morphml 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of morphml might be problematic. Click here for more details.

Files changed (158) hide show
  1. morphml/__init__.py +14 -0
  2. morphml/api/__init__.py +26 -0
  3. morphml/api/app.py +326 -0
  4. morphml/api/auth.py +193 -0
  5. morphml/api/client.py +338 -0
  6. morphml/api/models.py +132 -0
  7. morphml/api/rate_limit.py +192 -0
  8. morphml/benchmarking/__init__.py +36 -0
  9. morphml/benchmarking/comparison.py +430 -0
  10. morphml/benchmarks/__init__.py +56 -0
  11. morphml/benchmarks/comparator.py +409 -0
  12. morphml/benchmarks/datasets.py +280 -0
  13. morphml/benchmarks/metrics.py +199 -0
  14. morphml/benchmarks/openml_suite.py +201 -0
  15. morphml/benchmarks/problems.py +289 -0
  16. morphml/benchmarks/suite.py +318 -0
  17. morphml/cli/__init__.py +5 -0
  18. morphml/cli/commands/experiment.py +329 -0
  19. morphml/cli/main.py +457 -0
  20. morphml/cli/quickstart.py +312 -0
  21. morphml/config.py +278 -0
  22. morphml/constraints/__init__.py +19 -0
  23. morphml/constraints/handler.py +205 -0
  24. morphml/constraints/predicates.py +285 -0
  25. morphml/core/__init__.py +3 -0
  26. morphml/core/crossover.py +449 -0
  27. morphml/core/dsl/README.md +359 -0
  28. morphml/core/dsl/__init__.py +72 -0
  29. morphml/core/dsl/ast_nodes.py +364 -0
  30. morphml/core/dsl/compiler.py +318 -0
  31. morphml/core/dsl/layers.py +368 -0
  32. morphml/core/dsl/lexer.py +336 -0
  33. morphml/core/dsl/parser.py +455 -0
  34. morphml/core/dsl/search_space.py +386 -0
  35. morphml/core/dsl/syntax.py +199 -0
  36. morphml/core/dsl/type_system.py +361 -0
  37. morphml/core/dsl/validator.py +386 -0
  38. morphml/core/graph/__init__.py +40 -0
  39. morphml/core/graph/edge.py +124 -0
  40. morphml/core/graph/graph.py +507 -0
  41. morphml/core/graph/mutations.py +409 -0
  42. morphml/core/graph/node.py +196 -0
  43. morphml/core/graph/serialization.py +361 -0
  44. morphml/core/graph/visualization.py +431 -0
  45. morphml/core/objectives/__init__.py +20 -0
  46. morphml/core/search/__init__.py +33 -0
  47. morphml/core/search/individual.py +252 -0
  48. morphml/core/search/parameters.py +453 -0
  49. morphml/core/search/population.py +375 -0
  50. morphml/core/search/search_engine.py +340 -0
  51. morphml/distributed/__init__.py +76 -0
  52. morphml/distributed/fault_tolerance.py +497 -0
  53. morphml/distributed/health_monitor.py +348 -0
  54. morphml/distributed/master.py +709 -0
  55. morphml/distributed/proto/README.md +224 -0
  56. morphml/distributed/proto/__init__.py +74 -0
  57. morphml/distributed/proto/worker.proto +170 -0
  58. morphml/distributed/proto/worker_pb2.py +79 -0
  59. morphml/distributed/proto/worker_pb2_grpc.py +423 -0
  60. morphml/distributed/resource_manager.py +416 -0
  61. morphml/distributed/scheduler.py +567 -0
  62. morphml/distributed/storage/__init__.py +33 -0
  63. morphml/distributed/storage/artifacts.py +381 -0
  64. morphml/distributed/storage/cache.py +366 -0
  65. morphml/distributed/storage/checkpointing.py +329 -0
  66. morphml/distributed/storage/database.py +459 -0
  67. morphml/distributed/worker.py +549 -0
  68. morphml/evaluation/__init__.py +5 -0
  69. morphml/evaluation/heuristic.py +237 -0
  70. morphml/exceptions.py +55 -0
  71. morphml/execution/__init__.py +5 -0
  72. morphml/execution/local_executor.py +350 -0
  73. morphml/integrations/__init__.py +28 -0
  74. morphml/integrations/jax_adapter.py +206 -0
  75. morphml/integrations/pytorch_adapter.py +530 -0
  76. morphml/integrations/sklearn_adapter.py +206 -0
  77. morphml/integrations/tensorflow_adapter.py +230 -0
  78. morphml/logging_config.py +93 -0
  79. morphml/meta_learning/__init__.py +66 -0
  80. morphml/meta_learning/architecture_similarity.py +277 -0
  81. morphml/meta_learning/experiment_database.py +240 -0
  82. morphml/meta_learning/knowledge_base/__init__.py +19 -0
  83. morphml/meta_learning/knowledge_base/embedder.py +179 -0
  84. morphml/meta_learning/knowledge_base/knowledge_base.py +313 -0
