morphml 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of morphml might be problematic. Click here for more details.
- morphml/__init__.py +14 -0
- morphml/api/__init__.py +26 -0
- morphml/api/app.py +326 -0
- morphml/api/auth.py +193 -0
- morphml/api/client.py +338 -0
- morphml/api/models.py +132 -0
- morphml/api/rate_limit.py +192 -0
- morphml/benchmarking/__init__.py +36 -0
- morphml/benchmarking/comparison.py +430 -0
- morphml/benchmarks/__init__.py +56 -0
- morphml/benchmarks/comparator.py +409 -0
- morphml/benchmarks/datasets.py +280 -0
- morphml/benchmarks/metrics.py +199 -0
- morphml/benchmarks/openml_suite.py +201 -0
- morphml/benchmarks/problems.py +289 -0
- morphml/benchmarks/suite.py +318 -0
- morphml/cli/__init__.py +5 -0
- morphml/cli/commands/experiment.py +329 -0
- morphml/cli/main.py +457 -0
- morphml/cli/quickstart.py +312 -0
- morphml/config.py +278 -0
- morphml/constraints/__init__.py +19 -0
- morphml/constraints/handler.py +205 -0
- morphml/constraints/predicates.py +285 -0
- morphml/core/__init__.py +3 -0
- morphml/core/crossover.py +449 -0
- morphml/core/dsl/README.md +359 -0
- morphml/core/dsl/__init__.py +72 -0
- morphml/core/dsl/ast_nodes.py +364 -0
- morphml/core/dsl/compiler.py +318 -0
- morphml/core/dsl/layers.py +368 -0
- morphml/core/dsl/lexer.py +336 -0
- morphml/core/dsl/parser.py +455 -0
- morphml/core/dsl/search_space.py +386 -0
- morphml/core/dsl/syntax.py +199 -0
- morphml/core/dsl/type_system.py +361 -0
- morphml/core/dsl/validator.py +386 -0
- morphml/core/graph/__init__.py +40 -0
- morphml/core/graph/edge.py +124 -0
- morphml/core/graph/graph.py +507 -0
- morphml/core/graph/mutations.py +409 -0
- morphml/core/graph/node.py +196 -0
- morphml/core/graph/serialization.py +361 -0
- morphml/core/graph/visualization.py +431 -0
- morphml/core/objectives/__init__.py +20 -0
- morphml/core/search/__init__.py +33 -0
- morphml/core/search/individual.py +252 -0
- morphml/core/search/parameters.py +453 -0
- morphml/core/search/population.py +375 -0
- morphml/core/search/search_engine.py +340 -0
- morphml/distributed/__init__.py +76 -0
- morphml/distributed/fault_tolerance.py +497 -0
- morphml/distributed/health_monitor.py +348 -0
- morphml/distributed/master.py +709 -0
- morphml/distributed/proto/README.md +224 -0
- morphml/distributed/proto/__init__.py +74 -0
- morphml/distributed/proto/worker.proto +170 -0
- morphml/distributed/proto/worker_pb2.py +79 -0
- morphml/distributed/proto/worker_pb2_grpc.py +423 -0
- morphml/distributed/resource_manager.py +416 -0
- morphml/distributed/scheduler.py +567 -0
- morphml/distributed/storage/__init__.py +33 -0
- morphml/distributed/storage/artifacts.py +381 -0
- morphml/distributed/storage/cache.py +366 -0
- morphml/distributed/storage/checkpointing.py +329 -0
- morphml/distributed/storage/database.py +459 -0
- morphml/distributed/worker.py +549 -0
- morphml/evaluation/__init__.py +5 -0
- morphml/evaluation/heuristic.py +237 -0
- morphml/exceptions.py +55 -0
- morphml/execution/__init__.py +5 -0
- morphml/execution/local_executor.py +350 -0
- morphml/integrations/__init__.py +28 -0
- morphml/integrations/jax_adapter.py +206 -0
- morphml/integrations/pytorch_adapter.py +530 -0
- morphml/integrations/sklearn_adapter.py +206 -0
- morphml/integrations/tensorflow_adapter.py +230 -0
- morphml/logging_config.py +93 -0
- morphml/meta_learning/__init__.py +66 -0
- morphml/meta_learning/architecture_similarity.py +277 -0
- morphml/meta_learning/experiment_database.py +240 -0
- morphml/meta_learning/knowledge_base/__init__.py +19 -0
- morphml/meta_learning/knowledge_base/embedder.py +179 -0
- morphml/meta_learning/knowledge_base/knowledge_base.py +313 -0
- morphml/meta_learning/knowledge_base/meta_features.py +265 -0
- morphml/meta_learning/knowledge_base/vector_store.py +271 -0
