mindspore 2.7.0rc1__cp310-cp310-win_amd64.whl → 2.7.1__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +5 -2
- mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
- mindspore/_checkparam.py +2 -2
- mindspore/_extends/builtin_operations.py +3 -3
- mindspore/_extends/parallel_compile/akg_compiler/custom.py +1109 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
- mindspore/_extends/parse/__init__.py +3 -3
- mindspore/_extends/parse/compile_config.py +24 -1
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +6 -3
- mindspore/_extends/parse/parser.py +28 -22
- mindspore/_extends/parse/resources.py +1 -1
- mindspore/_extends/parse/standard_method.py +23 -2
- mindspore/_extends/parse/trope.py +2 -1
- mindspore/_extends/pijit/pijit_func_white_list.py +9 -27
- mindspore/amp.py +0 -18
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/base.py +29 -2
- mindspore/common/__init__.py +18 -12
- mindspore/common/_decorator.py +3 -2
- mindspore/common/_grad_function.py +3 -1
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +371 -96
- mindspore/common/_utils.py +7 -43
- mindspore/common/api.py +434 -135
- mindspore/common/dtype.py +98 -57
- mindspore/common/dump.py +7 -108
- mindspore/common/dynamic_shape/__init__.py +0 -0
- mindspore/common/{auto_dynamic_shape.py → dynamic_shape/auto_dynamic_shape.py} +15 -23
- mindspore/common/dynamic_shape/enable_dynamic.py +197 -0
- mindspore/common/file_system.py +59 -9
- mindspore/common/hook_handle.py +82 -3
- mindspore/common/jit_config.py +5 -1
- mindspore/common/jit_trace.py +27 -12
- mindspore/common/lazy_inline.py +5 -3
- mindspore/common/np_dtype.py +3 -3
- mindspore/common/parameter.py +17 -127
- mindspore/common/recompute.py +4 -13
- mindspore/common/tensor.py +50 -217
- mindspore/communication/_comm_helper.py +11 -1
- mindspore/communication/comm_func.py +138 -4
- mindspore/communication/management.py +85 -1
- mindspore/config/op_info.config +0 -15
- mindspore/context.py +20 -106
- mindspore/dataset/__init__.py +1 -1
- mindspore/dataset/audio/transforms.py +1 -1
- mindspore/dataset/core/config.py +35 -1
- mindspore/dataset/engine/datasets.py +338 -319
- mindspore/dataset/engine/datasets_user_defined.py +38 -22
- mindspore/dataset/engine/datasets_vision.py +1 -1
- mindspore/dataset/engine/validators.py +1 -15
- mindspore/dataset/transforms/c_transforms.py +2 -2
- mindspore/dataset/transforms/transforms.py +3 -3
- mindspore/dataset/vision/__init__.py +1 -1
- mindspore/dataset/vision/py_transforms.py +8 -8
- mindspore/dataset/vision/transforms.py +17 -5
- mindspore/dataset/vision/utils.py +632 -21
- mindspore/device_context/ascend/op_tuning.py +35 -1
- mindspore/dnnl.dll +0 -0
- mindspore/{profiler/common/validator → graph}/__init__.py +9 -1
- mindspore/graph/custom_pass.py +55 -0
- mindspore/include/api/cell.h +28 -4
- mindspore/include/api/cfg.h +24 -7
- mindspore/include/api/context.h +1 -0
- mindspore/include/api/delegate.h +0 -2
- mindspore/include/api/dual_abi_helper.h +100 -19
- mindspore/include/api/graph.h +14 -1
- mindspore/include/api/kernel.h +16 -3
- mindspore/include/api/kernel_api.h +9 -1
- mindspore/include/api/metrics/accuracy.h +9 -0
- mindspore/include/api/model.h +5 -1
- mindspore/include/api/model_group.h +4 -0
- mindspore/include/api/model_parallel_runner.h +2 -0
- mindspore/include/api/status.h +48 -10
- mindspore/include/api/types.h +6 -1
- mindspore/include/dataset/constants.h +9 -0
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/mindrecord/__init__.py +3 -3
- mindspore/mindrecord/common/exceptions.py +1 -0
- mindspore/mindrecord/config.py +1 -1
- mindspore/{parallel/mpi → mindrecord/core}/__init__.py +4 -1
- mindspore/mindrecord/{shardheader.py → core/shardheader.py} +2 -1
- mindspore/mindrecord/{shardindexgenerator.py → core/shardindexgenerator.py} +1 -1
- mindspore/mindrecord/{shardreader.py → core/shardreader.py} +2 -1
- mindspore/mindrecord/{shardsegment.py → core/shardsegment.py} +2 -2
- mindspore/mindrecord/{shardutils.py → core/shardutils.py} +1 -1
- mindspore/mindrecord/{shardwriter.py → core/shardwriter.py} +1 -1
- mindspore/mindrecord/filereader.py +4 -4
- mindspore/mindrecord/filewriter.py +5 -5
- mindspore/mindrecord/mindpage.py +2 -2
- mindspore/mindrecord/tools/cifar10.py +4 -3
- mindspore/mindrecord/tools/cifar100.py +1 -1
- mindspore/mindrecord/tools/cifar100_to_mr.py +1 -1
- mindspore/mindrecord/tools/cifar10_to_mr.py +6 -6
- mindspore/mindrecord/tools/csv_to_mr.py +1 -1
- mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
- mindspore/mindrecord/tools/mnist_to_mr.py +1 -1
- mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -1
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_cluster.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_cpu.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_hardware_abstract.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_ops_host.dll → mindspore_ops_cpu.dll} +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mindspore_runtime_utils.dll +0 -0
- mindspore/mindspore_tools.dll +0 -0
- mindspore/mint/__init__.py +15 -10
- mindspore/mint/distributed/__init__.py +4 -0
- mindspore/mint/distributed/distributed.py +392 -69
- mindspore/mint/nn/__init__.py +2 -16
- mindspore/mint/nn/functional.py +4 -110
- mindspore/mint/nn/layer/__init__.py +0 -2
- mindspore/mint/nn/layer/_functions.py +1 -2
- mindspore/mint/nn/layer/activation.py +0 -6
- mindspore/mint/nn/layer/basic.py +0 -47
- mindspore/mint/nn/layer/conv.py +10 -10
- mindspore/mint/nn/layer/normalization.py +11 -16
- mindspore/mint/nn/layer/pooling.py +0 -4
- mindspore/nn/__init__.py +1 -3
- mindspore/nn/cell.py +231 -239
- mindspore/nn/layer/activation.py +4 -2
- mindspore/nn/layer/basic.py +56 -14
- mindspore/nn/layer/container.py +16 -0
- mindspore/nn/layer/embedding.py +4 -169
- mindspore/nn/layer/image.py +1 -1
- mindspore/nn/layer/normalization.py +2 -1
- mindspore/nn/layer/thor_layer.py +4 -85
- mindspore/nn/optim/ada_grad.py +0 -1
- mindspore/nn/optim/adafactor.py +0 -1
- mindspore/nn/optim/adam.py +32 -127
- mindspore/nn/optim/adamax.py +0 -1
- mindspore/nn/optim/asgd.py +0 -1
- mindspore/nn/optim/ftrl.py +8 -102
- mindspore/nn/optim/lamb.py +1 -4
- mindspore/nn/optim/lars.py +0 -3
- mindspore/nn/optim/lazyadam.py +25 -218
- mindspore/nn/optim/momentum.py +5 -43
- mindspore/nn/optim/optimizer.py +6 -55
- mindspore/nn/optim/proximal_ada_grad.py +0 -1
- mindspore/nn/optim/rmsprop.py +0 -1
- mindspore/nn/optim/rprop.py +0 -1
- mindspore/nn/optim/sgd.py +0 -1
- mindspore/nn/optim/tft_wrapper.py +2 -4
- mindspore/nn/optim/thor.py +0 -2
- mindspore/nn/probability/bijector/bijector.py +7 -8
- mindspore/nn/probability/bijector/gumbel_cdf.py +2 -2
- mindspore/nn/probability/bijector/power_transform.py +20 -21
- mindspore/nn/probability/bijector/scalar_affine.py +5 -5
- mindspore/nn/probability/bijector/softplus.py +13 -14
- mindspore/nn/probability/distribution/_utils/utils.py +2 -2
