mns-common 1.5.1.8__py3-none-any.whl → 1.5.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mns-common might be problematic. Click here for more details.
- mns_common/api/em/real_time/__init__.py +7 -0
- mns_common/api/em/real_time/concept/__init__.py +7 -0
- mns_common/api/em/real_time/concept/em_concept_index_api.py +230 -0
- mns_common/api/em/real_time/gd/__init__.py +7 -0
- mns_common/api/em/real_time/gd/east_money_stock_gdfx_free_top_10_api.py +252 -0
- mns_common/api/em/real_time/real_time/__init__.py +7 -0
- mns_common/api/em/real_time/real_time/east_money_debt_api.py +422 -0
- mns_common/api/em/real_time/real_time/east_money_etf_api.py +504 -0
- mns_common/api/em/real_time/real_time/east_money_stock_a_api.py +305 -0
- mns_common/api/em/real_time/real_time/east_money_stock_a_v2_api.py +296 -0
- mns_common/api/em/real_time/real_time/east_money_stock_hk_api.py +469 -0
- mns_common/api/em/real_time/real_time/east_money_stock_us_api.py +234 -0
- mns_common/api/em/real_time/real_time/real_time_quotes_repeat_api.py +359 -0
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/METADATA +1 -1
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/RECORD +17 -4
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/WHEEL +0 -0
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 16
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
9
|
+
import pandas as pd
|
|
10
|
+
from loguru import logger
|
|
11
|
+
import requests
|
|
12
|
+
import time
|
|
13
|
+
|
|
14
|
+
# 最大返回条数
|
|
15
|
+
max_number = 12000
|
|
16
|
+
# 最小返回条数
|
|
17
|
+
min_number = 11000
|
|
18
|
+
# 分页条数
|
|
19
|
+
page_number = 100
|
|
20
|
+
|
|
21
|
+
fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f13,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
|
|
22
|
+
"f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212")
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def us_real_time_quotes_page_df(cookie, pn, proxies):
|
|
26
|
+
try:
|
|
27
|
+
headers = {
|
|
28
|
+
'Cookie': cookie
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
current_timestamp = str(int(round(time.time() * 1000, 0)))
|
|
32
|
+
|
|
33
|
+
url = "https://72.push2.eastmoney.com/api/qt/clist/get"
|
|
34
|
+
params = {
|
|
35
|
+
"pn": str(pn),
|
|
36
|
+
"pz": "50000",
|
|
37
|
+
"po": "1",
|
|
38
|
+
"np": "2",
|
|
39
|
+
"ut": "bd1d9ddb04089700cf9c27f6f7426281",
|
|
40
|
+
"fltt": "2",
|
|
41
|
+
"invt": "2",
|
|
42
|
+
"fid": "f12",
|
|
43
|
+
"fs": "m:105,m:106,m:107",
|
|
44
|
+
"fields": fields,
|
|
45
|
+
"_": str(current_timestamp),
|
|
46
|
+
}
|
|
47
|
+
if proxies is None:
|
|
48
|
+
r = requests.get(url, params=params, headers=headers)
|
|
49
|
+
else:
|
|
50
|
+
r = requests.get(url, params=params, headers=headers, proxies=proxies)
|
|
51
|
+
data_json = r.json()
|
|
52
|
+
if pn == 1:
|
|
53
|
+
try:
|
|
54
|
+
global max_number
|
|
55
|
+
max_number = int(data_json['data']['total'])
|
|
56
|
+
except Exception as e:
|
|
57
|
+
logger.error(f"获取第{pn}页美股列表异常: {e}")
|
|
58
|
+
return pd.DataFrame()
|
|
59
|
+
|
|
60
|
+
if not data_json["data"]["diff"]:
|
|
61
|
+
return pd.DataFrame()
|
|
62
|
+
temp_df = pd.DataFrame(data_json["data"]["diff"]).T
|
|
63
|
+
|
|
64
|
+
return temp_df
|
|
65
|
+
except Exception as e:
|
|
66
|
+
logger.error("获取美股实时行情异常:{}", e)
|
|
67
|
+
return pd.DataFrame()
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def thread_pool_executor(cookie, proxies):
|
|
71
|
+
"""
|
|
72
|
+
使用多线程获取所有美股数据
|
|
73
|
+
"""
|
|
74
|
+
# 计算总页数,假设总共有1000条数据,每页200条
|
|
75
|
+
|
|
76
|
+
per_page = page_number
|
|
77
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
78
|
+
|
|
79
|
+
# 创建线程池
|
|
80
|
+
with ThreadPoolExecutor(max_workers=3) as executor:
|
|
81
|
+
# 提交任务,获取每页数据
|
|
82
|
+
futures = [executor.submit(us_real_time_quotes_page_df, cookie, pn, proxies)