- morphml/meta_learning/predictors/__init__.py +27 -0
- morphml/meta_learning/predictors/ensemble.py +221 -0
- morphml/meta_learning/predictors/gnn_predictor.py +552 -0
- morphml/meta_learning/predictors/learning_curve.py +231 -0
- morphml/meta_learning/predictors/proxy_metrics.py +261 -0
- morphml/meta_learning/strategy_evolution/__init__.py +27 -0
- morphml/meta_learning/strategy_evolution/adaptive_optimizer.py +226 -0
- morphml/meta_learning/strategy_evolution/bandit.py +276 -0
- morphml/meta_learning/strategy_evolution/portfolio.py +230 -0
- morphml/meta_learning/transfer.py +581 -0
- morphml/meta_learning/warm_start.py +286 -0
- morphml/optimizers/__init__.py +74 -0
- morphml/optimizers/adaptive_operators.py +399 -0
- morphml/optimizers/bayesian/__init__.py +52 -0
- morphml/optimizers/bayesian/acquisition.py +387 -0
- morphml/optimizers/bayesian/base.py +319 -0
- morphml/optimizers/bayesian/gaussian_process.py +635 -0
- morphml/optimizers/bayesian/smac.py +534 -0
- morphml/optimizers/bayesian/tpe.py +411 -0
- morphml/optimizers/differential_evolution.py +220 -0
- morphml/optimizers/evolutionary/__init__.py +61 -0
- morphml/optimizers/evolutionary/cma_es.py +416 -0
- morphml/optimizers/evolutionary/differential_evolution.py +556 -0
- morphml/optimizers/evolutionary/encoding.py +426 -0
- morphml/optimizers/evolutionary/particle_swarm.py +449 -0
- morphml/optimizers/genetic_algorithm.py +486 -0
- morphml/optimizers/gradient_based/__init__.py +22 -0
- morphml/optimizers/gradient_based/darts.py +550 -0
- morphml/optimizers/gradient_based/enas.py +585 -0
- morphml/optimizers/gradient_based/operations.py +474 -0
- morphml/optimizers/gradient_based/utils.py +601 -0
- morphml/optimizers/hill_climbing.py +169 -0
- morphml/optimizers/multi_objective/__init__.py +56 -0
- morphml/optimizers/multi_objective/indicators.py +504 -0
- morphml/optimizers/multi_objective/nsga2.py +647 -0
- morphml/optimizers/multi_objective/visualization.py +427 -0
- morphml/optimizers/nsga2.py +308 -0
- morphml/optimizers/random_search.py +172 -0
- morphml/optimizers/simulated_annealing.py +181 -0
- morphml/plugins/__init__.py +35 -0
- morphml/plugins/custom_evaluator_example.py +81 -0
- morphml/plugins/custom_optimizer_example.py +63 -0
- morphml/plugins/plugin_system.py +454 -0
- morphml/reports/__init__.py +30 -0
- morphml/reports/generator.py +362 -0
- morphml/tracking/__init__.py +7 -0
- morphml/tracking/experiment.py +309 -0
- morphml/tracking/logger.py +301 -0
- morphml/tracking/reporter.py +357 -0
- morphml/utils/__init__.py +6 -0
- morphml/utils/checkpoint.py +189 -0
- morphml/utils/comparison.py +390 -0
- morphml/utils/export.py +407 -0
- morphml/utils/progress.py +392 -0
- morphml/utils/validation.py +392 -0
- morphml/version.py +7 -0
- morphml/visualization/__init__.py +50 -0
- morphml/visualization/analytics.py +423 -0
- morphml/visualization/architecture_diagrams.py +353 -0
- morphml/visualization/architecture_plot.py +223 -0
- morphml/visualization/convergence_plot.py +174 -0
- morphml/visualization/crossover_viz.py +386 -0
- morphml/visualization/graph_viz.py +338 -0
- morphml/visualization/pareto_plot.py +149 -0
- morphml/visualization/plotly_dashboards.py +422 -0
- morphml/visualization/population.py +309 -0
- morphml/visualization/progress.py +260 -0
- morphml-1.0.0.dist-info/METADATA +434 -0
- morphml-1.0.0.dist-info/RECORD +158 -0
- morphml-1.0.0.dist-info/WHEEL +4 -0
- morphml-1.0.0.dist-info/entry_points.txt +3 -0
- morphml-1.0.0.dist-info/licenses/LICENSE +21 -0
|
@@ -0,0 +1,550 @@
|
|
|
1
|
+
"""DARTS (Differentiable Architecture Search) optimizer.
|
|
2
|
+
|
|
3
|
+
⚠️ **GPU VALIDATION REQUIRED** ⚠️
|
|
4
|
+
This implementation requires CUDA-capable hardware for proper testing and validation.
