mslk-cuda-nightly 2026.1.19__cp310-cp310-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mslk/__init__.py +56 -0
- mslk/attention/__init__.py +7 -0
- mslk/attention/cutlass_blackwell_fmha/__init__.py +30 -0
- mslk/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py +332 -0
- mslk/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_interface.py +533 -0
- mslk/attention/flash_attn/__init__.py +22 -0
- mslk/attention/flash_attn/ampere_helpers.py +104 -0
- mslk/attention/flash_attn/barrier.py +72 -0
- mslk/attention/flash_attn/benchmark.py +269 -0
- mslk/attention/flash_attn/blackwell_helpers.py +754 -0
- mslk/attention/flash_attn/block_info.py +109 -0
- mslk/attention/flash_attn/block_sparse_utils.py +1452 -0
- mslk/attention/flash_attn/block_sparsity.py +219 -0
- mslk/attention/flash_attn/compute_block_sparsity.py +378 -0
- mslk/attention/flash_attn/copy_utils.py +341 -0
- mslk/attention/flash_attn/cute_dsl_utils.py +135 -0
- mslk/attention/flash_attn/fast_math.py +22 -0
- mslk/attention/flash_attn/flash_bwd.py +1262 -0
- mslk/attention/flash_attn/flash_bwd_postprocess.py +464 -0
- mslk/attention/flash_attn/flash_bwd_preprocess.py +366 -0
- mslk/attention/flash_attn/flash_bwd_sm100.py +2951 -0
- mslk/attention/flash_attn/flash_bwd_sm90.py +1703 -0
- mslk/attention/flash_attn/flash_fwd.py +2471 -0
- mslk/attention/flash_attn/flash_fwd_combine.py +705 -0
- mslk/attention/flash_attn/flash_fwd_sm100.py +2727 -0
- mslk/attention/flash_attn/hopper_helpers.py +102 -0
- mslk/attention/flash_attn/interface.py +1771 -0
- mslk/attention/flash_attn/mask.py +610 -0
- mslk/attention/flash_attn/mma_sm100_desc.py +292 -0
- mslk/attention/flash_attn/named_barrier.py +32 -0
- mslk/attention/flash_attn/pack_gqa.py +165 -0
- mslk/attention/flash_attn/paged_kv.py +176 -0
- mslk/attention/flash_attn/pipeline.py +273 -0
- mslk/attention/flash_attn/seqlen_info.py +139 -0
- mslk/attention/flash_attn/softmax.py +583 -0
- mslk/attention/flash_attn/testing.py +424 -0
- mslk/attention/flash_attn/tile_scheduler.py +720 -0
- mslk/attention/flash_attn/utils.py +860 -0
- mslk/attention/fmha/__init__.py +967 -0
- mslk/attention/fmha/_triton/__init__.py +6 -0
- mslk/attention/fmha/_triton/available.py +50 -0
- mslk/attention/fmha/_triton/splitk_kernels.py +1534 -0
- mslk/attention/fmha/_triton/vararg_kernel.py +262 -0
- mslk/attention/fmha/attn_bias.py +2186 -0
- mslk/attention/fmha/attn_bias_utils.py +536 -0
- mslk/attention/fmha/ck.py +508 -0
- mslk/attention/fmha/ck_decoder.py +141 -0
- mslk/attention/fmha/ck_splitk.py +204 -0
- mslk/attention/fmha/common.py +598 -0
- mslk/attention/fmha/cutlass.py +461 -0
- mslk/attention/fmha/cutlass_blackwell.py +560 -0
- mslk/attention/fmha/dispatch.py +224 -0
- mslk/attention/fmha/flash.py +862 -0
- mslk/attention/fmha/flash3.py +858 -0
- mslk/attention/fmha/flash_mtia.py +245 -0
- mslk/attention/fmha/merge_training.py +192 -0
- mslk/attention/fmha/split_blocks_fairinternal.py +329 -0
- mslk/attention/fmha/torch_attention_compat.py +154 -0
- mslk/attention/fmha/tree_attention.py +718 -0
- mslk/attention/fmha/triton_splitk.py +1378 -0
- mslk/attention/fmha/unbind.py +130 -0
- mslk/attention/fmha/utils/__init__.py +6 -0
- mslk/attention/fmha/utils/bench.py +74 -0
- mslk/attention/fmha/utils/cpp_lib.py +148 -0
- mslk/attention/fmha/utils/op_common.py +65 -0
- mslk/attention/gqa_attn_splitk/__init__.py +11 -0
- mslk/bench/comm/__init__.py +7 -0
- mslk/bench/comm/comm_bench.py +255 -0