|
|
83
|
+
for pn in range(1, total_pages + 1)]
|
|
84
|
+
|
|
85
|
+
# 收集结果
|
|
86
|
+
results = []
|
|
87
|
+
for future in futures:
|
|
88
|
+
result = future.result()
|
|
89
|
+
if not result.empty:
|
|
90
|
+
results.append(result)
|
|
91
|
+
|
|
92
|
+
# 合并所有页面的数据
|
|
93
|
+
if results:
|
|
94
|
+
return pd.concat(results, ignore_index=True)
|
|
95
|
+
else:
|
|
96
|
+
return pd.DataFrame()
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
def get_us_stock_real_time_quotes(cookie, proxies):
|
|
100
|
+
# 获取第一页数据
|
|
101
|
+
page_one_df = us_real_time_quotes_page_df(cookie, 1, proxies)
|
|
102
|
+
# 数据接口正常返回5600以上的数量
|
|
103
|
+
if page_one_df.shape[0] > min_number:
|
|
104
|
+
page_one_df = rename_us_stock(page_one_df)
|
|
105
|
+
page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
106
|
+
return page_one_df
|
|
107
|
+
else:
|
|
108
|
+
page_df = thread_pool_executor(cookie, proxies)
|
|
109
|
+
page_df = rename_us_stock(page_df)
|
|
110
|
+
page_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
111
|
+
return page_df
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def rename_us_stock(temp_df):
|
|
115
|
+
temp_df = temp_df.rename(columns={
|
|
116
|
+
|
|
117
|
+
"f12": "symbol",
|
|
118
|
+
"f14": "name",
|
|
119
|
+
"f3": "chg",
|
|
120
|
+
"f2": "now_price",
|
|
121
|
+
"f5": "volume",
|
|
122
|
+
"f6": "amount",
|
|
123
|
+
"f8": "exchange",
|
|
124
|
+
"f10": "quantity_ratio",
|
|
125
|
+
"f22": "up_speed",
|
|
126
|
+
"f11": "up_speed_05",
|
|
127
|
+
"f13": "simple_symbol",
|
|
128
|
+
"f15": "high",
|
|
129
|
+
"f16": "low",
|
|
130
|
+
"f17": "open",
|
|
131
|
+
"f18": "yesterday_price",
|
|
132
|
+
"f20": "total_mv",
|
|
133
|
+
"f21": "flow_mv",
|
|
134
|
+
"f26": "list_date",
|
|
135
|
+
"f33": "wei_bi",
|
|
136
|
+
"f34": "outer_disk",
|
|
137
|
+
"f35": "inner_disk",
|
|
138
|
+
"f62": "today_main_net_inflow",
|
|
139
|
+
"f66": "super_large_order_net_inflow",
|
|
140
|
+
"f69": "super_large_order_net_inflow_ratio",
|
|
141
|
+
"f72": "large_order_net_inflow",
|
|
142
|
+
# "f78": "medium_order_net_inflow",
|
|
143
|
+
# "f84": "small_order_net_inflow",
|
|
144
|
+
"f100": "industry",
|
|
145
|
+
# "f103": "concept",
|
|
146
|
+
"f184": "today_main_net_inflow_ratio",
|
|
147
|
+
"f352": "average_price",
|
|
148
|
+
"f211": "buy_1_num",
|
|
149
|
+
"f212": "sell_1_num"
|
|
150
|
+
})
|
|
151
|
+
temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
|
|
152
|
+
temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
|
|
153
|
+
temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
|
|
154
|
+
temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
|
|
155
|
+
temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
|
|
156
|
+
temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
|
|
157
|
+
temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
|
|
158
|
+
temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
|
|
159
|
+
temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
|
|
160
|
+
temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
|
|
161
|
+
temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
|
|
162
|
+
temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
|
|
163
|
+
temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
|
|
164
|
+
temp_df.loc[temp_df['high'] == '-', 'high'] = 0
|
|
165
|
+
temp_df.loc[temp_df['low'] == '-', 'low'] = 0
|
|
166
|
+
temp_df.loc[temp_df['open'] == '-', 'open'] = 0
|
|
167
|
+
temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
|
|
168
|
+
temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
|
|
169
|
+
temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
|
|
170
|
+
temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
|
|
171
|
+
temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
