mindspore 2.7.0rc1__cp310-cp310-win_amd64.whl → 2.7.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (370) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +5 -2
  3. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +2 -2
  7. mindspore/_extends/builtin_operations.py +3 -3
  8. mindspore/_extends/parallel_compile/akg_compiler/custom.py +1109 -0
  9. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  10. mindspore/_extends/parse/__init__.py +3 -3
  11. mindspore/_extends/parse/compile_config.py +24 -1
  12. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +6 -3
  13. mindspore/_extends/parse/parser.py +28 -22
  14. mindspore/_extends/parse/resources.py +1 -1
  15. mindspore/_extends/parse/standard_method.py +23 -2
  16. mindspore/_extends/parse/trope.py +2 -1
  17. mindspore/_extends/pijit/pijit_func_white_list.py +9 -27
  18. mindspore/amp.py +0 -18
  19. mindspore/avcodec-59.dll +0 -0
  20. mindspore/avdevice-59.dll +0 -0
  21. mindspore/avfilter-8.dll +0 -0
  22. mindspore/avformat-59.dll +0 -0
  23. mindspore/avutil-57.dll +0 -0
  24. mindspore/boost/base.py +29 -2
  25. mindspore/common/__init__.py +18 -12
  26. mindspore/common/_decorator.py +3 -2
  27. mindspore/common/_grad_function.py +3 -1
  28. mindspore/common/_tensor_cpp_method.py +1 -1
  29. mindspore/common/_tensor_docs.py +371 -96
  30. mindspore/common/_utils.py +7 -43
  31. mindspore/common/api.py +434 -135
  32. mindspore/common/dtype.py +98 -57
  33. mindspore/common/dump.py +7 -108
  34. mindspore/common/dynamic_shape/__init__.py +0 -0
  35. mindspore/common/{auto_dynamic_shape.py → dynamic_shape/auto_dynamic_shape.py} +15 -23
  36. mindspore/common/dynamic_shape/enable_dynamic.py +197 -0
  37. mindspore/common/file_system.py +59 -9
  38. mindspore/common/hook_handle.py +82 -3
  39. mindspore/common/jit_config.py +5 -1
  40. mindspore/common/jit_trace.py +27 -12
  41. mindspore/common/lazy_inline.py +5 -3
  42. mindspore/common/np_dtype.py +3 -3
  43. mindspore/common/parameter.py +17 -127
  44. mindspore/common/recompute.py +4 -13
  45. mindspore/common/tensor.py +50 -217
  46. mindspore/communication/_comm_helper.py +11 -1
  47. mindspore/communication/comm_func.py +138 -4
  48. mindspore/communication/management.py +85 -1
  49. mindspore/config/op_info.config +0 -15
  50. mindspore/context.py +20 -106
  51. mindspore/dataset/__init__.py +1 -1
  52. mindspore/dataset/audio/transforms.py +1 -1
  53. mindspore/dataset/core/config.py +35 -1
  54. mindspore/dataset/engine/datasets.py +338 -319
  55. mindspore/dataset/engine/datasets_user_defined.py +38 -22
  56. mindspore/dataset/engine/datasets_vision.py +1 -1
  57. mindspore/dataset/engine/validators.py +1 -15
  58. mindspore/dataset/transforms/c_transforms.py +2 -2
  59. mindspore/dataset/transforms/transforms.py +3 -3
  60. mindspore/dataset/vision/__init__.py +1 -1
  61. mindspore/dataset/vision/py_transforms.py +8 -8
  62. mindspore/dataset/vision/transforms.py +17 -5
  63. mindspore/dataset/vision/utils.py +632 -21
  64. mindspore/device_context/ascend/op_tuning.py +35 -1
  65. mindspore/dnnl.dll +0 -0
  66. mindspore/{profiler/common/validator → graph}/__init__.py +9 -1
  67. mindspore/graph/custom_pass.py +55 -0
  68. mindspore/include/api/cell.h +28 -4
  69. mindspore/include/api/cfg.h +24 -7
  70. mindspore/include/api/context.h +1 -0
  71. mindspore/include/api/delegate.h +0 -2
  72. mindspore/include/api/dual_abi_helper.h +100 -19
  73. mindspore/include/api/graph.h +14 -1
  74. mindspore/include/api/kernel.h +16 -3
  75. mindspore/include/api/kernel_api.h +9 -1
  76. mindspore/include/api/metrics/accuracy.h +9 -0
  77. mindspore/include/api/model.h +5 -1
  78. mindspore/include/api/model_group.h +4 -0
  79. mindspore/include/api/model_parallel_runner.h +2 -0
  80. mindspore/include/api/status.h +48 -10
  81. mindspore/include/api/types.h +6 -1
  82. mindspore/include/dataset/constants.h +9 -0
  83. mindspore/include/dataset/execute.h +2 -2
  84. mindspore/jpeg62.dll +0 -0
  85. mindspore/mindrecord/__init__.py +3 -3
  86. mindspore/mindrecord/common/exceptions.py +1 -0
  87. mindspore/mindrecord/config.py +1 -1
  88. mindspore/{parallel/mpi → mindrecord/core}/__init__.py +4 -1
  89. mindspore/mindrecord/{shardheader.py → core/shardheader.py} +2 -1
  90. mindspore/mindrecord/{shardindexgenerator.py → core/shardindexgenerator.py} +1 -1
  91. mindspore/mindrecord/{shardreader.py → core/shardreader.py} +2 -1
  92. mindspore/mindrecord/{shardsegment.py → core/shardsegment.py} +2 -2
  93. mindspore/mindrecord/{shardutils.py → core/shardutils.py} +1 -1
  94. mindspore/mindrecord/{shardwriter.py → core/shardwriter.py} +1 -1
  95. mindspore/mindrecord/filereader.py +4 -4
  96. mindspore/mindrecord/filewriter.py +5 -5
  97. mindspore/mindrecord/mindpage.py +2 -2
  98. mindspore/mindrecord/tools/cifar10.py +4 -3
  99. mindspore/mindrecord/tools/cifar100.py +1 -1
  100. mindspore/mindrecord/tools/cifar100_to_mr.py +1 -1
  101. mindspore/mindrecord/tools/cifar10_to_mr.py +6 -6
  102. mindspore/mindrecord/tools/csv_to_mr.py +1 -1
  103. mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
  104. mindspore/mindrecord/tools/mnist_to_mr.py +1 -1
  105. mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -1
  106. mindspore/mindspore_backend_common.dll +0 -0
  107. mindspore/mindspore_backend_manager.dll +0 -0
  108. mindspore/mindspore_cluster.dll +0 -0
  109. mindspore/mindspore_common.dll +0 -0
  110. mindspore/mindspore_core.dll +0 -0
  111. mindspore/mindspore_cpu.dll +0 -0
  112. mindspore/mindspore_dump.dll +0 -0
  113. mindspore/mindspore_frontend.dll +0 -0