- mslk/bench/common/__init__.py +5 -0
- mslk/bench/common/utils.py +148 -0
- mslk/bench/conv/__init__.py +7 -0
- mslk/bench/conv/conv_bench.py +551 -0
- mslk/bench/conv/conv_ops.py +213 -0
- mslk/bench/gemm/__init__.py +7 -0
- mslk/bench/gemm/gemm_bench.py +859 -0
- mslk/bench/gemm/gemm_ops.py +3342 -0
- mslk/bench/gemm/grouped_gemm_bias_scale_benchmark.py +177 -0
- mslk/bench/moe/__init__.py +7 -0
- mslk/bench/moe/gather_scatter_bench.py +356 -0
- mslk/bench/quantize/quantize_bench.py +345 -0
- mslk/bench/quantize/quantize_ops.py +266 -0
- mslk/comm/__init__.py +11 -0
- mslk/conv/__init__.py +11 -0
- mslk/gemm/__init__.py +18 -0
- mslk/gemm/triton/__init__.py +7 -0
- mslk/gemm/triton/fp8_gemm.py +2702 -0
- mslk/gemm/triton/grouped_gemm.py +1132 -0
- mslk/gemm/triton/matmul_perf_model.py +237 -0
- mslk/gemm/triton/utils.py +128 -0
- mslk/kv_cache/__init__.py +11 -0
- mslk/moe/__init__.py +26 -0
- mslk/moe/activation.py +291 -0
- mslk/moe/gather_scatter.py +739 -0
- mslk/moe/layers.py +1240 -0
- mslk/moe/shuffling.py +421 -0
- mslk/mslk.so +0 -0
- mslk/quantize/__init__.py +11 -0
- mslk/quantize/shuffle.py +306 -0
- mslk/quantize/triton/__init__.py +7 -0
- mslk/quantize/triton/fp4_quantize.py +5942 -0
- mslk/quantize/triton/fp8_quantize.py +1902 -0
- mslk/testing/__init__.py +7 -0
- mslk/testing/attributes.py +60 -0
- mslk/testing/rocm.py +91 -0
- mslk/utils/__init__.py +7 -0
- mslk/utils/torch/__init__.py +7 -0
- mslk/utils/torch/library.py +150 -0
- mslk/utils/triton/__init__.py +7 -0
- mslk/utils/triton/fp8_utils.py +72 -0
- mslk/utils/triton/utils.py +128 -0
- mslk/version.py +11 -0
- mslk_cuda_nightly-2026.1.19.dist-info/METADATA +102 -0
- mslk_cuda_nightly-2026.1.19.dist-info/RECORD +116 -0
- mslk_cuda_nightly-2026.1.19.dist-info/WHEEL +5 -0
- mslk_cuda_nightly-2026.1.19.dist-info/licenses/LICENSE +30 -0
- mslk_cuda_nightly-2026.1.19.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,461 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
# pyre-unsafe
|
|
7
|
+
|
|
8
|
+
from dataclasses import replace
|
|
9
|
+
from enum import Enum
|
|
10
|
+
from functools import partial
|
|
11
|
+
from typing import Any, Iterable, List, Optional, Set, Tuple, Union
|
|
12
|
+
|
|
13
|
+
import torch
|
|
14
|
+
|
|
15
|
+
from . import attn_bias
|
|
16
|
+
from .attn_bias import (
|
|
17
|
+
AttentionBias,
|
|
18
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
19
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
20
|
+
BlockDiagonalCausalMask,
|
|
21
|
+
BlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
22
|
+
BlockDiagonalMask,
|
|
23
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
24
|
+
LowerTriangularFromBottomRightMask,
|
|
25
|
+
LowerTriangularMask,
|
|
26
|
+
LowerTriangularMaskWithTensorBias,
|
|
27
|
+
)
|
|
28
|
+
from .common import (
|
|
29
|
+
_attn_bias_apply,
|
|
30
|
+
AttentionBwOpBase,
|
|
31
|
+
AttentionFwOpBase,
|
|
32
|
+
check_lastdim_alignment_stride1,
|
|
33
|
+
Context,
|
|
34
|
+
Gradients,
|
|
35
|
+
Inputs,
|
|
36
|
+
)
|
|
37
|
+
from .torch_attention_compat import is_pt_cutlass_compatible
|
|
38
|
+
from .utils.op_common import get_operator, register_operator
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def _uses_tensorcores(sm: int, is_half: bool) -> bool:
|
|
42
|
+
if sm >= 80:
|
|
43
|
+
return True
|
|
44
|
+
if sm >= 70:
|
|
45
|
+
return is_half
|
|
46
|
+
return False
