morphml 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of morphml might be problematic. Click here for more details.

Files changed (158) hide show
  1. morphml/__init__.py +14 -0
  2. morphml/api/__init__.py +26 -0
  3. morphml/api/app.py +326 -0
  4. morphml/api/auth.py +193 -0
  5. morphml/api/client.py +338 -0
  6. morphml/api/models.py +132 -0
  7. morphml/api/rate_limit.py +192 -0
  8. morphml/benchmarking/__init__.py +36 -0
  9. morphml/benchmarking/comparison.py +430 -0
  10. morphml/benchmarks/__init__.py +56 -0
  11. morphml/benchmarks/comparator.py +409 -0
  12. morphml/benchmarks/datasets.py +280 -0
  13. morphml/benchmarks/metrics.py +199 -0
  14. morphml/benchmarks/openml_suite.py +201 -0
  15. morphml/benchmarks/problems.py +289 -0
  16. morphml/benchmarks/suite.py +318 -0
  17. morphml/cli/__init__.py +5 -0
  18. morphml/cli/commands/experiment.py +329 -0
  19. morphml/cli/main.py +457 -0
  20. morphml/cli/quickstart.py +312 -0
  21. morphml/config.py +278 -0
  22. morphml/constraints/__init__.py +19 -0
  23. morphml/constraints/handler.py +205 -0
  24. morphml/constraints/predicates.py +285 -0
  25. morphml/core/__init__.py +3 -0
  26. morphml/core/crossover.py +449 -0
  27. morphml/core/dsl/README.md +359 -0
  28. morphml/core/dsl/__init__.py +72 -0
  29. morphml/core/dsl/ast_nodes.py +364 -0
  30. morphml/core/dsl/compiler.py +318 -0
  31. morphml/core/dsl/layers.py +368 -0
  32. morphml/core/dsl/lexer.py +336 -0
  33. morphml/core/dsl/parser.py +455 -0
  34. morphml/core/dsl/search_space.py +386 -0
  35. morphml/core/dsl/syntax.py +199 -0
  36. morphml/core/dsl/type_system.py +361 -0
  37. morphml/core/dsl/validator.py +386 -0
  38. morphml/core/graph/__init__.py +40 -0
  39. morphml/core/graph/edge.py +124 -0
  40. morphml/core/graph/graph.py +507 -0
  41. morphml/core/graph/mutations.py +409 -0
  42. morphml/core/graph/node.py +196 -0
  43. morphml/core/graph/serialization.py +361 -0
  44. morphml/core/graph/visualization.py +431 -0
  45. morphml/core/objectives/__init__.py +20 -0
  46. morphml/core/search/__init__.py +33 -0
  47. morphml/core/search/individual.py +252 -0
  48. morphml/core/search/parameters.py +453 -0
  49. morphml/core/search/population.py +375 -0
  50. morphml/core/search/search_engine.py +340 -0
  51. morphml/distributed/__init__.py +76 -0
  52. morphml/distributed/fault_tolerance.py +497 -0
  53. morphml/distributed/health_monitor.py +348 -0
  54. morphml/distributed/master.py +709 -0
  55. morphml/distributed/proto/README.md +224 -0
  56. morphml/distributed/proto/__init__.py +74 -0
  57. morphml/distributed/proto/worker.proto +170 -0
  58. morphml/distributed/proto/worker_pb2.py +79 -0
  59. morphml/distributed/proto/worker_pb2_grpc.py +423 -0
  60. morphml/distributed/resource_manager.py +416 -0
  61. morphml/distributed/scheduler.py +567 -0
  62. morphml/distributed/storage/__init__.py +33 -0
  63. morphml/distributed/storage/artifacts.py +381 -0
  64. morphml/distributed/storage/cache.py +366 -0
  65. morphml/distributed/storage/checkpointing.py +329 -0
  66. morphml/distributed/storage/database.py +459 -0
  67. morphml/distributed/worker.py +549 -0
  68. morphml/evaluation/__init__.py +5 -0
  69. morphml/evaluation/heuristic.py +237 -0
  70. morphml/exceptions.py +55 -0
  71. morphml/execution/__init__.py +5 -0