|
|
172
|
+
temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
|
|
173
|
+
temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
|
|
174
|
+
temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
|
|
175
|
+
temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
|
|
176
|
+
# temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
|
|
177
|
+
# temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
|
|
178
|
+
|
|
179
|
+
temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
|
|
180
|
+
temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
|
|
181
|
+
temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
|
|
182
|
+
temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
|
|
183
|
+
temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
|
|
184
|
+
temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
|
|
185
|
+
temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
|
|
186
|
+
temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
|
|
187
|
+
temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
|
|
188
|
+
temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
|
|
189
|
+
temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
|
|
190
|
+
temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
|
|
191
|
+
temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
|
|
192
|
+
temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
|
|
193
|
+
temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
|
|
194
|
+
temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
|
|
195
|
+
temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
|
|
196
|
+
temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
|
|
197
|
+
temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
|
|
198
|
+
errors="coerce")
|
|
199
|
+
temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
|
|
200
|
+
errors="coerce")
|
|
201
|
+
temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
|
|
202
|
+
errors="coerce")
|
|
203
|
+
# temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
|
|
204
|
+
# errors="coerce")
|
|
205
|
+
# temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
|
|
206
|
+
|
|
207
|
+
# 大单比例
|
|
208
|
+
temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
|
|
209
|
+
2)
|
|
210
|
+
|
|
211
|
+
# 外盘是内盘倍数
|
|
212
|
+
temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
|
|
213
|
+
# 只有外盘没有内盘
|
|
214
|
+
temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
|
|
215
|
+
temp_df['disk_diff_amount'] = round(
|
|
216
|
+
(temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
|
|
217
|
+
"average_price"],
|
|
218
|
+
2)
|
|
219
|
+
return temp_df
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
if __name__ == '__main__':
|
|
223
|
+
cookie_test = 'qgqp_b_id=1e0d79428176ed54bef8434efdc0e8c3; mtp=1; ct=QVRY_s8Tiag1WfK2tSW2n03qpsX-PD8aH_rIjKVooawX8K33UVnpIofK088lD1lguWlE_OEIpQwn3PJWFPhHvSvyvYr4Zka3l4vxtZfH1Uikjtyy9z1H4Swo0rQzMKXncVzBXiOo5TjE-Dy9fcoG3ZF7UVdQ35jp_cFwzOlpK5Y; ut=FobyicMgeV51lVMr4ZJXvn-72bp0oeSOvtzifFY_U7kBFtR6og4Usd-VtBM5XBBvHq0lvd9xXkvpIqWro9EDKmv6cbKOQGyawUSMcKVP57isZCaM7lWQ6jWXajvTfvV4mIR-W_MZNK8VY0lL9W4qNMniJ6PBn_gkJsSAJCadmsyI9cxmjx--gR4m54pdF_nie_y4iWHys83cmWR2R7Bt1KKqB25OmkfCQTJJqIf7QsqangVGMUHwMC39Z9QhrfCFHKVNrlqS503O6b9GitQnXtvUdJhCmomu; pi=4253366368931142%3Bp4253366368931142%3B%E8%82%A1%E5%8F%8B9x56I87727%3BYNigLZRW%2FzMdGgVDOJbwReDWnTPHl51dB0gQLiwaCf1XY98mlJYx6eJbsoYr5Nie%2BX1L%2BzaMsec99KkX%2BT29Ds1arfST7sIBXxjUQ3dp11IPUnXy64PaBFRTHzMRWnCFJvvhc%2FAI41rXSGXolC8YMxI%2BvyPS%2BuErwgOVjC5vvsIiKeO7TLyKkhqqQJPX%2F7RWC5Sf3QLh%3Bdwjn4Xho10%2FKjqOgTWs%2FJF4%2FkdKzeuBwM8sz9aLvJovejAkCAyGMyGYA6AE67Xk2Ki7x8zdfBifF2DG%2Fvf2%2BXAYN8ZVISSEWTIXh32Z5MxEacK4JBTkqyiD93e1vFBOFQ82BqaiVmntUq0V6FrTUHGeh1gG5Sg%3D%3D; uidal=4253366368931142%e8%82%a1%e5%8f%8b9x56I87727; sid=170711377; vtpst