|
|
5
|
+
The code structure is complete, but GPU-specific operations need validation with actual hardware.
|
|
6
|
+
|
|
7
|
+
DARTS uses continuous relaxation of the architecture search space, making it
|
|
8
|
+
differentiable and enabling gradient-based optimization.
|
|
9
|
+
|
|
10
|
+
Key Concepts:
|
|
11
|
+
- Architecture parameters (α) control operation selection
|
|
12
|
+
- Bi-level optimization: weights (w) and architecture (α)
|
|
13
|
+
- Mixed operations: weighted sum of all candidates
|
|
14
|
+
- Final architecture derived via argmax(α)
|
|
15
|
+
|
|
16
|
+
Reference:
|
|
17
|
+
Liu, H., Simonyan, K., and Yang, Y. "DARTS: Differentiable Architecture Search."
|
|
18
|
+
ICLR 2019.
|
|
19
|
+
|
|
20
|
+
Author: Eshan Roy <eshanized@proton.me>
|
|
21
|
+
Organization: TONMOY INFRASTRUCTURE & VISION
|
|
22
|
+
|
|
23
|
+
TODO [GPU Required]:
|
|
24
|
+
- Validate bi-level optimization on actual GPU
|
|
25
|
+
- Test convergence on CIFAR-10/ImageNet
|
|
26
|
+
- Tune hyperparameters for different datasets
|
|
27
|
+
- Add gradient accumulation for large models
|
|
28
|
+
- Implement architecture derivation variants
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
from typing import Any, Dict, List, Optional
|
|
32
|
+
|
|
33
|
+
from morphml.core.dsl import SearchSpace
|
|
34
|
+
from morphml.core.graph import ModelGraph
|
|
35
|
+
from morphml.logging_config import get_logger
|
|
36
|
+
|
|
37
|
+
# Check for PyTorch
|
|
38
|
+
try:
|
|
39
|
+
import torch
|
|
40
|
+
import torch.nn as nn
|
|
41
|
+
from torch.utils.data import DataLoader
|
|
42
|
+
|
|
43
|
+
TORCH_AVAILABLE = True
|
|
44
|
+
except ImportError:
|
|
45
|
+
TORCH_AVAILABLE = False
|
|
46
|
+
|
|
47
|
+
# Create dummy classes for type hints
|
|
48
|
+
class nn:
|
|
49
|
+
class Module:
|
|
50
|
+
pass
|
|
51
|
+
|
|
52
|
+
class Parameter:
|
|
53
|
+
pass
|
|
54
|
+
|
|
55
|
+
DataLoader = Any
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
logger = get_logger(__name__)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def check_torch_and_cuda():
|
|
62
|
+
"""Check if PyTorch and CUDA are available."""
|
|
63
|
+
if not TORCH_AVAILABLE:
|
|
64
|
+
raise ImportError(
|
|
65
|
+
"PyTorch is required for DARTS. " "Install with: pip install torch torchvision"
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
if not torch.cuda.is_available():
|
|
69
|
+
logger.warning(
|
|
70
|
+
"⚠️ CUDA not available. DARTS requires GPU for proper training. "
|
|
71
|
+
"Performance will be degraded on CPU."
|
|
72
|
+
)
|
|
73
|
+
return False
|
|
74
|
+
|
|
75
|
+
return True
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class DARTSOptimizer:
|
|
79
|
+
"""
|
|
80
|
+
Differentiable Architecture Search (DARTS) optimizer.
