 -0
- mslk/gemm/triton/grouped_gemm.py +1132 -0
- mslk/gemm/triton/matmul_perf_model.py +237 -0
- mslk/gemm/triton/utils.py +128 -0
- mslk/kv_cache/__init__.py +11 -0
- mslk/moe/__init__.py +26 -0
- mslk/moe/activation.py +291 -0
- mslk/moe/gather_scatter.py +739 -0
- mslk/moe/layers.py +1240 -0
- mslk/moe/shuffling.py +421 -0
- mslk/mslk.so +0 -0
- mslk/quantize/__init__.py +11 -0
- mslk/quantize/shuffle.py +306 -0
- mslk/quantize/triton/__init__.py +7 -0
- mslk/quantize/triton/fp4_quantize.py +5942 -0
- mslk/quantize/triton/fp8_quantize.py +1902 -0
- mslk/testing/__init__.py +7 -0
- mslk/testing/attributes.py +60 -0
- mslk/testing/rocm.py +91 -0
- mslk/utils/__init__.py +7 -0
- mslk/utils/torch/__init__.py +7 -0
- mslk/utils/torch/library.py +150 -0
- mslk/utils/triton/__init__.py +7 -0
- mslk/utils/triton/fp8_utils.py +72 -0
- mslk/utils/triton/utils.py +128 -0
- mslk/version.py +11 -0
- mslk_cuda_nightly-2026.1.19.dist-info/METADATA +102 -0
- mslk_cuda_nightly-2026.1.19.dist-info/RECORD +116 -0
- mslk_cuda_nightly-2026.1.19.dist-info/WHEEL +5 -0
- mslk_cuda_nightly-2026.1.19.dist-info/licenses/LICENSE +30 -0
- mslk_cuda_nightly-2026.1.19.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,862 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
# pyre-unsafe
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
import os
|
|
10
|
+
from itertools import zip_longest
|
|
11
|
+
from typing import Any, Iterable, List, Optional, Set, Tuple, Union
|
|
12
|
+
|
|
13
|
+
import torch
|
|
14
|
+
|
|
15
|
+
from .attn_bias import (
|
|
16
|
+
AttentionBias,
|
|
17
|
+
BlockDiagonalCausalFromBottomRightMask,
|
|
18
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
19
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
20
|
+
BlockDiagonalCausalLocalAttentionPaddedKeysMask,
|
|
21
|
+
BlockDiagonalCausalMask,
|
|
22
|
+
BlockDiagonalCausalWithOffsetGappyKeysMask,
|
|
23
|
+
BlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
24
|
+
BlockDiagonalGappyKeysMask,
|
|
25
|
+
BlockDiagonalLocalAttentionFromBottomRightGappyKeysMask,
|
|
26
|
+
BlockDiagonalLocalAttentionPaddedKeysMask,
|
|
27
|
+
BlockDiagonalMask,
|
|
28
|
+
BlockDiagonalPaddedKeysMask,
|
|
29
|
+
LocalAttentionFromBottomRightMask,
|
|
30
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
31
|
+
LowerTriangularFromBottomRightMask,
|
|
32
|
+
LowerTriangularMask,
|
|
33
|
+
PagedBlockDiagonalCausalLocalPaddedKeysMask,
|
|
34
|
+
PagedBlockDiagonalCausalWithOffsetGappyKeysMask,
|
|
35
|
+
PagedBlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
36
|
+
PagedBlockDiagonalGappyKeysMask,
|
|
37
|
+
PagedBlockDiagonalPaddedKeysMask,
|
|
38
|
+
VARLEN_BIASES,
|
|
39
|
+
)
|
|
40
|
+
from .common import (
|
|
41
|
+
AttentionBwOpBase,
|
|
42
|
+
AttentionFwOpBase,
|
|
43
|
+
check_lastdim_alignment_stride1,
|
|
44
|
+
Context,
|
|
45
|
+
Gradients,
|
|
46
|
+
Inputs,
|
|
47
|
+
)
|
|
48
|
+
from .torch_attention_compat import is_pt_flash_old
|
|
49
|
+
from .utils.op_common import get_operator, register_operator
|
|
50
|
+
|
|
51
|
+
FLASH_VERSION = "0.0.0"
|
|
52
|
+
VARLEN_LSE_PACKED = False
|
|
53
|
+
pt_flash_is_old = False
|
|
54
|
+
_TRY_PT_FLASH_ATTN = torch.version.hip is None
|
|
55
|
+
_USE_PT_FLASH_ATTN = False
|
|
56
|
+
|
|
57
|
+
try: # noqa: C901
|
|
58
|
+
try:
|
|
59
|
+
from xformers import _C_flashattention # type: ignore[attr-defined]
|
|
60
|
+
|
|
61
|
+
try:
|
|
62
|
+
from xformers._cpp_lib import _build_metadata # type: ignore[attr-defined]
|
|
63
|
+
|
|
64
|
+
if _build_metadata is not None:
|
|
65
|
+
FLASH_VERSION = _build_metadata.flash_version
|
|
66
|
+
except ImportError:
|
|
67
|
+
FLASH_VERSION = "unknown"
|
|
68
|
+
|
|
69
|
+
VARLEN_LSE_PACKED = True
|
|
70
|
+
except ImportError:
|
|
71
|
+
try:
|
|
72
|
+
import flash_attn
|
|
73
|
+
import flash_attn.flash_attn_interface
|
|
74
|
+
|
|
75
|
+
if hasattr(flash_attn.flash_attn_interface, "flash_attn_cuda"):
|
|
76
|
+
_C_flashattention = flash_attn.flash_attn_interface.flash_attn_cuda # type: ignore[attr-defined]
|
|
77
|
+
else:
|
|
78
|
+
_C_flashattention = flash_attn.flash_attn_interface.flash_attn_gpu # type: ignore[attr-defined]
|
|
79
|
+
|
|
80
|
+
FLASH_VERSION = flash_attn.__version__
|
|
81
|
+
FLASH_VER_MIN = (2, 6, 3)
|
|
82
|
+
FLASH_VER_LAST = (2, 8, 3) # last supported, inclusive
|
|
83
|
+
flash_ver_parsed = tuple(int(s) for s in FLASH_VERSION.split(".")[:3])
|
|
84
|
+
if (
|
|
85
|
+
flash_ver_parsed < FLASH_VER_MIN or flash_ver_parsed > FLASH_VER_LAST
|
|
86
|
+
) and os.environ.get("XFORMERS_IGNORE_FLASH_VERSION_CHECK", "0") != "1":
|
|
87
|
+
raise ImportError(
|
|
88
|
+
f"Requires Flash-Attention version >={'.'.join([str(i) for i in FLASH_VER_MIN])},"
|
|
89
|
+
f"<={'.'.join([str(i) for i in FLASH_VER_LAST])} "
|
|
90
|
+
f"but got {FLASH_VERSION}."