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def _minimum_gemm_alignment(inp: Inputs) -> int:
|
|
50
|
+
if inp.device.type != "cuda":
|
|
51
|
+
return 1
|
|
52
|
+
cap = torch.cuda.get_device_capability(inp.device)
|
|
53
|
+
sm = cap[0] * 10 + cap[1]
|
|
54
|
+
bits_per_scalar = {torch.float: 32, torch.half: 16, torch.bfloat16: 16}[
|
|
55
|
+
inp.query.dtype
|
|
56
|
+
]
|
|
57
|
+
uses_tensorcores = _uses_tensorcores(sm, bits_per_scalar == 16)
|
|
58
|
+
matmul_alignment_mn = 1
|
|
59
|
+
if sm >= 80:
|
|
60
|
+
matmul_alignment_mn = 4
|
|
61
|
+
if uses_tensorcores:
|
|
62
|
+
matmul_alignment_mn = max(matmul_alignment_mn, 128 // bits_per_scalar)
|
|
63
|
+
return matmul_alignment_mn
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def _get_seqlen_info(
|
|
67
|
+
inp: Inputs,
|
|
68
|
+
) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], int, int]:
|
|
69
|
+
attn_bias = inp.attn_bias
|
|
70
|
+
if isinstance(
|
|
71
|
+
attn_bias, (BlockDiagonalMask, BlockDiagonalCausalWithOffsetPaddedKeysMask)
|
|
72
|
+
):
|
|
73
|
+
assert attn_bias.k_seqinfo.seqstart.device == inp.query.device
|
|
74
|
+
seqstart_k = attn_bias.k_seqinfo.seqstart
|
|
75
|
+
seqstart_q = attn_bias.q_seqinfo.seqstart
|
|
76
|
+
max_seqlen_q = attn_bias.q_seqinfo.max_seqlen
|
|
77
|
+
max_seqlen_k = attn_bias.k_seqinfo.max_seqlen
|
|
78
|
+
else:
|
|
79
|
+
seqstart_k = None
|
|
80
|
+
seqstart_q = None
|
|
81
|
+
max_seqlen_q = -1
|
|
82
|
+
max_seqlen_k = -1
|
|
83
|
+
|
|
84
|
+
return seqstart_k, seqstart_q, max_seqlen_q, max_seqlen_k
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
def _get_tensor_bias(
|
|
88
|
+
attn_bias: Optional[Union[torch.Tensor, AttentionBias]],
|
|
89
|
+
) -> Optional[torch.Tensor]:
|
|
90
|
+
if isinstance(attn_bias, LowerTriangularMaskWithTensorBias):
|
|
91
|
+
return attn_bias._bias
|
|
92
|
+
if isinstance(attn_bias, torch.Tensor):
|
|
93
|
+
return attn_bias
|
|
94
|
+
return None
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def _check_bias_alignment(
|
|
98
|
+
reasons: List[str], attn_bias: Optional[Union[torch.Tensor, AttentionBias]]
|
|
99
|
+
) -> None:
|
|
100
|
+
attn_bias_tensor = _get_tensor_bias(attn_bias)
|
|
101
|
+
if attn_bias_tensor is not None:
|
|
102
|
+
alignment = 128 // torch.finfo(attn_bias_tensor.dtype).bits
|
|
103
|
+
show_padding_hint = False
|
|
104
|
+
for d in range(attn_bias_tensor.ndim - 1):
|
|
105
|
+
if attn_bias_tensor.stride(d) % alignment != 0:
|
|
106
|
+
reasons.append(
|
|
107
|
+
f"attn_bias.stride(-2) % {alignment} != 0 (attn_bias.stride() = {attn_bias_tensor.stride()})"
|
|
108
|
+
)
|
|
109
|
+
show_padding_hint = True
|
|
110
|
+
if show_padding_hint:
|
|
111
|
+
reasons.append(
|
|
112
|
+
"""\
|
|
113
|
+
HINT: To use an `attn_bias` with a sequence length that is not a multiple of 8, \
|
|
114
|
+
you need to ensure memory is aligned by slicing a bigger tensor. \
|
|
115
|
+
Example: use `attn_bias = torch.zeros([1, 1, 5, 8])[:,:,:,:5]` instead of `torch.zeros([1, 1, 5, 5])`"""
|
|
116
|
+
)
|
|
117
|
+
# We can have stride=0 sometimes if dimension=1
|
|
118
|
+
if attn_bias_tensor.stride(-1) > 1:
|
|
119
|
+
reasons.append(
|
|
120
|
+
f"attn_bias.stride(-1) > 1 (attn_bias.stride() = {attn_bias_tensor.stride()}) - "
|
|
121
|
+
"you should call `.contiguous()` on the bias"
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
class _CustomMaskType(int, Enum):
|
|
126
|
+
"""
|
|
127
|
+
(Matches CustomMaskType in C++.)