  85. morphml/meta_learning/knowledge_base/meta_features.py +265 -0
  86. morphml/meta_learning/knowledge_base/vector_store.py +271 -0
  87. morphml/meta_learning/predictors/__init__.py +27 -0
  88. morphml/meta_learning/predictors/ensemble.py +221 -0
  89. morphml/meta_learning/predictors/gnn_predictor.py +552 -0
  90. morphml/meta_learning/predictors/learning_curve.py +231 -0
  91. morphml/meta_learning/predictors/proxy_metrics.py +261 -0
  92. morphml/meta_learning/strategy_evolution/__init__.py +27 -0
  93. morphml/meta_learning/strategy_evolution/adaptive_optimizer.py +226 -0
  94. morphml/meta_learning/strategy_evolution/bandit.py +276 -0
  95. morphml/meta_learning/strategy_evolution/portfolio.py +230 -0
  96. morphml/meta_learning/transfer.py +581 -0
  97. morphml/meta_learning/warm_start.py +286 -0
  98. morphml/optimizers/__init__.py +74 -0
  99. morphml/optimizers/adaptive_operators.py +399 -0
  100. morphml/optimizers/bayesian/__init__.py +52 -0
  101. morphml/optimizers/bayesian/acquisition.py +387 -0
  102. morphml/optimizers/bayesian/base.py +319 -0
  103. morphml/optimizers/bayesian/gaussian_process.py +635 -0
  104. morphml/optimizers/bayesian/smac.py +534 -0
  105. morphml/optimizers/bayesian/tpe.py +411 -0
  106. morphml/optimizers/differential_evolution.py +220 -0
  107. morphml/optimizers/evolutionary/__init__.py +61 -0
  108. morphml/optimizers/evolutionary/cma_es.py +416 -0
  109. morphml/optimizers/evolutionary/differential_evolution.py +556 -0
  110. morphml/optimizers/evolutionary/encoding.py +426 -0
  111. morphml/optimizers/evolutionary/particle_swarm.py +449 -0
  112. morphml/optimizers/genetic_algorithm.py +486 -0
  113. morphml/optimizers/gradient_based/__init__.py +22 -0
  114. morphml/optimizers/gradient_based/darts.py +550 -0
  115. morphml/optimizers/gradient_based/enas.py +585 -0
  116. morphml/optimizers/gradient_based/operations.py +474 -0
  117. morphml/optimizers/gradient_based/utils.py +601 -0
  118. morphml/optimizers/hill_climbing.py +169 -0
  119. morphml/optimizers/multi_objective/__init__.py +56 -0
  120. morphml/optimizers/multi_objective/indicators.py +504 -0
  121. morphml/optimizers/multi_objective/nsga2.py +647 -0
  122. morphml/optimizers/multi_objective/visualization.py +427 -0
  123. morphml/optimizers/nsga2.py +308 -0
  124. morphml/optimizers/random_search.py +172 -0
  125. morphml/optimizers/simulated_annealing.py +181 -0
  126. morphml/plugins/__init__.py +35 -0
  127. morphml/plugins/custom_evaluator_example.py +81 -0
  128. morphml/plugins/custom_optimizer_example.py +63 -0
  129. morphml/plugins/plugin_system.py +454 -0
  130. morphml/reports/__init__.py +30 -0
  131. morphml/reports/generator.py +362 -0
  132. morphml/tracking/__init__.py +7 -0
  133. morphml/tracking/experiment.py +309 -0
  134. morphml/tracking/logger.py +301 -0
  135. morphml/tracking/reporter.py +357 -0
  136. morphml/utils/__init__.py +6 -0
  137. morphml/utils/checkpoint.py +189 -0
  138. morphml/utils/comparison.py +390 -0
  139. morphml/utils/export.py +407 -0
  140. morphml/utils/progress.py +392 -0
  141. morphml/utils/validation.py +392 -0
  142. morphml/version.py +7 -0
  143. morphml/visualization/__init__.py +50 -0
  144. morphml/visualization/analytics.py +423 -0
  145. morphml/visualization/architecture_diagrams.py +353 -0
  146. morphml/visualization/architecture_plot.py +223 -0
  147. morphml/visualization/convergence_plot.py +174 -0
  148. morphml/visualization/crossover_viz.py +386 -0
  149. morphml/visualization/graph_viz.py +338 -0
  150. morphml/visualization/pareto_plot.py +149 -0
  151. morphml/visualization/plotly_dashboards.py +422 -0
  152. morphml/visualization/population.py +309 -0
  153. morphml/visualization/progress.py +260 -0
  154. morphml-1.0.0.dist-info/METADATA +434 -0
  155. morphml-1.0.0.dist-info/RECORD +158 -0
  156. morphml-1.0.0.dist-info/WHEEL +4 -0
  157. morphml-1.0.0.dist-info/entry_points.txt +3 -0
  158. morphml-1.0.0.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,550 @@
1
+ """DARTS (Differentiable Architecture Search) optimizer.