|
|
91
|
+
)
|
|
92
|
+
VARLEN_LSE_PACKED = True
|
|
93
|
+
except ImportError as e:
|
|
94
|
+
if not _TRY_PT_FLASH_ATTN:
|
|
95
|
+
raise e
|
|
96
|
+
pt_flash_is_old = is_pt_flash_old(force=True) is True
|
|
97
|
+
FLASH_VERSION = torch.nn.attention._get_flash_version() # type: ignore
|
|
98
|
+
VARLEN_LSE_PACKED = not pt_flash_is_old
|
|
99
|
+
_USE_PT_FLASH_ATTN = True
|
|
100
|
+
|
|
101
|
+
@torch.library.custom_op(
|
|
102
|
+
"mslk_flash::flash_fwd",
|
|
103
|
+
mutates_args=(),
|
|
104
|
+
device_types=["cuda"],
|
|
105
|
+
)
|
|
106
|
+
def _flash_fwd(
|
|
107
|
+
query: torch.Tensor,
|
|
108
|
+
key: torch.Tensor,
|
|
109
|
+
value: torch.Tensor,
|
|
110
|
+
cu_seqlens_q: Optional[torch.Tensor],
|
|
111
|
+
cu_seqlens_k: Optional[torch.Tensor],
|
|
112
|
+
seqused_k: Optional[torch.Tensor],
|
|
113
|
+
max_seqlen_q: int,
|
|
114
|
+
max_seqlen_k: int,
|
|
115
|
+
p: float,
|
|
116
|
+
softmax_scale: float,
|
|
117
|
+
is_causal: bool,
|
|
118
|
+
window_left: int,
|
|
119
|
+
window_right: int,
|
|
120
|
+
return_softmax: bool,
|
|
121
|
+
block_tables: Optional[torch.Tensor],
|
|
122
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
123
|
+
softcap = 0.0
|
|
124
|
+
if _USE_PT_FLASH_ATTN:
|
|
125
|
+
ret = torch.ops.aten._flash_attention_forward(
|
|
126
|
+
query,
|
|
127
|
+
key,
|
|
128
|
+
value,
|
|
129
|
+
cu_seqlens_q, # cum_seq_q
|
|
130
|
+
cu_seqlens_k, # cum_seq_k
|
|
131
|
+
max_seqlen_q, # max_q
|
|
132
|
+
max_seqlen_k, # max_k
|
|
133
|
+
p, # dropout_p
|
|
134
|
+
is_causal,
|
|
135
|
+
return_debug_mask=False,
|
|
136
|
+
scale=softmax_scale,
|
|
137
|
+
window_size_left=window_left,
|
|
138
|
+
window_size_right=window_right,
|
|
139
|
+
seqused_k=seqused_k,
|
|
140
|
+
alibi_slopes=None, # alibi_slopes
|
|
141
|
+
)
|
|
142
|
+
if pt_flash_is_old:
|
|
143
|
+
(
|
|
144
|
+
attention,
|
|
145
|
+
logsumexp,
|
|
146
|
+
philox_seed,
|
|
147
|
+
philox_offset,
|
|
148
|
+
_,
|
|
149
|
+
) = ret
|
|
150
|
+
rng_state = torch.stack([philox_seed, philox_offset])
|
|
151
|
+
else:
|
|
152
|
+
attention, logsumexp, rng_state, _, _ = ret
|
|
153
|
+
return attention, logsumexp, rng_state
|
|
154
|
+
else:
|
|
155
|
+
if cu_seqlens_q is None:
|
|
156
|
+
assert cu_seqlens_k is None
|
|
157
|
+
assert seqused_k is None
|
|
158
|
+
out, softmax_lse, p, rng_state = _C_flashattention.fwd(
|
|
159
|
+
query,
|
|
160
|
+
key,
|
|
161
|
+
value,
|
|
162
|
+
None, # out
|
|
163
|
+
None, # alibi_slopes
|
|
164
|
+
p,
|
|
165
|
+
softmax_scale,
|
|
166
|
+
is_causal,
|
|
167
|
+
window_left, # window_size_left
|
|
168
|
+
window_right, # window_size_right
|
|
169
|
+
softcap,
|
|
170
|
+
return_softmax,
|
|
171
|
+
None, # rng
|
|
172
|
+
)
|
|
173
|
+
else:
|
|
174
|
+
out, softmax_lse, p, rng_state = _C_flashattention.varlen_fwd(
|
|
175
|
+
query,
|
|
176
|
+
key,
|
|
177
|
+
value,
|
|
178
|
+
None, # out
|
|
179
|
+
cu_seqlens_q,
|
|
180
|
+
cu_seqlens_k,
|
|
181
|
+
seqused_k,
|
|
182
|
+
None, # leftpad_k_
|
|
183
|
+
block_tables,
|
|
184
|
+
None, # alibi_slopes
|
|
185
|
+
max_seqlen_q,
|
|
186
|
+
max_seqlen_k,
|
|
187
|
+
p,
|
|
188
|
+
softmax_scale,
|
|
189
|
+
False,
|
|
190
|
+
is_causal,
|
|
191
|
+
window_left,
|
|
192
|
+
window_right,
|
|
193
|
+
softcap,
|
|
194
|
+
return_softmax,
|
|
195
|
+
None, # gen
|
|
196
|
+
)
|
|
197
|
+
return out, softmax_lse, rng_state
|
|
198
|
+
|
|
199
|
+
@torch.library.register_fake("mslk_flash::flash_fwd")
|
|
200
|
+
def _flash_fwd_abstract(
|
|
201
|
+
query,
|
|
202
|
+
key,
|
|
203
|
+
value,
|
|
204
|
+
cu_seqlens_q,
|
|
205
|
+
cu_seqlens_k,
|
|
206
|
+
seqused_k,
|
|
207
|
+
max_seqlen_q,
|
|
208
|
+
max_seqlen_k,
|
|
209
|
+
p,
|
|
210
|
+
softmax_scale,
|
|
211
|
+
is_causal,
|
|
212
|
+
window_left,
|
|
213
|
+
window_right,
|
|
214
|
+
return_softmax,
|
|
215
|
+
block_tables,
|
|
216
|
+
):
|
|
217
|
+
out = torch.empty_like(query)
|
|
218
|
+
if cu_seqlens_q is None:
|
|
219
|
+
B, M, H, K = query.shape
|
|
220
|
+
lse_shape = [B, H, M] # XXXX ?
