mns-common 1.5.1.8__py3-none-any.whl → 1.5.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mns-common might be problematic. Click here for more details.
- mns_common/api/em/real_time/__init__.py +7 -0
- mns_common/api/em/real_time/concept/__init__.py +7 -0
- mns_common/api/em/real_time/concept/em_concept_index_api.py +230 -0
- mns_common/api/em/real_time/gd/__init__.py +7 -0
- mns_common/api/em/real_time/gd/east_money_stock_gdfx_free_top_10_api.py +252 -0
- mns_common/api/em/real_time/real_time/__init__.py +7 -0
- mns_common/api/em/real_time/real_time/east_money_debt_api.py +422 -0
- mns_common/api/em/real_time/real_time/east_money_etf_api.py +504 -0
- mns_common/api/em/real_time/real_time/east_money_stock_a_api.py +305 -0
- mns_common/api/em/real_time/real_time/east_money_stock_a_v2_api.py +296 -0
- mns_common/api/em/real_time/real_time/east_money_stock_hk_api.py +469 -0
- mns_common/api/em/real_time/real_time/east_money_stock_us_api.py +234 -0
- mns_common/api/em/real_time/real_time/real_time_quotes_repeat_api.py +359 -0
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/METADATA +1 -1
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/RECORD +17 -4
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/WHEEL +0 -0
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.1.9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,469 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import sys
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 16
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
import pandas as pd
|
|
9
|
+
from loguru import logger
|
|
10
|
+
import requests
|
|
11
|
+
import time
|
|
12
|
+
import numpy as np
|
|
13
|
+
import mns_common.component.proxies.proxy_common_api as proxy_common_api
|
|
14
|
+
import concurrent.futures
|
|
15
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
16
|
+
from threading import Lock
|
|
17
|
+
import mns_common.utils.data_frame_util as data_frame_util
|
|
18
|
+
import json
|
|
19
|
+
import mns_common.component.cookie.cookie_info_service as cookie_info_service
|
|
20
|
+
|
|
21
|
+
# 最大返回条数
|
|
22
|
+
max_number = 4500
|
|
23
|
+
# 最小返回条数
|
|
24
|
+
min_number = 4400
|
|
25
|
+
# 分页条数
|
|
26
|
+
page_number = 100
|
|
27
|
+
|
|
28
|
+
fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
|
|
29
|
+
"f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212")
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def hk_real_time_quotes_page_df(cookie, pn, proxies):
|
|
33
|
+
try:
|
|
34
|
+
headers = {
|
|
35
|
+
'Cookie': cookie
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
current_timestamp = str(int(round(time.time() * 1000, 0)))
|
|
39
|
+
|
|
40
|
+
url_new = ('https://61.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409497467688484127_' + str(
|
|
41
|
+
current_timestamp) +
|
|
42
|
+
'&pn=' + str(pn) +
|
|
43
|
+
'&pz=50000'
|
|
44
|
+
'&po=1'
|
|
45
|
+
'&np=3'
|
|
46
|
+
'&ut=bd1d9ddb04089700cf9c27f6f7426281'
|
|
47
|
+
'&fltt=2'
|
|
48
|
+
'&invt=2'
|
|
49
|
+
'&wbp2u=4253366368931142|0|1|0|web'
|
|
50
|
+
'&fid=f12'
|
|
51
|
+
'&fs=m:116+t:3,m:116+t:4,m:116+t:1,m:116+t:2'
|
|
52
|
+
'&fields=' + fields +