2
+
3
+ ⚠️ **GPU VALIDATION REQUIRED** ⚠️
4
+ This implementation requires CUDA-capable hardware for proper testing and validation.
5
+ The code structure is complete, but GPU-specific operations need validation with actual hardware.
6
+
7
+ DARTS uses continuous relaxation of the architecture search space, making it
8
+ differentiable and enabling gradient-based optimization.
9
+
10
+ Key Concepts:
11
+ - Architecture parameters (α) control operation selection
12
+ - Bi-level optimization: weights (w) and architecture (α)
13
+ - Mixed operations: weighted sum of all candidates
14
+ - Final architecture derived via argmax(α)
15
+
16
+ Reference:
17
+ Liu, H., Simonyan, K., and Yang, Y. "DARTS: Differentiable Architecture Search."
18
+ ICLR 2019.
19
+
20
+ Author: Eshan Roy <eshanized@proton.me>
21
+ Organization: TONMOY INFRASTRUCTURE & VISION
22
+
23
+ TODO [GPU Required]:
24
+ - Validate bi-level optimization on actual GPU
25
+ - Test convergence on CIFAR-10/ImageNet
26
+ - Tune hyperparameters for different datasets
27
+ - Add gradient accumulation for large models
28
+ - Implement architecture derivation variants
29
+ """
30
+
31
+ from typing import Any, Dict, List, Optional
32
+
33
+ from morphml.core.dsl import SearchSpace
34
+ from morphml.core.graph import ModelGraph
35
+ from morphml.logging_config import get_logger
36
+
37
+ # Check for PyTorch
38
+ try:
39
+ import torch
40
+ import torch.nn as nn
41
+ from torch.utils.data import DataLoader
42
+
43
+ TORCH_AVAILABLE = True
44
+ except ImportError:
45
+ TORCH_AVAILABLE = False
46
+
47
+ # Create dummy classes for type hints
48
+ class nn:
49
+ class Module:
50
+ pass
51
+
52
+ class Parameter:
53
+ pass
54
+
55
+ DataLoader = Any
56
+
57
+
58
+ logger = get_logger(__name__)
59
+
60
+
61
+ def check_torch_and_cuda():
62
+ """Check if PyTorch and CUDA are available."""
63
+ if not TORCH_AVAILABLE:
64
+ raise ImportError(
65
+ "PyTorch is required for DARTS. " "Install with: pip install torch torchvision"
66
+ )
67
+
68
+ if not torch.cuda.is_available():
69
+ logger.warning(
70
+ "⚠️ CUDA not available. DARTS requires GPU for proper training. "
71
+ "Performance will be degraded on CPU."
72
+ )
73
+ return False
74
+
75
+ return True
76
+
77
+
78
+ class DARTSOptimizer:
79
+ """
80
+ Differentiable Architecture Search (DARTS) optimizer.
