mslk-cuda-nightly 2026.1.19__cp310-cp310-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mslk/__init__.py +56 -0
- mslk/attention/__init__.py +7 -0
- mslk/attention/cutlass_blackwell_fmha/__init__.py +30 -0
- mslk/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py +332 -0
- mslk/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_interface.py +533 -0
- mslk/attention/flash_attn/__init__.py +22 -0
- mslk/attention/flash_attn/ampere_helpers.py +104 -0
- mslk/attention/flash_attn/barrier.py +72 -0
- mslk/attention/flash_attn/benchmark.py +269 -0
- mslk/attention/flash_attn/blackwell_helpers.py +754 -0
- mslk/attention/flash_attn/block_info.py +109 -0
- mslk/attention/flash_attn/block_sparse_utils.py +1452 -0
- mslk/attention/flash_attn/block_sparsity.py +219 -0
- mslk/attention/flash_attn/compute_block_sparsity.py +378 -0
- mslk/attention/flash_attn/copy_utils.py +341 -0
- mslk/attention/flash_attn/cute_dsl_utils.py +135 -0
- mslk/attention/flash_attn/fast_math.py +22 -0
- mslk/attention/flash_attn/flash_bwd.py +1262 -0
- mslk/attention/flash_attn/flash_bwd_postprocess.py +464 -0
- mslk/attention/flash_attn/flash_bwd_preprocess.py +366 -0
- mslk/attention/flash_attn/flash_bwd_sm100.py +2951 -0
- mslk/attention/flash_attn/flash_bwd_sm90.py +1703 -0
- mslk/attention/flash_attn/flash_fwd.py +2471 -0
- mslk/attention/flash_attn/flash_fwd_combine.py +705 -0
- mslk/attention/flash_attn/flash_fwd_sm100.py +2727 -0
- mslk/attention/flash_attn/hopper_helpers.py +102 -0
- mslk/attention/flash_attn/interface.py +1771 -0
- mslk/attention/flash_attn/mask.py +610 -0
- mslk/attention/flash_attn/mma_sm100_desc.py +292 -0
- mslk/attention/flash_attn/named_barrier.py +32 -0
- mslk/attention/flash_attn/pack_gqa.py +165 -0
- mslk/attention/flash_attn/paged_kv.py +176 -0
- mslk/attention/flash_attn/pipeline.py +273 -0
- mslk/attention/flash_attn/seqlen_info.py +139 -0
- mslk/attention/flash_attn/softmax.py +583 -0
- mslk/attention/flash_attn/testing.py +424 -0
- mslk/attention/flash_attn/tile_scheduler.py +720 -0
- mslk/attention/flash_attn/utils.py +860 -0
- mslk/attention/fmha/__init__.py +967 -0
- mslk/attention/fmha/_triton/__init__.py +6 -0
- mslk/attention/fmha/_triton/available.py +50 -0
- mslk/attention/fmha/_triton/splitk_kernels.py +1534 -0
- mslk/attention/fmha/_triton/vararg_kernel.py +262 -0
- mslk/attention/fmha/attn_bias.py +2186 -0
- mslk/attention/fmha/attn_bias_utils.py +536 -0
- mslk/attention/fmha/ck.py +508 -0
- mslk/attention/fmha/ck_decoder.py +141 -0
- mslk/attention/fmha/ck_splitk.py +204 -0
- mslk/attention/fmha/common.py +598 -0
- mslk/attention/fmha/cutlass.py +461 -0
- mslk/attention/fmha/cutlass_blackwell.py +560 -0
- mslk/attention/fmha/dispatch.py +224 -0