|
|
53
|
+
'&_=' + str(current_timestamp))
|
|
54
|
+
|
|
55
|
+
if proxies is None:
|
|
56
|
+
r = requests.get(url_new, headers=headers)
|
|
57
|
+
else:
|
|
58
|
+
r = requests.get(url_new, headers=headers, proxies=proxies)
|
|
59
|
+
result = r.content.decode("utf-8")
|
|
60
|
+
|
|
61
|
+
if pn == 1:
|
|
62
|
+
try:
|
|
63
|
+
begin_index_total = result.index('"total":')
|
|
64
|
+
|
|
65
|
+
end_index_total = result.index('"diff"')
|
|
66
|
+
global max_number
|
|
67
|
+
max_number = int(result[begin_index_total + 8:end_index_total - 1])
|
|
68
|
+
except Exception as e:
|
|
69
|
+
logger.error(f"获取第{pn}页港股列表异常: {e}")
|
|
70
|
+
return pd.DataFrame()
|
|
71
|
+
|
|
72
|
+
startIndex = result.index('"diff"')
|
|
73
|
+
endIndex = result.index('}]}')
|
|
74
|
+
|
|
75
|
+
result = result[startIndex + 7:endIndex + 2]
|
|
76
|
+
|
|
77
|
+
data_json = json.loads(result)
|
|
78
|
+
|
|
79
|
+
temp_df = pd.DataFrame(data_json)
|
|
80
|
+
|
|
81
|
+
temp_df = temp_df.rename(columns={
|
|
82
|
+
|
|
83
|
+
"f12": "symbol",
|
|
84
|
+
"f14": "name",
|
|
85
|
+
"f3": "chg",
|
|
86
|
+
"f2": "now_price",
|
|
87
|
+
"f5": "volume",
|
|
88
|
+
"f6": "amount",
|
|
89
|
+
"f8": "exchange",
|
|
90
|
+
"f10": "quantity_ratio",
|
|
91
|
+
"f22": "up_speed",
|
|
92
|
+
"f11": "up_speed_05",
|
|
93
|
+
|
|
94
|
+
"f15": "high",
|
|
95
|
+
"f16": "low",
|
|
96
|
+
"f17": "open",
|
|
97
|
+
"f18": "yesterday_price",
|
|
98
|
+
"f20": "total_mv",
|
|
99
|
+
"f21": "flow_mv",
|
|
100
|
+
"f26": "list_date",
|
|
101
|
+
"f33": "wei_bi",
|
|
102
|
+
"f34": "outer_disk",
|
|
103
|
+
"f35": "inner_disk",
|
|
104
|
+
"f62": "today_main_net_inflow",
|
|
105
|
+
"f66": "super_large_order_net_inflow",
|
|
106
|
+
"f69": "super_large_order_net_inflow_ratio",
|
|
107
|
+
"f72": "large_order_net_inflow",
|
|
108
|
+
# "f78": "medium_order_net_inflow",
|
|
109
|
+
# "f84": "small_order_net_inflow",
|
|
110
|
+
"f100": "industry",
|
|
111
|
+
# "f103": "concept",
|
|
112
|
+
"f184": "today_main_net_inflow_ratio",
|
|
113
|
+
"f352": "average_price",
|
|
114
|
+
"f211": "buy_1_num",
|
|
115
|
+
"f212": "sell_1_num"
|
|
116
|
+
})
|
|
117
|
+
temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
|
|
118
|
+
temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
|
|
119
|
+
temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
|
|
120
|
+
temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
|
|
121
|
+
temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
|
|
122
|
+
temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
|
|
123
|
+
temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
|
|
124
|
+
temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
|
|
125
|
+
temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
|
|
126
|
+
temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
|
|
127
|
+
temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
|
|
128
|
+
temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
|
|
129
|
+
temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
|
|
130
|
+
temp_df.loc[temp_df['high'] == '-', 'high'] = 0
|
|
131
|
+
temp_df.loc[temp_df['low'] == '-', 'low'] = 0