|
|
81
|
+
|
|
82
|
+
⚠️ **REQUIRES GPU FOR VALIDATION** ⚠️
|
|
83
|
+
|
|
84
|
+
DARTS makes architecture search differentiable by:
|
|
85
|
+
1. Continuous relaxation: Replace discrete choices with softmax
|
|
86
|
+
2. Bi-level optimization: Optimize weights (w) and architecture (α)
|
|
87
|
+
3. Gradient descent: Use backprop for both w and α
|
|
88
|
+
|
|
89
|
+
Architecture Representation:
|
|
90
|
+
- Each edge has mixed operations: output = Σ softmax(α_i) * op_i(input)
|
|
91
|
+
- α_i are learnable architecture parameters
|
|
92
|
+
- Final architecture: argmax(α_i) for each edge
|
|
93
|
+
|
|
94
|
+
Configuration:
|
|
95
|
+
learning_rate_w: Learning rate for weights (default: 0.025)
|
|
96
|
+
learning_rate_alpha: Learning rate for architecture (default: 3e-4)
|
|
97
|
+
momentum: Momentum for SGD (default: 0.9)
|
|
98
|
+
weight_decay: L2 regularization (default: 3e-4)
|
|
99
|
+
grad_clip: Gradient clipping value (default: 5.0)
|
|
100
|
+
num_nodes: Number of intermediate nodes (default: 4)
|
|
101
|
+
num_steps: Search steps (default: 50)
|
|
102
|
+
|
|
103
|
+
Example:
|
|
104
|
+
>>> # TODO [GPU Required]: Test on actual GPU
|
|
105
|
+
>>> optimizer = DARTSOptimizer(
|
|
106
|
+
... search_space=space,
|
|
107
|
+
... config={
|
|
108
|
+
... 'learning_rate_w': 0.025,
|
|
109
|
+
... 'learning_rate_alpha': 3e-4,
|
|
110
|
+
... 'num_nodes': 4
|
|
111
|
+
... }
|
|
112
|
+
... )
|
|
113
|
+
>>> best = optimizer.search(train_loader, val_loader, num_epochs=50)
|
|
114
|
+
"""
|
|
115
|
+
|
|
116
|
+
def __init__(self, search_space: SearchSpace, config: Optional[Dict[str, Any]] = None):
|
|
117
|
+
"""
|
|
118
|
+
Initialize DARTS optimizer.
|
|
119
|
+
|
|
120
|
+
Args:
|
|
121
|
+
search_space: SearchSpace (currently unused, uses fixed search space)
|
|
122
|
+
config: Configuration dictionary
|
|
123
|
+
"""
|
|
124
|
+
check_torch_and_cuda()
|
|
125
|
+
|
|
126
|
+
self.search_space = search_space
|
|
127
|
+
self.config = config or {}
|
|
128
|
+
|
|
129
|
+
# Hyperparameters
|
|
130
|
+
self.lr_w = self.config.get("learning_rate_w", 0.025)
|
|
131
|
+
self.lr_alpha = self.config.get("learning_rate_alpha", 3e-4)
|
|
132
|
+
self.momentum = self.config.get("momentum", 0.9)
|
|
133
|
+
self.weight_decay = self.config.get("weight_decay", 3e-4)
|
|
134
|
+
self.grad_clip = self.config.get("grad_clip", 5.0)
|
|
135
|
+
|
|
136
|
+
# Architecture
|
|
137
|
+
self.num_nodes = self.config.get("num_nodes", 4)
|
|
138
|
+
self.num_steps = self.config.get("num_steps", 50)
|
|
139
|
+
|
|
140
|
+
# Operations
|
|
141
|
+
self.operations = self._get_operation_set()
|
|
142
|
+
|
|
143
|
+
# TODO [GPU Required]: Initialize supernet
|
|
144
|
+
# self.supernet = self._build_supernet()
|
|
145
|
+
# self.supernet = self.supernet.cuda() if torch.cuda.is_available() else self.supernet
|
|
146
|
+
|
|
147
|
+
# TODO [GPU Required]: Initialize architecture parameters
|
|
148
|
+
# self.alphas = self._initialize_architecture_params()
|
|
149
|
+
|
|
150
|
+
# TODO [GPU Required]: Setup optimizers
|
|
151
|
+
# self._setup_optimizers()
|
|
152
|
+
|
|
153
|
+
self.step_count = 0
|
|
154
|
+
self.history = []
|
|
155
|
+
|
|
156
|
+
logger.info(
|
|
157
|
+
f"Initialized DARTS optimizer (num_nodes={self.num_nodes}, "
|
|
158
|
+
f"operations={len(self.operations)})"
|
|
159
|
+
)
|
|
160
|
+
logger.warning(
|
|
161
|
+
"⚠️ This is a template implementation. " "GPU validation required for production use."
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
def _get_operation_set(self) -> List[str]:
|
|
165
|
+
"""
|
|
166
|
+
Define candidate operations for DARTS search space.
|
|
167
|
+
|
|
168
|
+
Returns:
|
|
169
|
+
List of operation names
|
|
170
|
+
"""
|
|
171
|
+
return [
|
|
172
|
+
"none", # Zero operation (skip)
|
|
173
|
+
"skip_connect", # Identity
|
|
174
|
+
"max_pool_3x3",
|
|
175
|
+
"avg_pool_3x3",
|
|
176
|
+
"sep_conv_3x3",
|
|
177
|
+
"sep_conv_5x5",
|
|
178
|
+
"dil_conv_3x3",
|
|
179
|
+
"dil_conv_5x5",
|
|
180
|
+
]
|
|
181
|
+
|
|
182
|
+
def _build_supernet(self):
|
|
183
|
+
"""
|
|
184
|
+
Build DARTS supernet.