- mslk/attention/fmha/flash.py +862 -0
- mslk/attention/fmha/flash3.py +858 -0
- mslk/attention/fmha/flash_mtia.py +245 -0
- mslk/attention/fmha/merge_training.py +192 -0
- mslk/attention/fmha/split_blocks_fairinternal.py +329 -0
- mslk/attention/fmha/torch_attention_compat.py +154 -0
- mslk/attention/fmha/tree_attention.py +718 -0
- mslk/attention/fmha/triton_splitk.py +1378 -0
- mslk/attention/fmha/unbind.py +130 -0
- mslk/attention/fmha/utils/__init__.py +6 -0
- mslk/attention/fmha/utils/bench.py +74 -0
- mslk/attention/fmha/utils/cpp_lib.py +148 -0
- mslk/attention/fmha/utils/op_common.py +65 -0
- mslk/attention/gqa_attn_splitk/__init__.py +11 -0
- mslk/bench/comm/__init__.py +7 -0
- mslk/bench/comm/comm_bench.py +255 -0
- mslk/bench/common/__init__.py +5 -0
- mslk/bench/common/utils.py +148 -0
- mslk/bench/conv/__init__.py +7 -0
- mslk/bench/conv/conv_bench.py +551 -0
- mslk/bench/conv/conv_ops.py +213 -0
- mslk/bench/gemm/__init__.py +7 -0
- mslk/bench/gemm/gemm_bench.py +859 -0
- mslk/bench/gemm/gemm_ops.py +3342 -0
- mslk/bench/gemm/grouped_gemm_bias_scale_benchmark.py +177 -0
- mslk/bench/moe/__init__.py +7 -0
- mslk/bench/moe/gather_scatter_bench.py +356 -0
- mslk/bench/quantize/quantize_bench.py +345 -0
- mslk/bench/quantize/quantize_ops.py +266 -0
- mslk/comm/__init__.py +11 -0
- mslk/conv/__init__.py +11 -0
- mslk/gemm/__init__.py +18 -0
- mslk/gemm/triton/__init__.py +7 -0
- mslk/gemm/triton/fp8_gemm.py +2702 -0
- mslk/gemm/triton/grouped_gemm.py +1132 -0
- mslk/gemm/triton/matmul_perf_model.py +237 -0
- mslk/gemm/triton/utils.py +128 -0
- mslk/kv_cache/__init__.py +11 -0
- mslk/moe/__init__.py +26 -0
- mslk/moe/activation.py +291 -0
- mslk/moe/gather_scatter.py +739 -0
- mslk/moe/layers.py +1240 -0
- mslk/moe/shuffling.py +421 -0
- mslk/mslk.so +0 -0
- mslk/quantize/__init__.py +11 -0
- mslk/quantize/shuffle.py +306 -0
- mslk/quantize/triton/__init__.py +7 -0
- mslk/quantize/triton/fp4_quantize.py +5942 -0
- mslk/quantize/triton/fp8_quantize.py +1902 -0
- mslk/testing/__init__.py +7 -0
- mslk/testing/attributes.py +60 -0
- mslk/testing/rocm.py +91 -0
- mslk/utils/__init__.py +7 -0
- mslk/utils/torch/__init__.py +7 -0
- mslk/utils/torch/library.py +150 -0
- mslk/utils/triton/__init__.py +7 -0
- mslk/utils/triton/fp8_utils.py +72 -0
- mslk/utils/triton/utils.py +128 -0
- mslk/version.py +11 -0
- mslk_cuda_nightly-2026.1.19.dist-info/METADATA +102 -0
- mslk_cuda_nightly-2026.1.19.dist-info/RECORD +116 -0
- mslk_cuda_nightly-2026.1.19.dist-info/WHEEL +5 -0
- mslk_cuda_nightly-2026.1.19.dist-info/licenses/LICENSE +30 -0
- mslk_cuda_nightly-2026.1.19.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,72 @@
|
|
|
1
|
+
# @nolint # fbcode
|
|
2
|
+
import cutlass
|
|
3
|
+