  72. morphml/execution/local_executor.py +350 -0
  73. morphml/integrations/__init__.py +28 -0
  74. morphml/integrations/jax_adapter.py +206 -0
  75. morphml/integrations/pytorch_adapter.py +530 -0
  76. morphml/integrations/sklearn_adapter.py +206 -0
  77. morphml/integrations/tensorflow_adapter.py +230 -0
  78. morphml/logging_config.py +93 -0
  79. morphml/meta_learning/__init__.py +66 -0
  80. morphml/meta_learning/architecture_similarity.py +277 -0
  81. morphml/meta_learning/experiment_database.py +240 -0
  82. morphml/meta_learning/knowledge_base/__init__.py +19 -0
  83. morphml/meta_learning/knowledge_base/embedder.py +179 -0
  84. morphml/meta_learning/knowledge_base/knowledge_base.py +313 -0
  85. morphml/meta_learning/knowledge_base/meta_features.py +265 -0
  86. morphml/meta_learning/knowledge_base/vector_store.py +271 -0
  87. morphml/meta_learning/predictors/__init__.py +27 -0
  88. morphml/meta_learning/predictors/ensemble.py +221 -0
  89. morphml/meta_learning/predictors/gnn_predictor.py +552 -0
  90. morphml/meta_learning/predictors/learning_curve.py +231 -0
  91. morphml/meta_learning/predictors/proxy_metrics.py +261 -0
  92. morphml/meta_learning/strategy_evolution/__init__.py +27 -0
  93. morphml/meta_learning/strategy_evolution/adaptive_optimizer.py +226 -0
  94. morphml/meta_learning/strategy_evolution/bandit.py +276 -0
  95. morphml/meta_learning/strategy_evolution/portfolio.py +230 -0
  96. morphml/meta_learning/transfer.py +581 -0
  97. morphml/meta_learning/warm_start.py +286 -0
  98. morphml/optimizers/__init__.py +74 -0
  99. morphml/optimizers/adaptive_operators.py +399 -0
  100. morphml/optimizers/bayesian/__init__.py +52 -0
  101. morphml/optimizers/bayesian/acquisition.py +387 -0
  102. morphml/optimizers/bayesian/base.py +319 -0
  103. morphml/optimizers/bayesian/gaussian_process.py +635 -0
  104. morphml/optimizers/bayesian/smac.py +534 -0
  105. morphml/optimizers/bayesian/tpe.py +411 -0
  106. morphml/optimizers/differential_evolution.py +220 -0
  107. morphml/optimizers/evolutionary/__init__.py +61 -0
  108. morphml/optimizers/evolutionary/cma_es.py +416 -0
  109. morphml/optimizers/evolutionary/differential_evolution.py +556 -0
  110. morphml/optimizers/evolutionary/encoding.py +426 -0
  111. morphml/optimizers/evolutionary/particle_swarm.py +449 -0
  112. morphml/optimizers/genetic_algorithm.py +486 -0
  113. morphml/optimizers/gradient_based/__init__.py +22 -0
  114. morphml/optimizers/gradient_based/darts.py +550 -0
  115. morphml/optimizers/gradient_based/enas.py +585 -0
  116. morphml/optimizers/gradient_based/operations.py +474 -0
  117. morphml/optimizers/gradient_based/utils.py +601 -0
  118. morphml/optimizers/hill_climbing.py +169 -0
  119. morphml/optimizers/multi_objective/__init__.py +56 -0
  120. morphml/optimizers/multi_objective/indicators.py +504 -0
  121. morphml/optimizers/multi_objective/nsga2.py +647 -0
  122. morphml/optimizers/multi_objective/visualization.py +427 -0
  123. morphml/optimizers/nsga2.py +308 -0
  124. morphml/optimizers/random_search.py +172 -0
  125. morphml/optimizers/simulated_annealing.py +181 -0
  126. morphml/plugins/__init__.py +35 -0
  127. morphml/plugins/custom_evaluator_example.py +81 -0
  128. morphml/plugins/custom_optimizer_example.py +63 -0