=|; quote_lt=1; websitepoptg_api_time=1715777390466; emshistory=%5B%22%E8%BD%AC%E5%80%BA%E6%A0%87%22%2C%22%E8%BD%AC%E5%80%BA%E6%A0%87%E7%9A%84%22%5D; st_si=00364513876913; st_asi=delete; HAList=ty-116-00700-%u817E%u8BAF%u63A7%u80A1%2Cty-1-688695-%u4E2D%u521B%u80A1%u4EFD%2Cty-1-600849-%u4E0A%u836F%u8F6C%u6362%2Cty-1-603361-%u6D59%u6C5F%u56FD%u7965%2Cty-1-603555-ST%u8D35%u4EBA%2Cty-0-000627-%u5929%u8302%u96C6%u56E2%2Cty-0-002470-%u91D1%u6B63%u5927%2Cty-0-832876-%u6167%u4E3A%u667A%u80FD%2Cty-0-300059-%u4E1C%u65B9%u8D22%u5BCC%2Cty-107-CWB-%u53EF%u8F6C%u503AETF-SPDR; st_pvi=26930719093675; st_sp=2024-04-28%2017%3A27%3A05; st_inirUrl=https%3A%2F%2Fcn.bing.com%2F; st_sn=23; st_psi=20240517111108288-113200301321-2767127768'
|
|
224
|
+
while True:
|
|
225
|
+
us_df = get_us_stock_real_time_quotes(cookie_test, None)
|
|
226
|
+
us_df = us_df.loc[us_df['flow_mv'] != 0]
|
|
227
|
+
us_df = us_df.sort_values(by=['amount'], ascending=False)
|
|
228
|
+
us_stock_df = us_df[[
|
|
229
|
+
"symbol",
|
|
230
|
+
"name",
|
|
231
|
+
"chg",
|
|
232
|
+
"amount"
|
|
233
|
+
]]
|
|
234
|
+
logger.info('test')
|
|
@@ -0,0 +1,359 @@
|
|
|
1
|
+
import requests
|
|
2
|
+
|
|
3
|
+
import mns_common.utils.data_frame_util as data_frame_util
|
|
4
|
+
import json
|
|
5
|
+
import datetime
|
|
6
|
+
|
|
7
|
+
import threading
|
|
8
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
9
|
+
import mns_common.component.proxies.proxy_common_api as proxy_common_api
|
|
10
|
+
from loguru import logger
|
|
11
|
+
import concurrent.futures
|
|
12
|
+
import pandas as pd
|
|
13
|
+
import time
|
|
14
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
15
|
+
from threading import Lock
|
|
16
|
+
|
|
17
|
+
fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,"
|
|
18
|
+
"f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212"),
|
|
19
|
+
fs = "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048"
|
|
20
|
+
|
|
21
|
+
# 分页条数
|
|
22
|
+
PAGE_SIZE = 100
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_stock_page_data_time_out(pn, proxies, page_size, time_out):
|
|
26
|
+
"""
|
|
27
|
+
获取单页股票数据
|
|
28
|
+
"""
|
|
29
|
+
# 获取当前日期和时间
|
|
30
|
+
current_time = datetime.datetime.now()
|
|
31
|
+
|
|
32
|
+
# 将当前时间转换为时间戳(以毫秒为单位)
|
|
33
|
+
current_timestamp_ms = int(current_time.timestamp() * 1000)
|
|
34
|
+
|
|
35
|
+
url = "https://33.push2.eastmoney.com/api/qt/clist/get"
|
|
36
|
+
params = {
|
|
37
|
+
"cb": "jQuery1124046660442520420653_" + str(current_timestamp_ms),
|
|
38
|
+
"pn": str(pn),
|
|
39
|
+
"pz": str(page_size), # 每页最大200条
|
|
40
|
+
"po": "0",
|
|
41
|
+
"np": "3",
|
|
42
|
+
"ut": "bd1d9ddb04089700cf9c27f6f7426281",
|
|
43
|
+
"fltt": "2",
|
|
44
|
+
"invt": "2",
|
|
45
|
+
"wbp2u": "|0|0|0|web",
|
|
46
|
+
"fid": "f12",
|
|
47
|
+
"fs": fs,
|
|
48
|
+
"fields": fields,
|
|
49
|
+
"_": current_timestamp_ms
|
|
50
|
+
}
|
|
51
|
+
try:
|
|
52
|
+
if proxies is None:
|
|
53
|
+
r = requests.get(url, params, timeout=time_out)
|
|
54
|
+
else:
|
|
55
|
+
r = requests.get(url, params, proxies=proxies, timeout=time_out)
|
|
56
|
+
|
|
57
|
+
data_text = r.text
|
|
58
|
+
if pn == 1:
|
|
59
|
+
try:
|
|
60
|
+
begin_index_total = data_text.index('"total":')
|
|
61
|
+
|
|
62
|
+
end_index_total = data_text.index('"diff"')
|
|
63
|
+
global max_number
|
|
64
|
+
max_number = int(data_text[begin_index_total + 8:end_index_total - 1])
|
|
65
|
+
except Exception as e:
|
|
66
|
+
logger.error("获取第{}页股票列表异常:{}", pn, str(e))
|
|
67
|
+
return pd.DataFrame()
|
|
68
|
+
|
|
69
|
+
begin_index = data_text.index('[')
|
|
70
|
+
end_index = data_text.index(']')
|
|
71
|
+
data_json = data_text[begin_index:end_index + 1]
|
|
72
|
+
data_json = json.loads(data_json)
|
|
73
|
+
if data_json is None:
|
|
74
|
+
return pd.DataFrame()
|
|
75
|
+
else:
|
|
76
|
+