import cutlass.cute as cute
|
|
4
|
+
from cutlass import Int32
|
|
5
|
+
from cutlass.cutlass_dsl import T, dsl_user_op
|
|
6
|
+
from cutlass._mlir.dialects import llvm
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@dsl_user_op
|
|
10
|
+
def ld_acquire(lock_ptr: cute.Pointer, *, loc=None, ip=None) -> cutlass.Int32:
|
|
11
|
+
lock_ptr_i64 = lock_ptr.toint(loc=loc, ip=ip).ir_value()
|
|
12
|
+
state = llvm.inline_asm(
|
|
13
|
+
T.i32(),
|
|
14
|
+
[lock_ptr_i64],
|
|
15
|
+
"ld.global.acquire.gpu.b32 $0, [$1];",
|
|
16
|
+
"=r,l",
|
|
17
|
+
has_side_effects=True,
|
|
18
|
+
is_align_stack=False,
|
|
19
|
+
asm_dialect=llvm.AsmDialect.AD_ATT,
|
|
20
|
+
)
|
|
21
|
+
return cutlass.Int32(state)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@dsl_user_op
|
|
25
|
+
def red_relaxed(
|
|
26
|
+
lock_ptr: cute.Pointer, val: cutlass.Constexpr[Int32], *, loc=None, ip=None
|
|
27
|
+
) -> None:
|
|
28
|
+
lock_ptr_i64 = lock_ptr.toint(loc=loc, ip=ip).ir_value()
|
|
29
|
+
llvm.inline_asm(
|
|
30
|
+
None,
|
|
31
|
+
[lock_ptr_i64, Int32(val).ir_value(loc=loc, ip=ip)],
|
|
32
|
+
"red.relaxed.gpu.global.add.s32 [$0], $1;",
|
|
33
|
+
"l,r",
|
|
34
|
+
has_side_effects=True,
|
|
35
|
+
is_align_stack=False,
|
|
36
|
+
asm_dialect=llvm.AsmDialect.AD_ATT,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
@dsl_user_op
|
|
41
|
+
def red_release(
|
|
42
|
+
lock_ptr: cute.Pointer, val: cutlass.Constexpr[Int32], *, loc=None, ip=None
|
|
43
|
+
) -> None:
|
|
44
|
+
lock_ptr_i64 = lock_ptr.toint(loc=loc, ip=ip).ir_value()
|
|
45
|
+
llvm.inline_asm(
|
|
46
|
+
None,
|
|
47
|
+
[lock_ptr_i64, Int32(val).ir_value(loc=loc, ip=ip)],
|
|
48
|
+
"red.release.gpu.global.add.s32 [$0], $1;",
|
|
49
|
+
"l,r",
|
|
50
|
+
has_side_effects=True,
|
|
51
|
+
is_align_stack=False,
|
|
52
|
+
asm_dialect=llvm.AsmDialect.AD_ATT,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
@cute.jit
|
|
57
|
+
def wait_eq(lock_ptr: cute.Pointer, thread_idx: int | Int32, flag_offset: int, val: Int32) -> None:
|
|
58
|
+
flag_ptr = lock_ptr + flag_offset
|
|
59
|
+
if thread_idx == 0:
|
|
60
|
+
read_val = Int32(0)
|
|
61
|
+
while read_val != val:
|
|
62
|
+
read_val = ld_acquire(flag_ptr)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
@cute.jit
|
|
66
|
+
def arrive_inc(
|
|
67
|
+
lock_ptr: cute.Pointer, thread_idx: int | Int32, flag_offset: int, val: cutlass.Constexpr[Int32]
|
|
68
|
+
) -> None:
|
|
69
|
+
flag_ptr = lock_ptr + flag_offset
|
|
70
|
+
if thread_idx == 0:
|
|
71
|
+
red_release(flag_ptr, val)
|
|
72
|
+
# red_relaxed(flag_ptr, val)
|
|
@@ -0,0 +1,269 @@
|
|
|
1
|
+
# @nolint # fbcode
|
|
2
|
+
# Copyright (c) 2023, Tri Dao.
|
|
3
|
+
"""Useful functions for writing test code."""