  114. mindspore/mindspore_glog.dll +0 -0
  115. mindspore/mindspore_hardware_abstract.dll +0 -0
  116. mindspore/mindspore_memory_pool.dll +0 -0
  117. mindspore/mindspore_ms_backend.dll +0 -0
  118. mindspore/mindspore_ops.dll +0 -0
  119. mindspore/{mindspore_ops_host.dll → mindspore_ops_cpu.dll} +0 -0
  120. mindspore/mindspore_profiler.dll +0 -0
  121. mindspore/mindspore_pyboost.dll +0 -0
  122. mindspore/mindspore_pynative.dll +0 -0
  123. mindspore/mindspore_runtime_pipeline.dll +0 -0
  124. mindspore/mindspore_runtime_utils.dll +0 -0
  125. mindspore/mindspore_tools.dll +0 -0
  126. mindspore/mint/__init__.py +15 -10
  127. mindspore/mint/distributed/__init__.py +4 -0
  128. mindspore/mint/distributed/distributed.py +392 -69
  129. mindspore/mint/nn/__init__.py +2 -16
  130. mindspore/mint/nn/functional.py +4 -110
  131. mindspore/mint/nn/layer/__init__.py +0 -2
  132. mindspore/mint/nn/layer/_functions.py +1 -2
  133. mindspore/mint/nn/layer/activation.py +0 -6
  134. mindspore/mint/nn/layer/basic.py +0 -47
  135. mindspore/mint/nn/layer/conv.py +10 -10
  136. mindspore/mint/nn/layer/normalization.py +11 -16
  137. mindspore/mint/nn/layer/pooling.py +0 -4
  138. mindspore/nn/__init__.py +1 -3
  139. mindspore/nn/cell.py +231 -239
  140. mindspore/nn/layer/activation.py +4 -2
  141. mindspore/nn/layer/basic.py +56 -14
  142. mindspore/nn/layer/container.py +16 -0
  143. mindspore/nn/layer/embedding.py +4 -169
  144. mindspore/nn/layer/image.py +1 -1
  145. mindspore/nn/layer/normalization.py +2 -1
  146. mindspore/nn/layer/thor_layer.py +4 -85
  147. mindspore/nn/optim/ada_grad.py +0 -1
  148. mindspore/nn/optim/adafactor.py +0 -1
  149. mindspore/nn/optim/adam.py +32 -127
  150. mindspore/nn/optim/adamax.py +0 -1
  151. mindspore/nn/optim/asgd.py +0 -1
  152. mindspore/nn/optim/ftrl.py +8 -102
  153. mindspore/nn/optim/lamb.py +1 -4
  154. mindspore/nn/optim/lars.py +0 -3
  155. mindspore/nn/optim/lazyadam.py +25 -218
  156. mindspore/nn/optim/momentum.py +5 -43
  157. mindspore/nn/optim/optimizer.py +6 -55
  158. mindspore/nn/optim/proximal_ada_grad.py +0 -1
  159. mindspore/nn/optim/rmsprop.py +0 -1
  160. mindspore/nn/optim/rprop.py +0 -1
  161. mindspore/nn/optim/sgd.py +0 -1
  162. mindspore/nn/optim/tft_wrapper.py +2 -4
  163. mindspore/nn/optim/thor.py +0 -2
  164. mindspore/nn/probability/bijector/bijector.py +7 -8
  165. mindspore/nn/probability/bijector/gumbel_cdf.py +2 -2
  166. mindspore/nn/probability/bijector/power_transform.py +20 -21
  167. mindspore/nn/probability/bijector/scalar_affine.py +5 -5
  168. mindspore/nn/probability/bijector/softplus.py +13 -14
  169. mindspore/nn/probability/distribution/_utils/utils.py +2 -2
  170. mindspore/nn/wrap/cell_wrapper.py +39 -5
  171. mindspore/nn/wrap/grad_reducer.py +4 -89
  172. mindspore/numpy/array_creations.py +4 -4
  173. mindspore/numpy/fft.py +9 -9
  174. mindspore/numpy/utils_const.py +1 -1
  175. mindspore/{nn/reinforcement → onnx}/__init__.py +5 -8
  176. mindspore/onnx/onnx_export.py +137 -0
  177. mindspore/opencv_core4110.dll +0 -0
  178. mindspore/opencv_imgcodecs4110.dll +0 -0
  179. mindspore/{opencv_imgproc452.dll → opencv_imgproc4110.dll} +0 -0
  180. mindspore/ops/__init__.py +2 -0
  181. mindspore/ops/_grad_experimental/grad_comm_ops.py +38 -2
  182. mindspore/ops/_grad_experimental/grad_inner_ops.py +0 -9
  183. mindspore/ops/_op_impl/aicpu/__init__.py +0 -10
  184. mindspore/ops/_op_impl/cpu/__init__.py +1 -5
  185. mindspore/ops/_op_impl/cpu/{buffer_append.py → joinedstr_op.py} +8 -8
  186. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +28 -24
  187. mindspore/ops/auto_generate/gen_extend_func.py +6 -11
  188. mindspore/ops/auto_generate/gen_ops_def.py +385 -154
  189. mindspore/ops/auto_generate/gen_ops_prim.py +5676 -5167
  190. mindspore/ops/communication.py +97 -0
  191. mindspore/ops/composite/__init__.py +5 -2
  192. mindspore/ops/composite/base.py +16 -2
  193. mindspore/ops/composite/multitype_ops/__init__.py +3 -1
  194. mindspore/ops/composite/multitype_ops/_compile_utils.py +150 -8
  195. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  196. mindspore/ops/composite/multitype_ops/add_impl.py +7 -0
  197. mindspore/ops/composite/multitype_ops/mod_impl.py +27 -0
  198. mindspore/ops/function/__init__.py +2 -0
  199. mindspore/ops/function/array_func.py +24 -18
  200. mindspore/ops/function/comm_func.py +3883 -0
  201. mindspore/ops/function/debug_func.py +7 -6
  202. mindspore/ops/function/grad/grad_func.py +4 -12
  203. mindspore/ops/function/math_func.py +89 -86
  204. mindspore/ops/function/nn_func.py +92 -313
  205. mindspore/ops/function/random_func.py +9 -18
  206. mindspore/ops/functional.py +4 -1
  207. mindspore/ops/functional_overload.py +377 -30
  208. mindspore/ops/operations/__init__.py +2 -5
  209. mindspore/ops/operations/_custom_ops_utils.py +7 -9
  210. mindspore/ops/operations/_inner_ops.py +12 -50
  211. mindspore/ops/operations/_rl_inner_ops.py +0 -933
  212. mindspore/ops/operations/array_ops.py +5 -50
  213. mindspore/ops/operations/comm_ops.py +95 -17
  214. mindspore/ops/operations/custom_ops.py +237 -22
  215. mindspore/ops/operations/debug_ops.py +33 -35
  216. mindspore/ops/operations/manually_defined/ops_def.py +39 -318
  217. mindspore/ops/operations/math_ops.py +5 -5
  218. mindspore/ops/operations/nn_ops.py +3 -3
  219. mindspore/ops/operations/sparse_ops.py +0 -83
  220. mindspore/ops/primitive.py +4 -27
  221. mindspore/ops/tensor_method.py +88 -10
  222. mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +5 -5
  223. mindspore/ops_generate/aclnn/gen_aclnn_implement.py +8 -8