81
+
82
+ ⚠️ **REQUIRES GPU FOR VALIDATION** ⚠️
83
+
84
+ DARTS makes architecture search differentiable by:
85
+ 1. Continuous relaxation: Replace discrete choices with softmax
86
+ 2. Bi-level optimization: Optimize weights (w) and architecture (α)
87
+ 3. Gradient descent: Use backprop for both w and α
88
+
89
+ Architecture Representation:
90
+ - Each edge has mixed operations: output = Σ softmax(α_i) * op_i(input)
91
+ - α_i are learnable architecture parameters
92
+ - Final architecture: argmax(α_i) for each edge
93
+
94
+ Configuration:
95
+ learning_rate_w: Learning rate for weights (default: 0.025)
96
+ learning_rate_alpha: Learning rate for architecture (default: 3e-4)
97
+ momentum: Momentum for SGD (default: 0.9)
98
+ weight_decay: L2 regularization (default: 3e-4)
99
+ grad_clip: Gradient clipping value (default: 5.0)
100
+ num_nodes: Number of intermediate nodes (default: 4)
101
+ num_steps: Search steps (default: 50)
102
+
103
+ Example:
104
+ >>> # TODO [GPU Required]: Test on actual GPU
105
+ >>> optimizer = DARTSOptimizer(
106
+ ... search_space=space,
107
+ ... config={
108
+ ... 'learning_rate_w': 0.025,
109
+ ... 'learning_rate_alpha': 3e-4,
110
+ ... 'num_nodes': 4
111
+ ... }
112
+ ... )
113
+ >>> best = optimizer.search(train_loader, val_loader, num_epochs=50)
114
+ """
115
+
116
+ def __init__(self, search_space: SearchSpace, config: Optional[Dict[str, Any]] = None):
117
+ """
118
+ Initialize DARTS optimizer.
119
+
120
+ Args:
121
+ search_space: SearchSpace (currently unused, uses fixed search space)
122
+ config: Configuration dictionary
123
+ """
124
+ check_torch_and_cuda()
125
+
126
+ self.search_space = search_space
127
+ self.config = config or {}
128
+
129
+ # Hyperparameters
130
+ self.lr_w = self.config.get("learning_rate_w", 0.025)
131
+ self.lr_alpha = self.config.get("learning_rate_alpha", 3e-4)
132
+ self.momentum = self.config.get("momentum", 0.9)
133
+ self.weight_decay = self.config.get("weight_decay", 3e-4)
134
+ self.grad_clip = self.config.get("grad_clip", 5.0)
135
+
136
+ # Architecture
137
+ self.num_nodes = self.config.get("num_nodes", 4)
138
+ self.num_steps = self.config.get("num_steps", 50)
139
+
140
+ # Operations
141
+ self.operations = self._get_operation_set()
142
+
143
+ # TODO [GPU Required]: Initialize supernet
144
+ # self.supernet = self._build_supernet()
145
+ # self.supernet = self.supernet.cuda() if torch.cuda.is_available() else self.supernet
146
+
147
+ # TODO [GPU Required]: Initialize architecture parameters
148
+ # self.alphas = self._initialize_architecture_params()
149
+
150
+ # TODO [GPU Required]: Setup optimizers
151
+ # self._setup_optimizers()
152
+
153
+ self.step_count = 0
154
+ self.history = []
155
+
156
+ logger.info(
157
+ f"Initialized DARTS optimizer (num_nodes={self.num_nodes}, "
158
+ f"operations={len(self.operations)})"
159
+ )
160
+ logger.warning(
161
+ "⚠️ This is a template implementation. " "GPU validation required for production use."
162
+ )
163
+
164
+ def _get_operation_set(self) -> List[str]:
165
+ """
166
+ Define candidate operations for DARTS search space.
167
+
168
+ Returns:
169
+ List of operation names
170
+ """
171
+ return [
172
+ "none", # Zero operation (skip)
173
+ "skip_connect", # Identity
174
+ "max_pool_3x3",
175
+ "avg_pool_3x3",
176
+ "sep_conv_3x3",
177
+ "sep_conv_5x5",
178
+ "dil_conv_3x3",
179
+ "dil_conv_5x5",
180
+ ]
181
+
182
+ def _build_supernet(self):
183
+ """
184
+ Build DARTS supernet.
185
+
186
+ TODO [GPU Required]: Implement and test on GPU
187
+
188
+ Returns:
189
+ DARTSSupernet module
190
+ """
191
+ if not TORCH_AVAILABLE:
192
+ raise RuntimeError("PyTorch required")
193
+
194
+ # TODO: Implement DARTSSupernet
195
+ logger.debug("Building DARTS supernet...")