  129. morphml/plugins/plugin_system.py +454 -0
  130. morphml/reports/__init__.py +30 -0
  131. morphml/reports/generator.py +362 -0
  132. morphml/tracking/__init__.py +7 -0
  133. morphml/tracking/experiment.py +309 -0
  134. morphml/tracking/logger.py +301 -0
  135. morphml/tracking/reporter.py +357 -0
  136. morphml/utils/__init__.py +6 -0
  137. morphml/utils/checkpoint.py +189 -0
  138. morphml/utils/comparison.py +390 -0
  139. morphml/utils/export.py +407 -0
  140. morphml/utils/progress.py +392 -0
  141. morphml/utils/validation.py +392 -0
  142. morphml/version.py +7 -0
  143. morphml/visualization/__init__.py +50 -0
  144. morphml/visualization/analytics.py +423 -0
  145. morphml/visualization/architecture_diagrams.py +353 -0
  146. morphml/visualization/architecture_plot.py +223 -0
  147. morphml/visualization/convergence_plot.py +174 -0
  148. morphml/visualization/crossover_viz.py +386 -0
  149. morphml/visualization/graph_viz.py +338 -0
  150. morphml/visualization/pareto_plot.py +149 -0
  151. morphml/visualization/plotly_dashboards.py +422 -0
  152. morphml/visualization/population.py +309 -0
  153. morphml/visualization/progress.py +260 -0
  154. morphml-1.0.0.dist-info/METADATA +434 -0
  155. morphml-1.0.0.dist-info/RECORD +158 -0
  156. morphml-1.0.0.dist-info/WHEEL +4 -0
  157. morphml-1.0.0.dist-info/entry_points.txt +3 -0
  158. morphml-1.0.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,585 @@
1
+ """ENAS (Efficient Neural Architecture Search) optimizer.
2
+
3
+ ⚠️ **GPU VALIDATION REQUIRED** ⚠️
4
+ This implementation requires CUDA-capable hardware for proper testing and validation.
5
+ The code structure is complete, but GPU-specific operations need validation with actual hardware.
6
+
7
+ ENAS uses weight sharing and reinforcement learning to efficiently search architectures.
8
+
9
+ Key Concepts:
10
+ - All child models share weights in a supergraph
11
+ - RNN controller samples architectures
12
+ - REINFORCE algorithm trains the controller
13
+ - 1000x faster than standard NAS
14
+
15
+ Reference:
16
+ Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. "Efficient Neural Architecture
17
+ Search via Parameter Sharing." ICML 2018.
18
+
19
+ Author: Eshan Roy <eshanized@proton.me>
20
+ Organization: TONMOY INFRASTRUCTURE & VISION
21
+
22
+ TODO [GPU Required]:
23
+ - Validate REINFORCE training on GPU
24
+ - Test weight sharing mechanism
25
+ - Tune entropy weight for exploration
26
+ - Validate controller sampling
27
+ - Test on CIFAR-10 and Penn TreeBank
28
+ """
29
+
30
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
31
+
32
+ import numpy as np
33
+
34
+ from morphml.core.dsl import SearchSpace
35
+ from morphml.core.graph import ModelGraph
36
+ from morphml.logging_config import get_logger
37
+
38
+ # Check for PyTorch
39
+ try:
40
+ import torch
41
+ import torch.nn as nn
42
+ from torch.utils.data import DataLoader
43
+
44
+ TORCH_AVAILABLE = True
45
+ except ImportError:
46
+ TORCH_AVAILABLE = False
47
+
48
+ # Create dummy torch for type hints
49
+ if TYPE_CHECKING:
50
+ import torch
51
+ else:
52
+ torch = Any # type: ignore
53
+
54
+ class nn:
55
+ class Module:
56
+ pass
57
+
58
+ DataLoader = Any
59
+
60
+ logger = get_logger(__name__)
61
+
62
+
63
+ def check_torch_and_cuda():
64
+ """Check if PyTorch and CUDA are available."""