  224. mindspore/ops_generate/api/functions_cc_generator.py +53 -4
  225. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +25 -11
  226. mindspore/ops_generate/common/gen_constants.py +11 -10
  227. mindspore/ops_generate/common/op_proto.py +18 -1
  228. mindspore/ops_generate/common/template.py +102 -245
  229. mindspore/ops_generate/common/template_utils.py +212 -0
  230. mindspore/ops_generate/gen_custom_ops.py +69 -0
  231. mindspore/ops_generate/op_def/ops_def_cc_generator.py +78 -7
  232. mindspore/ops_generate/op_def_py/base_op_prim_py_generator.py +360 -0
  233. mindspore/ops_generate/op_def_py/custom_op_prim_py_generator.py +140 -0
  234. mindspore/ops_generate/op_def_py/op_def_py_generator.py +54 -7
  235. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -312
  236. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +74 -17
  237. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +22 -5
  238. mindspore/ops_generate/pyboost/gen_pyboost_func.py +0 -16
  239. mindspore/ops_generate/pyboost/op_template_parser.py +3 -2
  240. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +21 -5
  241. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +2 -2
  242. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +30 -10
  243. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +10 -3
  244. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +1 -1
  245. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +19 -9
  246. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +71 -28
  247. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +10 -9
  248. mindspore/ops_generate/pyboost/pyboost_utils.py +27 -16
  249. mindspore/ops_generate/resources/yaml_loader.py +13 -0
  250. mindspore/ops_generate/tensor_py_cc_generator.py +2 -2
  251. mindspore/parallel/_auto_parallel_context.py +5 -15
  252. mindspore/parallel/_cell_wrapper.py +1 -1
  253. mindspore/parallel/_parallel_serialization.py +4 -6
  254. mindspore/parallel/_ps_context.py +2 -2
  255. mindspore/parallel/_utils.py +34 -17
  256. mindspore/parallel/auto_parallel.py +23 -9
  257. mindspore/parallel/checkpoint_transform.py +20 -2
  258. mindspore/parallel/cluster/process_entity/_api.py +28 -33
  259. mindspore/parallel/cluster/process_entity/_utils.py +9 -5
  260. mindspore/parallel/cluster/run.py +5 -3
  261. mindspore/{experimental/llm_boost/ascend_native → parallel/distributed}/__init__.py +21 -22
  262. mindspore/parallel/distributed/distributed_data_parallel.py +393 -0
  263. mindspore/parallel/distributed/flatten_grad_buffer.py +295 -0
  264. mindspore/parallel/function/reshard_func.py +6 -5
  265. mindspore/parallel/nn/parallel_cell_wrapper.py +40 -3
  266. mindspore/parallel/nn/parallel_grad_reducer.py +0 -8
  267. mindspore/parallel/shard.py +7 -21
  268. mindspore/parallel/strategy.py +336 -0
  269. mindspore/parallel/transform_safetensors.py +127 -20
  270. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +13 -9
  271. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
  272. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +1 -1
  273. mindspore/profiler/common/constant.py +5 -0
  274. mindspore/profiler/common/file_manager.py +9 -0
  275. mindspore/profiler/common/msprof_cmd_tool.py +40 -4
  276. mindspore/profiler/common/path_manager.py +65 -24
  277. mindspore/profiler/common/profiler_context.py +27 -14
  278. mindspore/profiler/common/profiler_info.py +3 -3
  279. mindspore/profiler/common/profiler_meta_data.py +1 -0
  280. mindspore/profiler/common/profiler_op_analyse.py +10 -6
  281. mindspore/profiler/common/profiler_path_manager.py +13 -0
  282. mindspore/profiler/common/util.py +30 -3
  283. mindspore/profiler/dynamic_profiler.py +91 -46
  284. mindspore/profiler/envprofiler.py +30 -5
  285. mindspore/profiler/experimental_config.py +18 -2
  286. mindspore/profiler/platform/cpu_profiler.py +10 -4
  287. mindspore/profiler/platform/npu_profiler.py +34 -7
  288. mindspore/profiler/profiler.py +193 -145
  289. mindspore/profiler/profiler_action_controller.py +1 -1
  290. mindspore/profiler/profiler_interface.py +2 -2
  291. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  292. mindspore/run_check/_check_version.py +108 -24
  293. mindspore/runtime/__init__.py +9 -6
  294. mindspore/runtime/executor.py +35 -0
  295. mindspore/runtime/memory.py +113 -0
  296. mindspore/runtime/thread_bind_core.py +1 -1
  297. mindspore/swresample-4.dll +0 -0
  298. mindspore/swscale-6.dll +0 -0
  299. mindspore/tinyxml2.dll +0 -0
  300. mindspore/{experimental/llm_boost → tools}/__init__.py +5 -5
  301. mindspore/tools/data_dump.py +130 -0
  302. mindspore/tools/sdc_detect.py +91 -0
  303. mindspore/tools/stress_detect.py +63 -0
  304. mindspore/train/__init__.py +6 -6
  305. mindspore/train/_utils.py +8 -21
  306. mindspore/train/amp.py +6 -7
  307. mindspore/train/callback/_callback.py +2 -1
  308. mindspore/train/callback/_checkpoint.py +1 -17
  309. mindspore/train/callback/_flops_collector.py +10 -6
  310. mindspore/train/callback/_train_fault_tolerance.py +72 -25
  311. mindspore/train/data_sink.py +5 -9
  312. mindspore/train/dataset_helper.py +5 -5
  313. mindspore/train/model.py +41 -230
  314. mindspore/train/serialization.py +160 -401
  315. mindspore/train/train_thor/model_thor.py +2 -2
  316. mindspore/turbojpeg.dll +0 -0
  317. mindspore/utils/__init__.py +6 -3
  318. mindspore/utils/dlpack.py +92 -0
  319. mindspore/utils/dryrun.py +1 -1
  320. mindspore/utils/runtime_execution_order_check.py +10 -0
  321. mindspore/utils/sdc_detect.py +14 -12
  322. mindspore/utils/stress_detect.py +43 -0