196
+
197
+ supernet = DARTSSupernet(
198
+ num_nodes=self.num_nodes,
199
+ operations=self.operations,
200
+ num_classes=self.config.get("num_classes", 10),
201
+ )
202
+
203
+ return supernet
204
+
205
+ def _initialize_architecture_params(self):
206
+ """
207
+ Initialize architecture parameters α.
208
+
209
+ TODO [GPU Required]: Initialize on GPU and test
210
+
211
+ Returns:
212
+ nn.ParameterList of α tensors
213
+ """
214
+ if not TORCH_AVAILABLE:
215
+ raise RuntimeError("PyTorch required")
216
+
217
+ logger.debug("Initializing architecture parameters...")
218
+
219
+ alphas = nn.ParameterList()
220
+ num_ops = len(self.operations)
221
+
222
+ for i in range(self.num_nodes):
223
+ # Number of input edges for node i
224
+ n_inputs = i + 2 # From input + previous nodes
225
+
226
+ # Initialize α randomly (small values)
227
+ alpha = nn.Parameter(torch.randn(n_inputs, num_ops) * 1e-3)
228
+ alphas.append(alpha)
229
+
230
+ return alphas
231
+
232
+ def _setup_optimizers(self):
233
+ """
234
+ Setup optimizers for weights and architecture.
235
+
236
+ TODO [GPU Required]: Validate on GPU
237
+ """
238
+ # Optimizer for weights (w)
239
+ self.optimizer_w = torch.optim.SGD(
240
+ self.supernet.parameters(),
241
+ lr=self.lr_w,
242
+ momentum=self.momentum,
243
+ weight_decay=self.weight_decay,
244
+ )
245
+
246
+ # Optimizer for architecture (α)
247
+ self.optimizer_alpha = torch.optim.Adam(
248
+ self.alphas, lr=self.lr_alpha, betas=(0.5, 0.999), weight_decay=1e-3
249
+ )
250
+
251
+ def train_step(self, train_loader: DataLoader, val_loader: DataLoader) -> Dict[str, float]:
252
+ """
253
+ Single DARTS training step with bi-level optimization.
254
+
255
+ TODO [GPU Required]: Test bi-level optimization on GPU
256
+
257
+ Algorithm:
258
+ 1. Update architecture α on validation set
259
+ 2. Update weights w on training set
260
+
261
+ Args:
262
+ train_loader: Training data loader
263
+ val_loader: Validation data loader
264
+
265
+ Returns:
266
+ Dictionary of metrics
267
+ """
268
+ logger.warning("TODO [GPU Required]: Implement and validate train_step")
269
+
270
+ # Placeholder implementation
271
+ return {"train_loss": 0.0, "val_loss": 0.0, "train_acc": 0.0, "val_acc": 0.0}
272
+
273
+ def derive_architecture(self) -> ModelGraph:
274
+ """
275
+ Derive discrete architecture from continuous α.
276
+
277
+ For each edge, select operation with highest α value.
278
+
279
+ Returns:
280
+ Derived ModelGraph
281
+ """
282
+ logger.info("Deriving discrete architecture from α...")