- mindspore/nn/wrap/cell_wrapper.py +39 -5
- mindspore/nn/wrap/grad_reducer.py +4 -89
- mindspore/numpy/array_creations.py +4 -4
- mindspore/numpy/fft.py +9 -9
- mindspore/numpy/utils_const.py +1 -1
- mindspore/{nn/reinforcement → onnx}/__init__.py +5 -8
- mindspore/onnx/onnx_export.py +137 -0
- mindspore/opencv_core4110.dll +0 -0
- mindspore/opencv_imgcodecs4110.dll +0 -0
- mindspore/{opencv_imgproc452.dll → opencv_imgproc4110.dll} +0 -0
- mindspore/ops/__init__.py +2 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +38 -2
- mindspore/ops/_grad_experimental/grad_inner_ops.py +0 -9
- mindspore/ops/_op_impl/aicpu/__init__.py +0 -10
- mindspore/ops/_op_impl/cpu/__init__.py +1 -5
- mindspore/ops/_op_impl/cpu/{buffer_append.py → joinedstr_op.py} +8 -8
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +28 -24
- mindspore/ops/auto_generate/gen_extend_func.py +6 -11
- mindspore/ops/auto_generate/gen_ops_def.py +385 -154
- mindspore/ops/auto_generate/gen_ops_prim.py +5676 -5167
- mindspore/ops/communication.py +97 -0
- mindspore/ops/composite/__init__.py +5 -2
- mindspore/ops/composite/base.py +16 -2
- mindspore/ops/composite/multitype_ops/__init__.py +3 -1
- mindspore/ops/composite/multitype_ops/_compile_utils.py +150 -8
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
- mindspore/ops/composite/multitype_ops/add_impl.py +7 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +27 -0
- mindspore/ops/function/__init__.py +2 -0
- mindspore/ops/function/array_func.py +24 -18
- mindspore/ops/function/comm_func.py +3883 -0
- mindspore/ops/function/debug_func.py +7 -6
- mindspore/ops/function/grad/grad_func.py +4 -12
- mindspore/ops/function/math_func.py +89 -86
- mindspore/ops/function/nn_func.py +92 -313
- mindspore/ops/function/random_func.py +9 -18
- mindspore/ops/functional.py +4 -1
- mindspore/ops/functional_overload.py +377 -30
- mindspore/ops/operations/__init__.py +2 -5
- mindspore/ops/operations/_custom_ops_utils.py +7 -9
- mindspore/ops/operations/_inner_ops.py +12 -50
- mindspore/ops/operations/_rl_inner_ops.py +0 -933
- mindspore/ops/operations/array_ops.py +5 -50
- mindspore/ops/operations/comm_ops.py +95 -17
- mindspore/ops/operations/custom_ops.py +237 -22
- mindspore/ops/operations/debug_ops.py +33 -35
- mindspore/ops/operations/manually_defined/ops_def.py +39 -318
- mindspore/ops/operations/math_ops.py +5 -5
- mindspore/ops/operations/nn_ops.py +3 -3
- mindspore/ops/operations/sparse_ops.py +0 -83
- mindspore/ops/primitive.py +4 -27
- mindspore/ops/tensor_method.py +88 -10
- mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +5 -5
- mindspore/ops_generate/aclnn/gen_aclnn_implement.py +8 -8
- mindspore/ops_generate/api/functions_cc_generator.py +53 -4
- mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +25 -11
- mindspore/ops_generate/common/gen_constants.py +11 -10
- mindspore/ops_generate/common/op_proto.py +18 -1
- mindspore/ops_generate/common/template.py +102 -245
- mindspore/ops_generate/common/template_utils.py +212 -0
- mindspore/ops_generate/gen_custom_ops.py +69 -0
- mindspore/ops_generate/op_def/ops_def_cc_generator.py +78 -7
- mindspore/ops_generate/op_def_py/base_op_prim_py_generator.py +360 -0
- mindspore/ops_generate/op_def_py/custom_op_prim_py_generator.py +140 -0
- mindspore/ops_generate/op_def_py/op_def_py_generator.py +54 -7
- mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -312
- mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +74 -17
- mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +22 -5
- mindspore/ops_generate/pyboost/gen_pyboost_func.py +0 -16
- mindspore/ops_generate/pyboost/op_template_parser.py +3 -2
- mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +21 -5
- mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +2 -2
- mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +30 -10
- mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +10 -3
- mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +1 -1
- mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +19 -9
- mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +71 -28
- mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +10 -9
- mindspore/ops_generate/pyboost/pyboost_utils.py +27 -16
- mindspore/ops_generate/resources/yaml_loader.py +13 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +2 -2
- mindspore/parallel/_auto_parallel_context.py +5 -15
- mindspore/parallel/_cell_wrapper.py +1 -1
- mindspore/parallel/_parallel_serialization.py +4 -6
- mindspore/parallel/_ps_context.py +2 -2
- mindspore/parallel/_utils.py +34 -17
- mindspore/parallel/auto_parallel.py +23 -9
- mindspore/parallel/checkpoint_transform.py +20 -2
- mindspore/parallel/cluster/process_entity/_api.py +28 -33
- mindspore/parallel/cluster/process_entity/_utils.py +9 -5
- mindspore/parallel/cluster/run.py +5 -3
- mindspore/{experimental/llm_boost/ascend_native → parallel/distributed}/__init__.py +21 -22
- mindspore/parallel/distributed/distributed_data_parallel.py +393 -0
- mindspore/parallel/distributed/flatten_grad_buffer.py +295 -0
- mindspore/parallel/function/reshard_func.py +6 -5
- mindspore/parallel/nn/parallel_cell_wrapper.py +40 -3
- mindspore/parallel/nn/parallel_grad_reducer.py +0 -8
- mindspore/parallel/shard.py +7 -21
- mindspore/parallel/strategy.py +336 -0
- mindspore/parallel/transform_safetensors.py +127 -20
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +13 -9
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
- mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +1 -1
- mindspore/profiler/common/constant.py +5 -0
- mindspore/profiler/common/file_manager.py +9 -0
- mindspore/profiler/common/msprof_cmd_tool.py +40 -4
- mindspore/profiler/common/path_manager.py +65 -24
- mindspore/profiler/common/profiler_context.py +27 -14
- mindspore/profiler/common/profiler_info.py +3 -3
- mindspore/profiler/common/profiler_meta_data.py +1 -0
- mindspore/profiler/common/profiler_op_analyse.py +10 -6
- mindspore/profiler/common/profiler_path_manager.py +13 -0
- mindspore/profiler/common/util.py +30 -3
- mindspore/profiler/dynamic_profiler.py +91 -46
- mindspore/profiler/envprofiler.py +30 -5
- mindspore/profiler/experimental_config.py +18 -2
- mindspore/profiler/platform/cpu_profiler.py +10 -4
- mindspore/profiler/platform/npu_profiler.py +34 -7
- mindspore/profiler/profiler.py +193 -145
- mindspore/profiler/profiler_action_controller.py +1 -1
- mindspore/profiler/profiler_interface.py +2 -2
- mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
- mindspore/run_check/_check_version.py +108 -24
- mindspore/runtime/__init__.py +9 -6
- mindspore/runtime/executor.py +35 -0
- mindspore/runtime/memory.py +113 -0
- mindspore/runtime/thread_bind_core.py +1 -1
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/{experimental/llm_boost → tools}/__init__.py +5 -5
- mindspore/tools/data_dump.py +130 -0
- mindspore/tools/sdc_detect.py +91 -0
- mindspore/tools/stress_detect.py +63 -0