|
|
128
|
+
"""
|
|
129
|
+
|
|
130
|
+
NoCustomMask = 0
|
|
131
|
+
CausalFromTopLeft = 1
|
|
132
|
+
CausalFromBottomRight = 2
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def _custom_mask_type(bias: Optional[Union[torch.Tensor, AttentionBias]]) -> int:
|
|
136
|
+
if isinstance(
|
|
137
|
+
bias,
|
|
138
|
+
(
|
|
139
|
+
LowerTriangularMask,
|
|
140
|
+
BlockDiagonalCausalMask,
|
|
141
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
142
|
+
),
|
|
143
|
+
):
|
|
144
|
+
return int(_CustomMaskType.CausalFromTopLeft)
|
|
145
|
+
if isinstance(
|
|
146
|
+
bias,
|
|
147
|
+
(
|
|
148
|
+
LowerTriangularFromBottomRightMask,
|
|
149
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
150
|
+
attn_bias.BlockDiagonalCausalFromBottomRightMask,
|
|
151
|
+
BlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
152
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
153
|
+
),
|
|
154
|
+
):
|
|
155
|
+
return int(_CustomMaskType.CausalFromBottomRight)
|
|
156
|
+
return int(_CustomMaskType.NoCustomMask)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
@register_operator
|
|
160
|
+
class FwOp(AttentionFwOpBase):
|
|
161
|
+
"""xFormers' MHA kernel based on CUTLASS.
|
|
162
|
+
Supports a large number of settings (including without TensorCores, f32 ...)
|
|
163
|
+
and GPUs as old as P100 (Sm60)
|
|
164
|
+
"""
|
|
165
|
+
|
|
166
|
+
OPERATOR = (
|
|
167
|
+
get_operator("aten", "_efficient_attention_forward")
|
|
168
|
+
if is_pt_cutlass_compatible()
|
|
169
|
+
else None
|
|
170
|
+
)
|
|
171
|
+
CUDA_MAXIMUM_COMPUTE_CAPABILITY = (9, 0)
|
|
172
|
+
SUPPORTED_DEVICES: Set[str] = {"cuda"}
|
|
173
|
+
SUPPORTED_DTYPES: Set[torch.dtype] = {torch.float, torch.half, torch.bfloat16}
|
|
174
|
+
SUPPORTED_MAX_K = 65536
|
|
175
|
+
SUPPORTED_ATTN_BIAS_TYPES: Iterable[Any] = (
|
|
176
|
+
type(None),
|
|
177
|
+
torch.Tensor,
|
|
178
|
+
LowerTriangularMask,
|
|
179
|
+
LowerTriangularFromBottomRightMask,
|
|
180
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
181
|
+
LowerTriangularMaskWithTensorBias,
|
|
182
|
+
BlockDiagonalMask,
|
|
183
|
+
BlockDiagonalCausalMask,
|
|
184
|
+
BlockDiagonalCausalWithOffsetPaddedKeysMask,
|
|
185
|
+
attn_bias.BlockDiagonalCausalFromBottomRightMask,
|
|
186
|
+
attn_bias.BlockDiagonalCausalLocalAttentionMask,
|
|
187
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
188
|
+
)
|
|
189
|
+
SUPPORTS_DROPOUT = True
|
|
190
|
+
SUPPORTS_CUSTOM_SCALE = True
|
|
191
|
+
SUPPORTS_DIFFERENT_VALUE_EMBED = True
|
|
192
|
+
SUPPORTS_BMGHK = True
|
|
193
|
+
VARLEN_LSE_PACKED = False
|
|
194
|
+
NAME = "cutlassF-pt"
|
|
195
|
+
|
|
196