283
+
284
+ from morphml.core.graph import GraphEdge, GraphNode, ModelGraph
285
+
286
+ graph = ModelGraph()
287
+
288
+ # Check if we have trained alphas
289
+ if not hasattr(self, "alphas") or self.alphas is None:
290
+ logger.warning("No trained architecture parameters available")
291
+ # Return a simple default architecture
292
+ input_node = GraphNode.create("input", {"shape": (3, 32, 32)})
293
+ output_node = GraphNode.create("output", {"units": 10})
294
+ graph.add_node(input_node)
295
+ graph.add_node(output_node)
296
+ graph.add_edge(GraphEdge(input_node, output_node))
297
+ return graph
298
+
299
+ if not TORCH_AVAILABLE:
300
+ logger.error("PyTorch required for architecture derivation")
301
+ return graph
302
+
303
+ # Create nodes for the cell
304
+ nodes = []
305
+
306
+ # Input nodes
307
+ input_node = GraphNode.create("input", {"shape": (3, 32, 32)})
308
+ prev_node = GraphNode.create("conv2d", {"filters": 16, "kernel_size": 3})
309
+ graph.add_node(input_node)
310
+ graph.add_node(prev_node)
311
+ graph.add_edge(GraphEdge(input_node, prev_node))
312
+ nodes.append(prev_node)
313
+
314
+ # Intermediate nodes - select best operations based on alpha
315
+ for i in range(self.num_nodes):
316
+ # Create node for this position
317
+
318
+ # Get alpha for this node's input edges
319
+ if i < len(self.alphas):
320
+ alpha = self.alphas[i]
321
+
322
+ # Select best operation (argmax of alpha)
323
+ best_ops = []
324
+ for edge_idx in range(min(alpha.shape[0], len(nodes))):
325
+ op_probs = torch.softmax(alpha[edge_idx], dim=0)
326
+ best_op_idx = torch.argmax(op_probs).item()
327
+ best_op = self.operations[best_op_idx]
328
+
329
+ if best_op not in ["none", "zero"]:
330
+ best_ops.append((edge_idx, best_op))
331
+
332
+ # Create node with best operation
333
+ if best_ops:
334
+ _, op_name = best_ops[0] # Use first non-none operation
335
+ if "conv" in op_name:
336
+ new_node = GraphNode.create("conv2d", {"filters": 32, "kernel_size": 3})
337
+ elif "pool" in op_name:
338
+ new_node = GraphNode.create("maxpool", {"pool_size": 2})
339
+ else:
340
+ new_node = GraphNode.create("identity", {})
341
+ else:
342
+ new_node = GraphNode.create("identity", {})
343
+ else:
344
+ # Default operation
345
+ new_node = GraphNode.create("conv2d", {"filters": 32, "kernel_size": 3})
346
+
347
+ graph.add_node(new_node)
348
+ # Connect to previous node
349
+ if nodes:
350
+ graph.add_edge(GraphEdge(nodes[-1], new_node))
351
+ nodes.append(new_node)
352
+
353
+ # Output node
354
+ flatten_node = GraphNode.create("flatten", {})
355
+ output_node = GraphNode.create("dense", {"units": 10})
356
+
357
+ graph.add_node(flatten_node)
358
+ graph.add_node(output_node)
359
+
360
+ if nodes:
361
+ graph.add_edge(GraphEdge(nodes[-1], flatten_node))
362
+ graph.add_edge(GraphEdge(flatten_node, output_node))
363
+
364
+ logger.info(f"Derived architecture with {len(graph.nodes)} nodes")
365
+
366
+ return graph
367
+
368
+ def search(
369
+ self, train_loader: DataLoader, val_loader: DataLoader, num_epochs: int = 50
370
+ ) -> ModelGraph:
371
+ """
372
+ Execute DARTS architecture search.
373
+
374
+ TODO [GPU Required]: Full search pipeline needs GPU validation
375
+
376
+ Args:
377
+ train_loader: Training data
378
+ val_loader: Validation data
379
+ num_epochs: Number of search epochs
380
+
381
+ Returns:
382
+ Best architecture found
383
+
384
+ Example:
385
+ >>> # TODO [GPU Required]: Test on CIFAR-10
386
+ >>> best_arch = optimizer.search(train_loader, val_loader, num_epochs=50)
387
+ """
388
+ logger.info(f"Starting DARTS search for {num_epochs} epochs")
389
+ logger.warning(
390
+ "⚠️ TODO [GPU Required]: This method needs GPU validation. "
391
+ "Current implementation is a template."
392
+ )
393
+
394
+ # TODO: Implement full search loop
395
+
396
+ for epoch in range(num_epochs):
397
+ # Training step
398
+ metrics = self.train_step(train_loader, val_loader)
399
+
400
+ self.history.append({"epoch": epoch, **metrics})
401
+
402
+ if epoch % 10 == 0:
403
+ logger.info(
404
+ f"Epoch {epoch}: "
405
+ f"train_loss={metrics['train_loss']:.4f}, "
406
+ f"val_acc={metrics['val_acc']:.4f}"
407
+ )
408
+
409
+ # Derive final architecture
410
+ best_arch = self.derive_architecture()
411
+
412
+ logger.info("DARTS search complete")
413
+ return best_arch
414
+
415
+ def get_history(self) -> List[Dict]:
416
+ """Get search history."""
417
+ return self.history
418
+
419
+
420
+ class DARTSSupernet(nn.Module if TORCH_AVAILABLE else object):
421
+ """
422
+ DARTS supernet with mixed operations.