- mindspore/train/__init__.py +6 -6
- mindspore/train/_utils.py +8 -21
- mindspore/train/amp.py +6 -7
- mindspore/train/callback/_callback.py +2 -1
- mindspore/train/callback/_checkpoint.py +1 -17
- mindspore/train/callback/_flops_collector.py +10 -6
- mindspore/train/callback/_train_fault_tolerance.py +72 -25
- mindspore/train/data_sink.py +5 -9
- mindspore/train/dataset_helper.py +5 -5
- mindspore/train/model.py +41 -230
- mindspore/train/serialization.py +160 -401
- mindspore/train/train_thor/model_thor.py +2 -2
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +6 -3
- mindspore/utils/dlpack.py +92 -0
- mindspore/utils/dryrun.py +1 -1
- mindspore/utils/runtime_execution_order_check.py +10 -0
- mindspore/utils/sdc_detect.py +14 -12
- mindspore/utils/stress_detect.py +43 -0
- mindspore/utils/utils.py +152 -16
- mindspore/version.py +1 -1
- {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/METADATA +3 -2
- {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/RECORD +330 -344
- mindspore/_extends/remote/kernel_build_server_ascend.py +0 -75
- mindspore/communication/_hccl_management.py +0 -297
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -207
- mindspore/experimental/llm_boost/ascend_native/llm_boost.py +0 -52
- mindspore/experimental/llm_boost/atb/__init__.py +0 -23
- mindspore/experimental/llm_boost/atb/boost_base.py +0 -385
- mindspore/experimental/llm_boost/atb/llama_boost.py +0 -137
- mindspore/experimental/llm_boost/atb/qwen_boost.py +0 -124
- mindspore/experimental/llm_boost/register.py +0 -130
- mindspore/experimental/llm_boost/utils.py +0 -31
- mindspore/include/OWNERS +0 -7
- mindspore/mindspore_cpu_res_manager.dll +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +0 -111
- mindspore/nn/reinforcement/_batch_read_write.py +0 -142
- mindspore/nn/reinforcement/_tensors_queue.py +0 -152
- mindspore/nn/reinforcement/tensor_array.py +0 -145
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +0 -113
- mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +0 -96
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +0 -42
- mindspore/ops/_op_impl/cpu/buffer_get.py +0 -28
- mindspore/ops/_op_impl/cpu/buffer_sample.py +0 -28
- mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +0 -42
- mindspore/ops/operations/_tensor_array.py +0 -359
- mindspore/ops/operations/rl_ops.py +0 -288
- mindspore/parallel/_offload_context.py +0 -275
- mindspore/parallel/_recovery_context.py +0 -115
- mindspore/parallel/_transformer/__init__.py +0 -35
- mindspore/parallel/_transformer/layers.py +0 -765
- mindspore/parallel/_transformer/loss.py +0 -251
- mindspore/parallel/_transformer/moe.py +0 -693
- mindspore/parallel/_transformer/op_parallel_config.py +0 -222
- mindspore/parallel/_transformer/transformer.py +0 -3124
- mindspore/parallel/mpi/_mpi_config.py +0 -116
- mindspore/profiler/common/validator/validate_path.py +0 -84
- mindspore/train/memory_profiling_pb2.py +0 -298
- mindspore/utils/hooks.py +0 -81
- /mindspore/common/{_auto_dynamic.py → dynamic_shape/_auto_dynamic.py} +0 -0
- {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/WHEEL +0 -0
- {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/top_level.txt +0 -0
mindspore/common/_tensor_docs.py
CHANGED
|
@@ -28,7 +28,7 @@ def attach_docstr(method, docstr):
|
|
|
28
28
|
|
|
29
29
|
attach_docstr("absolute", r"""absolute() -> Tensor
|
|
30
30
|
|
|
31
|
-
Alias for :func:`Tensor.abs`.
|
|
31
|
+
Alias for :func:`mindspore.Tensor.abs`.
|
|
32
32
|
""")
|
|
33
33
|
attach_docstr("abs", r"""abs() -> Tensor
|
|
34
34
|
|
|
@@ -72,7 +72,7 @@ Note:
|
|
|
72
72
|
- When `self` and `other` have different shapes,
|
|
73
73
|
they must be able to broadcast to a common shape.
|
|
74
74
|
- `self` and `other` can not be bool type at the same time,
|
|
75
|
-
[True, Tensor(True
|
|
75
|
+
[True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
|
|
76
76
|
- `self` and `other` comply with the implicit type conversion rules to make the data types
|
|
77
77
|
consistent.
|
|
78
78
|
- The dimension of `self` should be greater than or equal to 1.
|
|
@@ -80,7 +80,7 @@ Note:
|
|
|
80
80
|
Args:
|
|
81
81
|
other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
|
|
82
82
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
83
|
-
`
|
|
83
|
+
`bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
84
84
|
|
|
85
85
|
Returns:
|
|
86
86
|
Tensor with a shape that is the same as the broadcasted shape of `self` and `other`,
|
|
@@ -131,7 +131,7 @@ Note:
|
|
|
131
131
|
Args:
|
|
132
132
|
other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
|
|
133
133
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
134
|
-
`
|
|
134
|
+
`bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
135
135
|
|
|
136
136
|
Keyword Args:
|
|
137
137
|
alpha (number.Number): A scaling factor applied to `other`, default 1.
|
|
@@ -319,29 +319,7 @@ Examples:
|
|
|
319
319
|
.. method:: Tensor.any(dim=None, keepdim=False) -> Tensor
|
|
320
320
|
:noindex:
|
|
321
321
|
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
Args:
|
|
325
|
-
dim (int, optional): The dimensions to reduce. If ``None`` , all dimensions are reduced. Default ``None`` .
|
|
326
|
-
keepdim (bool, optional): Whether the output tensor has dim retained or not. Default ``False`` .
|
|
327
|
-
|
|
328
|
-
Returns:
|
|
329
|
-
Tensor
|
|
330
|
-
|
|
331
|
-
Supported Platforms:
|
|
332
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
333
|
-
|
|
334
|
-
Examples:
|
|
335
|
-
>>> import mindspore
|
|
336
|
-
>>> x = mindspore.tensor([[True, False], [True, True]])
|
|
337
|
-
>>>
|
|
338
|
-
>>> # case 1: By default, mindspore.Tensor.any tests along all the axes.
|
|
339
|
-
>>> x.any()
|
|
340
|
-
Tensor(shape=[], dtype=Bool, value= True)
|
|
341
|
-
>>>
|
|
342
|
-
>>> # case 2: Reduces a dimension along dim 1, with keepdim False.
|
|
343
|
-
>>> x.any(dim=1)
|
|
344
|
-
Tensor(shape=[2], dtype=Bool, value= [ True, True])
|
|
322
|
+
For details, please refer to :func:`mindspore.mint.any`.
|
|
345
323
|
""")
|
|
346
324
|
attach_docstr("arccosh", r"""arccosh() -> Tensor
|
|
347
325
|
|
|
@@ -361,7 +339,7 @@ Alias for :func:`mindspore.Tensor.asin`.
|
|
|
361
339
|
""")
|
|
362
340
|
attach_docstr("arctan2", r"""arctan2(other) -> Tensor
|
|
363
341
|
|
|
364
|
-
Alias for :func:`Tensor.atan2`.
|
|
342
|
+
Alias for :func:`mindspore.Tensor.atan2`.
|
|
365
343
|
""")
|
|
366
344
|
attach_docstr("arctanh", r"""arctanh() -> Tensor
|
|
367
345
|
|
|
@@ -705,6 +683,9 @@ Examples:
|
|
|
705
683
|
>>> print(output)
|
|
706
684
|
[ 0 1 0 0 -2 3 2]
|
|
707
685
|
""")
|
|
686
|
+
attach_docstr("broadcast_to", r"""broadcast_to(*shape) -> Tensor
|
|
687
|
+
|
|
688
|
+
For details, please refer to :func:`mindspore.ops.broadcast_to`.""")
|
|
708
689
|
attach_docstr("ceil", r"""ceil() -> Tensor
|
|
709
690
|
|
|
710
691
|
For details, please refer to :func:`mindspore.ops.ceil`.""")