|
|
132
|
+
temp_df.loc[temp_df['open'] == '-', 'open'] = 0
|
|
133
|
+
temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
|
|
134
|
+
temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
|
|
135
|
+
temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
|
|
136
|
+
temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
|
|
137
|
+
temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
|
|
138
|
+
temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
|
|
139
|
+
temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
|
|
140
|
+
temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
|
|
141
|
+
temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
|
|
142
|
+
# temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
|
|
143
|
+
# temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
|
|
144
|
+
|
|
145
|
+
temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
|
|
146
|
+
temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
|
|
147
|
+
temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
|
|
148
|
+
temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
|
|
149
|
+
temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
|
|
150
|
+
temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
|
|
151
|
+
temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
|
|
152
|
+
temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
|
|
153
|
+
temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
|
|
154
|
+
temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
|
|
155
|
+
temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
|
|
156
|
+
temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
|
|
157
|
+
temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
|
|
158
|
+
temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
|
|
159
|
+
temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
|
|
160
|
+
temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
|
|
161
|
+
temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
|
|
162
|
+
temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
|
|
163
|
+
temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
|
|
164
|
+
errors="coerce")
|
|
165
|
+
temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
|
|
166
|
+
errors="coerce")
|
|
167
|
+
temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
|
|
168
|
+
errors="coerce")
|
|
169
|
+
# temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
|
|
170
|
+
# errors="coerce")
|
|
171
|
+
# temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
|
|
172
|
+
|
|
173
|
+
# 大单比例
|
|
174
|
+
temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
|
|
175
|
+
2)
|
|
176
|
+
|
|
177
|
+
# 外盘是内盘倍数
|
|
178
|
+
temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
|
|
179
|
+
# 只有外盘没有内盘
|
|
180
|
+
temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
|
|
181
|
+
temp_df['disk_diff_amount'] = round(
|
|
182
|
+
(temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
|
|
183
|
+
"average_price"],
|
|
184
|
+
2)
|
|
185
|
+
return temp_df
|
|
186
|
+
except Exception as e:
|
|
187
|
+
logger.error("获取港股列表,实时行情异常:{}", e)
|
|
188
|
+