  323. mindspore/utils/utils.py +152 -16
  324. mindspore/version.py +1 -1
  325. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/METADATA +3 -2
  326. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/RECORD +330 -344
  327. mindspore/_extends/remote/kernel_build_server_ascend.py +0 -75
  328. mindspore/communication/_hccl_management.py +0 -297
  329. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -207
  330. mindspore/experimental/llm_boost/ascend_native/llm_boost.py +0 -52
  331. mindspore/experimental/llm_boost/atb/__init__.py +0 -23
  332. mindspore/experimental/llm_boost/atb/boost_base.py +0 -385
  333. mindspore/experimental/llm_boost/atb/llama_boost.py +0 -137
  334. mindspore/experimental/llm_boost/atb/qwen_boost.py +0 -124
  335. mindspore/experimental/llm_boost/register.py +0 -130
  336. mindspore/experimental/llm_boost/utils.py +0 -31
  337. mindspore/include/OWNERS +0 -7
  338. mindspore/mindspore_cpu_res_manager.dll +0 -0
  339. mindspore/mindspore_ops_kernel_common.dll +0 -0
  340. mindspore/mindspore_res_manager.dll +0 -0
  341. mindspore/nn/optim/_dist_optimizer_registry.py +0 -111
  342. mindspore/nn/reinforcement/_batch_read_write.py +0 -142
  343. mindspore/nn/reinforcement/_tensors_queue.py +0 -152
  344. mindspore/nn/reinforcement/tensor_array.py +0 -145
  345. mindspore/opencv_core452.dll +0 -0
  346. mindspore/opencv_imgcodecs452.dll +0 -0
  347. mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +0 -113
  348. mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +0 -96
  349. mindspore/ops/_op_impl/aicpu/sparse_cross.py +0 -42
  350. mindspore/ops/_op_impl/cpu/buffer_get.py +0 -28
  351. mindspore/ops/_op_impl/cpu/buffer_sample.py +0 -28
  352. mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +0 -42
  353. mindspore/ops/operations/_tensor_array.py +0 -359
  354. mindspore/ops/operations/rl_ops.py +0 -288
  355. mindspore/parallel/_offload_context.py +0 -275
  356. mindspore/parallel/_recovery_context.py +0 -115
  357. mindspore/parallel/_transformer/__init__.py +0 -35
  358. mindspore/parallel/_transformer/layers.py +0 -765
  359. mindspore/parallel/_transformer/loss.py +0 -251
  360. mindspore/parallel/_transformer/moe.py +0 -693
  361. mindspore/parallel/_transformer/op_parallel_config.py +0 -222
  362. mindspore/parallel/_transformer/transformer.py +0 -3124
  363. mindspore/parallel/mpi/_mpi_config.py +0 -116
  364. mindspore/profiler/common/validator/validate_path.py +0 -84
  365. mindspore/train/memory_profiling_pb2.py +0 -298
  366. mindspore/utils/hooks.py +0 -81
  367. /mindspore/common/{_auto_dynamic.py → dynamic_shape/_auto_dynamic.py} +0 -0
  368. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/WHEEL +0 -0
  369. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/entry_points.txt +0 -0
  370. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,137 @@
1
+ # Copyright 2025 Huawei Technologies Co., Ltd
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ============================================================================
15
+
16
+ """Model export to ONNX."""
17
+ from __future__ import absolute_import
18
+ from __future__ import division
19
+
20
+ import os
21
+
22
+ import mindspore.nn as nn
23
+ from mindspore import log as logger
24
+ from mindspore._checkparam import check_input_dataset
25
+ from mindspore import _checkparam as Validator
26
+ from mindspore.common.api import _cell_graph_executor as _executor
27
+ from mindspore.train.serialization import _calculation_net_size
28
+ from mindspore.dataset.engine.datasets import Dataset
29
+
30
+ PROTO_LIMIT_SIZE = 1024 * 1024 * 2
31
+
32
+
33
+ def export(net, *inputs, file_name, input_names=None, output_names=None, export_params=True,
34
+ keep_initializers_as_inputs=False, dynamic_axes=None):
35
+ """
36
+ Export the MindSpore network into an ONNX model.
37
+
38
+ Note:
39
+ - Support exporting network larger than 2GB. When the network exceeds 2GB,
40
+ parameters are saved in additional binary files stored in the same directory as the ONNX file.
41
+ - When `file_name` does not have a suffix, the system will automatically add the suffix `.onnx` .
42
+
43
+ Args:
44
+ net (Union[Cell, function]): MindSpore network.
45
+ inputs (Union[Tensor, list, tuple, Number, bool]): It represents the inputs of the `net` , if the network has
46
+ multiple inputs, set them together.
47
+ file_name (str): File name of the model to be exported.
48
+ input_names (list, optional): Names to assign to the input nodes of the graph, in order. Default: ``None`` .
49
+ output_names (list, optional): Names to assign to the output nodes of the graph, in order. Default: ``None`` .
50
+ export_params (bool, optional): If false, parameters (weights) will not be exported,
51
+ parameters will add input nodes as input of the graph. Default: ``True`` .
52
+ keep_initializers_as_inputs (bool, optional): If True, all the initializers (model parameters/weights) will
53
+ add as inputs to the graph. This allows modifying any or all weights when running the exported ONNX model.
54
+ Default: ``False`` .
55
+ dynamic_axes (dict[str, dict[int, str]], optional): To specify axes of input tensors as dynamic (at runtime).
56
+ Default: ``None`` .
57
+
58
+ - Set a dict with scheme: {input_node_name: {axis_index:axis_name}},
59
+ for example, {"input1": {0:"batch_size", 1: "seq_len"}, "input2": {{0:"batch_size"}}.
60
+ - By default, the shapes of all input tensors in the exported model exactly match those specified in
61
+ `inputs`.
62
+
63
+ Raises:
64
+ ValueError: If the parameter `net` is not :class:`mindspore.nn.Cell`.