|
|
221
|
+
else:
|
|
222
|
+
M, H, K = query.shape
|
|
223
|
+
B = cu_seqlens_q.shape[0] - 1
|
|
224
|
+
if VARLEN_LSE_PACKED:
|
|
225
|
+
lse_shape = [H, M]
|
|
226
|
+
else:
|
|
227
|
+
lse_shape = [B, H, max_seqlen_q]
|
|
228
|
+
softmax_lse = torch.empty(lse_shape, device=query.device, dtype=torch.float32)
|
|
229
|
+
rng_state = torch.empty([2], device=query.device, dtype=torch.int64)
|
|
230
|
+
return out, softmax_lse, rng_state
|
|
231
|
+
|
|
232
|
+
@torch.library.custom_op(
|
|
233
|
+
"mslk_flash::flash_bwd",
|
|
234
|
+
mutates_args=(),
|
|
235
|
+
device_types=["cuda"],
|
|
236
|
+
)
|
|
237
|
+
def _flash_bwd(
|
|
238
|
+
grads_share_storage: bool,
|
|
239
|
+
grad: torch.Tensor,
|
|
240
|
+
query: torch.Tensor,
|
|
241
|
+
key: torch.Tensor,
|
|
242
|
+
value: torch.Tensor,
|
|
243
|
+
out: torch.Tensor,
|
|
244
|
+
lse: torch.Tensor,
|
|
245
|
+
cu_seqlens_q: torch.Tensor,
|
|
246
|
+
cu_seqlens_k: torch.Tensor,
|
|
247
|
+
max_seqlen_q: int,
|
|
248
|
+
max_seqlen_k: int,
|
|
249
|
+
p: float,
|
|
250
|
+
softmax_scale: float,
|
|
251
|
+
is_causal: bool,
|
|
252
|
+
window_left: int,
|
|
253
|
+
window_right: int,
|
|
254
|
+
rng_state: torch.Tensor,
|
|
255
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
256
|
+
softcap = 0.0
|
|
257
|
+
if _USE_PT_FLASH_ATTN:
|
|
258
|
+
assert softcap == 0.0
|
|
259
|
+
if rng_state is not None and pt_flash_is_old:
|
|
260
|
+
rng_state0 = rng_state[0]
|
|
261
|
+
rng_state1 = rng_state[1]
|
|
262
|
+
else:
|
|
263
|
+
rng_state0 = rng_state1 = rng_state
|
|
264
|
+
dq, dk, dv = torch.ops.aten._flash_attention_backward(
|
|
265
|
+
grad,
|
|
266
|
+
query,
|
|
267
|
+
key,
|
|
268
|
+
value,
|
|
269
|
+
out,
|
|
270
|
+
lse,
|
|
271
|
+
cu_seqlens_q,
|
|
272
|
+
cu_seqlens_k,
|
|
273
|
+
max_seqlen_q,
|
|
274
|
+
max_seqlen_k,
|
|
275
|
+
p,
|
|
276
|
+
is_causal,
|
|
277
|
+
rng_state0,
|
|
278
|
+
rng_state1,
|
|
279
|
+
scale=softmax_scale,
|
|
280
|
+
window_size_left=window_left,
|
|
281
|
+
window_size_right=window_right,
|
|
282
|
+
)
|
|
283
|
+
else:
|
|
284
|
+
dq, dk, dv = _create_dq_dk_dv(grads_share_storage, query, key, value)
|
|
285
|
+
if cu_seqlens_k is None:
|
|
286
|
+
assert cu_seqlens_q is None
|
|
287
|
+
_C_flashattention.bwd(
|
|
288
|
+
grad,
|
|
289
|
+
query,
|
|
290
|
+
key,
|
|
291
|
+
value,
|
|
292
|
+
out,
|
|
293
|
+
lse,
|
|
294
|
+
dq,
|
|
295
|
+
dk,
|
|
296
|
+
dv,
|
|
297
|
+
None, # alibi_slopes
|
|
298
|
+
p,
|
|
299
|
+
softmax_scale,
|
|
300
|
+
is_causal,
|
|
301
|
+
window_left,
|
|
302
|
+
window_right,
|
|
303
|
+
softcap,
|
|
304
|
+
False, # deterministic
|
|
305
|
+
None,
|
|
306
|
+
rng_state,
|
|
307
|
+
)
|
|
308
|
+
else:
|
|
309
|
+
_C_flashattention.varlen_bwd(
|
|
310
|
+
grad,
|
|
311
|
+
query,
|
|
312
|
+
key,
|
|
313
|
+
value,
|
|
314
|
+
out,
|
|
315
|
+
lse,
|
|
316
|
+
dq,
|
|
317
|
+
dk,
|
|
318
|
+
dv,
|
|
319
|
+
cu_seqlens_q,
|
|
320
|
+
cu_seqlens_k,
|
|
321
|
+
None, # alibi_slopes
|
|
322
|
+
max_seqlen_q,
|
|
323
|
+
max_seqlen_k,
|
|
324
|
+
p,
|
|
325
|
+
softmax_scale,
|
|
326
|
+
False, # zero_tensors
|
|
327
|
+
is_causal,
|
|
328
|
+
window_left,
|
|
329
|
+
window_right,
|
|
330
|
+
softcap,
|
|
331
|
+
False, # deterministic
|
|
332
|
+
None,
|
|
333
|
+
rng_state,
|
|
334
|
+
)
|
|
335
|
+
return dq, dk, dv
|
|
336
|
+
|
|
337
|
+
@torch.library.register_fake("mslk_flash::flash_bwd")
|
|
338
|
+
def _flash_bwd_abstract(
|
|
339
|
+
grads_share_storage,
|
|
340
|
+
grad,
|
|
341
|
+
query,
|
|
342
|
+
key,
|
|
343
|
+
value,
|
|
344
|
+
*args,
|
|
345
|
+
**kwargs,
|
|
346
|
+
):
|
|
347
|
+
return _create_dq_dk_dv(grads_share_storage, query, key, value)
|
|
348
|
+
|
|
349
|
+
def _create_dq_dk_dv(
|
|
350
|
+
grads_share_storage: bool, query, key, value
|
|
351
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
352
|
+
# Create dq,dk,dv
|
|
353
|
+
# If Q/K/V come from a single QKV tensor, let's put the gradient in the
|
|
354
|
+
# right strides, so we can avoid a `cat`
|
|
355
|
+
if grads_share_storage:
|
|
356
|
+
chunk = torch.empty(
|
|
357
|
+
(*query.shape[0:-2], 3, query.shape[-2], query.shape[-1]),
|
|
358
|
+
dtype=query.dtype,
|
|
359
|
+
device=query.device,
|
|
360
|
+
)
|
|
361
|
+
return chunk.select(-3, 0), chunk.select(-3, 1), chunk.select(-3, 2)
|
|
362
|