|
|
@@ -790,9 +771,6 @@ attach_docstr("clone", r"""clone() -> Tensor
|
|
|
790
771
|
|
|
791
772
|
Returns a copy of self.
|
|
792
773
|
|
|
793
|
-
.. warning::
|
|
794
|
-
This is an experimental API that is subject to change or deletion.
|
|
795
|
-
|
|
796
774
|
Note:
|
|
797
775
|
This function is differentiable, and gradients will flow back directly from the calculation
|
|
798
776
|
result of the function to the `self`.
|
|
@@ -818,12 +796,16 @@ attach_docstr("copy_", r"""copy_(src, non_blocking=False) -> Tensor
|
|
|
818
796
|
Copies the elements from `src` into `self` tensor and returns `self`.
|
|
819
797
|
|
|
820
798
|
.. warning::
|
|
821
|
-
|
|
822
|
-
|
|
799
|
+
If Copying is performed between Ascend and Ascend, the `src` tensor must be broadcastable with the `self` tensor,
|
|
800
|
+
and they can be of different data types.
|
|
801
|
+
Copying is performed between CPU and Ascend or CPU and CPU are only supported if `self` and `src` have
|
|
802
|
+
the same shape and data type and they are all contiguous.
|
|
823
803
|
|
|
824
804
|
Args:
|
|
825
805
|
src (Tensor): the source tensor to copy from.
|
|
826
|
-
non_blocking (bool, optional):
|
|
806
|
+
non_blocking (bool, optional): If ``True`` and copying is performed between CPU and Ascend, and `self` and `src`
|
|
807
|
+
have the same shape and data type and are contiguous. The copy may occur asynchronously with respect to the
|
|
808
|
+
host. For other cases, this argument has no effect. Default: ``False``.
|
|
827
809
|
|
|
828
810
|
Returns:
|
|
829
811
|
Return self Tensor.
|
|
@@ -852,9 +834,6 @@ attach_docstr("count_nonzero", r"""count_nonzero(dim=None) -> Tensor
|
|
|
852
834
|
|
|
853
835
|
Counts the number of non-zero values in the tensor input along the given dim. If no dim is specified then all non-zeros in the tensor are counted.
|
|
854
836
|
|
|
855
|
-
.. warning::
|
|
856
|
-
This is an experimental API that is subject to change or deletion.
|
|
857
|
-
|
|
858
837
|
Args:
|
|
859
838
|
dim (Union[None, int, tuple(int), list(int)], optional): The dimension to reduce. Default value: ``None``, which indicates that the number of non-zero elements is calculated. If `dim` is ``None``, all elements in the tensor are summed up.
|
|
860
839
|
|
|
@@ -901,7 +880,7 @@ Args:
|
|
|
901
880
|
keep_dims (bool, optional): Whether to maintain dimensions specified by `axis`.
|
|
902
881
|
If true, keep these reduced dimensions and the length is 1.
|
|
903
882
|
If false, don't keep these dimensions. Default: ``False`` .
|
|
904
|
-
dtype (Union[Number, mindspore.bool
|
|
883
|
+
dtype (Union[Number, mindspore.bool], optional): The data type of the output tensor.
|
|
905
884
|
Default: ``None`` .
|
|
906
885
|
|
|
907
886
|
Returns:
|
|
@@ -1357,9 +1336,6 @@ the scalar could only be a constant.
|
|
|
1357
1336
|
where the :math:`floor` indicates the Floor operator. For more details,
|
|
1358
1337
|
please refer to the :class:`mindspore.mint.floor` operator.
|
|
1359
1338
|
|
|
1360
|
-
.. warning::
|
|
1361
|
-
This is an experimental API that is subject to change or deletion.
|
|
1362
|
-
|
|
1363
1339
|
Args:
|
|
1364
1340
|
other (Union[Tensor, Number, bool]): The other input is a number or
|
|
1365
1341
|
a bool or a tensor whose data type is number or bool.
|
|
@@ -1498,11 +1474,11 @@ The following figure shows the calculation process of Gather commonly:
|
|
|
1498
1474
|
where params represents the input `input_params`, and indices represents the index to be sliced `input_indices`.
|
|
1499
1475
|
|
|
1500
1476
|
.. note::
|
|
1501
|
-
- The value of input_indices must be in the range of
|
|
1477
|
+
- The value of input_indices must be in the range of :math:`[0, input\_param.shape[axis])`.
|
|
1502
1478
|
On CPU and GPU, an error is raised if an out of bound indice is found. On Ascend, the results may be
|
|
1503
1479
|
undefined.
|
|
1504
1480
|
- The data type of self cannot be
|
|
1505
|
-
`
|
|
1481
|
+
`bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ on Ascend
|
|
1506
1482
|
platform currently.
|
|
1507
1483
|
|
|
1508
1484
|
Args:
|
|
@@ -1523,7 +1499,7 @@ Raises:
|
|
|
1523
1499
|
ValueError: If `axis` is a Tensor and its size is not 1.
|
|
1524
1500
|
TypeError: If `self` is not a tensor.
|
|
1525
1501
|
TypeError: If `input_indices` is not a tensor of type int.
|
|
1526
|
-
RuntimeError: If `input_indices` is out of range :math:`[0,
|
|
1502
|
+
RuntimeError: If `input_indices` is out of range :math:`[0, input\_param.shape[axis])` on CPU or GPU.
|
|
1527
1503
|
|
|
1528
1504
|
Supported Platforms:
|
|
1529
1505
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -1582,7 +1558,7 @@ For details, please refer to :func:`mindspore.ops.greater_equal`.
|
|
|
1582
1558
|
""")
|
|
1583
1559
|
attach_docstr("gt", r"""gt(other) -> Tensor
|
|
1584
1560
|
|
|
1585
|
-
For details, please refer to :func
|
|
1561
|
+
For details, please refer to :func:`mindspore.Tensor.greater`.""")
|
|
1586
1562
|
attach_docstr("hardshrink", r"""hardshrink(lambd=0.5) -> Tensor
|
|
1587
1563
|
|
|
1588
1564
|
For details, please refer to :func:`mindspore.ops.hardshrink`.""")
|
|
@@ -1592,6 +1568,10 @@ For details, please refer to :func:`mindspore.ops.histc`.
|
|
|
1592
1568
|
|
|
1593
1569
|
Supported Platforms:
|
|
1594
1570
|
``Ascend`` ``GPU`` ``CPU``""")
|
|
1571
|
+
attach_docstr("imag", r"""imag() -> Tensor
|
|
1572
|
+
|
|
1573
|
+
For details, please refer to :func:`mindspore.ops.imag`.
|
|
1574
|
+
""")
|
|
1595
1575
|
attach_docstr("index_add", r"""index_add(indices, y, axis, use_lock=True, check_index_bound=True) -> Tensor
|
|
1596
1576
|
|
|
1597
1577
|
Adds tensor `y` to specified axis and indices of tensor `self`. The axis should be in [-len(self.dim), len(self.dim) - 1], and indices should be in [0, the size of `self` - 1] at the axis dimension.
|
|
@@ -1636,6 +1616,87 @@ For details, please refer to :func:`mindspore.ops.index_add`.
|
|
|
1636
1616
|
The corresponding relationships between the parameters of `Tensor.index_add` and :func:`mindspore.ops.index_add`
|
|
1637
1617
|
are as follows: `dim` -> `axis`, `index` -> `indices`, `source * alpha` -> `y`.
|
|
1638
1618
|
""")
|
|
1619
|
+
attach_docstr("index_copy_", r"""index_copy_(dim, index, tensor) -> Tensor
|
|
1620
|
+
|
|
1621
|
+
Copies the elements of `tensor` into the `self` by selecting the indices in the order given in `index` .
|
|
1622
|
+
|
|
1623
|
+
.. note::
|
|
1624
|
+
The value of `index` must be in the range `[0, self.shape[dim])` , if it is out of range, the result is undefined.
|
|
1625
|
+
|
|
1626
|
+
If value of `index` contains duplicate entries, the result is nondeterministic since it depends on the last copy operation that occurred.