return pd.DataFrame()
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def thread_pool_executor(cookie, proxies):
|
|
192
|
+
"""
|
|
193
|
+
使用多线程获取所有ETF数据
|
|
194
|
+
"""
|
|
195
|
+
# 计算总页数,假设总共有1000条数据,每页200条
|
|
196
|
+
|
|
197
|
+
per_page = page_number
|
|
198
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
199
|
+
|
|
200
|
+
# 创建线程池
|
|
201
|
+
with ThreadPoolExecutor(max_workers=3) as executor:
|
|
202
|
+
# 提交任务,获取每页数据
|
|
203
|
+
futures = [executor.submit(hk_real_time_quotes_page_df, cookie, pn, proxies)
|
|
204
|
+
for pn in range(1, total_pages + 1)]
|
|
205
|
+
|
|
206
|
+
# 收集结果
|
|
207
|
+
results = []
|
|
208
|
+
for future in futures:
|
|
209
|
+
result = future.result()
|
|
210
|
+
if not result.empty:
|
|
211
|
+
results.append(result)
|
|
212
|
+
|
|
213
|
+
# 合并所有页面的数据
|
|
214
|
+
if results:
|
|
215
|
+
return pd.concat(results, ignore_index=True)
|
|
216
|
+
else:
|
|
217
|
+
return pd.DataFrame()
|
|
218
|
+
|
|
219
|
+
|
|
220
|
+
def get_hk_real_time_quotes(cookie, proxies):
|
|
221
|
+
# 获取第一页数据
|
|
222
|
+
page_one_df = hk_real_time_quotes_page_df(cookie, 1, proxies)
|
|
223
|
+
# 数据接口正常返回5600以上的数量
|
|
224
|
+
if page_one_df.shape[0] > min_number:
|
|
225
|
+
page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
226
|
+
return page_one_df
|
|
227
|
+
else:
|
|
228
|
+
page_df = thread_pool_executor(cookie, proxies)
|
|
229
|
+
page_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
230
|
+
return page_df
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
# 获取港股通名单 todo 被封以后替换
|
|
234
|
+
def stock_hk_ggt_components_em(cookie, pn, proxies, page_size, time_out) -> pd.DataFrame:
|
|
235
|
+
"""
|
|
236
|
+
东方财富网-行情中心-港股市场-港股通成份股
|
|
237
|
+
https://quote.eastmoney.com/center/gridlist.html#hk_components
|
|
238
|
+
:return: 港股通成份股
|
|
239
|
+
:rtype: pandas.DataFrame
|
|
240
|
+
"""
|
|
241
|
+
headers = {
|
|
242
|
+
'Cookie': cookie
|
|
243
|
+
}
|
|
244
|
+
url = "https://33.push2.eastmoney.com/api/qt/clist/get"
|
|
245
|
+
params = {
|
|
246
|
+
"pn": str(pn),
|
|
247
|
+
"pz": str(page_size),
|
|
248
|
+
"po": "1",
|
|
249
|
+
"np": "2",
|
|
250
|
+
"ut": "bd1d9ddb04089700cf9c27f6f7426281",
|
|
251
|
+
"fltt": "2",
|
|
252
|
+
"fid": "f3",
|
|
253
|
+
"fs": "b:DLMK0146,b:DLMK0144",
|
|
254
|
+
"fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,"
|
|
255
|
+
"f25,f26,f22,f33,f11,f62,f128,f136,f115,f152",
|
|
256
|
+
"_": "1639974456250",
|
|
257
|
+
}
|
|
258
|
+
try:
|
|
259
|
+
if proxies is None:
|
|
260
|
+
r = requests.get(url, params=params, timeout=time_out, headers=headers)
|
|
261
|
+
else:
|
|
262
|
+
r = requests.get(url, params=params, proxies=proxies, timeout=time_out, headers=headers)
|
|
263
|
+
|
|
264
|
+
data_json = r.json()
|
|
265
|
+
temp_df = pd.DataFrame(data_json["data"]["diff"]).T
|
|
266
|
+
temp_df.reset_index(inplace=True)
|
|
267
|
+
temp_df["index"] = temp_df.index + 1
|
|
268
|
+
return temp_df
|
|
269
|
+
except Exception as e:
|
|
270
|
+
logger.error("获取港股通列表:{}", e)
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
def rename_hg_ggt(temp_df):
|
|
274
|
+
temp_df.columns = [
|
|
275
|
+
"序号",
|
|
276
|
+