65
+ ValueError: If the parameter `input_names` is not list type.
66
+ ValueError: If the parameter `output_names` is not list type
67
+ ValueError: If the parameter `dynamic_axes` is not dict type.
68
+
69
+ Examples:
70
+ >>> import mindspore as ms
71
+ >>> import numpy as np
72
+ >>> from mindspore import Tensor
73
+ >>>
74
+ >>> # Define the network structure of LeNet5. Refer to
75
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
76
+ >>> net = LeNet5()
77
+ >>> input_tensor = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32))
78
+ >>> ms.onnx.export(net, input_tensor, file_name='lenet.onnx', input_names=['input1'], output_names=['output1'])
79
+
80
+ """
81
+ Validator.check_file_name_by_regular(file_name)
82
+ logger.info("exporting model file:%s format:%s.", file_name, "ONNX")
83
+ Validator.check_isinstance("net", net, nn.Cell)
84
+ input_names = input_names or []
85
+ Validator.check_isinstance("input_names", input_names, list)
86
+ output_names = output_names or []
87
+ Validator.check_isinstance("output_names", output_names, list)
88
+ dynamic_axes = dynamic_axes or {}
89
+ Validator.check_isinstance("dynamic_axes", dynamic_axes, dict)
90
+
91
+ if check_input_dataset(*inputs, dataset_type=Dataset):
92
+ raise ValueError(f"Can not support dataset as inputs to export ONNX model.")
93
+
94
+ cell_mode = net.training
95
+ net.set_train(mode=False)
96
+
97
+ extra_save_params = False
98
+ total_size = _calculation_net_size(net)
99
+ if total_size > PROTO_LIMIT_SIZE:
100
+ logger.warning('Network size is: {}G, it exceeded the protobuf: {}G limit, now parameters in network are saved '
101
+ 'in external data files.'.format(total_size / 1024 / 1024, PROTO_LIMIT_SIZE / 1024 / 1024))
102
+ extra_save_params = True
103
+
104
+ phase_name = 'export.onnx'
105
+ graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
106
+
107
+ abs_file_name = os.path.abspath(file_name)
108
+ if not abs_file_name.endswith('.onnx'):
109
+ abs_file_name += ".onnx"
110
+
111
+ dir_path = os.path.dirname(abs_file_name)
112
+ if dir_path and not os.path.exists(dir_path):
113
+ os.makedirs(dir_path, exist_ok=True)
114
+
115
+ abs_file_dir = os.path.dirname(abs_file_name) if extra_save_params else ""
116
+
117
+ onnx_stream = _executor._get_onnx_func_graph_proto(obj=net, exec_id=graph_id, input_names=input_names,
118
+ output_names=output_names, export_params=export_params,
119
+ keep_initializers_as_inputs=keep_initializers_as_inputs,
120
+ dynamic_axes=dynamic_axes, extra_save_params=extra_save_params,
121
+ save_file_dir=abs_file_dir)
122
+ if onnx_stream is None:
123
+ raise RuntimeError("Export onnx model failed, ensure that the model has been compiled correctly")
124
+
125
+ try:
126
+ with open(abs_file_name, 'wb') as f:
127
+ f.write(onnx_stream)
128
+
129
+ if os.path.getsize(abs_file_name) != len(onnx_stream):
130
+ logger.warning("ONNX file size doesn't match expected value, but proceeding continue.")
131
+
132
+ except IOError as e:
133
+ logger.error(f"Failed to write ONNX file: {e}")
134
+ if os.path.exists(abs_file_name):
135
+ os.remove(abs_file_name)
136
+
137
+ net.set_train(mode=cell_mode)
Binary file
Binary file
mindspore/ops/__init__.py CHANGED
@@ -37,6 +37,7 @@ from mindspore.ops.functional_overload import all_gather_matmul, matmul_reduce_s
37
37
  from mindspore.ops.composite import *
38
38
  from mindspore.ops.operations import *
39
39
  from mindspore.ops.function import *
40
+ from mindspore.ops.communication import *
40
41
  from mindspore.ops.functional import *
41
42
  from mindspore.ops._utils import arg_dtype_cast, arg_handler
42
43
 
@@ -55,4 +56,5 @@ __all__.extend(composite.__all__)
55
56
  __all__.extend(operations.__all__)
56
57
  __all__.extend(functional.__all__)
57
58
  __all__.extend(function.__all__)
59
+ __all__.extend(communication.__all__)
58
60
  __all__.extend(auto_generate.__all__)
@@ -29,7 +29,7 @@ from mindspore.common.sparse_tensor import RowTensorInner
29
29
  from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
30
30
  from mindspore.ops.operations.comm_ops import (AllGather, _MiniStepAllGather, _HostAllGather, AllReduce,
31
31
  NeighborExchange, AlltoAll, AlltoAllV, NeighborExchangeV2,
32
- Broadcast, AllGatherV, ReduceScatterV,
32
+ Broadcast, AlltoAllVC, AllGatherV, ReduceScatterV,
33
33
  _GetTensorSlice, _MirrorOperator, _MirrorMiniStepOperator, ReduceOp,
34
34
  ReduceScatter, _HostReduceScatter, _VirtualDiv, _VirtualAdd, _AllSwap,
35
35
  _VirtualAssignAdd, _VirtualAccuGrad, _MirrorMicroStepOperator,
@@ -37,6 +37,7 @@ from mindspore.ops.operations.comm_ops import (AllGather, _MiniStepAllGather, _H
37
37
  _VirtualAssignKvCache)
38
38
  from mindspore.ops._grad_experimental.grad_base import bprop_getters
39
39
  from mindspore.ops.operations import _grad_ops as G
40
+ from mindspore.tools.sdc_detect import _sdc_detector
40
41
  import mindspore as ms
41
42
 
42
43
  _squared_device_local_norm = None
@@ -277,6 +278,8 @@ def get_bprop_mirror_micro_step_operator(self):
277
278
  if dump_device_local_norm:
278
279
  # init _squared _squared_device_local_norm
279
280
  squared_device_local_norm = get_squared_device_local_norm_param()
281
+ # feature value sampling for sdc detect
282
+ feat_value_dump_name = _sdc_detector.get_dump_name(param_name) if _sdc_detector.need_sample() else None