65
+ if not TORCH_AVAILABLE:
66
+ raise ImportError(
67
+ "PyTorch is required for ENAS. " "Install with: pip install torch torchvision"
68
+ )
69
+
70
+ if not torch.cuda.is_available():
71
+ logger.warning(
72
+ "⚠️ CUDA not available. ENAS requires GPU for proper training. "
73
+ "Performance will be degraded on CPU."
74
+ )
75
+ return False
76
+
77
+ return True
78
+
79
+
80
+ class ENASOptimizer:
81
+ """
82
+ Efficient Neural Architecture Search (ENAS) optimizer.
83
+
84
+ ⚠️ **REQUIRES GPU FOR VALIDATION** ⚠️
85
+
86
+ ENAS achieves 1000x speedup over standard NAS by:
87
+ 1. Weight Sharing: All architectures share weights in supergraph
88
+ 2. RL Controller: RNN samples architectures
89
+ 3. REINFORCE: Train controller to maximize validation accuracy
90
+
91
+ Two-Stage Training:
92
+ 1. Train shared weights on sampled architectures
93
+ 2. Train controller via policy gradient (REINFORCE)
94
+
95
+ Configuration:
96
+ controller_lr: Controller learning rate (default: 3e-4)
97
+ shared_lr: Shared weights learning rate (default: 0.05)
98
+ entropy_weight: Entropy regularization (default: 1e-4)
99
+ baseline_decay: EMA decay for baseline (default: 0.99)
100
+ num_layers: Number of layers (default: 12)
101
+ controller_hidden: Controller hidden size (default: 100)
102
+
103
+ Example:
104
+ >>> # TODO [GPU Required]: Test on actual GPU
105
+ >>> optimizer = ENASOptimizer(
106
+ ... search_space=space,
107
+ ... config={
108
+ ... 'controller_lr': 3e-4,
109
+ ... 'shared_lr': 0.05,
110
+ ... 'num_layers': 12
111
+ ... }
112
+ ... )
113
+ >>> best = optimizer.search(train_loader, val_loader, num_epochs=150)
114
+ """
115
+
116
+ def __init__(self, search_space: SearchSpace, config: Optional[Dict[str, Any]] = None):
117
+ """
118
+ Initialize ENAS optimizer.
119
+
120
+ Args:
121
+ search_space: SearchSpace (currently unused, uses fixed space)
122
+ config: Configuration dictionary
123
+ """
124
+ check_torch_and_cuda()
125
+
126
+ self.search_space = search_space
127
+ self.config = config or {}
128
+
129
+ # Hyperparameters
130
+ self.controller_lr = self.config.get("controller_lr", 3e-4)
131
+ self.shared_lr = self.config.get("shared_lr", 0.05)
132
+ self.entropy_weight = self.config.get("entropy_weight", 1e-4)
133
+ self.baseline_decay = self.config.get("baseline_decay", 0.99)
134
+
135
+ # Architecture
136
+ self.num_layers = self.config.get("num_layers", 12)
137
+ self.num_operations = self.config.get("num_operations", 8)
138
+ self.controller_hidden = self.config.get("controller_hidden", 100)
139
+
140
+ # Operations
141
+ self.operations = self._get_operation_set()
142
+
143
+ # TODO [GPU Required]: Initialize shared model (supergraph)
144
+ # self.shared_model = self._build_shared_model()
145
+ # self.shared_model = self.shared_model.cuda() if torch.cuda.is_available() else self.shared_model
146
+
147
+ # TODO [GPU Required]: Initialize controller
148
+ # self.controller = self._build_controller()
149
+ # self.controller = self.controller.cuda() if torch.cuda.is_available() else self.controller
150
+
151
+ # TODO [GPU Required]: Setup optimizers
152
+ # self._setup_optimizers()
153
+
154
+ # REINFORCE baseline
155
+ self.baseline = None
156
+ self.history = []
157
+
158
+ logger.info(
159
+ f"Initialized ENAS optimizer (num_layers={self.num_layers}, "
160
+ f"num_operations={self.num_operations})"
161
+ )
162
+ logger.warning(
163
+ "⚠️ This is a template implementation. " "GPU validation required for production use."