"-",
|
|
277
|
+
"最新价",
|
|
278
|
+
"涨跌幅",
|
|
279
|
+
"涨跌额",
|
|
280
|
+
"成交量",
|
|
281
|
+
"成交额",
|
|
282
|
+
"-",
|
|
283
|
+
"-",
|
|
284
|
+
"-",
|
|
285
|
+
"-",
|
|
286
|
+
"-",
|
|
287
|
+
"代码",
|
|
288
|
+
"-",
|
|
289
|
+
"名称",
|
|
290
|
+
"最高",
|
|
291
|
+
"最低",
|
|
292
|
+
"今开",
|
|
293
|
+
"昨收",
|
|
294
|
+
"-",
|
|
295
|
+
"-",
|
|
296
|
+
"-",
|
|
297
|
+
"-",
|
|
298
|
+
"-",
|
|
299
|
+
"-",
|
|
300
|
+
"-",
|
|
301
|
+
"-",
|
|
302
|
+
"-",
|
|
303
|
+
"-",
|
|
304
|
+
"-",
|
|
305
|
+
"-",
|
|
306
|
+
"-",
|
|
307
|
+
"-",
|
|
308
|
+
"-",
|
|
309
|
+
"-",
|
|
310
|
+
]
|
|
311
|
+
temp_df = temp_df[
|
|
312
|
+
[
|
|
313
|
+
"序号",
|
|
314
|
+
"代码",
|
|
315
|
+
"名称",
|
|
316
|
+
"最新价",
|
|
317
|
+
"涨跌额",
|
|
318
|
+
"涨跌幅",
|
|
319
|
+
"今开",
|
|
320
|
+
"最高",
|
|
321
|
+
"最低",
|
|
322
|
+
"昨收",
|
|
323
|
+
"成交量",
|
|
324
|
+
"成交额",
|
|
325
|
+
]
|
|
326
|
+
]
|
|
327
|
+
|
|
328
|
+
temp_df = temp_df.rename(columns={
|
|
329
|
+
"序号": "index",
|
|
330
|
+
"代码": "symbol",
|
|
331
|
+
"名称": "name",
|
|
332
|
+
"最新价": "now_price",
|
|
333
|
+
"涨跌额": "range",
|
|
334
|
+
"涨跌幅": "chg",
|
|
335
|
+
"今开": "open",
|
|
336
|
+
"最高": "high",
|
|
337
|
+
"最低": "low",
|
|
338
|
+
"昨收": "yesterday_price",
|
|
339
|
+
"成交额": "amount",
|
|
340
|
+
"成交量": "volume",
|
|
341
|
+
})
|
|
342
|
+
|
|
343
|
+
return temp_df
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
def get_stock_hk_ggt_components_em_count(cookie, pn, proxies, page_size, time_out):
|
|
347
|
+
headers = {
|
|
348
|
+
'Cookie': cookie
|
|
349
|
+
}
|
|
350
|
+
url = "https://33.push2.eastmoney.com/api/qt/clist/get"
|
|
351
|
+
current_timestamp = str(int(round(time.time() * 1000, 0)))
|
|
352
|
+
params = {
|
|
353
|
+
"pn": str(pn),
|
|
354
|
+
"pz": str(page_size),
|
|
355
|
+
"po": "1",
|
|
356
|
+
"np": "2",
|
|
357
|
+
"ut": "bd1d9ddb04089700cf9c27f6f7426281",
|
|
358
|
+
"fltt": "2",
|
|
359
|
+
"fid": "f3",
|
|
360
|
+
"fs": "b:DLMK0146,b:DLMK0144",
|
|
361
|
+
"fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,"
|
|
362
|
+
"f25,f26,f22,f33,f11,f62,f128,f136,f115,f152",
|
|
363
|
+
"_": str(current_timestamp),
|
|
364
|
+
}
|
|
365
|
+
try:
|
|
366
|
+
if proxies is None:
|
|
367
|
+
r = requests.get(url, params, timeout=time_out, headers=headers)
|
|
368
|
+
else:
|
|
369
|
+
r = requests.get(url, params, proxies=proxies, timeout=time_out, headers=headers)
|
|
370
|
+
data_json = r.json()
|
|
371
|
+
total_number = int(data_json['data']['total'])
|
|
372
|
+
return total_number
|
|
373
|
+
except Exception as e:
|
|
374
|
+
logger.error("获取港股通列表,实时行情异常:{}", e)
|
|
375
|
+
return 0
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
def repeated_acquisition_ask_hk_gtt_async(em_cookie, time_out, max_number, num_threads, pages_per_thread):
|
|
379
|
+
per_page = page_number
|
|
380
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
381
|
+
result_df = pd.DataFrame()
|
|
382
|
+
|
|
383
|
+
# 创建线程锁以确保线程安全
|
|
384
|
+
df_lock = Lock()
|
|
385
|
+
|
|
386
|
+
# 计算每个线程处理的页数范围
|
|
387
|
+
def process_page_range(start_page, end_page, thread_id):
|
|
388
|
+
nonlocal result_df
|
|
389
|
+
local_df = pd.DataFrame()