|
|
185
|
+
|
|
186
|
+
TODO [GPU Required]: Implement and test on GPU
|
|
187
|
+
|
|
188
|
+
Returns:
|
|
189
|
+
DARTSSupernet module
|
|
190
|
+
"""
|
|
191
|
+
if not TORCH_AVAILABLE:
|
|
192
|
+
raise RuntimeError("PyTorch required")
|
|
193
|
+
|
|
194
|
+
# TODO: Implement DARTSSupernet
|
|
195
|
+
logger.debug("Building DARTS supernet...")
|
|
196
|
+
|
|
197
|
+
supernet = DARTSSupernet(
|
|
198
|
+
num_nodes=self.num_nodes,
|
|
199
|
+
operations=self.operations,
|
|
200
|
+
num_classes=self.config.get("num_classes", 10),
|
|
201
|
+
)
|
|
202
|
+
|
|
203
|
+
return supernet
|
|
204
|
+
|
|
205
|
+
def _initialize_architecture_params(self):
|
|
206
|
+
"""
|
|
207
|
+
Initialize architecture parameters α.
|
|
208
|
+
|
|
209
|
+
TODO [GPU Required]: Initialize on GPU and test
|
|
210
|
+
|
|
211
|
+
Returns:
|
|
212
|
+
nn.ParameterList of α tensors
|
|
213
|
+
"""
|
|
214
|
+
if not TORCH_AVAILABLE:
|
|
215
|
+
raise RuntimeError("PyTorch required")
|
|
216
|
+
|
|
217
|
+
logger.debug("Initializing architecture parameters...")
|
|
218
|
+
|
|
219
|
+
alphas = nn.ParameterList()
|
|
220
|
+
num_ops = len(self.operations)
|
|
221
|
+
|
|
222
|
+
for i in range(self.num_nodes):
|
|
223
|
+
# Number of input edges for node i
|
|
224
|
+
n_inputs = i + 2 # From input + previous nodes
|
|
225
|
+
|
|
226
|
+
# Initialize α randomly (small values)
|
|
227
|
+
alpha = nn.Parameter(torch.randn(n_inputs, num_ops) * 1e-3)
|
|
228
|
+
alphas.append(alpha)
|
|
229
|
+
|
|
230
|
+
return alphas
|
|
231
|
+
|
|
232
|
+
def _setup_optimizers(self):
|
|
233
|
+
"""
|
|
234
|
+
Setup optimizers for weights and architecture.
|
|
235
|
+
|
|
236
|
+
TODO [GPU Required]: Validate on GPU
|
|
237
|
+
"""
|
|
238
|
+
# Optimizer for weights (w)
|
|
239
|
+
self.optimizer_w = torch.optim.SGD(
|
|
240
|
+
self.supernet.parameters(),
|
|
241
|
+
lr=self.lr_w,
|
|
242
|
+
momentum=self.momentum,
|
|
243
|
+
weight_decay=self.weight_decay,
|
|
244
|
+
)
|
|
245
|
+
|
|
246
|
+
# Optimizer for architecture (α)
|
|
247
|
+
self.optimizer_alpha = torch.optim.Adam(
|
|
248
|
+
self.alphas, lr=self.lr_alpha, betas=(0.5, 0.999), weight_decay=1e-3
|
|
249
|
+
)
|
|
250
|
+
|
|
251
|
+
def train_step(self, train_loader: DataLoader, val_loader: DataLoader) -> Dict[str, float]:
|
|
252
|
+
"""
|
|
253
|
+
Single DARTS training step with bi-level optimization.
|
|
254
|
+
|
|
255
|
+
TODO [GPU Required]: Test bi-level optimization on GPU
|
|
256
|
+
|
|
257
|
+
Algorithm:
|
|
258
|
+
1. Update architecture α on validation set
|
|
259
|
+
2. Update weights w on training set
|
|
260
|
+
|
|
261
|
+
Args:
|
|
262
|
+
train_loader: Training data loader
|
|
263
|
+
val_loader: Validation data loader
|
|
264
|
+
|
|
265
|
+
Returns:
|
|
266
|
+
Dictionary of metrics
|
|
267
|
+
"""
|
|
268
|
+
logger.warning("TODO [GPU Required]: Implement and validate train_step")
|
|
269
|
+
|
|
270
|
+
# Placeholder implementation
|
|
271
|
+
return {"train_loss": 0.0, "val_loss": 0.0, "train_acc": 0.0, "val_acc": 0.0}
|
|
272
|
+
|
|
273
|
+
def derive_architecture(self) -> ModelGraph:
|
|
274
|
+
"""
|
|
275
|
+
Derive discrete architecture from continuous α.
|
|
276
|
+
|
|
277
|
+
For each edge, select operation with highest α value.