|
|
1627
|
+
|
|
1628
|
+
Args:
|
|
1629
|
+
dim (int): The dimension along which to `index` .
|
|
1630
|
+
index (Tensor): A 1-D Tensor with the indices to access in `self` along the specified `dim` .
|
|
1631
|
+
tensor (Tensor): The tensor containing values to copy.
|
|
1632
|
+
|
|
1633
|
+
Returns:
|
|
1634
|
+
Return `self` Tensor.
|
|
1635
|
+
|
|
1636
|
+
Supported Platforms:
|
|
1637
|
+
``Ascend``
|
|
1638
|
+
|
|
1639
|
+
Examples:
|
|
1640
|
+
>>> import mindspore
|
|
1641
|
+
>>> from mindspore import Tensor, mint
|
|
1642
|
+
>>> x = mint.ones((5, 3), dtype=mindspore.int64)
|
|
1643
|
+
>>> index = Tensor([4, 0, 2])
|
|
1644
|
+
>>> tensor = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=mindspore.int64)
|
|
1645
|
+
>>> x.index_copy_(0, index, tensor)
|
|
1646
|
+
Tensor(shape=[5, 3], dtype=Int64, value=
|
|
1647
|
+
[[4 5 6]
|
|
1648
|
+
[1 1 1]
|
|
1649
|
+
[7 8 9]
|
|
1650
|
+
[1 1 1]
|
|
1651
|
+
[1 2 3]])
|
|
1652
|
+
""")
|
|
1653
|
+
attach_docstr("index_fill_", r"""index_fill_(dim, index, value) -> Tensor
|
|
1654
|
+
|
|
1655
|
+
Fills the elements under the `dim` dimension of the `self` Tensor with the input `value`
|
|
1656
|
+
by selecting the indices in the order given in `index`.
|
|
1657
|
+
|
|
1658
|
+
.. warning::
|
|
1659
|
+
This is an experimental API that is subject to change or deletion.
|
|
1660
|
+
|
|
1661
|
+
.. note::
|
|
1662
|
+
While calculating the gradient of `value` , the value of `index` must be in the range `[0, self.shape[dim])` ,
|
|
1663
|
+
if it is out of range, the result is undefined.
|
|
1664
|
+
|
|
1665
|
+
Args:
|
|
1666
|
+
dim (int): Dimension along which to fill the `self` Tensor.
|
|
1667
|
+
index (Tensor): Indices of the `self` Tensor to fill in. The `index` must be a 0D or 1D Tensor with dtype int32
|
|
1668
|
+
or int64.
|
|
1669
|
+
value (Union[Tensor, Number, bool]): Value to fill the `self` Tensor. The `value` is a number or a bool or a
|
|
1670
|
+
tensor whose data type is number or bool. If `value` is a Tensor, it must be a 0D Tensor.
|
|
1671
|
+
|
|
1672
|
+
Returns:
|
|
1673
|
+
Tensor, the shape and the data type are the same as those of `self` .
|
|
1674
|
+
|
|
1675
|
+
Raises:
|
|
1676
|
+
TypeError: If the data type of `index` is not int32 or int64.
|
|
1677
|
+
RuntimeError: If `dim` is out of range :math:`[-self.ndim, self.ndim)`.
|
|
1678
|
+
RuntimeError: If the rank of `index` is greater than 1.
|
|
1679
|
+
RuntimeError: If `value` is a Tensor and its rank is not equal to 0.
|
|
1680
|
+
|
|
1681
|
+
Supported Platforms:
|
|
1682
|
+
``Ascend``
|
|
1683
|
+
|
|
1684
|
+
Examples:
|
|
1685
|
+
>>> import mindspore
|
|
1686
|
+
>>> from mindspore import Tensor
|
|
1687
|
+
>>> import numpy as np
|
|
1688
|
+
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]), mindspore.int32)
|
|
1689
|
+
>>> dim = 1
|
|
1690
|
+
>>> index = Tensor(np.array([0, 2]), mindspore.int32)
|
|
1691
|
+
>>> value = Tensor(0, mindspore.int32)
|
|
1692
|
+
>>> output = x.index_fill_(dim, index, value)
|
|
1693
|
+
>>> print(output)
|
|
1694
|
+
[[ 0 2 0]
|
|
1695
|
+
[ 0 5 0]]
|
|
1696
|
+
>>> print(x)
|
|
1697
|
+
[[ 0 2 0]
|
|
1698
|
+
[ 0 5 0]]
|
|
1699
|
+
""")
|
|
1639
1700
|
attach_docstr("index_select", r"""index_select(axis, index) -> Tensor
|
|
1640
1701
|
|
|
1641
1702
|
Generates a new Tensor that accesses the values of `self` along the specified `axis` dimension
|
|
@@ -1923,13 +1984,13 @@ Examples:
|
|
|
1923
1984
|
>>> import mindspore
|
|
1924
1985
|
>>> import numpy as np
|
|
1925
1986
|
>>> from mindspore import Tensor
|
|
1926
|
-
>>> input = Tensor(np.array([True, False, True]), mindspore.
|
|
1927
|
-
>>> other = Tensor(np.array([True, True, False]), mindspore.
|
|
1987
|
+
>>> input = Tensor(np.array([True, False, True]), mindspore.bool)
|
|
1988
|
+
>>> other = Tensor(np.array([True, True, False]), mindspore.bool)
|
|
1928
1989
|
>>> output = input.logical_xor(other)
|
|
1929
1990
|
>>> print(output)
|
|
1930
1991
|
[ False True True]
|
|
1931
|
-
>>> x = Tensor(1, mindspore.
|
|
1932
|
-
>>> other = Tensor(0, mindspore.
|
|
1992
|
+
>>> x = Tensor(1, mindspore.bool)
|
|
1993
|
+
>>> other = Tensor(0, mindspore.bool)
|
|
1933
1994
|
>>> output = input.logical_xor(other)
|
|
1934
1995
|
>>> print(output)
|
|
1935
1996
|
True
|
|
@@ -1963,6 +2024,81 @@ In-place version of :func:`mindspore.Tensor.masked_fill`.
|
|
|
1963
2024
|
.. warning::
|
|
1964
2025
|
This is an experimental API that is subject to change or deletion.
|
|
1965
2026
|
""")
|
|
2027
|
+
attach_docstr("masked_scatter", r"""masked_scatter(mask, source) -> Tensor
|
|
2028
|
+
|
|
2029
|
+
Returns a Tensor. Updates the value in the "self Tensor" with the `tensor` value according to the mask.
|
|
2030
|
+
The shape of `mask` and the shape of the "self Tensor" must be the same or `mask` is broadcastable.
|
|
2031
|
+
|
|
2032
|
+
Args:
|
|
2033
|
+
mask (Tensor[bool]): A bool tensor with a shape broadcastable to the "self Tensor".
|
|
2034
|
+
source (Tensor): A tensor with the same data type as the "self Tensor". The number
|
|
2035
|
+
of elements must be greater than or equal to the number of True's in `mask`.
|
|
2036
|
+
|
|
2037
|
+
Returns:
|
|
2038
|
+
Tensor, with the same type and shape as the "self Tensor".
|
|
2039
|
+
|
|
2040
|
+
Raises:
|
|
2041
|
+
TypeError: If `mask` or `source` is not a Tensor.
|
|
2042
|
+
TypeError: If data type of the "self Tensor" is not be supported.
|
|
2043
|
+
TypeError: If dtype of `mask` is not bool.
|
|
2044
|
+
TypeError: If the dim of the "self Tensor" is less than the dim of `mask`.
|
|
2045
|
+
ValueError: If `mask` can not be broadcastable to the "self Tensor".
|
|
2046
|
+
ValueError: If the number of elements in `source` is less than the number of elements to be updated in the tensor.