+
return torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)
|
|
363
|
+
|
|
364
|
+
except ImportError:
|
|
365
|
+
pass
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
def _convert_input_format(
|
|
369
|
+
inp: Inputs,
|
|
370
|
+
supports_mqa: bool,
|
|
371
|
+
use_kvsplit: bool = False,
|
|
372
|
+
) -> Tuple[
|
|
373
|
+
Inputs,
|
|
374
|
+
Optional[torch.Tensor],
|
|
375
|
+
int,
|
|
376
|
+
Optional[torch.Tensor],
|
|
377
|
+
int,
|
|
378
|
+
Optional[torch.Tensor],
|
|
379
|
+
]:
|
|
380
|
+
assert inp.query.ndim in [4, 5]
|
|
381
|
+
query, key, value = inp.query, inp.key, inp.value
|
|
382
|
+
batch = query.shape[0]
|
|
383
|
+
seqlen_q = query.shape[1]
|
|
384
|
+
seqlen_kv = key.shape[1]
|
|
385
|
+
head_dim_q = query.shape[-1]
|
|
386
|
+
head_dim_v = value.shape[-1]
|
|
387
|
+
|
|
388
|
+
attn_bias = inp.attn_bias
|
|
389
|
+
if isinstance(attn_bias, BlockDiagonalMask):
|
|
390
|
+
assert attn_bias.k_seqinfo.seqstart.device == inp.query.device
|
|
391
|
+
cu_seqlen_k = attn_bias.k_seqinfo.seqstart
|
|
392
|
+
cu_seqlen_q = attn_bias.q_seqinfo.seqstart
|
|
393
|
+
max_seqlen_q = attn_bias.q_seqinfo.max_seqlen
|
|
394
|
+
max_seqlen_k = attn_bias.k_seqinfo.max_seqlen
|
|
395
|
+
seqused_k = None
|
|
396
|
+
elif isinstance(
|
|
397
|
+
attn_bias,
|
|
398
|
+
(
|
|
399
|
+
BlockDiagonalGappyKeysMask,
|
|
400
|
+
BlockDiagonalPaddedKeysMask,
|
|
401
|
+
PagedBlockDiagonalGappyKeysMask,
|
|
402
|
+
PagedBlockDiagonalPaddedKeysMask,
|
|
403
|
+
),
|
|
404
|
+
):
|
|
405
|
+
assert attn_bias.k_seqinfo.seqstart.device == inp.query.device
|
|
406
|
+
cu_seqlen_k = attn_bias.k_seqinfo.seqstart
|
|
407
|
+
cu_seqlen_q = attn_bias.q_seqinfo.seqstart
|
|
408
|
+
max_seqlen_q = attn_bias.q_seqinfo.max_seqlen
|
|
409
|
+
max_seqlen_k = attn_bias.k_seqinfo.max_seqlen
|
|
410
|
+
seqused_k = attn_bias.k_seqinfo.seqlen
|
|
411
|
+
else:
|
|
412
|
+
cu_seqlen_k = None
|
|
413
|
+
cu_seqlen_q = None
|
|
414
|
+
seqused_k = None
|
|
415
|
+
max_seqlen_q = inp.query.shape[1]
|
|
416
|
+
max_seqlen_k = inp.key.shape[1]
|
|
417
|
+
|
|
418
|
+
if query.ndim == 5: # GQA
|
|
419
|
+
assert supports_mqa
|
|
420
|
+
|
|
421
|
+
# Fold the group/head_in_group dimensions together
|
|
422
|
+
def fold(x):
|
|
423
|
+
# Either the head is replicated
|
|
424
|
+
if x.stride(3) == 0:
|
|
425
|
+
return x[:, :, :, 0]
|
|
426
|
+
# Or we reshape
|
|
427
|
+
return x.reshape(
|
|
428
|
+
[
|
|
429
|
+
x.shape[0],
|
|
430
|
+
x.shape[1],
|
|
431
|
+
-1,
|
|
432
|
+
x.shape[4],
|
|
433
|
+
]
|
|
434
|
+
)
|
|
435
|
+
|
|
436
|
+
query = fold(query)
|
|
437
|
+
key = fold(key)
|
|
438
|
+
value = fold(value)
|
|
439
|
+
# Optimize for MHA
|
|
440
|
+
if supports_mqa and key.ndim == 4 and key.stride(2) == 0 and value.stride(2) == 0:
|
|
441
|
+
key = key[:, :, :1]
|
|
442
|
+
value = value[:, :, :1]
|
|
443
|
+
# Initially we have `query.shape = [batch, seqlen, num_heads, head_dim_q]`
|
|
444
|
+
# We want format `[batch * seqlen, num_heads, head_dim_q]`
|
|
445
|
+
if cu_seqlen_k is not None:
|
|
446
|
+
query = query.reshape([batch * seqlen_q, -1, head_dim_q])
|
|
447
|
+
key = key.reshape([batch * seqlen_kv, -1, head_dim_q])
|
|
448
|
+
value = value.reshape([batch * seqlen_kv, -1, head_dim_v])
|
|
449
|
+
if isinstance(
|
|
450
|
+
attn_bias,
|
|
451
|
+
(PagedBlockDiagonalGappyKeysMask, PagedBlockDiagonalPaddedKeysMask),
|
|
452
|
+
):
|
|
453
|
+
num_pages = value.shape[0] // attn_bias.page_size
|
|
454
|
+
key = key.view(num_pages, attn_bias.page_size, *key.shape[1:])
|
|
455
|
+
value = value.view(num_pages, attn_bias.page_size, *value.shape[1:])
|
|
456
|
+
|
|
457
|
+
new_inp = Inputs(
|
|
458
|
+
query=query,
|
|
459
|
+
key=key,
|
|
460
|
+
value=value,
|
|
461
|
+
attn_bias=attn_bias,
|
|
462
|
+
p=inp.p,
|
|
463
|
+
scale=inp.scale,
|
|
464
|
+
output_dtype=inp.output_dtype,
|
|
465
|
+
is_partial=inp.is_partial,
|
|
466
|
+
)
|
|
467
|
+
return new_inp, cu_seqlen_q, max_seqlen_q, cu_seqlen_k, max_seqlen_k, seqused_k
|
|
468
|
+
|
|
469
|
+
|
|
470
|
+
def _is_causal(attn_bias: Optional[Union[torch.Tensor, AttentionBias]]) -> bool:
|
|
471
|
+
return isinstance(
|
|
472
|
+
attn_bias,
|
|
473
|
+
(
|
|
474
|
+
LowerTriangularMask,
|
|
475
|
+
LowerTriangularFromBottomRightMask,
|
|
476
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