result_df = pd.DataFrame(data_json)
|
|
77
|
+
result_df['page_number'] = pn
|
|
78
|
+
return result_df
|
|
79
|
+
except Exception as e:
|
|
80
|
+
logger.error("获取第{}页股票列表异常:{}", pn, str(e))
|
|
81
|
+
return pd.DataFrame()
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def repeated_acquisition_ask(per_page, max_number, time_out, max_workers=5):
|
|
85
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
86
|
+
result_df = pd.DataFrame()
|
|
87
|
+
df_lock = Lock() # 线程安全的DataFrame合并锁
|
|
88
|
+
|
|
89
|
+
def fetch_pages(page_nums):
|
|
90
|
+
"""单个线程处理一组页面,复用代理IP直到失效"""
|
|
91
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
92
|
+
proxies = {"https": proxy_ip, "http": proxy_ip}
|
|
93
|
+
thread_results = [] # 线程内临时存储结果
|
|
94
|
+
|
|
95
|
+
for page_num in page_nums:
|
|
96
|
+
while True: # 重试循环(复用当前IP)
|
|
97
|
+
try:
|
|
98
|
+
page_df = get_stock_page_data_time_out(
|
|
99
|
+
page_num, proxies, per_page, time_out
|
|
100
|
+
)
|
|
101
|
+
if data_frame_util.is_not_empty(page_df):
|
|
102
|
+
logger.info("线程{} 页面{}获取成功(IP复用中)",
|
|
103
|
+
threading.get_ident(), page_num)
|
|
104
|
+
thread_results.append(page_df)
|
|
105
|
+
break # 成功后继续用当前IP处理下一页
|
|
106
|
+
else:
|
|
107
|
+
logger.warning("页面数据为空:{},重试中...", page_num)
|
|
108
|
+
# 数据为空,更换IP
|
|
109
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
110
|
+
proxies = {"https": proxy_ip, "http": proxy_ip}
|
|
111
|
+
time.sleep(0.2)
|
|
112
|
+
except BaseException as e:
|
|
113
|
+
logger.error("线程{} 页面{}获取异常[{}],更换IP重试",
|
|
114
|
+
threading.get_ident(), page_num, str(e))
|
|
115
|
+
# 发生异常,更换IP
|
|
116
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
117
|
+
proxies = {"https": proxy_ip, "http": proxy_ip}
|
|
118
|
+
time.sleep(1)
|
|
119
|
+
return thread_results
|
|
120
|
+
|
|
121
|
+
# 页面分配:平均分配给每个线程
|
|
122
|
+
def split_pages(total, workers):
|
|
123
|
+
pages = list(range(1, total + 1))
|
|
124
|
+
avg = total // workers
|
|
125
|
+
remainder = total % workers
|
|
126
|
+
split = []
|
|
127
|
+
start = 0
|
|
128
|
+
for i in range(workers):
|
|
129
|
+
end = start + avg + (1 if i < remainder else 0)
|
|
130
|
+
split.append(pages[start:end])
|
|
131
|
+
start = end
|
|
132
|
+
return split
|
|
133
|
+
|
|
134
|
+
# 分配页面组
|
|
135
|
+
page_groups = split_pages(total_pages, max_workers)
|
|
136
|
+
|
|
137
|
+
# 多线程执行
|
|
138
|
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
139
|
+
futures = [executor.submit(fetch_pages, group) for group in page_groups]
|
|
140
|
+
|
|
141
|
+
# 合并结果
|
|
142
|
+
for future in as_completed(futures):
|
|
143
|
+
try:
|
|
144
|
+
thread_dfs = future.result()
|
|
145
|
+
if thread_dfs:
|
|
146
|
+
with df_lock:
|
|
147
|
+
result_df = pd.concat([result_df] + thread_dfs, ignore_index=True)
|
|
148
|
+
except Exception as e:
|
|
149
|
+
logger.error("线程结果处理失败:{}", str(e))
|
|
150
|
+
|
|
151
|
+
return result_df
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def repeated_acquisition_ask_sync(time_out):
|
|
155
|
+
per_page = PAGE_SIZE
|
|
156
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
157
|
+
result_df = pd.DataFrame()
|
|
158
|
+
now_page = 1
|
|
159
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
160
|
+
while now_page <= total_pages:
|
|
161
|
+
proxies = {"https": proxy_ip,
|
|
162
|
+
"http": proxy_ip}
|
|
163
|
+
try:
|
|
164
|
+
page_df = get_stock_page_data_time_out(now_page, proxies, PAGE_SIZE, time_out)
|
|
165
|
+
if data_frame_util.is_not_empty(page_df):
|
|
166
|
+
result_df = pd.concat([page_df, result_df])
|
|
167
|
+
logger.info("获取页面数据成功:{}", now_page)
|
|
168
|
+
now_page = now_page + 1
|
|
169
|
+
else:
|
|
170
|
+
time.sleep(0.2)
|
|
171
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
172
|
+
logger.info("获取页面数据失败:{}", now_page)
|
|
173
|
+
except BaseException as e:
|
|
174
|
+
time.sleep(1)
|
|
175
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
176
|
+
# 示例调用
|
|
177
|
+
return result_df
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
def repeated_acquisition_ask_async(time_out, max_number, num_threads, pages_per_thread):
|
|
181
|
+
per_page = PAGE_SIZE
|
|
182
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
183
|
+
result_df = pd.DataFrame()
|
|
184
|
+
|
|
185
|
+
# 创建线程锁以确保线程安全
|
|
186
|
+
df_lock = Lock()
|
|
187
|
+
|
|
188
|
+
# 计算每个线程处理的页数范围
|
|
189
|
+
def process_page_range(start_page, end_page, thread_id):
|
|
190
|
+
nonlocal result_df
|
|
191
|
+
local_df = pd.DataFrame()
|
|
192
|
+
current_page = start_page
|
|
193
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
194
|
+
|
|
195
|
+
while current_page <= end_page and current_page <= total_pages:
|
|
196
|
+
proxies = {"https": proxy_ip, "http": proxy_ip}
|
|
197
|
+
try:
|
|
198
|
+
page_df = get_stock_page_data_time_out(current_page, proxies, PAGE_SIZE, time_out)
|
|
199
|
+
if data_frame_util.is_not_empty(page_df):
|
|
200
|
+
local_df = pd.concat([local_df, page_df])
|
|
201
|
+
logger.info("线程{}获取页面数据成功: {}", thread_id, current_page)
|
|
202
|
+
current_page += 1
|
|
203
|
+
else:
|
|
204
|
+
time.sleep(0.2)
|
|
205
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
206
|
+
logger.info("线程{}获取页面数据失败: {}", thread_id, current_page)
|
|
207
|
+
except BaseException as e:
|
|
208
|
+
time.sleep(1)
|
|
209
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
210
|
+
logger.error("线程{}处理页面{}时发生错误: {}", thread_id, current_page, e)
|
|
211
|
+
|
|
212
|
+
with df_lock:
|
|
213
|
+
result_df = pd.concat([result_df, local_df])
|
|
214
|
+
return len(local_df)
|
|
215
|
+
|
|
216
|
+
# 计算每个线程的页面范围
|
|
217
|
+
page_ranges = []
|
|
218
|
+
for i in range(num_threads):
|
|
219
|
+
start_page = i * pages_per_thread + 1
|
|
220
|
+
end_page = (i + 1) * pages_per_thread
|
|
221
|
+
if start_page > total_pages:
|
|
222
|
+
break
|
|
223
|
+
page_ranges.append((start_page, end_page, i + 1))
|
|
224
|
+
|
|
225
|
+
# 使用线程池执行任务
|
|
226
|
+
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
227
|
+
# 提交所有任务
|
|
228
|
+
futures = [
|
|
229
|
+
executor.submit(process_page_range, start, end, tid)
|
|
230
|
+
for start, end, tid in page_ranges
|
|
231
|
+
]
|
|
232
|
+
|
|
233
|
+
# 等待所有任务完成并获取结果
|
|
234
|
+
results = []
|
|
235
|
+
for future in concurrent.futures.as_completed(futures):
|
|
236
|
+
try:
|
|
237
|
+
result = future.result()
|
|
238
|
+
results.append(result)
|
|
239
|
+
except Exception as e:
|
|
240
|
+
logger.error("线程执行出错: {}", e)
|
|
241
|
+
|
|
242
|
+
return rename_real_time_quotes_df(result_df)
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
def rename_real_time_quotes_df(temp_df):
|
|
246
|
+
temp_df = temp_df.rename(columns={
|
|
247
|
+
"f2": "now_price",
|
|
248
|
+
"f3": "chg",
|
|
249
|
+
"f5": "volume",
|
|
250
|
+
"f6": "amount",
|
|
251
|
+
"f8": "exchange",
|
|
252
|
+
"f10": "quantity_ratio",
|
|
253
|
+
"f22": "up_speed",
|
|
254
|
+
"f11": "up_speed_05",
|
|
255
|
+
"f12": "symbol",
|
|
256
|
+
"f14": "name",
|
|
257
|
+
"f15": "high",
|
|
258
|
+
"f16": "low",
|
|
259
|
+
"f17": "open",
|
|
260
|
+
"f18": "yesterday_price",
|
|
261
|
+
"f20": "total_mv",
|
|
262
|
+
"f21": "flow_mv",
|
|
263
|
+
"f26": "list_date",
|
|
264
|
+
"f33": "wei_bi",
|
|
265
|
+
"f34": "outer_disk",
|
|
266
|
+
"f35": "inner_disk",
|
|
267
|
+
"f62": "today_main_net_inflow",
|
|
268
|
+
"f66": "super_large_order_net_inflow",
|
|
269
|
+
"f69": "super_large_order_net_inflow_ratio",
|
|
270
|
+
"f72": "large_order_net_inflow",
|
|
271
|
+
# "f78": "medium_order_net_inflow",
|
|
272
|
+
# "f84": "small_order_net_inflow",
|
|
273
|
+
"f100": "industry",
|
|
274
|
+
# "f103": "concept",
|
|
275
|
+