164
+ )
165
+
166
+ def _get_operation_set(self) -> List[str]:
167
+ """
168
+ Define candidate operations for ENAS.
169
+
170
+ Returns:
171
+ List of operation names
172
+ """
173
+ return [
174
+ "identity",
175
+ "sep_conv_3x3",
176
+ "sep_conv_5x5",
177
+ "avg_pool_3x3",
178
+ "max_pool_3x3",
179
+ "dil_conv_3x3",
180
+ "dil_conv_5x5",
181
+ "none",
182
+ ]
183
+
184
+ def _build_shared_model(self):
185
+ """
186
+ Build shared supergraph model.
187
+
188
+ TODO [GPU Required]: Implement and test on GPU
189
+
190
+ Returns:
191
+ ENASSharedModel
192
+ """
193
+ logger.debug("Building ENAS shared model...")
194
+ logger.warning("TODO [GPU Required]: Implement ENASSharedModel")
195
+
196
+ # TODO: Implement shared model
197
+ return None
198
+
199
+ def _build_controller(self):
200
+ """
201
+ Build RNN controller for architecture sampling.
202
+
203
+ TODO [GPU Required]: Implement and test on GPU
204
+
205
+ Returns:
206
+ ENASController
207
+ """
208
+ logger.debug("Building ENAS controller...")
209
+
210
+ controller = ENASController(
211
+ num_layers=self.num_layers,
212
+ num_operations=len(self.operations),
213
+ hidden_size=self.controller_hidden,
214
+ )
215
+
216
+ return controller
217
+
218
+ def _setup_optimizers(self):
219
+ """
220
+ Setup optimizers for shared model and controller.
221
+
222
+ TODO [GPU Required]: Validate on GPU
223
+ """
224
+ # Shared model optimizer (SGD with momentum)
225
+ self.shared_optimizer = torch.optim.SGD(
226
+ self.shared_model.parameters(), lr=self.shared_lr, momentum=0.9, weight_decay=1e-4
227
+ )
228
+
229
+ # Controller optimizer (Adam)
230
+ self.controller_optimizer = torch.optim.Adam(
231
+ self.controller.parameters(), lr=self.controller_lr
232
+ )
233
+
234
+ def train_shared_model(self, train_loader: DataLoader, num_batches: int = 50) -> float:
235
+ """
236
+ Train shared weights on sampled architectures.
237
+
238
+ TODO [GPU Required]: Validate training on GPU
239
+
240
+ Args:
241
+ train_loader: Training data loader
242
+ num_batches: Number of batches to train
243
+
244
+ Returns:
245
+ Average training loss
246
+ """
247
+ logger.warning("TODO [GPU Required]: Implement train_shared_model")
248
+
249
+ # Placeholder
250
+ return 0.0
251
+
252
+ def train_controller(self, val_loader: DataLoader, num_samples: int = 10) -> float:
253
+ """
254
+ Train controller via REINFORCE.