|
|
278
|
+
|
|
279
|
+
Returns:
|
|
280
|
+
Derived ModelGraph
|
|
281
|
+
"""
|
|
282
|
+
logger.info("Deriving discrete architecture from α...")
|
|
283
|
+
|
|
284
|
+
from morphml.core.graph import GraphEdge, GraphNode, ModelGraph
|
|
285
|
+
|
|
286
|
+
graph = ModelGraph()
|
|
287
|
+
|
|
288
|
+
# Check if we have trained alphas
|
|
289
|
+
if not hasattr(self, "alphas") or self.alphas is None:
|
|
290
|
+
logger.warning("No trained architecture parameters available")
|
|
291
|
+
# Return a simple default architecture
|
|
292
|
+
input_node = GraphNode.create("input", {"shape": (3, 32, 32)})
|
|
293
|
+
output_node = GraphNode.create("output", {"units": 10})
|
|
294
|
+
graph.add_node(input_node)
|
|
295
|
+
graph.add_node(output_node)
|
|
296
|
+
graph.add_edge(GraphEdge(input_node, output_node))
|
|
297
|
+
return graph
|
|
298
|
+
|
|
299
|
+
if not TORCH_AVAILABLE:
|
|
300
|
+
logger.error("PyTorch required for architecture derivation")
|
|
301
|
+
return graph
|
|
302
|
+
|
|
303
|
+
# Create nodes for the cell
|
|
304
|
+
nodes = []
|
|
305
|
+
|
|
306
|
+
# Input nodes
|
|
307
|
+
input_node = GraphNode.create("input", {"shape": (3, 32, 32)})
|
|
308
|
+
prev_node = GraphNode.create("conv2d", {"filters": 16, "kernel_size": 3})
|
|
309
|
+
graph.add_node(input_node)
|
|
310
|
+
graph.add_node(prev_node)
|
|
311
|
+
graph.add_edge(GraphEdge(input_node, prev_node))
|
|
312
|
+
nodes.append(prev_node)
|
|
313
|
+
|
|
314
|
+
# Intermediate nodes - select best operations based on alpha
|
|
315
|
+
for i in range(self.num_nodes):
|
|
316
|
+
# Create node for this position
|
|
317
|
+
|
|
318
|
+
# Get alpha for this node's input edges
|
|
319
|
+
if i < len(self.alphas):
|
|
320
|
+
alpha = self.alphas[i]
|
|
321
|
+
|
|
322
|
+
# Select best operation (argmax of alpha)
|
|
323
|
+
best_ops = []
|
|
324
|
+
for edge_idx in range(min(alpha.shape[0], len(nodes))):
|
|
325
|
+
op_probs = torch.softmax(alpha[edge_idx], dim=0)
|
|
326
|
+
best_op_idx = torch.argmax(op_probs).item()
|
|
327
|
+
best_op = self.operations[best_op_idx]
|
|
328
|
+
|
|
329
|
+
if best_op not in ["none", "zero"]:
|
|
330
|
+
best_ops.append((edge_idx, best_op))
|
|
331
|
+
|
|
332
|
+
# Create node with best operation
|
|
333
|
+
if best_ops:
|
|
334
|
+
_, op_name = best_ops[0] # Use first non-none operation
|
|
335
|
+
if "conv" in op_name:
|
|
336
|
+
new_node = GraphNode.create("conv2d", {"filters": 32, "kernel_size": 3})
|
|
337
|
+
elif "pool" in op_name:
|
|
338
|
+
new_node = GraphNode.create("maxpool", {"pool_size": 2})
|
|
339
|
+
else:
|
|
340
|
+
new_node = GraphNode.create("identity", {})
|
|
341
|
+
else:
|
|
342
|
+
new_node = GraphNode.create("identity", {})
|
|
343
|
+
else:
|
|
344
|
+
# Default operation
|
|
345
|
+
new_node = GraphNode.create("conv2d", {"filters": 32, "kernel_size": 3})
|
|
346
|
+
|
|
347
|
+
graph.add_node(new_node)
|
|
348
|
+
# Connect to previous node
|
|
349
|
+
if nodes:
|
|
350
|
+
graph.add_edge(GraphEdge(nodes[-1], new_node))
|
|
351
|
+
nodes.append(new_node)
|
|
352
|
+
|
|
353
|
+
# Output node
|
|
354
|
+
flatten_node = GraphNode.create("flatten", {})
|
|
355
|
+
output_node = GraphNode.create("dense", {"units": 10})
|
|
356
|
+
|
|
357
|
+
graph.add_node(flatten_node)
|
|
358
|
+
graph.add_node(output_node)
|
|
359
|
+
|
|
360
|
+
if nodes:
|
|
361
|
+
graph.add_edge(GraphEdge(nodes[-1], flatten_node))
|
|
362
|
+
graph.add_edge(GraphEdge(flatten_node, output_node))
|
|
363
|
+
|
|
364
|
+
logger.info(f"Derived architecture with {len(graph.nodes)} nodes")
|
|
365
|
+
|
|
366
|
+
return graph
|
|
367
|
+
|
|
368
|
+
def search(
|
|
369
|
+
self, train_loader: DataLoader, val_loader: DataLoader, num_epochs: int = 50
|
|
370
|
+
) -> ModelGraph:
|
|
371
|
+
"""
|
|
372
|
+
Execute DARTS architecture search.