"f184": "today_main_net_inflow_ratio",
|
|
276
|
+
"f352": "average_price",
|
|
277
|
+
"f211": "buy_1_num",
|
|
278
|
+
"f212": "sell_1_num"
|
|
279
|
+
})
|
|
280
|
+
if data_frame_util.is_empty(temp_df):
|
|
281
|
+
return pd.DataFrame()
|
|
282
|
+
else:
|
|
283
|
+
temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
|
|
284
|
+
temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
|
|
285
|
+
temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
|
|
286
|
+
temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
|
|
287
|
+
temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
|
|
288
|
+
temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
|
|
289
|
+
temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
|
|
290
|
+
temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
|
|
291
|
+
temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
|
|
292
|
+
temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
|
|
293
|
+
temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
|
|
294
|
+
temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
|
|
295
|
+
temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
|
|
296
|
+
temp_df.loc[temp_df['high'] == '-', 'high'] = 0
|
|
297
|
+
temp_df.loc[temp_df['low'] == '-', 'low'] = 0
|
|
298
|
+
temp_df.loc[temp_df['open'] == '-', 'open'] = 0
|
|
299
|
+
temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
|
|
300
|
+
temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
|
|
301
|
+
temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
|
|
302
|
+
temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
|
|
303
|
+
temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
|
|
304
|
+
temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
|
|
305
|
+
temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
|
|
306
|
+
temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
|
|
307
|
+
temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
|
|
308
|
+
# temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
|
|
309
|
+
# temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
|
|
310
|
+
|
|
311
|
+
temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
|
|
312
|
+
temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
|
|
313
|
+
temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
|
|
314
|
+
temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
|
|
315
|
+
temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
|
|
316
|
+
temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
|
|
317
|
+
temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
|
|
318
|
+
temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
|
|
319
|
+
temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
|
|
320
|
+
temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
|
|
321
|
+
temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
|
|
322
|
+
temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
|
|
323
|
+
temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
|
|
324
|
+
temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
|
|
325
|
+
temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
|
|
326
|
+
temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
|
|
327
|
+
temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
|
|
328
|
+
temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
|
|
329
|
+
temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
|
|
330
|
+
errors="coerce")
|
|
331
|
+
temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
|
|
332
|
+
errors="coerce")
|
|
333
|
+
temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
|
|
334
|
+
errors="coerce")
|
|
335
|
+
# temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
|
|
336
|
+
# errors="coerce")
|
|
337
|
+
# temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
|