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import torch.utils.benchmark as benchmark
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def benchmark_forward(
|
|
10
|
+
fn, *inputs, repeats=10, desc="", verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs
|
|
11
|
+
):
|
|
12
|
+
"""Use Pytorch Benchmark on the forward pass of an arbitrary function."""
|
|
13
|
+
if verbose:
|
|
14
|
+
print(desc, "- Forward pass")
|
|
15
|
+
|
|
16
|
+
def amp_wrapper(*inputs, **kwinputs):
|
|
17
|
+
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
|
18
|
+
fn(*inputs, **kwinputs)
|
|
19
|
+
|
|
20
|
+
t = benchmark.Timer(
|
|
21
|
+
stmt="fn_amp(*inputs, **kwinputs)",
|
|
22
|
+
globals={"fn_amp": amp_wrapper, "inputs": inputs, "kwinputs": kwinputs},
|
|
23
|
+
num_threads=torch.get_num_threads(),
|
|
24
|
+
)
|
|
25
|
+
m = t.timeit(repeats)
|
|
26
|
+
if verbose:
|
|
27
|
+
print(m)
|
|
28
|
+
return t, m
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def benchmark_backward(
|
|
32
|
+
fn,
|
|
33
|
+
*inputs,
|
|
34
|
+
grad=None,
|
|
35
|
+
repeats=10,
|
|
36
|
+
desc="",
|
|
37
|
+
verbose=True,
|
|
38
|
+
amp=False,
|
|
39
|
+
amp_dtype=torch.float16,
|
|
40
|
+
**kwinputs,
|
|
41
|
+
):
|
|
42
|
+
"""Use Pytorch Benchmark on the backward pass of an arbitrary function."""
|
|
43
|
+
if verbose:
|
|
44
|
+
print(desc, "- Backward pass")
|
|
45
|
+
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
|
46
|
+
y = fn(*inputs, **kwinputs)
|
|
47
|
+
if type(y) is tuple:
|
|
48
|
+
y = y[0]
|
|
49
|
+
if grad is None:
|
|
50
|
+
grad = torch.randn_like(y)
|
|
51
|
+
else:
|
|
52
|
+
if grad.shape != y.shape:
|
|
53
|
+
raise RuntimeError("Grad shape does not match output shape")
|
|
54
|
+
|
|
55
|
+
def f(*inputs, y, grad):
|
|
56
|
+
# Set .grad to None to avoid extra operation of gradient accumulation
|
|
57
|
+
for x in inputs:
|
|
58
|
+
if isinstance(x, torch.Tensor):
|
|
59
|
+
x.grad = None
|
|
60
|
+
y.backward(grad, retain_graph=True)
|
|
61
|
+
|
|
62
|
+
t = benchmark.Timer(
|
|
63
|
+
stmt="f(*inputs, y=y, grad=grad)",
|
|
64
|
+
globals={"f": f, "inputs": inputs, "y": y, "grad": grad},
|
|
65
|
+
num_threads=torch.get_num_threads(),
|
|
66
|
+
)
|
|
67
|
+
m = t.timeit(repeats)
|
|
68
|
+
if verbose:
|
|
69
|
+
print(m)
|
|
70
|
+
return t, m
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def benchmark_combined(
|
|
74
|
+
fn,
|
|
75
|
+
*inputs,
|
|
76
|
+
grad=None,
|
|
77
|
+
repeats=10,
|
|
78
|
+
desc="",
|
|
79
|
+
verbose=True,
|
|
80
|
+
amp=False,
|
|
81
|
+
amp_dtype=torch.float16,
|
|
82
|
+
**kwinputs,
|
|
83
|
+
):
|
|
84
|
+
"""Use Pytorch Benchmark on the forward+backward pass of an arbitrary function."""