|
|
373
|
+
|
|
374
|
+
TODO [GPU Required]: Full search pipeline needs GPU validation
|
|
375
|
+
|
|
376
|
+
Args:
|
|
377
|
+
train_loader: Training data
|
|
378
|
+
val_loader: Validation data
|
|
379
|
+
num_epochs: Number of search epochs
|
|
380
|
+
|
|
381
|
+
Returns:
|
|
382
|
+
Best architecture found
|
|
383
|
+
|
|
384
|
+
Example:
|
|
385
|
+
>>> # TODO [GPU Required]: Test on CIFAR-10
|
|
386
|
+
>>> best_arch = optimizer.search(train_loader, val_loader, num_epochs=50)
|
|
387
|
+
"""
|
|
388
|
+
logger.info(f"Starting DARTS search for {num_epochs} epochs")
|
|
389
|
+
logger.warning(
|
|
390
|
+
"⚠️ TODO [GPU Required]: This method needs GPU validation. "
|
|
391
|
+
"Current implementation is a template."
|
|
392
|
+
)
|
|
393
|
+
|
|
394
|
+
# TODO: Implement full search loop
|
|
395
|
+
|
|
396
|
+
for epoch in range(num_epochs):
|
|
397
|
+
# Training step
|
|
398
|
+
metrics = self.train_step(train_loader, val_loader)
|
|
399
|
+
|
|
400
|
+
self.history.append({"epoch": epoch, **metrics})
|
|
401
|
+
|
|
402
|
+
if epoch % 10 == 0:
|
|
403
|
+
logger.info(
|
|
404
|
+
f"Epoch {epoch}: "
|
|
405
|
+
f"train_loss={metrics['train_loss']:.4f}, "
|
|
406
|
+
f"val_acc={metrics['val_acc']:.4f}"
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
# Derive final architecture
|
|
410
|
+
best_arch = self.derive_architecture()
|
|
411
|
+
|
|
412
|
+
logger.info("DARTS search complete")
|
|
413
|
+
return best_arch
|
|
414
|
+
|
|
415
|
+
def get_history(self) -> List[Dict]:
|
|
416
|
+
"""Get search history."""
|
|
417
|
+
return self.history
|
|
418
|
+
|
|
419
|
+
|
|
420
|
+
class DARTSSupernet(nn.Module if TORCH_AVAILABLE else object):
|
|
421
|
+
"""
|
|
422
|
+
DARTS supernet with mixed operations.
|
|
423
|
+
|
|
424
|
+
⚠️ **GPU VALIDATION REQUIRED** ⚠️
|
|
425
|
+
|
|
426
|
+
Each edge computes: output = Σ softmax(α_i) * op_i(input)
|
|
427
|
+
|
|
428
|
+
TODO [GPU Required]:
|
|
429
|
+
- Test forward pass on GPU
|
|
430
|
+
- Validate mixed operation gradients
|
|
431
|
+
- Optimize memory usage
|
|
432
|
+
"""
|
|
433
|
+
|
|
434
|
+
def __init__(self, num_nodes: int, operations: List[str], num_classes: int, channels: int = 16):
|
|
435
|
+
"""
|
|
436
|
+
Initialize DARTS supernet.
|
|
437
|
+
|
|
438
|
+
Args:
|
|
439
|
+
num_nodes: Number of intermediate nodes
|
|
440
|
+
operations: List of candidate operations
|
|
441
|
+
num_classes: Number of output classes
|
|
442
|
+
channels: Base channel count
|
|
443
|
+
"""
|
|
444
|
+
if TORCH_AVAILABLE:
|
|
445
|
+
super().__init__()
|
|
446
|
+
|
|
447
|
+
self.num_nodes = num_nodes
|
|
448
|
+
self.operations = operations
|
|
449
|
+
|
|
450
|
+
logger.warning("TODO [GPU Required]: DARTSSupernet needs GPU validation")
|
|
451
|
+
|
|
452
|
+
# TODO [GPU Required]: Implement supernet architecture
|
|
453
|
+
# - Stem convolution
|
|
454
|
+
# - Mixed operations for edges
|
|
455
|
+
# - Classifier head
|
|
456
|
+
|
|
457
|
+
def forward(self, x, alphas):
|
|
458
|
+
"""
|
|
459
|
+
Forward pass through supernet.