280
283
 
281
284
  def bprop(x, z, out, dout):
282
285
  if dump_local_norm or dump_device_local_norm:
@@ -289,6 +292,9 @@ def get_bprop_mirror_micro_step_operator(self):
289
292
  if dump_device_local_norm:
290
293
  z = F.depend(z, F.assign_add(squared_device_local_norm,
291
294
  cast(squared_norm, squared_device_local_norm.dtype)))
295
+ if feat_value_dump_name and z.ndim > 1:
296
+ feat_value = square(F.max(F.abs(z))[0])
297
+ z = F.depend(z, tensor_dump(feat_value_dump_name, feat_value))
292
298
  real_grad = z
293
299
  assign_out = dout
294
300
  if issubclass_(F.typeof(dout), mstype.tensor_type):
@@ -343,14 +349,16 @@ def get_bprop_all_gather(self):
343
349
  ln_print = P.Print()
344
350
  tensor_dump = P.TensorDump()
345
351
  reduce_sum = P.ReduceSum(keep_dims=False)
346
- square = P.Square()
347
352
  sqrt = P.Sqrt()
353
+ square = P.Square()
348
354
  if dump_local_norm_path:
349
355
  global_rank = get_rank()
350
356
  file = os.path.join(dump_local_norm_path, "rank_" + str(global_rank), "local_norm__" + param_name)
351
357
  if dump_device_local_norm:
352
358
  # init _squared _squared_device_local_norm
353
359
  squared_device_local_norm = get_squared_device_local_norm_param()
360
+ # feature value sampling for sdc detect
361
+ feat_value_dump_name = _sdc_detector.get_dump_name(param_name) if _sdc_detector.need_sample() else None
354
362
 
355
363
  def bprop(x, out, dout):
356
364
  if param_name and (dump_local_norm or dump_device_local_norm):
@@ -363,6 +371,9 @@ def get_bprop_all_gather(self):
363
371
  if dump_device_local_norm:
364
372
  dout = F.depend(dout, F.assign_add(squared_device_local_norm,
365
373
  cast(squared_norm, squared_device_local_norm.dtype)))
374
+ if param_name and feat_value_dump_name and dout.ndim > 1:
375
+ feat_value = square(F.max(F.abs(dout))[0])
376
+ dout = F.depend(dout, tensor_dump(feat_value_dump_name, feat_value))
366
377
 
367
378
  dx = reduce_scatter(dout)
368
379
  if mean_flag:
@@ -452,6 +463,8 @@ def get_bprop_micro_step_all_gather(self):
452
463
  if dump_device_local_norm:
453
464
  # init _squared _squared_device_local_norm
454
465
  squared_device_local_norm = get_squared_device_local_norm_param()
466
+ # feature value sampling for sdc detect
467
+ feat_value_dump_name = _sdc_detector.get_dump_name(param_name) if _sdc_detector.need_sample() else None
455
468
 
456
469
  def bprop(x, z, out, dout):
457
470
  if with_mirror_operator:
@@ -472,6 +485,9 @@ def get_bprop_micro_step_all_gather(self):
472
485
  if dump_device_local_norm:
473
486
  z = F.depend(z, F.assign_add(squared_device_local_norm,
474
487
  cast(squared_norm, squared_device_local_norm.dtype)))
488
+ if feat_value_dump_name and z.ndim > 1:
489
+ feat_value = square(F.max(F.abs(z))[0])
490
+ z = F.depend(z, tensor_dump(feat_value_dump_name, feat_value))
475
491
  if not do_mirror:
476
492
  return (z, cast(out_tensor, dtype(z)))
477
493
  real_grad = reduce_scatter(z)
@@ -655,6 +671,21 @@ def get_bprop_all_to_all_v(self):
655
671
  return bprop
656
672
 
657
673
 
674
+ @bprop_getters.register(AlltoAllVC)
675
+ def get_bprop_all_to_all_v_c(self):
676
+ """Generate bprop for AlltoAllVC."""
677
+ all_to_all_v_c_grad = AlltoAllVC(self.group, self.block_size, transpose=True)
678
+ if hasattr(self, "instance_name") and self.instance_name:
679
+ instance_name = "grad" + self.instance_name
680
+ all_to_all_v_c_grad.set_prim_instance_name(instance_name)
681
+
682
+ def bprop(x, send_count_matrix, out, dout):
683
+ dx = all_to_all_v_c_grad(dout, send_count_matrix)
684
+ return (dx, zeros_like(send_count_matrix))
685
+
686
+ return bprop
687
+
688
+
658
689
  @bprop_getters.register(AllGatherV)
659
690
  def get_bprop_all_gather_v(self):
660
691
  """Generate bprop for AllGatherV."""
@@ -728,6 +759,8 @@ def get_bprop_mirror_operator(self):
728
759
  if dump_device_local_norm:
729
760
  # init _squared _squared_device_local_norm
730
761
  squared_device_local_norm = get_squared_device_local_norm_param()
762
+ # feature value sampling for sdc detect
763
+ feat_value_dump_name = _sdc_detector.get_dump_name(param_name) if _sdc_detector.need_sample() else None
731
764
  if dev_num > 1:
732
765
  dev_num_r = 1.0 / dev_num
733
766
  all_reduce = AllReduce(group=group)
@@ -762,6 +795,9 @@ def get_bprop_mirror_operator(self):
762
795
  if dump_device_local_norm:
763
796
  dout = F.depend(dout, F.assign_add(squared_device_local_norm,
764
797
  cast(squared_norm, squared_device_local_norm.dtype)))
798
+ if feat_value_dump_name and dout.ndim > 1:
799
+ feat_value = square(F.max(F.abs(dout))[0])
800
+ dout = F.depend(dout, tensor_dump(feat_value_dump_name, feat_value))
765
801
 
766
802
  if dev_num == 1:
767
803
  return (dout,)
@@ -23,15 +23,6 @@ from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
23
23
  from mindspore.ops._grad_experimental.grad_base import bprop_getters
24
24
 
25
25
 
26
- @bprop_getters.register("raise")
27
- def get_bprop_raise(self):
28
- """Grad definition for `raise` operation."""
29
- def bprop(x, y, z, out, dout):
30
- return x, y, z
31
-
32
- return bprop
33
-
34
-
35
26
  @bprop_getters.register(inner.ParallelResizeBilinear)
36
27
  def get_bprop_parallel_resize_bilinear(self):
37
28
  """Grad definition for `ParallelResizeBilinear` operation."""