|
|
2047
|
+
|
|
2048
|
+
Supported Platforms:
|
|
2049
|
+
``Ascend`` ``CPU``
|
|
2050
|
+
|
|
2051
|
+
Examples:
|
|
2052
|
+
>>> import numpy as np
|
|
2053
|
+
>>> import mindspore
|
|
2054
|
+
>>> from mindspore import Tensor
|
|
2055
|
+
>>> x = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32)
|
|
2056
|
+
>>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_)
|
|
2057
|
+
>>> source = Tensor(np.array([5., 6., 7.]), mindspore.float32)
|
|
2058
|
+
>>> output = x.masked_scatter(mask, source)
|
|
2059
|
+
>>> print(output)
|
|
2060
|
+
[5. 6. 3. 7.]""")
|
|
2061
|
+
attach_docstr("masked_scatter_", r"""masked_scatter_(mask, source) -> Tensor
|
|
2062
|
+
|
|
2063
|
+
Updates the value in the `self` with the `source` value according to the `mask`, and returns a Tensor.
|
|
2064
|
+
The shape of `mask` and the `self` must be the same or `mask` is broadcastable.
|
|
2065
|
+
|
|
2066
|
+
Note:
|
|
2067
|
+
When the total number of elements in `source` is less than the number of True elements in `mask`,
|
|
2068
|
+
the NPU may not be able to detect this invalid input; therefore,
|
|
2069
|
+
the correctness of the output cannot be guaranteed.
|
|
2070
|
+
|
|
2071
|
+
Args:
|
|
2072
|
+
mask (Tensor[bool]): A bool tensor with a shape broadcastable to the `self`.
|
|
2073
|
+
source (Tensor): A tensor with the same data type as the `self`. The number
|
|
2074
|
+
of elements must be greater than or equal to the number of True elements in `mask`.
|
|
2075
|
+
|
|
2076
|
+
Returns:
|
|
2077
|
+
Tensor, with the same type and shape as the `self`.
|
|
2078
|
+
|
|
2079
|
+
Raises:
|
|
2080
|
+
TypeError: If `mask` or `source` is not a Tensor.
|
|
2081
|
+
TypeError: If data type of the "self Tensor" is not be supported.
|
|
2082
|
+
TypeError: If dtype of `mask` is not bool.
|
|
2083
|
+
TypeError: If the dim of the "self Tensor" is less than the dim of `mask`.
|
|
2084
|
+
ValueError: If `mask` can not be broadcastable to the "self Tensor".
|
|
2085
|
+
|
|
2086
|
+
|
|
2087
|
+
Supported Platforms:
|
|
2088
|
+
``Ascend``
|
|
2089
|
+
|
|
2090
|
+
Examples:
|
|
2091
|
+
>>> import numpy as np
|
|
2092
|
+
>>> import mindspore
|
|
2093
|
+
>>> from mindspore import Tensor
|
|
2094
|
+
>>> x = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32)
|
|
2095
|
+
>>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_)
|
|
2096
|
+
>>> tensor = Tensor(np.array([5., 6., 7.]), mindspore.float32)
|
|
2097
|
+
>>> output = x.masked_scatter_(mask, tensor)
|
|
2098
|
+
>>> print(output)
|
|
2099
|
+
[5. 6. 3. 7.]
|
|
2100
|
+
>>> print(x)
|
|
2101
|
+
[5. 6. 3. 7.]""")
|
|
1966
2102
|
attach_docstr("masked_select", r"""masked_select(mask) -> Tensor
|
|
1967
2103
|
|
|
1968
2104
|
For details, please refer to :func:`mindspore.ops.masked_select`.""")
|
|
@@ -2489,7 +2625,7 @@ Note:
|
|
|
2489
2625
|
- When `self` and `other` have different shapes,
|
|
2490
2626
|
`other` be able to broadcast to a `self`.
|
|
2491
2627
|
- `self` and `other` can not be bool type at the same time,
|
|
2492
|
-
[True, Tensor(True
|
|
2628
|
+
[True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
|
|
2493
2629
|
|
|
2494
2630
|
Args:
|
|
2495
2631
|
other (Union[Tensor, number.Number, bool]): `other` is a number.Number or
|
|
@@ -2659,9 +2795,6 @@ attach_docstr("new_empty", r"""new_empty(size, *, dtype=None, device=None) -> Te
|
|
|
2659
2795
|
Returns an uninitialized Tensor. Its shape is specified by `size`, its dtype is specified by `dtype` and its
|
|
2660
2796
|
device is specified by `device`.
|
|
2661
2797
|
|
|
2662
|
-
.. warning::
|
|
2663
|
-
This is an experimental API that is subject to change or deletion.
|
|
2664
|
-
|
|
2665
2798
|
Args:
|
|
2666
2799
|
size (Union[tuple[int], list[int], int]): The specified shape of output tensor. Only positive integer or
|
|
2667
2800
|
tuple or list containing positive integers are allowed.
|
|
@@ -2669,7 +2802,7 @@ Args:
|
|
|
2669
2802
|
Keyword Args:
|
|
2670
2803
|
dtype (:class:`mindspore.dtype`, optional): The specified dtype of the output tensor. If `dtype = None`,
|
|
2671
2804
|
the tensor will have the same dtype as `self`. Default ``None``.
|
|
2672
|
-
device (
|
|
2805
|
+
device (str, optional): The specified device of the output tensor. In PyNative mode, ``"Ascend"``, ``"npu"``,
|
|
2673
2806
|
``"cpu"`` and ``"CPU"`` are supported. In graph mode O0, ``"Ascend"`` and ``"npu"`` are supported. If `device = None`,
|
|
2674
2807
|
the value set by :func:`mindspore.set_device` will be used. Default ``None``.
|
|
2675
2808
|
|
|
@@ -2795,6 +2928,15 @@ attach_docstr("outer", r"""outer(vec2) -> Tensor
|
|
|
2795
2928
|
|
|
2796
2929
|
For details, please refer to :func:`mindspore.ops.outer`.
|
|
2797
2930
|
""")
|
|
2931
|
+
attach_docstr("permute", r"""permute(*dims) -> Tensor
|
|
2932
|
+
|
|
2933
|
+
For details, please refer to :func:`mindspore.mint.permute`.
|
|
2934
|
+
|
|
2935
|
+
.. method:: Tensor.permute(*axis) -> Tensor
|
|
2936
|
+
:noindex:
|
|
2937
|
+
|
|
2938
|
+
For details, please refer to :func:`mindspore.ops.permute`.
|
|
2939
|
+
""")
|
|
2798
2940
|
attach_docstr("pow", r"""pow(exponent) -> Tensor
|
|
2799
2941
|
|
|
2800
2942
|
For details, please refer to :func:`mindspore.ops.pow`.
|
|
@@ -2915,6 +3057,10 @@ Examples:
|
|
|
2915
3057
|
[[4. 9. 5.]
|
|
2916
3058
|
[10. 7. 8.]]
|
|
2917
3059
|
""")
|
|
3060
|
+
attach_docstr("real", r"""real() -> Tensor
|
|
3061
|
+
|
|
3062
|
+
For details, please refer to :func:`mindspore.ops.real`.
|
|
3063
|
+
""")
|
|
2918
3064
|
attach_docstr("reciprocal", r"""reciprocal() -> Tensor
|
|
2919
3065
|
|
|
2920
3066
|
For details, please refer to :func:`mindspore.ops.reciprocal`.
|
|
@@ -2935,11 +3081,11 @@ Supports broadcasting to a common shape and implicit type promotion.
|
|
|
2935
3081
|
|
|
2936
3082
|
The dividend `self` is a tensor whose data type is
|
|
2937
3083
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
2938
|
-
`
|
|
3084
|
+
`bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
2939
3085
|
|
|
2940
3086
|
Args:
|
|
2941
3087
|
other (Union[Tensor, numbers.Number, bool]): The divisor is a numbers.Number or
|
|
2942
|
-
a bool or a tensor whose data type is number or bool
|
|
3088
|
+
a bool or a tensor whose data type is number or bool when the dividend is a tensor.
|
|
2943
3089
|
|
|
2944
3090
|
Returns:
|
|
2945
3091
|
Tensor, with dtype promoted and shape broadcasted.