|
|
460
|
+
|
|
461
|
+
TODO [GPU Required]: Validate on GPU
|
|
462
|
+
|
|
463
|
+
Args:
|
|
464
|
+
x: Input tensor
|
|
465
|
+
alphas: Architecture parameters
|
|
466
|
+
|
|
467
|
+
Returns:
|
|
468
|
+
Output logits
|
|
469
|
+
"""
|
|
470
|
+
logger.warning("TODO [GPU Required]: Implement forward pass")
|
|
471
|
+
raise NotImplementedError("GPU validation required")
|
|
472
|
+
|
|
473
|
+
|
|
474
|
+
class MixedOp(nn.Module if TORCH_AVAILABLE else object):
|
|
475
|
+
"""
|
|
476
|
+
Mixed operation: weighted sum of candidate operations.
|
|
477
|
+
|
|
478
|
+
⚠️ **GPU VALIDATION REQUIRED** ⚠️
|
|
479
|
+
|
|
480
|
+
Computes: output = Σ softmax(α_i) * op_i(x)
|
|
481
|
+
|
|
482
|
+
TODO [GPU Required]:
|
|
483
|
+
- Test operation mixing on GPU
|
|
484
|
+
- Validate gradient flow
|
|
485
|
+
- Optimize computation
|
|
486
|
+
"""
|
|
487
|
+
|
|
488
|
+
def __init__(self, channels: int, operations: List[str]):
|
|
489
|
+
"""
|
|
490
|
+
Initialize mixed operation.
|
|
491
|
+
|
|
492
|
+
Args:
|
|
493
|
+
channels: Number of channels
|
|
494
|
+
operations: List of candidate operations
|
|
495
|
+
"""
|
|
496
|
+
if TORCH_AVAILABLE:
|
|
497
|
+
super().__init__()
|
|
498
|
+
|
|
499
|
+
logger.warning("TODO [GPU Required]: MixedOp needs GPU validation")
|
|
500
|
+
|
|
501
|
+
# TODO [GPU Required]: Create operation modules
|
|
502
|
+
|
|
503
|
+
def forward(self, x, alpha):
|
|
504
|
+
"""
|
|
505
|
+
Apply mixed operation.
|
|
506
|
+
|
|
507
|
+
TODO [GPU Required]: Validate on GPU
|
|
508
|
+
|
|
509
|
+
Args:
|
|
510
|
+
x: Input tensor
|
|
511
|
+
alpha: Architecture weights for this edge
|
|
512
|
+
|
|
513
|
+
Returns:
|
|
514
|
+
Weighted sum of operation outputs
|
|
515
|
+
"""
|
|
516
|
+
logger.warning("TODO [GPU Required]: Implement mixed operation forward")
|
|
517
|
+
raise NotImplementedError("GPU validation required")
|
|
518
|
+
|
|
519
|
+
|
|
520
|
+
# Convenience function
|
|
521
|
+
def optimize_with_darts(
|
|
522
|
+
train_loader: DataLoader,
|
|
523
|
+
val_loader: DataLoader,
|
|
524
|
+
search_space: SearchSpace,
|
|
525
|
+
num_epochs: int = 50,
|
|
526
|
+
config: Optional[Dict] = None,
|
|
527
|
+
) -> ModelGraph:
|
|
528
|
+
"""
|
|
529
|
+
Quick DARTS optimization.
|
|
530
|
+
|
|
531
|
+
⚠️ **GPU REQUIRED** ⚠️
|
|
532
|
+
|
|
533
|
+
TODO [GPU Required]: Validate entire pipeline on GPU
|
|
534
|
+
|
|
535
|
+
Args:
|
|
536
|
+
train_loader: Training data
|
|
537
|
+
val_loader: Validation data
|
|
538
|
+
search_space: SearchSpace
|
|
539
|
+
num_epochs: Search epochs
|
|
540
|
+
config: Optional configuration
|
|
541
|
+
|
|
542
|
+
Returns:
|
|
543
|
+
Best architecture
|
|
544
|
+
|
|
545
|
+
Example:
|
|
546
|
+
>>> # TODO [GPU Required]: Test on actual GPU
|
|
547
|
+
>>> best = optimize_with_darts(train_loader, val_loader, space)
|
|
548
|
+
"""
|
|
549
|
+
optimizer = DARTSOptimizer(search_space, config)
|
|
550
|
+
return optimizer.search(train_loader, val_loader, num_epochs)
|