|
|
390
|
+
current_page = start_page
|
|
391
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
392
|
+
|
|
393
|
+
while current_page <= end_page and current_page <= total_pages:
|
|
394
|
+
proxies = {"https": proxy_ip, "http": proxy_ip}
|
|
395
|
+
try:
|
|
396
|
+
page_df = stock_hk_ggt_components_em(em_cookie, current_page, proxies, page_number, time_out)
|
|
397
|
+
if data_frame_util.is_not_empty(page_df):
|
|
398
|
+
local_df = pd.concat([local_df, page_df])
|
|
399
|
+
logger.info("线程{}获取页面数据成功: {}", thread_id, current_page)
|
|
400
|
+
current_page += 1
|
|
401
|
+
else:
|
|
402
|
+
time.sleep(0.2)
|
|
403
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
404
|
+
logger.info("线程{}获取页面数据失败: {}", thread_id, current_page)
|
|
405
|
+
except BaseException as e:
|
|
406
|
+
time.sleep(1)
|
|
407
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
408
|
+
logger.error("线程{}处理页面{}时发生错误: {}", thread_id, current_page, e)
|
|
409
|
+
|
|
410
|
+
with df_lock:
|
|
411
|
+
result_df = pd.concat([result_df, local_df])
|
|
412
|
+
return len(local_df)
|
|
413
|
+
|
|
414
|
+
# 计算每个线程的页面范围
|
|
415
|
+
page_ranges = []
|
|
416
|
+
for i in range(num_threads):
|
|
417
|
+
start_page = i * pages_per_thread + 1
|
|
418
|
+
end_page = (i + 1) * pages_per_thread
|
|
419
|
+
if start_page > total_pages:
|
|
420
|
+
break
|
|
421
|
+
page_ranges.append((start_page, end_page, i + 1))
|
|
422
|
+
|
|
423
|
+
# 使用线程池执行任务
|
|
424
|
+
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
425
|
+
# 提交所有任务
|
|
426
|
+
futures = [
|
|
427
|
+
executor.submit(process_page_range, start, end, tid)
|
|
428
|
+
for start, end, tid in page_ranges
|
|
429
|
+
]
|
|
430
|
+
|
|
431
|
+
# 等待所有任务完成并获取结果
|
|
432
|
+
results = []
|
|
433
|
+
for future in concurrent.futures.as_completed(futures):
|
|
434
|
+
try:
|
|
435
|
+
result = future.result()
|
|
436
|
+
results.append(result)
|
|
437
|
+
except Exception as e:
|
|
438
|
+
logger.error("线程执行出错: {}", e)
|
|
439
|
+
|
|
440
|
+
return rename_hg_ggt(result_df)
|
|
441
|
+
|
|
442
|
+
|
|
443
|
+
# 港股通
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
def get_ggt_real_time_quotes(em_cookie, time_out, pages_per_thread):
|
|
447
|
+
try_numer = 3
|
|
448
|
+
while try_numer > 0:
|
|
449
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
450
|
+
proxies = {"https": proxy_ip,
|
|
451
|
+
"http": proxy_ip}
|
|
452
|
+
|
|
453
|
+
max_number = get_stock_hk_ggt_components_em_count(em_cookie, 1, proxies, 20, time_out)
|
|
454
|
+
if max_number > 0:
|
|
455
|
+
break
|
|
456
|
+
try_numer = try_numer - 1
|
|
457
|
+
if max_number == 0:
|
|
458
|
+
return pd.DataFrame()
|
|
459
|
+
|
|
460
|
+
total_pages = (max_number + page_number - 1) // page_number # 向上取整
|
|
461
|
+
|
|
462
|
+
num_threads = int((total_pages / pages_per_thread) + 1)
|
|
463
|
+
return repeated_acquisition_ask_hk_gtt_async(em_cookie, time_out, max_number, num_threads, pages_per_thread)
|
|
464
|
+
|
|
465
|
+
|
|
466
|
+
if __name__ == '__main__':
|
|
467
|
+
em_cookie = cookie_info_service.get_em_cookie()
|
|
468
|
+
test_df = get_ggt_real_time_quotes(em_cookie, 30, 6)
|
|
469
|
+
print(test_df)
|