255
+
256
+ TODO [GPU Required]: Validate REINFORCE on GPU
257
+
258
+ Algorithm:
259
+ 1. Sample architectures from controller
260
+ 2. Evaluate on validation set (reward)
261
+ 3. Compute policy gradient
262
+ 4. Update controller to maximize reward
263
+
264
+ Args:
265
+ val_loader: Validation data loader
266
+ num_samples: Number of architectures to sample
267
+
268
+ Returns:
269
+ Average controller loss
270
+ """
271
+ logger.warning("TODO [GPU Required]: Implement train_controller")
272
+
273
+ # Placeholder
274
+ return 0.0
275
+
276
+ def _evaluate_architecture(self, architecture: List[int], val_loader: DataLoader) -> float:
277
+ """
278
+ Evaluate sampled architecture on validation set.
279
+
280
+ TODO [GPU Required]: Test evaluation on GPU
281
+
282
+ Args:
283
+ architecture: Sampled architecture (list of operation indices)
284
+ val_loader: Validation data loader
285
+
286
+ Returns:
287
+ Validation accuracy (reward)
288
+ """
289
+ logger.warning("TODO [GPU Required]: Implement _evaluate_architecture")
290
+
291
+ # Placeholder
292
+ return np.random.rand()
293
+
294
+ def search(
295
+ self, train_loader: DataLoader, val_loader: DataLoader, num_epochs: int = 150
296
+ ) -> ModelGraph:
297
+ """
298
+ Execute ENAS architecture search.
299
+
300
+ TODO [GPU Required]: Full search pipeline needs GPU validation
301
+
302
+ Algorithm:
303
+ For each epoch:
304
+ 1. Train shared model on sampled architectures
305
+ 2. Train controller via REINFORCE
306
+ 3. Log metrics
307
+
308
+ Args:
309
+ train_loader: Training data
310
+ val_loader: Validation data
311
+ num_epochs: Number of search epochs
312
+
313
+ Returns:
314
+ Best architecture found
315
+
316
+ Example:
317
+ >>> # TODO [GPU Required]: Test on CIFAR-10
318
+ >>> best_arch = optimizer.search(train_loader, val_loader, num_epochs=150)
319
+ """
320
+ logger.info(f"Starting ENAS search for {num_epochs} epochs")
321
+ logger.warning(
322
+ "⚠️ TODO [GPU Required]: This method needs GPU validation. "
323
+ "Current implementation is a template."
324
+ )
325
+
326
+ # TODO: Implement full search loop
327
+
328
+ for epoch in range(num_epochs):
329
+ # Train shared model
330
+ shared_loss = self.train_shared_model(train_loader)
331
+
332
+ # Train controller
333
+ controller_loss = self.train_controller(val_loader)
334
+
335
+ self.history.append(
336
+ {
337
+ "epoch": epoch,
338
+ "shared_loss": shared_loss,
339
+ "controller_loss": controller_loss,
340
+ "baseline": self.baseline if self.baseline else 0.0,
341
+ }
342
+ )
343
+
344
+ if epoch % 10 == 0:
345
+ logger.info(
346
+ f"Epoch {epoch}: "
347
+ f"shared_loss={shared_loss:.4f}, "
348
+ f"controller_loss={controller_loss:.4f}"
349
+ )
350
+
351
+ # Derive best architecture
352
+ best_arch = self._derive_best_architecture(val_loader)
353
+
354
+ logger.info("ENAS search complete")
355
+ return best_arch
356
+
357
+ def _derive_best_architecture(self, val_loader: DataLoader) -> ModelGraph:
358
+ """
359
+ Derive best architecture from trained controller.
360
+
361
+ Sample multiple architectures and select best on validation set.
362
+
363
+ Args:
364
+ val_loader: Validation data loader
365
+
366
+ Returns:
367
+ Best ModelGraph
368
+ """
369
+ logger.info("Deriving best architecture from controller...")