|
|
@@ -3007,6 +3153,49 @@ Examples:
|
|
|
3007
3153
|
>>> print(output)
|
|
3008
3154
|
[2. 1. 0.]
|
|
3009
3155
|
""")
|
|
3156
|
+
attach_docstr("remainder_", r"""remainder_(other) -> Tensor
|
|
3157
|
+
|
|
3158
|
+
Computes the remainder of `self` divided by `other` element-wise. The result has the same sign as the divisor `other`
|
|
3159
|
+
and its absolute value is less than that of `other`.
|
|
3160
|
+
|
|
3161
|
+
.. code-block::
|
|
3162
|
+
|
|
3163
|
+
remainder(self, other) == self - self.div(other, rounding_mode="floor") * other
|
|
3164
|
+
|
|
3165
|
+
.. warning::
|
|
3166
|
+
This is an experimental API that is subject to change or deletion.
|
|
3167
|
+
|
|
3168
|
+
Note:
|
|
3169
|
+
- Complex inputs are not supported.
|
|
3170
|
+
- The dividend `self` is a tensor whose data type is
|
|
3171
|
+
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
3172
|
+
- When `self` and `other` have different shapes, `other` should be able to broadcast to a `self`.
|
|
3173
|
+
|
|
3174
|
+
Args:
|
|
3175
|
+
other (Union[Tensor, number, bool]): The divisor is a number or
|
|
3176
|
+
a bool or a tensor whose data type is number or bool.
|
|
3177
|
+
|
|
3178
|
+
Returns:
|
|
3179
|
+
Tensor, the shape and the data type are the same as those of `self` .
|
|
3180
|
+
|
|
3181
|
+
Raises:
|
|
3182
|
+
RuntimeError: If `other` cannot be broadcast to `self`.
|
|
3183
|
+
|
|
3184
|
+
Supported Platforms:
|
|
3185
|
+
``Ascend``
|
|
3186
|
+
|
|
3187
|
+
Examples:
|
|
3188
|
+
>>> import mindspore
|
|
3189
|
+
>>> from mindspore import Tensor
|
|
3190
|
+
>>> import numpy as np
|
|
3191
|
+
>>> x = Tensor(np.array([2, 4, -1]), mindspore.int32)
|
|
3192
|
+
>>> other = Tensor(np.array([3, -6, -2]), mindspore.int32)
|
|
3193
|
+
>>> output = x.remainder_(other)
|
|
3194
|
+
>>> print(output)
|
|
3195
|
+
[ 2 -2 -1]
|
|
3196
|
+
>>> print(x)
|
|
3197
|
+
[ 2 -2 -1]
|
|
3198
|
+
""")
|
|
3010
3199
|
attach_docstr("repeat", r"""repeat(*repeats)
|
|
3011
3200
|
|
|
3012
3201
|
Copy the elements in each dimension of a Tensor based on the specified number of repetition times.
|
|
@@ -3023,9 +3212,6 @@ elements in `repeats`.
|
|
|
3023
3212
|
repeats_{i} & \text{if } input.{rank} \le i < n \\
|
|
3024
3213
|
\end{cases}
|
|
3025
3214
|
|
|
3026
|
-
.. warning::
|
|
3027
|
-
This is an experimental API that is subject to change or deletion.
|
|
3028
|
-
|
|
3029
3215
|
.. note::
|
|
3030
3216
|
If need to specify the number of repetition times for each element of a single dimension, please
|
|
3031
3217
|
refer to :func:`mindspore.Tensor.repeat_interleave`.
|
|
@@ -3842,6 +4028,12 @@ Examples:
|
|
|
3842
4028
|
attach_docstr("sigmoid", r"""sigmoid() -> Tensor
|
|
3843
4029
|
|
|
3844
4030
|
For details, please refer to :func:`mindspore.ops.sigmoid`.""")
|
|
4031
|
+
attach_docstr("sigmoid_", r"""sigmoid_() -> Tensor
|
|
4032
|
+
|
|
4033
|
+
In-place version of :func:`mindspore.Tensor.sigmoid`.
|
|
4034
|
+
|
|
4035
|
+
.. warning::
|
|
4036
|
+
Only supports Ascend.""")
|
|
3845
4037
|
attach_docstr("sinc", r"""sinc() -> Tensor
|
|
3846
4038
|
|
|
3847
4039
|
For details, please refer to :func:`mindspore.ops.sinc`.
|
|
@@ -4022,6 +4214,9 @@ For details, please refer to :func:`mindspore.ops.sqrt`.
|
|
|
4022
4214
|
attach_docstr("square", r"""square() -> Tensor
|
|
4023
4215
|
|
|
4024
4216
|
For details, please refer to :func:`mindspore.ops.square`.""")
|
|
4217
|
+
attach_docstr("squeeze", r"""squeeze(*axis) -> Tensor
|
|
4218
|
+
|
|
4219
|
+
For details, please refer to :func:`mindspore.ops.squeeze`.""")
|
|
4025
4220
|
attach_docstr("std", r"""std(axis=None, ddof=0, keepdims=False) -> Tensor
|
|
4026
4221
|
|
|
4027
4222
|
For details, please refer to :func:`mindspore.ops.std`.
|
|
@@ -4105,7 +4300,7 @@ Args:
|
|
|
4105
4300
|
other (Union[Tensor, number.Number, bool]): The second self, is a number.Number or
|
|
4106
4301
|
a bool or a tensor whose data type is
|
|
4107
4302
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
4108
|
-
`
|
|
4303
|
+
`bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
4109
4304
|
|
|
4110
4305
|
Keyword Args:
|
|
4111
4306
|
alpha (number.Number, optional): A scaling factor applied to `other`, default ``1``.
|
|
@@ -4467,13 +4662,106 @@ Examples:
|
|
|
4467
4662
|
|
|
4468
4663
|
For more details, please refer to :func:`mindspore.ops.topk`.
|
|
4469
4664
|
""")
|
|
4665
|
+
attach_docstr("to", r"""to(dtype=None, non_blocking=False, copy=False) -> Tensor
|
|
4666
|
+
|
|
4667
|
+
Returns a tensor with the new specified data type.
|
|
4668
|
+
|
|
4669
|
+
Note:
|
|
4670
|
+
- When converting complex numbers to boolean type, the imaginary part of the complex number is not
|
|
4671
|
+
taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False.
|
|
4672
|
+
- `non_blocking` and `copy` do not take effect in GRAPH_MODE or within jit.
|
|
4673
|
+
|
|
4674
|
+
Args:
|
|
4675
|
+
dtype (dtype.Number, optional): The valid data type of the output tensor. Default: ``None``.
|
|
4676
|
+
non_blocking(bool, optional): Data type conversion asynchronously. If ``True`` , convert data type asynchronously. If ``False`` , convert data type synchronously. Default: ``False`` .
|
|
4677
|
+
copy(bool, optional): When copy is set ``True`` , a new Tensor is created even when then Tensor already matches the desired conversion. Default: ``False`` .
|
|
4678
|
+
|
|
4679
|
+
Returns:
|
|
4680
|
+
Tensor, the data type of the tensor is `dtype` .
|
|
4681
|
+
|
|
4682
|
+
Supported Platforms:
|
|
4683
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
4684
|
+
|
|
4685
|
+
Examples:
|
|
4686
|
+
>>> import mindspore
|
|
4687
|
+
>>> import numpy as np
|
|
4688
|
+
>>> from mindspore import Tensor
|
|
4689
|
+
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
4690
|
+
>>> input = Tensor(input_np)
|
|
4691
|
+
>>> dtype = mindspore.int32
|
|
4692
|
+
>>> output = input.to(dtype)
|
|
4693
|
+
>>> print(output.dtype)
|
|
4694
|
+
Int32
|
|
4695
|
+
>>> print(output.shape)
|
|
4696
|
+
(2, 3, 4, 5)
|
|
4697
|
+
|
|
4698
|
+
.. method:: Tensor.to(device=None, dtype=None, non_blocking=False, copy=False) -> Tensor
|
|
4699
|
+
:noindex:
|
|
4700
|
+
|
|
4701
|
+
Returns a tensor with the new specified data type and device type.