423
+
424
+ ⚠️ **GPU VALIDATION REQUIRED** ⚠️
425
+
426
+ Each edge computes: output = Σ softmax(α_i) * op_i(input)
427
+
428
+ TODO [GPU Required]:
429
+ - Test forward pass on GPU
430
+ - Validate mixed operation gradients
431
+ - Optimize memory usage
432
+ """
433
+
434
+ def __init__(self, num_nodes: int, operations: List[str], num_classes: int, channels: int = 16):
435
+ """
436
+ Initialize DARTS supernet.
437
+
438
+ Args:
439
+ num_nodes: Number of intermediate nodes
440
+ operations: List of candidate operations
441
+ num_classes: Number of output classes
442
+ channels: Base channel count
443
+ """
444
+ if TORCH_AVAILABLE:
445
+ super().__init__()
446
+
447
+ self.num_nodes = num_nodes
448
+ self.operations = operations
449
+
450
+ logger.warning("TODO [GPU Required]: DARTSSupernet needs GPU validation")
451
+
452
+ # TODO [GPU Required]: Implement supernet architecture
453
+ # - Stem convolution
454
+ # - Mixed operations for edges
455
+ # - Classifier head
456
+
457
+ def forward(self, x, alphas):
458
+ """
459
+ Forward pass through supernet.
460
+
461
+ TODO [GPU Required]: Validate on GPU
462
+
463
+ Args:
464
+ x: Input tensor
465
+ alphas: Architecture parameters
466
+
467
+ Returns:
468
+ Output logits
469
+ """
470
+ logger.warning("TODO [GPU Required]: Implement forward pass")
471
+ raise NotImplementedError("GPU validation required")
472
+
473
+
474
+ class MixedOp(nn.Module if TORCH_AVAILABLE else object):
475
+ """
476
+ Mixed operation: weighted sum of candidate operations.
477
+
478
+ ⚠️ **GPU VALIDATION REQUIRED** ⚠️
479
+
480
+ Computes: output = Σ softmax(α_i) * op_i(x)
481
+
482
+ TODO [GPU Required]:
483
+ - Test operation mixing on GPU
484
+ - Validate gradient flow
485
+ - Optimize computation
486
+ """
487
+
488
+ def __init__(self, channels: int, operations: List[str]):
489
+ """
490
+ Initialize mixed operation.
491
+
492
+ Args:
493
+ channels: Number of channels
494
+ operations: List of candidate operations
495
+ """
496
+ if TORCH_AVAILABLE:
497
+ super().__init__()
498
+
499
+ logger.warning("TODO [GPU Required]: MixedOp needs GPU validation")
500
+
501
+ # TODO [GPU Required]: Create operation modules
502
+
503
+ def forward(self, x, alpha):
504
+ """
505
+ Apply mixed operation.
506
+
507
+ TODO [GPU Required]: Validate on GPU
508
+
509
+ Args:
510
+ x: Input tensor
511
+ alpha: Architecture weights for this edge
512
+
513
+ Returns:
514
+ Weighted sum of operation outputs
515
+ """
516
+ logger.warning("TODO [GPU Required]: Implement mixed operation forward")
517
+ raise NotImplementedError("GPU validation required")
518
+
519
+
520
+ # Convenience function
521
+ def optimize_with_darts(
522
+ train_loader: DataLoader,
523
+ val_loader: DataLoader,
524
+ search_space: SearchSpace,
525
+ num_epochs: int = 50,
526
+ config: Optional[Dict] = None,
527
+ ) -> ModelGraph:
528
+ """
529
+ Quick DARTS optimization.
530
+
531
+ ⚠️ **GPU REQUIRED** ⚠️
532
+
533
+ TODO [GPU Required]: Validate entire pipeline on GPU
534
+
535
+ Args:
536
+ train_loader: Training data
537
+ val_loader: Validation data
538
+ search_space: SearchSpace
539
+ num_epochs: Search epochs
540
+ config: Optional configuration
541
+
542
+ Returns:
543
+ Best architecture
544
+
545
+ Example:
546
+ >>> # TODO [GPU Required]: Test on actual GPU
547
+ >>> best = optimize_with_darts(train_loader, val_loader, space)
548
+ """
549
+ optimizer = DARTSOptimizer(search_space, config)
550
+ return optimizer.search(train_loader, val_loader, num_epochs)