|
+
_TEST_K: List[int] = [
|
|
197
|
+
32, # 64x64 kernel
|
|
198
|
+
128, # 64x128 kernel
|
|
199
|
+
256, # 64x128 with accumulation in gmem
|
|
200
|
+
]
|
|
201
|
+
|
|
202
|
+
@classmethod
|
|
203
|
+
def apply(
|
|
204
|
+
cls, inp: Inputs, needs_gradient: bool
|
|
205
|
+
) -> Tuple[torch.Tensor, Optional[Context]]:
|
|
206
|
+
if type(inp.attn_bias) not in FwOp.SUPPORTED_ATTN_BIAS_TYPES:
|
|
207
|
+
raise NotImplementedError("Unsupported attn_bias type")
|
|
208
|
+
if inp.query.ndim in [3, 4]:
|
|
209
|
+
return cls.apply_bmhk(inp, needs_gradient=needs_gradient)
|
|
210
|
+
assert inp.query.ndim == 5, f"query has shape {inp.query.shape}"
|
|
211
|
+
ctx: Optional[Context] = None
|
|
212
|
+
# XXX: Hackfix for BMGHK with H=1
|
|
213
|
+
# In that case we don't want to run G different streams because it adds
|
|
214
|
+
# some overhead
|
|
215
|
+
if inp.query.ndim == 5 and inp.query.shape[3] == 1:
|
|
216
|
+
slice_op = partial(torch.squeeze, dim=3)
|
|
217
|
+
inp = replace(
|
|
218
|
+
inp,
|
|
219
|
+
query=slice_op(inp.query),
|
|
220
|
+
key=slice_op(inp.key),
|
|
221
|
+
value=slice_op(inp.value),
|
|
222
|
+
attn_bias=_attn_bias_apply(
|
|
223
|
+
inp.attn_bias, partial(torch.squeeze, dim=2)
|
|
224
|
+
),
|
|
225
|
+
)
|
|
226
|
+
out, ctx = cls.apply_bmhk(inp, needs_gradient=needs_gradient)
|
|
227
|
+
out = out.unsqueeze(3)
|
|
228
|
+
if ctx is not None:
|
|
229
|
+
ctx = replace(ctx, lse=ctx.lse.unsqueeze(1), out=out)
|
|
230
|
+
return out, ctx
|
|
231
|
+
|
|
232
|
+
# Workaround until this is properly implemented in C++
|
|
233
|
+
# run each head group in a different stream
|
|
234
|
+
n_groups = inp.key.shape[2]
|
|
235
|
+
main_stream = torch.cuda.current_stream()
|
|
236
|
+
streams = [main_stream] + [
|
|
237
|
+
torch.cuda.Stream(device=inp.query.device) for _ in range(n_groups - 1)
|
|
238
|
+
]
|
|
239
|
+
outs = []
|
|
240
|
+
for group, stream in enumerate(streams):
|
|
241
|
+
stream.wait_stream(main_stream)
|
|
242
|
+
with torch.cuda.stream(stream):
|
|
243
|
+
query = inp.query[:, :, group]
|
|
244
|
+
key = inp.key[:, :, group]
|
|
245
|
+
value = inp.value[:, :, group]
|
|
246
|
+
bias = _attn_bias_apply(
|
|
247
|
+
inp.attn_bias, partial(torch.select, dim=1, index=group)
|
|
248
|
+
)
|
|
249
|
+
outs.append(
|
|
250
|
+
cls.apply_bmhk(
|
|
251
|
+
replace(inp, query=query, key=key, value=value, attn_bias=bias),
|
|
252
|
+
needs_gradient=needs_gradient,
|
|
253
|
+
)
|
|
254
|
+
)
|
|
255
|
+
for s in streams[1:]:
|
|
256
|
+
main_stream.wait_stream(s)
|
|
257
|
+
out = torch.stack([o[0] for o in outs], dim=2)
|
|
258
|
+
if needs_gradient:
|
|
259
|
+
ctx = Context(
|
|
260
|
+
out=out,
|
|
261
|
+
lse=torch.stack([o[1].lse for o in outs], dim=1), # type: ignore
|
|
262
|
+
op_bw=outs[0][1].op_bw, # type: ignore
|
|
263
|
+
)
|
|
264
|
+
return out, ctx
|
|
265
|
+
|
|
266
|
+
@classmethod
|
|
267
|
+
def apply_bmhk(
|
|
268
|
+
cls, inp: Inputs, needs_gradient: bool
|
|
269
|
+
) -> Tuple[torch.Tensor, Optional[Context]]:
|
|
270
|
+
if type(inp.attn_bias) not in FwOp.SUPPORTED_ATTN_BIAS_TYPES:
|
|
271
|
+
raise NotImplementedError("Unsupported attn_bias type")
|
|
272
|
+
seqstart_k, seqstart_q, max_seqlen_q, max_seqlen_k = _get_seqlen_info(inp)
|
|
273
|
+
out, lse, rng_seed, rng_offset, _, _ = cls.OPERATOR(
|
|
274
|
+
query=inp.query,
|
|
275
|
+
key=inp.key,
|
|
276
|
+
value=inp.value,
|
|
277
|
+
bias=_get_tensor_bias(inp.attn_bias),
|
|
278
|
+
cu_seqlens_q=seqstart_q,
|
|
279
|
+
cu_seqlens_k=seqstart_k,
|
|
280
|
+
max_seqlen_q=max_seqlen_q,
|
|
281
|
+
max_seqlen_k=max_seqlen_k,
|
|
282
|
+
dropout_p=inp.p,
|
|
283
|
+
compute_log_sumexp=needs_gradient,
|
|
284
|
+
custom_mask_type=_custom_mask_type(inp.attn_bias),
|
|
285
|
+
scale=inp.scale,
|
|
286
|
+
seqlen_k=(
|
|
287
|
+
inp.attn_bias.k_seqinfo.seqlen
|
|
288
|
+
if isinstance(
|
|
289
|
+
inp.attn_bias, BlockDiagonalCausalWithOffsetPaddedKeysMask
|
|
290
|
+
)
|
|
291
|
+
else None
|
|
292
|
+
),
|
|
293
|
+
window_size=(
|
|
294
|
+
inp.attn_bias._window_size
|
|
295
|
+
if isinstance(
|
|
296
|
+
inp.attn_bias,
|
|
297
|
+
(
|
|
298
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
299
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
300
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
301
|
+
),
|
|
302
|
+
)
|
|
303
|
+
else None
|
|
304
|
+
),
|
|
305
|
+
)
|
|
306
|
+
ctx: Optional[Context] = None
|
|
307
|
+
if needs_gradient:
|
|
308
|
+
ctx = Context(out=out, lse=lse)
|
|
309
|
+
if inp.p != 0:
|
|
310
|
+
# cutlass forward is only compatible with cutlass backward if
|
|
311
|
+
# dropout is used (because of the way RNG states are passed and the
|
|
312
|
+
# way random numbers are generated during backward)
|
|
313
|
+
ctx.rng_state = (rng_seed, rng_offset)
|
|
314
|
+
ctx.op_bw = BwOp
|
|
315
|
+
return out, ctx
|
|
316
|
+
|
|
317
|
+
@classmethod
|
|
318
|
+
def not_supported_reasons(cls, d: Inputs) -> List[str]:
|
|
319
|
+
reasons = super(FwOp, cls).not_supported_reasons(d)
|
|
320
|
+
matmul_alignment_mn = _minimum_gemm_alignment(d)
|
|
321
|
+
check_lastdim_alignment_stride1(reasons, "query", d.query, matmul_alignment_mn)
|
|
322
|
+
check_lastdim_alignment_stride1(reasons, "value", d.value, matmul_alignment_mn)
|