@@ -214,13 +214,8 @@ from .cumsum import _cumsum_aicpu
214
214
  from .round import _round_aicpu
215
215
  from .stft import _stft_aicpu
216
216
  from .floor_div import _floor_div_aicpu
217
- from .priority_replay_buffer import _prb_create_op_cpu
218
- from .priority_replay_buffer import _prb_push_op_cpu
219
217
  from .conjugate_transpose import _conjugate_transpose_aicpu
220
- from .priority_replay_buffer import _prb_sample_op_cpu
221
- from .priority_replay_buffer import _prb_update_op_cpu
222
218
  from .equal import _equal_aicpu
223
- from .priority_replay_buffer import _prb_destroy_op_cpu
224
219
  from .right_shift import _right_shift_aicpu
225
220
  from .tril import _tril_aicpu
226
221
  from .linspace import _lin_space_aicpu
@@ -242,10 +237,6 @@ from .sparse_tensor_to_csr_sparse_matrix import _sparse_tensor_to_csr_sparse_mat
242
237
  from .csr_sparse_matrix_to_sparse_tensor import _csr_sparse_matrix_to_sparse_tensor_aicpu
243
238
  from .linear_sum_assignment import _linear_sum_assignment_aicpu
244
239
  from .random_shuffle import _random_shuffle_aicpu
245
- from .reservoir_replay_buffer import _rrb_create_op_cpu
246
- from .reservoir_replay_buffer import _rrb_push_op_cpu
247
- from .reservoir_replay_buffer import _rrb_sample_op_cpu
248
- from .reservoir_replay_buffer import _rrb_destroy_op_cpu
249
240
  from .concat_offset import _concat_offset_aicpu
250
241
  from .range import _range_aicpu
251
242
  from .range_v2 import _range_v2_aicpu
@@ -414,7 +405,6 @@ from .segment_prod import _segment_prod_aicpu
414
405
  from .segment_sum import _segment_sum_aicpu
415
406
  from .set_size import _set_size_aicpu
416
407
  from .slice import _slice_aicpu
417
- from .sparse_cross import _sparse_cross_aicpu
418
408
  from .sparse_slice import _sparse_slice_aicpu
419
409
  from .sparse_softmax import _sparse_softmax_aicpu
420
410
  from .sparse_tensor_dense_add import _sparse_tensor_dense_add_aicpu
@@ -69,11 +69,7 @@ from .tensor_copy_slices import _tensor_copy_slices_cpu
69
69
  from .l2loss import _l2loss_cpu
70
70
  from .pyexecute import _pyexecute_cpu
71
71
  from .pyfunc import _pyfunc_cpu
72
- from .buffer_append import _buffer_append_cpu
73
- from .buffer_get import _buffer_get_cpu
74
72
  from .raise_op import _raise_cpu
75
- from .buffer_sample import _buffer_sample_cpu
76
- from .priority_replay_buffer import _prb_push_op_cpu
77
- from .priority_replay_buffer import _prb_sample_op_cpu
73
+ from .joinedstr_op import _joinedstr_cpu
78
74
  from .space_to_batch_nd import _space_to_batch_nd_cpu
79
75
  from .sspaddmm import _sspaddmm_cpu
@@ -1,4 +1,4 @@
1
- # Copyright 2021 Huawei Technologies Co., Ltd
1
+ # Copyright 2025 Huawei Technologies Co., Ltd
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -11,18 +11,18 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
-
15
- """BufferAppend op"""
14
+ # ============================================================================
15
+ """JoinedStr op"""
16
16
  from mindspore.ops.op_info_register import op_info_register, CpuRegOp, DataType
17
17
 
18
- buffer_append_op_info = CpuRegOp("BufferAppend") \
18
+ joinedstr_op_info = CpuRegOp("JoinedStr") \
19
19
  .input(0, "x", "dynamic") \
20
- .output(0, "output", "dynamic") \
20
+ .output(0, "y", "dynamic") \
21
21
  .dtype_format(DataType.I32_Default, DataType.I32_Default) \
22
22
  .get_op_info()
23
23
 
24
24
 
25
- @op_info_register(buffer_append_op_info)
26
- def _buffer_append_cpu():
27
- """BufferAppend cpu register"""
25
+ @op_info_register(joinedstr_op_info)
26
+ def _joinedstr_cpu():
27
+ """JoinedStr cpu register"""
28
28
  return
@@ -96,6 +96,8 @@ op_args_default_value = {
96
96
  "ConvTranspose2D": {"bias": None, "stride": 1, "padding": 0, "output_padding": 0, "groups": 1, "dilation": 1},
97
97
  "Correlate": {"pad_mode": 'valid'},
98
98
  "CountNonZero": {"dim": None},
99
+ "CrossEntropyLossGrad": {"weight": None, "grad_zloss": None, "lse_for_zloss": None, "reduction": 'mean', "ignore_index": -100, "label_smoothing": 0.0, "lse_square_scale_for_zloss": 0.0},
100
+ "CrossEntropyLoss": {"weight": None, "reduction": 'mean', "ignore_index": -100, "label_smoothing": 0.0, "lse_square_scale_for_zloss": 0.0, "return_zloss": False},
99
101
  "Cross": {"dim": -65530},
100
102
  "CumsumExt": {"dtype": None},
101
103
  "CumProd": {"exclusive": False, "reverse": False},
@@ -103,6 +105,7 @@ op_args_default_value = {
103
105
  "DCTN": {"type": 2, "s": None, "axes": None, "norm": None},
104
106
  "DCT": {"type": 2, "n": None, "axis": -1, "norm": None},
105
107
  "Dense": {"bias": None},
108
+ "DequantSwigluQuant": {"bias": None, "quant_scale": None, "quant_offset": None, "group_index": None, "activate_left": False, "quant_mode": 'static'},
106
109
  "Diagonal": {"offset": 0, "dim1": 0, "dim2": 1},
107
110
  "DiagonalView": {"offset": 0, "dim1": 0, "dim2": 1},
108
111
  "DiagExt": {"diagonal": 0},
@@ -113,20 +116,10 @@ op_args_default_value = {
113
116
  "EluExt": {"alpha": 1.0},
114
117
  "EluGradExt": {"alpha": 1.0, "is_result": False},
115
118
  "Elu": {"alpha": 1.0},
116
- "EmbeddingApplyAdamW": {"ams_grad": (0,), "mask_zero": (0,), "padding_key": (0,), "padding_key_mask": (1,), "completion_key": (0,), "completion_key_mask": (1,), "_embedding_dim": 1, "_max_key_num": 1},
117
- "EmbeddingApplyAdam": {"mask_zero": (0,), "padding_key": (0,), "padding_key_mask": (1,), "completion_key": (0,), "completion_key_mask": (1,), "_embedding_dim": 1, "_max_key_num": 1},