|
|
85
|
+
if verbose:
|
|
86
|
+
print(desc, "- Forward + Backward pass")
|
|
87
|
+
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
|
88
|
+
y = fn(*inputs, **kwinputs)
|
|
89
|
+
if type(y) is tuple:
|
|
90
|
+
y = y[0]
|
|
91
|
+
if grad is None:
|
|
92
|
+
grad = torch.randn_like(y)
|
|
93
|
+
else:
|
|
94
|
+
if grad.shape != y.shape:
|
|
95
|
+
raise RuntimeError("Grad shape does not match output shape")
|
|
96
|
+
|
|
97
|
+
def f(grad, *inputs, **kwinputs):
|
|
98
|
+
for x in inputs:
|
|
99
|
+
if isinstance(x, torch.Tensor):
|
|
100
|
+
x.grad = None
|
|
101
|
+
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
|
102
|
+
y = fn(*inputs, **kwinputs)
|
|
103
|
+
if type(y) is tuple:
|
|
104
|
+
y = y[0]
|
|
105
|
+
y.backward(grad, retain_graph=True)
|
|
106
|
+
|
|
107
|
+
t = benchmark.Timer(
|
|
108
|
+
stmt="f(grad, *inputs, **kwinputs)",
|
|
109
|
+
globals={"f": f, "fn": fn, "inputs": inputs, "grad": grad, "kwinputs": kwinputs},
|
|
110
|
+
num_threads=torch.get_num_threads(),
|
|
111
|
+
)
|
|
112
|
+
m = t.timeit(repeats)
|
|
113
|
+
if verbose:
|
|
114
|
+
print(m)
|
|
115
|
+
return t, m
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def benchmark_fwd_bwd(
|
|
119
|
+
fn,
|
|
120
|
+
*inputs,
|
|
121
|
+
grad=None,
|
|
122
|
+
repeats=10,
|
|
123
|
+
desc="",
|
|
124
|
+
verbose=True,
|
|
125
|
+
amp=False,
|
|
126
|
+
amp_dtype=torch.float16,
|
|
127
|
+
**kwinputs,
|
|
128
|
+
):
|
|
129
|
+
"""Use Pytorch Benchmark on the forward+backward pass of an arbitrary function."""
|
|
130
|
+
return (
|
|
131
|
+
benchmark_forward(
|
|
132
|
+
fn,
|
|
133
|
+
*inputs,
|
|
134
|
+
repeats=repeats,
|
|
135
|
+
desc=desc,
|
|
136
|
+
verbose=verbose,
|
|
137
|
+
amp=amp,
|
|
138
|
+
amp_dtype=amp_dtype,
|
|
139
|
+
**kwinputs,
|
|
140
|
+
),
|
|
141
|
+
benchmark_backward(
|
|
142
|
+
fn,
|
|
143
|
+
*inputs,
|
|
144
|
+
grad=grad,
|
|
145
|
+
repeats=repeats,
|
|
146
|
+
desc=desc,
|
|
147
|
+
verbose=verbose,
|
|
148
|
+
amp=amp,
|
|
149
|
+
amp_dtype=amp_dtype,
|
|
150
|
+
**kwinputs,
|
|
151
|
+
),
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def benchmark_all(
|
|
156
|
+
fn,
|
|
157
|
+
*inputs,
|
|
158
|
+
grad=None,
|
|
159
|
+
repeats=10,
|
|
160
|
+
desc="",
|
|
161
|
+
verbose=True,
|
|
162
|
+
amp=False,
|
|
163
|
+
amp_dtype=torch.float16,
|
|
164
|
+
**kwinputs,
|
|
165
|
+
):
|
|
166
|
+
"""Use Pytorch Benchmark on the forward+backward pass of an arbitrary function."""