|
323
|
+
_check_bias_alignment(reasons, d.attn_bias)
|
|
324
|
+
return reasons
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
@register_operator
|
|
328
|
+
class BwOp(AttentionBwOpBase):
|
|
329
|
+
__doc__ = FwOp.__doc__
|
|
330
|
+
|
|
331
|
+
OPERATOR = (
|
|
332
|
+
get_operator("aten", "_efficient_attention_backward")
|
|
333
|
+
if is_pt_cutlass_compatible()
|
|
334
|
+
else None
|
|
335
|
+
)
|
|
336
|
+
CUDA_MAXIMUM_COMPUTE_CAPABILITY = FwOp.CUDA_MAXIMUM_COMPUTE_CAPABILITY
|
|
337
|
+
SUPPORTED_DEVICES = FwOp.SUPPORTED_DEVICES
|
|
338
|
+
SUPPORTED_DTYPES = FwOp.SUPPORTED_DTYPES
|
|
339
|
+
SUPPORTED_MAX_K = FwOp.SUPPORTED_MAX_K
|
|
340
|
+
SUPPORTED_ATTN_BIAS_TYPES: Iterable[Any] = (
|
|
341
|
+
type(None),
|
|
342
|
+
torch.Tensor,
|
|
343
|
+
LowerTriangularMask,
|
|
344
|
+
LowerTriangularFromBottomRightMask,
|
|
345
|
+
# TODO: Still some infs/nans in the BW pass for
|
|
346
|
+
# local + causal
|
|
347
|
+
# LowerTriangularFromBottomRightLocalAttentionMask,
|
|
348
|
+
# TODO: Fix handling of gradient through the fMHA autograd function
|
|
349
|
+
# LowerTriangularMaskWithTensorBias,
|
|
350
|
+
BlockDiagonalMask,
|
|
351
|
+
BlockDiagonalCausalMask,
|
|
352
|
+
attn_bias.BlockDiagonalCausalFromBottomRightMask,
|
|
353
|
+
attn_bias.BlockDiagonalCausalLocalAttentionMask,
|
|
354
|
+
)
|
|
355
|
+
SUPPORTS_ATTN_BIAS_GRAD = True
|
|
356
|
+
SUPPORTS_DROPOUT = FwOp.SUPPORTS_DROPOUT
|
|
357
|
+
SUPPORTS_CUSTOM_SCALE = FwOp.SUPPORTS_CUSTOM_SCALE
|
|
358
|
+
SUPPORTS_DIFFERENT_VALUE_EMBED = FwOp.SUPPORTS_DIFFERENT_VALUE_EMBED
|
|
359
|
+
VARLEN_LSE_PACKED = False
|
|
360
|
+
NAME = "cutlassB-pt"
|
|
361
|
+
|
|
362
|
+
_TEST_K: List[int] = [
|
|
363
|
+
32, # 64x64 kernel
|
|
364
|
+
128, # 64x128/128x128 kernel
|
|
365
|
+
256, # 64x128 with accumulation in gmem
|
|
366
|
+
]
|
|
367
|
+
|
|
368
|
+
@classmethod
|
|
369
|
+
def not_supported_reasons(cls, d: Inputs) -> List[str]:
|
|
370
|
+
reasons = super(BwOp, cls).not_supported_reasons(d)
|
|
371
|
+
matmul_alignment_mn = _minimum_gemm_alignment(d)
|
|
372
|
+
|
|
373
|
+
check_lastdim_alignment_stride1(reasons, "query", d.query, matmul_alignment_mn)
|
|
374
|
+
check_lastdim_alignment_stride1(reasons, "key", d.key, matmul_alignment_mn)
|
|
375
|
+
check_lastdim_alignment_stride1(reasons, "value", d.value, matmul_alignment_mn)
|
|
376
|
+
_check_bias_alignment(reasons, d.attn_bias)
|
|
377
|
+
attn_bias_tensor = _get_tensor_bias(d.attn_bias)
|
|
378
|
+
|
|
379
|
+
# Backprop of gradient through broadcasted bias is not supported
|
|
380
|
+
if attn_bias_tensor is not None and attn_bias_tensor.requires_grad:
|
|
381
|
+
# Don't forget that inputs are either in BMK or BMHK!
|
|
382
|
+
if d.query.ndim == 3 and attn_bias_tensor.ndim == 3:
|
|
383
|
+
expected_bias_shape = (*d.query.shape[:2], d.key.shape[1])
|
|
384
|
+
else:
|
|
385
|
+
# bias is B H Mq Mk
|
|
386
|
+
expected_bias_shape = (
|
|
387
|
+
d.query.shape[0],
|
|
388
|
+
d.query.shape[2] if d.query.ndim == 4 else 1,
|
|
389
|
+
d.query.shape[1],
|
|
390
|
+
d.key.shape[1],
|
|
391
|
+
)
|
|
392
|
+
if tuple(attn_bias_tensor.shape) != expected_bias_shape:
|
|
393
|
+
reasons.append(
|
|
394
|
+
"Broadcasting the `attn_bias` tensor is not supported "
|
|
395
|
+
f"(shape: {tuple(attn_bias_tensor.shape)}"
|
|
396
|
+
f"/ expected: {expected_bias_shape})"
|
|
397
|
+
)
|
|
398
|
+
return reasons
|
|
399
|
+
|
|
400
|
+
@classmethod
|
|
401
|
+
def apply(cls, ctx: Context, inp: Inputs, grad: torch.Tensor) -> Gradients:
|
|
402
|
+
if type(inp.attn_bias) not in BwOp.SUPPORTED_ATTN_BIAS_TYPES:
|
|
403
|
+
raise NotImplementedError("Unsupported attn_bias type")
|
|
404
|
+
|
|
405
|
+
seqstart_k, seqstart_q, max_seqlen_q, max_seqlen_k = _get_seqlen_info(inp)
|
|
406
|
+
dtype = inp.query.dtype
|
|
407
|
+
|
|
408
|
+
rng_seed = rng_offset = torch.Tensor()
|
|
409
|
+
if inp.p != 0.0:
|
|
410
|
+
assert ctx.rng_state is not None
|
|
411
|
+
rng_seed, rng_offset = ctx.rng_state
|
|
412
|
+
tensor_bias = _get_tensor_bias(inp.attn_bias)
|
|
413
|
+
|
|
414
|
+
force_pad_inf = torch.cuda.get_device_capability(inp.query.device) == (7, 5)
|
|
415
|
+
(grad_q, grad_k, grad_v, grad_bias) = cls.OPERATOR(
|
|
416
|
+
grad.to(dtype),
|
|
417
|
+
inp.query,
|
|
418
|
+
inp.key,
|
|
419
|
+
inp.value,
|
|
420
|
+
bias=tensor_bias,
|
|
421
|
+
bias_requires_grad=(
|
|
422
|
+
tensor_bias.requires_grad if tensor_bias is not None else False
|
|
423
|
+
),
|
|
424
|
+
cu_seqlens_q=seqstart_q,
|
|
425
|
+
cu_seqlens_k=seqstart_k,
|
|
426
|
+
max_seqlen_q=max_seqlen_q,
|
|
427
|
+
max_seqlen_k=max_seqlen_k,
|
|
428
|
+
logsumexp=ctx.get_padded_lse(32, force_pad_inf=force_pad_inf),
|
|
429
|
+
out=ctx.out.to(dtype),
|
|
430
|
+
dropout_p=inp.p,
|
|
431
|
+
# if not using dropout, seed and offset are irrelevant but still expected
|
|
432
|
+
# in function signature so just pass 0
|
|
433
|
+
# seed and offset could be None if a different FW op other than cutlass
|
|
434
|
+
# was used.
|
|
435
|
+
philox_seed=rng_seed,
|
|
436
|
+
philox_offset=rng_offset,
|
|
437
|
+
custom_mask_type=_custom_mask_type(inp.attn_bias),
|
|
438
|
+
scale=inp.scale,
|
|
439
|
+
num_splits_key=None, # Let C++ determine it
|
|
440
|
+
window_size=(
|
|
441
|
+
inp.attn_bias._window_size
|
|
442
|
+
if isinstance(
|
|
443
|
+
inp.attn_bias,
|
|
444
|
+
(
|
|
445
|
+
BlockDiagonalCausalLocalAttentionMask,
|
|
446
|
+
BlockDiagonalCausalLocalAttentionFromBottomRightMask,
|
|
447
|
+
LowerTriangularFromBottomRightLocalAttentionMask,
|
|
448
|
+
),
|
|
449
|
+
)
|
|
450
|
+
else None
|
|
451
|
+
),
|
|
452
|
+
)
|
|
453
|
+
|
|
454
|
+
# c++/CUDA implementation returns an uninitialized tensor if bias doesn't
|
|
455
|
+
# require grad
|
|
456
|
+
if not (
|
|
457
|
+
isinstance(inp.attn_bias, torch.Tensor) and inp.attn_bias.requires_grad
|
|
458
|
+
):
|
|
459
|
+
grad_bias = None
|
|
460
|
+
|
|
461
|
+
return Gradients(dq=grad_q, dk=grad_k, dv=grad_v, db=grad_bias)
|