477
|
+
BlockDiagonalCausalMask,
|
|
478
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
479
|
+
PagedBlockDiagonalCausalLocalPaddedKeysMask,
|
|
480
|
+
BlockDiagonalCausalFromBottomRightMask,
|
|
481
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
482
|
+
BlockDiagonalCausalLocalAttentionPaddedKeysMask,
|
|
483
|
+
BlockDiagonalCausalWithOffsetGappyKeysMask,
|
|
484
|
+
BlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
485
|
+
PagedBlockDiagonalCausalWithOffsetGappyKeysMask,
|
|
486
|
+
PagedBlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
487
|
+
),
|
|
488
|
+
)
|
|
489
|
+
|
|
490
|
+
|
|
491
|
+
def _window_size(
|
|
492
|
+
attn_bias: Optional[Union[torch.Tensor, AttentionBias]],
|
|
493
|
+
) -> Tuple[int, int]:
|
|
494
|
+
win_left = -1
|
|
495
|
+
win_right = -1
|
|
496
|
+
if isinstance(
|
|
497
|
+
attn_bias,
|
|
498
|
+
(
|
|
499
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
500
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
501
|
+
BlockDiagonalCausalLocalAttentionPaddedKeysMask,
|
|
502
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
503
|
+
PagedBlockDiagonalCausalLocalPaddedKeysMask,
|
|
504
|
+
),
|
|
505
|
+
):
|
|
506
|
+
win_left = attn_bias._window_size - 1
|
|
507
|
+
if isinstance(
|
|
508
|
+
attn_bias,
|
|
509
|
+
(
|
|
510
|
+
BlockDiagonalLocalAttentionPaddedKeysMask,
|
|
511
|
+
LocalAttentionFromBottomRightMask,
|
|
512
|
+
BlockDiagonalLocalAttentionFromBottomRightGappyKeysMask,
|
|
513
|
+
),
|
|
514
|
+
):
|
|
515
|
+
win_left = attn_bias.window_left
|
|
516
|
+
win_right = attn_bias.window_right
|
|
517
|
+
return (win_left, win_right)
|
|
518
|
+
|
|
519
|
+
|
|
520
|
+
def _check_needs_no_topleft(d: Inputs, reasons: List[str]) -> None:
|
|
521
|
+
# Flash does not support TopLeft, so only allow causal masks with TopLeft
|
|
522
|
+
# if each batch element has equal number of queries and keys.
|
|
523
|
+
attn_bias = d.attn_bias
|
|
524
|
+
if isinstance(attn_bias, BlockDiagonalCausalMask):
|
|
525
|
+
# Flash does not support TopLeft, so only allow BlockDiagonalCausalMask
|
|
526
|
+
# if each batch element has equal number of queries and keys.
|
|
527
|
+
for k_start, q_start in zip_longest(
|
|
528
|
+
attn_bias.k_seqinfo.seqstart_py, attn_bias.q_seqinfo.seqstart_py
|
|
529
|
+
):
|
|
530
|
+
if k_start != q_start:
|
|
531
|
+
reasons.append(
|
|
532
|
+
"Only support BlockDiagonalCausalMask if equal"
|
|
533
|
+
" numbers of keys and queries"
|
|
534
|
+
)
|
|
535
|
+
break
|
|
536
|
+
elif isinstance(attn_bias, LowerTriangularMask):
|
|
537
|
+
if d.query.shape[1] != d.key.shape[1]:
|
|
538
|
+
reasons.append(
|
|
539
|
+
"Only support LowerTriangularMask if equal number ofkeys and queries"
|
|
540
|
+
)
|
|
541
|
+
|
|
542
|
+
|
|
543
|
+
def _check_strides_for_bmghk(x: torch.Tensor, name: str, reasons: List[str]) -> None:
|
|
544
|
+
"""
|
|
545
|
+
We want to be able to collapse the G/H dimensions together
|
|
546
|
+
"""
|
|
547
|
+
if x.ndim == 5:
|
|
548
|
+
stride_g, stride_h = x.stride(2), x.stride(3)
|
|
549
|
+
if x.shape[2] == 1:
|
|
550
|
+
return
|
|
551
|
+
if x.shape[3] == 1 or stride_h == 0:
|
|
552
|
+
return
|
|
553
|
+
if stride_g != stride_h * x.shape[-2]:
|
|
554
|
+
reasons.append(
|
|
555
|
+
f"GQA is only supported when the G/H dimensions are contiguous\n"
|
|
556
|
+
f" {name}.stride: {x.stride()}\n"
|
|
557
|
+
f" {name}.shape : {list(x.shape)}"
|
|
558
|
+
)
|
|
559
|
+
|
|
560
|
+
|
|
561
|
+
def _post_process_lse(
|
|
562
|
+
lse: torch.Tensor,
|
|
563
|
+
inp: Inputs,
|
|
564
|
+
original_query_shape: Tuple[int, ...],
|
|
565
|
+
) -> torch.Tensor:
|
|
566
|
+
# Easy case: no varlen
|
|
567
|
+
if not isinstance(inp.attn_bias, VARLEN_BIASES):
|
|
568
|
+
if len(original_query_shape) == 5:
|
|
569
|
+
# [B, GH, M] => [B, G, H, M]
|
|
570
|
+
return lse.unflatten(1, original_query_shape[2:4])
|
|
571
|
+
return lse
|
|
572
|
+
|
|
573
|
+
# Already packed: just bring back the batch dimension
|
|
574
|
+
if VARLEN_LSE_PACKED:
|
|
575
|
+
if len(original_query_shape) == 5:
|
|
576
|
+
# (1, G, H, total_q)
|
|
577
|
+
return lse.unflatten(0, original_query_shape[2:4]).unsqueeze(0)
|
|
578
|
+
# (1, H, total_q)
|
|
579
|
+
return lse.unsqueeze(0)
|
|
580
|
+
|
|
581
|
+
if not inp.is_partial:
|
|
582
|
+
# (B, H, M)
|
|
583
|
+
return lse
|
|
584
|
+
|
|
585
|
+
# reshape from (B, G*H, max_seqlen) to (1, G*H, B*max_seqlen)
|
|
586
|
+
# Unfortunately this flatten is not just a view.
|
|
587
|
+
lse_hkm = lse.permute(1, 0, 2).flatten(start_dim=1)[None]
|
|
588
|
+
if len(original_query_shape) == 5:
|
|
589
|
+
return lse_hkm.unflatten(1, original_query_shape[2:4])
|
|
590
|
+
return lse_hkm
|
|
591
|
+
|
|
592
|
+
|
|
593
|
+
@register_operator
|
|
594
|
+
class FwOp(AttentionFwOpBase):
|
|
595
|
+
"""Operator that computes memory-efficient attention using \
|
|
596
|
+
`Flash-Attention <https://github.com/HazyResearch/flash-attention>`_ \
|
|
597
|
+
implementation.
|
|
598
|
+
"""
|
|
599
|
+
|
|
600
|
+
OPERATOR = get_operator("mslk_flash", "flash_fwd")
|
|
601
|
+
SUPPORTED_DEVICES: Set[str] = {"cuda"}
|
|
602
|
+
CUDA_MINIMUM_COMPUTE_CAPABILITY = (8, 0)
|
|
603
|
+
SUPPORTED_DTYPES: Set[torch.dtype] = {torch.half, torch.bfloat16}
|
|
604
|
+
SUPPORTED_MAX_K = 256
|
|
605
|
+
SUPPORTED_ATTN_BIAS_TYPES: Iterable[Any] = (
|
|
606
|
+
type(None),
|
|
607
|
+
LowerTriangularMask,
|
|
608
|
+
LowerTriangularFromBottomRightMask,
|
|
609
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
610
|
+
BlockDiagonalMask,
|
|
611
|
+
BlockDiagonalCausalMask,
|
|
612
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
613
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
614
|
+
BlockDiagonalLocalAttentionPaddedKeysMask,
|
|
615
|
+
BlockDiagonalCausalLocalAttentionPaddedKeysMask,
|
|
616
|
+
BlockDiagonalCausalFromBottomRightMask,
|
|
617
|
+
BlockDiagonalCausalWithOffsetGappyKeysMask,
|
|
618
|
+
BlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
619
|
+
BlockDiagonalGappyKeysMask,
|
|
620
|
+
BlockDiagonalPaddedKeysMask,
|
|
621
|
+
LocalAttentionFromBottomRightMask,
|
|
622
|
+
PagedBlockDiagonalCausalLocalPaddedKeysMask,
|
|
623
|
+
PagedBlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
624
|
+
PagedBlockDiagonalPaddedKeysMask,
|
|
625
|
+
)
|
|
626
|
+
|
|
627
|
+
SUPPORTS_DROPOUT = True
|
|
628
|
+
SUPPORTS_CUSTOM_SCALE = True
|
|
629
|
+
SUPPORTS_DIFFERENT_VALUE_EMBED = False
|
|
630
|
+
SUPPORTS_BMGHK = True
|
|
631
|
+
SUPPORTS_PARTIAL = True
|
|
632
|
+
VARLEN_LSE_PACKED = VARLEN_LSE_PACKED
|
|
633
|
+
NAME = f"fa2F@{FLASH_VERSION}-pt" if _USE_PT_FLASH_ATTN else f"fa2F@{FLASH_VERSION}"
|
|
634
|
+
VERSION = FLASH_VERSION
|
|
635
|
+
|
|
636
|
+
@classmethod
|
|
637
|
+
def not_supported_reasons(cls, d: Inputs) -> List[str]:
|
|
638
|
+
reasons = super(FwOp, cls).not_supported_reasons(d)
|
|
639
|
+
check_lastdim_alignment_stride1(reasons, "query", d.query, 8)
|
|
640
|
+
_check_needs_no_topleft(d, reasons)
|
|
641
|
+
_check_strides_for_bmghk(d.query, "query", reasons)
|
|
642
|
+
_check_strides_for_bmghk(d.key, "key", reasons)
|
|
643
|
+
_check_strides_for_bmghk(d.value, "value", reasons)
|
|
644
|
+
|
|
645
|
+
if (
|
|
646
|
+
d.is_partial
|
|
647
|
+
and not VARLEN_LSE_PACKED
|
|
648
|
+
and isinstance(d.attn_bias, VARLEN_BIASES)
|
|
649
|
+
):
|
|
650
|
+
q_seqinfo = d.attn_bias.q_seqinfo
|
|
651
|
+
if q_seqinfo.min_seqlen != q_seqinfo.max_seqlen:
|
|
652
|
+
# Flash provides padded LSE which we don't handle.
|
|
653
|
+
reasons.append("partial attention with heterogeneous queries")
|
|
654
|
+
|
|
655
|
+
if isinstance(
|
|
656
|
+
d.attn_bias,
|
|
657
|
+
(PagedBlockDiagonalGappyKeysMask, PagedBlockDiagonalPaddedKeysMask),
|
|
658
|
+
):
|
|
659
|
+
if d.attn_bias.page_size % 256 != 0:
|
|
660
|
+
reasons.append("Paged KV cache block size must be divisible by 256.")