|
|
167
|
+
return (
|
|
168
|
+
benchmark_forward(
|
|
169
|
+
fn,
|
|
170
|
+
*inputs,
|
|
171
|
+
repeats=repeats,
|
|
172
|
+
desc=desc,
|
|
173
|
+
verbose=verbose,
|
|
174
|
+
amp=amp,
|
|
175
|
+
amp_dtype=amp_dtype,
|
|
176
|
+
**kwinputs,
|
|
177
|
+
),
|
|
178
|
+
benchmark_backward(
|
|
179
|
+
fn,
|
|
180
|
+
*inputs,
|
|
181
|
+
grad=grad,
|
|
182
|
+
repeats=repeats,
|
|
183
|
+
desc=desc,
|
|
184
|
+
verbose=verbose,
|
|
185
|
+
amp=amp,
|
|
186
|
+
amp_dtype=amp_dtype,
|
|
187
|
+
**kwinputs,
|
|
188
|
+
),
|
|
189
|
+
benchmark_combined(
|
|
190
|
+
fn,
|
|
191
|
+
*inputs,
|
|
192
|
+
grad=grad,
|
|
193
|
+
repeats=repeats,
|
|
194
|
+
desc=desc,
|
|
195
|
+
verbose=verbose,
|
|
196
|
+
amp=amp,
|
|
197
|
+
amp_dtype=amp_dtype,
|
|
198
|
+
**kwinputs,
|
|
199
|
+
),
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
def pytorch_profiler(
|
|
204
|
+
fn,
|
|
205
|
+
*inputs,
|
|
206
|
+
trace_filename=None,
|
|
207
|
+
backward=False,
|
|
208
|
+
amp=False,
|
|
209
|
+
amp_dtype=torch.float16,
|
|
210
|
+
cpu=False,
|
|
211
|
+
verbose=True,
|
|
212
|
+
**kwinputs,
|
|
213
|
+
):
|
|
214
|
+
"""Wrap benchmark functions in Pytorch profiler to see CUDA information."""
|
|
215
|
+
if backward:
|
|
216
|
+
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
|
217
|
+
out = fn(*inputs, **kwinputs)
|
|
218
|
+
if type(out) is tuple:
|
|
219
|
+
out = out[0]
|
|
220
|
+
g = torch.randn_like(out)
|
|
221
|
+
for _ in range(30): # Warm up
|
|
222
|
+
if backward:
|
|
223
|
+
for x in inputs:
|
|
224
|
+
if isinstance(x, torch.Tensor):
|
|
225
|
+
x.grad = None
|
|
226
|
+
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
|
227
|
+
out = fn(*inputs, **kwinputs)
|
|
228
|
+
if type(out) is tuple:
|
|
229
|
+
out = out[0]
|
|
230
|
+
# Backward should be done outside autocast
|
|
231
|
+
if backward:
|
|
232
|
+
out.backward(g, retain_graph=True)
|
|
233
|
+
activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [
|
|
234
|
+
torch.profiler.ProfilerActivity.CUDA
|
|
235
|
+
]
|
|
236
|
+
with torch.profiler.profile(
|
|
237
|
+
activities=activities,
|
|
238
|
+
record_shapes=True,
|
|
239
|
+
# profile_memory=True,
|
|
240
|
+
with_stack=True,
|
|
241
|
+
) as prof:
|
|
242
|
+
if backward:
|
|
243
|
+
for x in inputs:
|
|
244
|
+
if isinstance(x, torch.Tensor):
|
|
245
|
+
x.grad = None
|
|
246
|
+
with torch.autocast(device_type="cuda", dtype=amp_dtype, enabled=amp):
|
|
247
|
+
out = fn(*inputs, **kwinputs)
|
|
248
|
+
if type(out) is tuple:
|
|
249
|
+
out = out[0]
|
|
250
|
+
if backward:
|
|
251
|
+
out.backward(g, retain_graph=True)
|
|
252
|
+
if verbose:
|
|
253
|
+
# print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50))
|
|
254
|
+
print(prof.key_averages().table(row_limit=50))
|
|
255
|
+
if trace_filename is not None:
|
|
256
|
+
prof.export_chrome_trace(trace_filename)
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def benchmark_memory(fn, *inputs, desc="", verbose=True, **kwinputs):
|
|
260
|
+
torch.cuda.empty_cache()
|
|
261
|
+
torch.cuda.reset_peak_memory_stats()
|
|
262
|
+
torch.cuda.synchronize()
|
|
263
|
+
fn(*inputs, **kwinputs)
|
|
264
|
+
torch.cuda.synchronize()
|
|
265
|
+
mem = torch.cuda.max_memory_allocated() / ((2**20) * 1000)
|
|
266
|
+
if verbose:
|
|
267
|
+
print(f"{desc} max memory: {mem}GB")
|
|
268
|
+
torch.cuda.empty_cache()
|
|
269
|
+
return mem
|