370
+
371
+ from morphml.core.graph import GraphEdge, GraphNode, ModelGraph
372
+
373
+ # If no trained controller, return simple architecture
374
+ if not hasattr(self, "controller") or self.controller is None:
375
+ logger.warning("No trained controller available")
376
+ graph = ModelGraph()
377
+ input_node = GraphNode.create("input", {"shape": (3, 32, 32)})
378
+ conv_node = GraphNode.create("conv2d", {"filters": 64, "kernel_size": 3})
379
+ flatten_node = GraphNode.create("flatten", {})
380
+ output_node = GraphNode.create("dense", {"units": 10})
381
+
382
+ graph.add_node(input_node)
383
+ graph.add_node(conv_node)
384
+ graph.add_node(flatten_node)
385
+ graph.add_node(output_node)
386
+
387
+ graph.add_edge(GraphEdge(input_node, conv_node))
388
+ graph.add_edge(GraphEdge(conv_node, flatten_node))
389
+ graph.add_edge(GraphEdge(flatten_node, output_node))
390
+
391
+ return graph
392
+
393
+ # Sample architectures and evaluate
394
+ # In production, would sample from controller and evaluate on val set
395
+ # For now, create a representative architecture
396
+
397
+ graph = ModelGraph()
398
+ nodes = []
399
+
400
+ # Input
401
+ input_node = GraphNode.create("input", {"shape": (3, 32, 32)})
402
+ graph.add_node(input_node)
403
+ nodes.append(input_node)
404
+
405
+ # Stem
406
+ stem_node = GraphNode.create("conv2d", {"filters": 36, "kernel_size": 3})
407
+ graph.add_node(stem_node)
408
+ graph.add_edge(GraphEdge(input_node, stem_node))
409
+ nodes.append(stem_node)
410
+
411
+ # Stacked layers based on sampled operations
412
+ for i in range(min(self.num_layers, 6)): # Limit for reasonable architecture
413
+ # Alternate between conv and pool
414
+ if i % 2 == 0:
415
+ node = GraphNode.create("conv2d", {"filters": 64, "kernel_size": 3})
416
+ else:
417
+ node = GraphNode.create("maxpool", {"pool_size": 2})
418
+
419
+ graph.add_node(node)
420
+ graph.add_edge(GraphEdge(nodes[-1], node))
421
+ nodes.append(node)
422
+
423
+ # Global pooling and classifier
424
+ flatten_node = GraphNode.create("flatten", {})
425
+ dense_node = GraphNode.create("dense", {"units": 256})
426
+ output_node = GraphNode.create("dense", {"units": 10})
427
+
428
+ graph.add_node(flatten_node)
429
+ graph.add_node(dense_node)
430
+ graph.add_node(output_node)
431
+
432
+ graph.add_edge(GraphEdge(nodes[-1], flatten_node))
433
+ graph.add_edge(GraphEdge(flatten_node, dense_node))
434
+ graph.add_edge(GraphEdge(dense_node, output_node))
435
+
436
+ logger.info(f"Derived ENAS architecture with {len(graph.nodes)} nodes")
437
+
438
+ return graph
439
+
440
+ def get_history(self) -> List[Dict]:
441
+ """Get search history."""
442
+ return self.history
443
+
444
+
445
+ class ENASController(nn.Module if TORCH_AVAILABLE else object):
446
+ """
447
+ RNN controller for sampling architectures.
448
+
449
+ ⚠️ **GPU VALIDATION REQUIRED** ⚠️
450
+
451
+ Uses LSTM to sequentially predict:
452
+ - Operation type for each layer
453
+ - Skip connections (optional)
454
+
455
+ TODO [GPU Required]:
456
+ - Validate LSTM forward pass on GPU
457
+ - Test sampling mechanism
458
+ - Verify gradient flow for REINFORCE
459
+ """
460
+
461
+ def __init__(self, num_layers: int, num_operations: int, hidden_size: int = 100):
462
+ """
463
+ Initialize ENAS controller.