|
|
661
|
+
return reasons
|
|
662
|
+
|
|
663
|
+
@classmethod
|
|
664
|
+
def apply(
|
|
665
|
+
cls, inp: Inputs, needs_gradient: bool
|
|
666
|
+
) -> Tuple[torch.Tensor, Optional[Context]]:
|
|
667
|
+
return_softmax = False
|
|
668
|
+
original_query_shape = inp.query.shape
|
|
669
|
+
|
|
670
|
+
out_shape = [
|
|
671
|
+
*inp.query.shape[:-1],
|
|
672
|
+
inp.value.shape[-1],
|
|
673
|
+
]
|
|
674
|
+
# no cumulative seqlen
|
|
675
|
+
(
|
|
676
|
+
inp,
|
|
677
|
+
cu_seqlens_q,
|
|
678
|
+
max_seqlen_q,
|
|
679
|
+
cu_seqlens_k,
|
|
680
|
+
max_seqlen_k,
|
|
681
|
+
seqused_k,
|
|
682
|
+
) = _convert_input_format(inp, supports_mqa=True)
|
|
683
|
+
|
|
684
|
+
if inp.query.numel() > 0 and inp.key.numel() > 0:
|
|
685
|
+
win_left, win_right = _window_size(inp.attn_bias)
|
|
686
|
+
block_tables = (
|
|
687
|
+
inp.attn_bias.block_tables
|
|
688
|
+
if isinstance(inp.attn_bias, PagedBlockDiagonalPaddedKeysMask)
|
|
689
|
+
else None
|
|
690
|
+
)
|
|
691
|
+
out, softmax_lse, rng_state = cls.OPERATOR(
|
|
692
|
+
inp.query,
|
|
693
|
+
inp.key,
|
|
694
|
+
inp.value,
|
|
695
|
+
cu_seqlens_q,
|
|
696
|
+
cu_seqlens_k,
|
|
697
|
+
seqused_k,
|
|
698
|
+
max_seqlen_q,
|
|
699
|
+
max_seqlen_k,
|
|
700
|
+
inp.p,
|
|
701
|
+
inp.scale_float,
|
|
702
|
+
_is_causal(inp.attn_bias),
|
|
703
|
+
window_left=win_left,
|
|
704
|
+
window_right=win_right,
|
|
705
|
+
return_softmax=return_softmax,
|
|
706
|
+
block_tables=block_tables,
|
|
707
|
+
)
|
|
708
|
+
out = out.reshape(out_shape)
|
|
709
|
+
else:
|
|
710
|
+
out = torch.zeros(out_shape, device=inp.query.device, dtype=inp.query.dtype)
|
|
711
|
+
rng_state = None
|
|
712
|
+
lse_shape = (
|
|
713
|
+
[inp.query.shape[2], inp.query.shape[0] * inp.query.shape[1]]
|
|
714
|
+
if VARLEN_LSE_PACKED and isinstance(inp.attn_bias, VARLEN_BIASES)
|
|
715
|
+
else [inp.query.shape[0], inp.query.shape[2], inp.query.shape[1]]
|
|
716
|
+
)
|
|
717
|
+
if inp.is_partial:
|
|
718
|
+
softmax_lse = torch.full(
|
|
719
|
+
lse_shape,
|
|
720
|
+
float("-inf"),
|
|
721
|
+
device=inp.query.device,
|
|
722
|
+
dtype=torch.float32,
|
|
723
|
+
)
|
|
724
|
+
else:
|
|
725
|
+
softmax_lse = torch.empty(
|
|
726
|
+
lse_shape,
|
|
727
|
+
device=inp.query.device,
|
|
728
|
+
dtype=torch.float32,
|
|
729
|
+
)
|
|
730
|
+
|
|
731
|
+
if not needs_gradient:
|
|
732
|
+
return out, None
|
|
733
|
+
ctx = Context(
|
|
734
|
+
out=out,
|
|
735
|
+
lse=_post_process_lse(softmax_lse, inp, tuple(original_query_shape)),
|
|
736
|
+
)
|
|
737
|
+
if inp.p != 0.0:
|
|
738
|
+
ctx.op_bw = BwOp
|
|
739
|
+
ctx.rng_state = rng_state
|
|
740
|
+
return (out, ctx)
|
|
741
|
+
|
|
742
|
+
|
|
743
|
+
@register_operator
|
|
744
|
+
class BwOp(AttentionBwOpBase):
|
|
745
|
+
__doc__ = FwOp.__doc__
|
|
746
|
+
|
|
747
|
+
OPERATOR = get_operator("mslk_flash", "flash_bwd")
|
|
748
|
+
SUPPORTED_DEVICES = FwOp.SUPPORTED_DEVICES
|
|
749
|
+
CUDA_MINIMUM_COMPUTE_CAPABILITY = FwOp.CUDA_MINIMUM_COMPUTE_CAPABILITY
|
|
750
|
+
SUPPORTED_DTYPES = FwOp.SUPPORTED_DTYPES
|
|
751
|
+
SUPPORTED_MAX_K = FwOp.SUPPORTED_MAX_K
|
|
752
|
+
SUPPORTED_ATTN_BIAS_TYPES: Iterable[Any] = tuple(
|
|
753
|
+
set(FwOp.SUPPORTED_ATTN_BIAS_TYPES).difference(
|
|
754
|
+
{
|
|
755
|
+
BlockDiagonalCausalLocalAttentionPaddedKeysMask,
|
|
756
|
+
BlockDiagonalCausalWithOffsetGappyKeysMask,
|
|
757
|
+
BlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
758
|
+
BlockDiagonalLocalAttentionPaddedKeysMask,
|
|
759
|
+
BlockDiagonalGappyKeysMask,
|
|
760
|
+
BlockDiagonalPaddedKeysMask,
|
|
761
|
+
PagedBlockDiagonalCausalLocalPaddedKeysMask,
|
|
762
|
+
PagedBlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
763
|
+
PagedBlockDiagonalPaddedKeysMask,
|
|
764
|
+
}
|
|
765
|
+
)
|
|
766
|
+
)
|
|
767
|
+
SUPPORTS_DROPOUT = FwOp.SUPPORTS_DROPOUT
|
|
768
|
+
SUPPORTS_CUSTOM_SCALE = FwOp.SUPPORTS_CUSTOM_SCALE
|
|
769
|
+
SUPPORTS_DIFFERENT_VALUE_EMBED = FwOp.SUPPORTS_DIFFERENT_VALUE_EMBED
|
|
770
|
+
IS_DETERMINISTIC = False
|
|
771
|
+
SUPPORTS_BMGHK = False # NOTE: Don't forget to update fmha doc when changing this!