|
|
4702
|
+
|
|
4703
|
+
Note:
|
|
4704
|
+
`device` , `non_blocking` and `copy` do not take effect in GRAPH_MODE or within jit.
|
|
4705
|
+
|
|
4706
|
+
Args:
|
|
4707
|
+
device(str, optional): The device type of the output tensor. Default: ``None`` .
|
|
4708
|
+
dtype (dtype.Number, optional): The valid data type of the output tensor. Default: ``None`` .
|
|
4709
|
+
non_blocking(bool, optional): Data type conversion asynchronously. If ``True`` , convert data type asynchronously. If ``False`` , convert data type synchronously. Default: ``False`` .
|
|
4710
|
+
copy(bool, optional): When copy is set ``True`` , a new Tensor is created even when then Tensor already matches the desired conversion. Default: ``False`` .
|
|
4711
|
+
|
|
4712
|
+
Returns:
|
|
4713
|
+
Tensor, the specified device type and data type of the tensor.
|
|
4714
|
+
|
|
4715
|
+
Supported Platforms:
|
|
4716
|
+
``Ascend`` ``CPU``
|
|
4717
|
+
|
|
4718
|
+
Examples:
|
|
4719
|
+
>>> import mindspore
|
|
4720
|
+
>>> import numpy as np
|
|
4721
|
+
>>> from mindspore import Tensor
|
|
4722
|
+
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
4723
|
+
>>> input = Tensor(input_np)
|
|
4724
|
+
>>> dtype = mindspore.int32
|
|
4725
|
+
>>> output = input.to("Ascend")
|
|
4726
|
+
>>> print(output.device)
|
|
4727
|
+
"Ascend:0"
|
|
4728
|
+
|
|
4729
|
+
.. method:: Tensor.to(other, non_blocking=False, copy=False) -> Tensor
|
|
4730
|
+
:noindex:
|
|
4731
|
+
|
|
4732
|
+
Returns a tensor with same device and dtype as the Tensor `other` .
|
|
4733
|
+
|
|
4734
|
+
Note:
|
|
4735
|
+
`non_blocking` and `copy` do not take effect in GRAPH_MODE or within jit.
|
|
4736
|
+
|
|
4737
|
+
Args:
|
|
4738
|
+
other(Tensor): The returned Tensor has the same device and dtype as `other` .
|
|
4739
|
+
non_blocking(bool, optional): Data type conversion asynchronously. If ``True`` , convert data type asynchronously. If ``False`` , convert data type synchronously. Default: ``False`` .
|
|
4740
|
+
copy(bool, optional): When copy is set ``True`` , a new Tensor is created even when then Tensor already matches the desired conversion. Default: ``False`` .
|
|
4741
|
+
|
|
4742
|
+
Returns:
|
|
4743
|
+
Tensor, same device and dtype as the Tensor `other` .
|
|
4744
|
+
|
|
4745
|
+
Supported Platforms:
|
|
4746
|
+
``Ascend`` ``CPU``
|
|
4747
|
+
|
|
4748
|
+
Examples:
|
|
4749
|
+
>>> import mindspore
|
|
4750
|
+
>>> import numpy as np
|
|
4751
|
+
>>> from mindspore import Tensor
|
|
4752
|
+
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
4753
|
+
>>> input = Tensor(input_np)
|
|
4754
|
+
>>> other = input.to("Ascend", dtype=mindspore.float16)
|
|
4755
|
+
>> output = input.to(other)
|
|
4756
|
+
>>> print(output.device)
|
|
4757
|
+
"Ascend:0"
|
|
4758
|
+
>>> print(output.dtype)
|
|
4759
|
+
float16
|
|
4760
|
+
""")
|
|
4470
4761
|
attach_docstr("transpose", r"""transpose(dim0, dim1) -> Tensor
|
|
4471
4762
|
|
|
4472
4763
|
Interchange two axes of a tensor.
|
|
4473
4764
|
|
|
4474
|
-
.. warning::
|
|
4475
|
-
This is an experimental API that is subject to change or deletion.
|
|
4476
|
-
|
|
4477
4765
|
Args:
|
|
4478
4766
|
dim0 (int): Specifies the first dimension to be transposed.
|
|
4479
4767
|
dim1 (int): Specifies the second dimension to be transposed.
|
|
@@ -4743,6 +5031,26 @@ Examples:
|
|
|
4743
5031
|
>>> print(output)
|
|
4744
5032
|
[1. 2. 3. 2. 3. 4.]
|
|
4745
5033
|
""")
|
|
5034
|
+
attach_docstr("view", r"""view(*shape) -> Tensor
|
|
5035
|
+
|
|
5036
|
+
Reshape the tensor according to the input `shape` .
|
|
5037
|
+
|
|
5038
|
+
Args:
|
|
5039
|
+
shape (Union[tuple(int), int]): Dimension of the output tensor.
|
|
5040
|
+
|
|
5041
|
+
Returns:
|
|
5042
|
+
Tensor, which dimension is the input shape's value.
|
|
5043
|
+
|
|
5044
|
+
Examples:
|
|
5045
|
+
>>> from mindspore import Tensor
|
|
5046
|
+
>>> import numpy as np
|
|
5047
|
+
>>> a = Tensor(np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float32))
|
|
5048
|
+
>>> output = a.view((3, 2))
|
|
5049
|
+
>>> print(output)
|
|
5050
|
+
[[1. 2.]
|
|
5051
|
+
[3. 2.]
|
|
5052
|
+
[3. 4.]]
|
|
5053
|
+
""")
|
|
4746
5054
|
attach_docstr("where", r"""where(condition, y) -> Tensor
|
|
4747
5055
|
|
|
4748
5056
|
For details, please refer to :func:`mindspore.ops.where`.
|
|
@@ -4751,39 +5059,6 @@ attach_docstr("xlogy", r"""xlogy(other) -> Tensor
|
|
|
4751
5059
|
|
|
4752
5060
|
For details, please refer to :func:`mindspore.ops.xlogy`.
|
|
4753
5061
|
""")
|
|
4754
|
-
attach_docstr("_to", r"""_to(dtype) -> Tensor
|
|
4755
|
-
|
|
4756
|
-
Returns a tensor with the new specified data type.
|
|
4757
|
-
|
|
4758
|
-
Note:
|
|
4759
|
-
When converting complex numbers to boolean type, the imaginary part of the complex number is not
|
|
4760
|
-
taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False.
|
|
4761
|
-
|
|
4762
|
-
Args:
|
|
4763
|
-
dtype (dtype.Number): The valid data type of the output tensor. Only constant value is allowed.
|
|
4764
|
-
|
|
4765
|
-
Returns:
|
|
4766
|
-
Tensor, the data type of the tensor is `dtype`.
|
|
4767
|
-
|
|
4768
|
-
Raises:
|
|
4769
|
-
TypeError: If `dtype` is not a Number.
|
|
4770
|
-
|
|
4771
|
-
Supported Platforms:
|
|
4772
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4773
|
-
|
|
4774
|
-
Examples:
|
|
4775
|
-
>>> import mindspore
|
|
4776
|
-
>>> import numpy as np
|
|
4777
|
-
>>> from mindspore import Tensor
|
|
4778
|
-
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
4779
|
-
>>> input = Tensor(input_np)
|
|
4780
|
-
>>> dtype = mindspore.int32
|
|
4781
|
-
>>> output = input._to(dtype)
|
|
4782
|
-
>>> print(output.dtype)
|
|
4783
|
-
Int32
|
|
4784
|
-
>>> print(output.shape)
|
|
4785
|
-
(2, 3, 4, 5)
|
|
4786
|
-
""")
|
|
4787
5062
|
attach_docstr("__abs__", r"""__abs__() -> Tensor
|
|
4788
5063
|
|
|
4789
5064
|
Alias for :func:`Tensor.abs`.
|