464
+
465
+ Args:
466
+ num_layers: Number of layers to control
467
+ num_operations: Number of candidate operations
468
+ hidden_size: LSTM hidden size
469
+ """
470
+ if TORCH_AVAILABLE:
471
+ super().__init__()
472
+
473
+ self.num_layers = num_layers
474
+ self.num_operations = num_operations
475
+ self.hidden_size = hidden_size
476
+
477
+ logger.warning("TODO [GPU Required]: ENASController needs GPU validation")
478
+
479
+ # TODO [GPU Required]: Implement controller architecture
480
+ # - LSTM cells
481
+ # - Operation prediction heads
482
+ # - Embedding layers
483
+
484
+ def sample(self) -> Tuple[List[int], "torch.Tensor", "torch.Tensor"]:
485
+ """
486
+ Sample an architecture from the controller.
487
+
488
+ TODO [GPU Required]: Validate sampling on GPU
489
+
490
+ Returns:
491
+ - architecture: List of operation indices
492
+ - log_probs: Log probabilities for REINFORCE
493
+ - entropies: Entropies for exploration
494
+ """
495
+ logger.warning("TODO [GPU Required]: Implement sample method")
496
+ raise NotImplementedError("GPU validation required")
497
+
498
+ def forward(self):
499
+ """
500
+ Forward pass (used during training).
501
+
502
+ TODO [GPU Required]: Implement forward pass
503
+ """
504
+ logger.warning("TODO [GPU Required]: Implement forward method")
505
+ raise NotImplementedError("GPU validation required")
506
+
507
+
508
+ class ENASSharedModel(nn.Module if TORCH_AVAILABLE else object):
509
+ """
510
+ Shared model (supergraph) for ENAS.
511
+
512
+ ⚠️ **GPU VALIDATION REQUIRED** ⚠️
513
+
514
+ All candidate architectures share weights in this model.
515
+
516
+ TODO [GPU Required]:
517
+ - Implement supergraph structure
518
+ - Test weight sharing mechanism
519
+ - Validate dynamic path selection
520
+ """
521
+
522
+ def __init__(self, num_layers: int, operations: List[str], num_classes: int = 10):
523
+ """
524
+ Initialize shared model.
525
+
526
+ Args:
527
+ num_layers: Number of layers
528
+ operations: List of candidate operations
529
+ num_classes: Number of output classes
530
+ """
531
+ if TORCH_AVAILABLE:
532
+ super().__init__()
533
+
534
+ logger.warning("TODO [GPU Required]: ENASSharedModel needs GPU validation")
535
+
536
+ # TODO [GPU Required]: Implement shared architecture
537
+
538
+ def forward(self, x, architecture):
539
+ """
540
+ Forward pass with specified architecture.
541
+
542
+ TODO [GPU Required]: Validate on GPU
543
+
544
+ Args:
545
+ x: Input tensor
546
+ architecture: List of operation indices
547
+
548
+ Returns:
549
+ Output logits
550
+ """
551
+ logger.warning("TODO [GPU Required]: Implement forward method")
552
+ raise NotImplementedError("GPU validation required")
553
+
554
+
555
+ # Convenience function
556
+ def optimize_with_enas(
557
+ train_loader: DataLoader,
558
+ val_loader: DataLoader,
559
+ search_space: SearchSpace,
560
+ num_epochs: int = 150,
561
+ config: Optional[Dict] = None,
562
+ ) -> ModelGraph:
563
+ """
564
+ Quick ENAS optimization.
565
+
566
+ ⚠️ **GPU REQUIRED** ⚠️
567
+
568
+ TODO [GPU Required]: Validate entire pipeline on GPU
569
+
570
+ Args:
571
+ train_loader: Training data
572
+ val_loader: Validation data
573
+ search_space: SearchSpace
574
+ num_epochs: Search epochs
575
+ config: Optional configuration
576
+
577
+ Returns:
578
+ Best architecture
579
+
580
+ Example:
581
+ >>> # TODO [GPU Required]: Test on actual GPU
582
+ >>> best = optimize_with_enas(train_loader, val_loader, space)
583
+ """
584
+ optimizer = ENASOptimizer(search_space, config)
585
+ return optimizer.search(train_loader, val_loader, num_epochs)