|
|
772
|
+
VARLEN_LSE_PACKED = VARLEN_LSE_PACKED
|
|
773
|
+
NAME = f"fa2B@{FLASH_VERSION}-pt" if _USE_PT_FLASH_ATTN else f"fa2B@{FLASH_VERSION}"
|
|
774
|
+
VERSION = FLASH_VERSION
|
|
775
|
+
|
|
776
|
+
MAX_HEADDIM_DROPOUT_SM8x = 224
|
|
777
|
+
|
|
778
|
+
@classmethod
|
|
779
|
+
def not_supported_reasons(cls, d: Inputs) -> List[str]:
|
|
780
|
+
reasons = super(BwOp, cls).not_supported_reasons(d)
|
|
781
|
+
check_lastdim_alignment_stride1(reasons, "query", d.query, 8)
|
|
782
|
+
_check_needs_no_topleft(d, reasons)
|
|
783
|
+
if d.device.type == "cuda":
|
|
784
|
+
# Due to limited shared-memory, some GPUs are limited in head dimension
|
|
785
|
+
device_capability = torch.cuda.get_device_capability(d.device)
|
|
786
|
+
is_sm80_or_sm90 = device_capability in [(8, 0), (9, 0)]
|
|
787
|
+
if (
|
|
788
|
+
max(d.key.shape[-1], d.query.shape[-1]) > cls.MAX_HEADDIM_DROPOUT_SM8x
|
|
789
|
+
and not is_sm80_or_sm90
|
|
790
|
+
and d.p != 0.0
|
|
791
|
+
):
|
|
792
|
+
reasons.append(
|
|
793
|
+
"requires a GPU with compute capability 8.0 "
|
|
794
|
+
f"(A100) or 9.0 (H100) for dropout when 'query.shape[-1] > {cls.MAX_HEADDIM_DROPOUT_SM8x}'"
|
|
795
|
+
)
|
|
796
|
+
return reasons
|
|
797
|
+
|
|
798
|
+
@classmethod
|
|
799
|
+
def apply(cls, ctx: Context, inp: Inputs, grad: torch.Tensor) -> Gradients:
|
|
800
|
+
dq_shape, dk_shape, dv_shape = inp.query.shape, inp.key.shape, inp.value.shape
|
|
801
|
+
(
|
|
802
|
+
inp,
|
|
803
|
+
cu_seqlens_q,
|
|
804
|
+
max_seqlen_q,
|
|
805
|
+
cu_seqlens_k,
|
|
806
|
+
max_seqlen_k,
|
|
807
|
+
seqused_k,
|
|
808
|
+
) = _convert_input_format(inp, supports_mqa=False)
|
|
809
|
+
# assert ctx.lse.is_contiguous()
|
|
810
|
+
assert seqused_k is None
|
|
811
|
+
ctx_lse = ctx.lse
|
|
812
|
+
if isinstance(inp.attn_bias, VARLEN_BIASES) and VARLEN_LSE_PACKED:
|
|
813
|
+
assert ctx_lse.shape[0] == 1
|
|
814
|
+
ctx_lse = ctx_lse[0]
|
|
815
|
+
else:
|
|
816
|
+
# NOTE: cutlass pads the last dimension, we need to slice it
|
|
817
|
+
assert ctx_lse.shape[2] >= max_seqlen_q
|
|
818
|
+
ctx_lse = ctx_lse[:, :, :max_seqlen_q].contiguous()
|
|
819
|
+
kernel_out_shape = [
|
|
820
|
+
*inp.query.shape[:-1],
|
|
821
|
+
inp.value.shape[-1],
|
|
822
|
+
]
|
|
823
|
+
assert grad.dtype in cls.SUPPORTED_DTYPES
|
|
824
|
+
|
|
825
|
+
if inp.query.numel() and inp.key.numel():
|
|
826
|
+
win_left, win_right = _window_size(inp.attn_bias)
|
|
827
|
+
grads = Gradients(
|
|
828
|
+
*cls.OPERATOR(
|
|
829
|
+
ctx.qkv_share_storage,
|
|
830
|
+
grad.reshape(kernel_out_shape).contiguous(),
|
|
831
|
+
inp.query,
|
|
832
|
+
inp.key,
|
|
833
|
+
inp.value,
|
|
834
|
+
ctx.out.reshape(kernel_out_shape),
|
|
835
|
+
ctx_lse,
|
|
836
|
+
cu_seqlens_q,
|
|
837
|
+
cu_seqlens_k,
|
|
838
|
+
max_seqlen_q,
|
|
839
|
+
max_seqlen_k,
|
|
840
|
+
inp.p,
|
|
841
|
+
inp.scale_float,
|
|
842
|
+
_is_causal(inp.attn_bias),
|
|
843
|
+
window_left=win_left,
|
|
844
|
+
window_right=win_right,
|
|
845
|
+
rng_state=ctx.rng_state if inp.p > 0.0 else None,
|
|
846
|
+
)
|
|
847
|
+
)
|
|
848
|
+
else:
|
|
849
|
+
grads = Gradients(
|
|
850
|
+
dq=torch.zeros_like(inp.query),
|
|
851
|
+
dk=torch.zeros_like(inp.key),
|
|
852
|
+
dv=torch.zeros_like(inp.value),
|
|
853
|
+
)
|
|
854
|
+
if grads.dq.numel() == 0:
|
|
855
|
+
grads.dk.zero_()
|
|
856
|
+
grads.dv.zero_()
|
|
857
|
+
if grads.dv.numel() == 0:
|
|
858
|
+
grads.dq.zero_()
|
|
859
|
+
grads.dq = grads.dq.reshape(dq_shape)
|
|
860
|
+
grads.dk = grads.dk.reshape(dk_shape)
|
|
861
|
+
grads.dv = grads.dv.reshape(dv_shape)
|
|
862
|
+
return grads
|