|
338
|
+
|
|
339
|
+
# 大单比例
|
|
340
|
+
temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
|
|
341
|
+
2)
|
|
342
|
+
|
|
343
|
+
# 外盘是内盘倍数
|
|
344
|
+
temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
|
|
345
|
+
# 只有外盘没有内盘
|
|
346
|
+
temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
|
|
347
|
+
temp_df = temp_df.sort_values(by=['chg'], ascending=False)
|
|
348
|
+
return temp_df
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
if __name__ == '__main__':
|
|
352
|
+
|
|
353
|
+
while True:
|
|
354
|
+
# proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
355
|
+
# proxies = {"https": proxy_ip,
|
|
356
|
+
# "http": proxy_ip}
|
|
357
|
+
time_out = 10 # Set the timeout value
|
|
358
|
+
result = repeated_acquisition_ask_async(time_out, 5800, 6, 10)
|
|
359
|
+
print(result)
|
|
@@ -1,6 +1,19 @@
|
|
|
1
1
|
mns_common/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
2
2
|
mns_common/api/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
3
3
|
mns_common/api/em/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
4
|
+
mns_common/api/em/real_time/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
5
|
+
mns_common/api/em/real_time/concept/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
6
|
+
mns_common/api/em/real_time/concept/em_concept_index_api.py,sha256=PP87ES8a_y0o3SKLzBsPrc7DCPI3MBCD-4SmoUUirl0,8285
|
|
7
|
+
mns_common/api/em/real_time/gd/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
8
|
+
mns_common/api/em/real_time/gd/east_money_stock_gdfx_free_top_10_api.py,sha256=I2-JjFjTjvOxjNAPzuJ1GK7ynvwJcZa_EbmRB2_pmm0,11813
|
|
9
|
+
mns_common/api/em/real_time/real_time/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
10
|
+
mns_common/api/em/real_time/real_time/east_money_debt_api.py,sha256=Ou97aq3-N7lge_Nj6FjkJo76agAhTLaz-Df-BK4dA0c,17483
|
|
11
|
+
mns_common/api/em/real_time/real_time/east_money_etf_api.py,sha256=wv1Ae3ydWDZkhlGgCKO8-z-PQj3qRSvoN75xNna4Qcs,19392
|
|
12
|
+
mns_common/api/em/real_time/real_time/east_money_stock_a_api.py,sha256=6xYcNJyMhFFL2eNxQ9c0TbQ53wgumNovVHisXgQX7bs,12737
|
|
13
|
+
mns_common/api/em/real_time/real_time/east_money_stock_a_v2_api.py,sha256=mL4uuL6sVsC2Vnl09826AUnzxePGAUhlZ7I5BBFw8Ks,14530
|
|
14
|
+
mns_common/api/em/real_time/real_time/east_money_stock_hk_api.py,sha256=G_GYF2JvKtYK0J61ySiUtkRKQGeCYz5-WACmucbZfzY,18015
|
|
15
|
+
mns_common/api/em/real_time/real_time/east_money_stock_us_api.py,sha256=RiTrdZDuDgTOtiMSD1Ba9aQAx4vghM66pEp_LicH3Ps,11632
|
|
16
|
+
mns_common/api/em/real_time/real_time/real_time_quotes_repeat_api.py,sha256=PKN2a_8fZpb7fA2Ns3FxVYiYlh34uxEFmmZu2MdqAu4,16008
|
|
4
17
|
mns_common/api/hk/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
5
18
|
mns_common/api/hk/ths_hk_company_info_api.py,sha256=Cxlbuccopa0G1s8o0uTnnyLn2QaxOvbDpJQJOj7J8a8,5360
|
|
6
19
|
mns_common/api/k_line/__init__.py,sha256=itoGlqKhsx7EVXQoD1vchDKQ5GPB16vDjofTSuQtrXg,161
|
|
@@ -140,7 +153,7 @@ mns_common/utils/date_handle_util.py,sha256=XS-MyA8_7k35LOCFAYOHgVcVkMft_Kc4Wa9U
|
|
|
140
153
|
mns_common/utils/db_util.py,sha256=hSmfNAN4vEeEaUva6_cicZEhb2jSnib-Gvk2reke1vc,2590
|
|
141
154
|
mns_common/utils/file_util.py,sha256=egWu6PenGPRp_ixrNTHKarT4dAnOT6FETR82EHUZJnQ,1042
|
|
142
155
|
mns_common/utils/ip_util.py,sha256=UTcYfz_uytB__6nlBf7T-izuI7hi4XdB6ET0sJgEel4,969
|
|
143
|
-
mns_common-1.5.1.
|
|
144
|
-
mns_common-1.5.1.
|
|
145
|
-
mns_common-1.5.1.
|
|
146
|
-
mns_common-1.5.1.
|
|
156
|
+
mns_common-1.5.1.9.dist-info/METADATA,sha256=MUTAjoLLP5YpPFbWtJ-VPEqZFBgSnWZmUDg69wum2NU,61
|
|
157
|
+
mns_common-1.5.1.9.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
|
158
|
+
mns_common-1.5.1.9.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
|
|
159
|
+
mns_common-1.5.1.9.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|