118
- "EmbeddingApplyAdaGrad": {"mask_zero": (0,), "padding_key": (0,), "padding_key_mask": (1,), "completion_key": (0,), "completion_key_mask": (1,), "_embedding_dim": 1, "_max_key_num": 1},
119
- "EmbeddingApplyFtrl": {"mask_zero": (0,), "padding_key": (0,), "padding_key_mask": (1,), "completion_key": (0,), "completion_key_mask": (1,), "_embedding_dim": 1, "_max_key_num": 1},
120
- "EmbeddingApplyRmsprop": {"mask_zero": (0,), "padding_key": (0,), "padding_key_mask": (1,), "completion_key": (0,), "completion_key_mask": (1,), "_embedding_dim": 1, "_max_key_num": 1},
121
- "EmbeddingApplySgd": {"mask_zero": (0,), "padding_key": (0,), "padding_key_mask": (1,), "completion_key": (0,), "completion_key_mask": (1,), "_embedding_dim": 1, "_max_key_num": 1},
122
119
  "EmbeddingDenseBackward": {"padding_idx": None, "scale_grad_by_freq": False},
123
- "EmbeddingFeatureMappingFileSize": {"only_offset_flag": True},
124
- "EmbeddingFeatureMappingFind": {"num": 1},
125
- "EmbeddingFeatureMappingImport": {"only_offset_flag": True, "num": 1},
126
120
  "Embedding": {"padding_idx": None, "max_norm": None, "norm_type": 2.0, "scale_grad_by_freq": False},
127
- "EmbeddingTableEvict": {"steps_to_live": 0},
128
- "EmptyLike": {"dtype": None, "device": None},
129
- "Empty": {"dtype": None, "device": None},
121
+ "EmptyLike": {"dtype": None, "device": None, "pin_memory": False},
122
+ "Empty": {"dtype": None, "device": None, "pin_memory": False},
130
123
  "ExtractImagePatches": {"padding": 'VALID'},
131
124
  "FFNExt": {"expertTokens": None, "bias1": None, "bias2": None, "scale": None, "offset": None, "deqScale1": None, "deqScale2": None, "antiquant_scale1": None, "antiquant_scale2": None, "antiquant_offset1": None, "antiquant_offset2": None, "activation": 'fastgelu', "inner_precise": 0},
132
125
  "FFT2": {"s": None, "dim": (-2, -1), "norm": None},
@@ -177,11 +170,13 @@ op_args_default_value = {
177
170
  "IndexAddExt": {"alpha": 1},
178
171
  "InnerInplaceIndexPut": {"accumulate": False},
179
172
  "InnerMoeTokenUnpermute": {"probs": None, "padded_mode": False, "restore_shape": None},
173
+ "InnerUnique": {"sorted": True, "return_inverse": False},
180
174
  "InplaceAddmm": {"beta": 1, "alpha": 1},
181
175
  "InplaceAddsExt": {"alpha": 1},
182
176
  "InplaceAddExt": {"alpha": 1},
183
177
  "InplaceClampScalar": {"min": None, "max": None},
184
178
  "InplaceClampTensor": {"min": None, "max": None},
179
+ "InplaceCopy": {"non_blocking": False},
185
180
  "InplaceDivMods": {"rounding_mode": None},
186
181
  "InplaceDivMod": {"rounding_mode": None},
187
182
  "InplaceElu": {"alpha": 1.0},
@@ -239,6 +234,8 @@ op_args_default_value = {
239
234
  "Meshgrid": {"indexing": 'xy'},
240
235
  "MinimumGrad": {"grad_x": True, "grad_y": True},
241
236
  "MinDim": {"keepdim": False},
237
+ "Mla": {"attn_mask": None, "deq_scale_qk": None, "deq_scale_pv": None, "q_seq_lens": None, "context_lens": None, "head_num": 32, "scale_value": 0.0, "kv_head_num": 1, "mask_mode": 'MASK_NONE', "is_ring": 0},
238
+ "MlaPreprocess": {"param_cache_mode": 0},
242
239
  "MoeDistributeCombine": {"tp_send_counts": None, "x_active_mask": None, "activate_scale": None, "weight_scale": None, "group_list": None, "expand_scales": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_export_rank_num": 0, "global_bs": 0, "out_dtype": 0, "common_quant_mode": 0, "group_list_type": 0},
243
240
  "MoeDistributeDispatch": {"expert_scales": None, "scales": None, "x_active_mask": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_expert_rank_num": 0, "quant_mode": 0, "global_bs": 0, "expert_token_nums_type": 0},
244
241
  "MoeTokenPermuteGrad": {"num_topk": 1, "padded_mode": False},
@@ -300,6 +297,7 @@ op_args_default_value = {
300
297
  "RFFTFreq": {"d": 1.0, "dtype": None},
301
298
  "RFFTN": {"s": None, "dim": None, "norm": None},
302
299
  "RFFT": {"n": None, "dim": -1, "norm": None},
300
+ "RingAttentionUpdate": {"actual_seq_qlen": None, "layout": 'SBH'},
303
301
  "RmsNorm": {"epsilon": 1e-6},
304
302
  "Roll": {"dims": None},
305
303
  "RotaryPositionEmbeddingGrad": {"dx": None, "mode": 0},
@@ -347,6 +345,9 @@ op_args_default_value = {
347
345
  "TopKRouter": {"drop_type": 0},
348
346
  "TopkExt": {"dim": -1, "largest": True, "sorted": True},
349
347
  "TopPRouter": {"drop_type": 0, "threshold": 0.0, "router_prob": 0.0},
348
+ "ToDevice": {"device": None, "dtype": None, "non_blocking": False, "copy": False},
349
+ "ToDtype": {"dtype": None, "non_blocking": False, "copy": False},
350
+ "ToOther": {"non_blocking": False, "copy": False},
350
351
  "TraceV2Grad": {"offset": 0, "axis1": 1, "axis2": 0},
351
352
  "TraceV2": {"offset": 0, "axis1": 1, "axis2": 0, "dtype": None},
352
353
  "TriangularSolve": {"upper": True, "transpose": False, "unitriangular": False},
@@ -381,7 +382,7 @@ op_args_default_value = {
381
382
  "FusedInferAttentionScore": {"pse_shift": None, "attn_mask": None, "actual_seq_lengths": None, "actual_seq_lengths_kv": None, "dequant_scale1": None, "quant_scale1": None, "dequant_scale2": None, "quant_scale2": None, "quant_offset2": None, "antiquant_scale": None, "antiquant_offset": None, "block_table": None, "query_padding_size": None, "kv_padding_size": None, "key_antiquant_scale": None, "key_antiquant_offset": None, "value_antiquant_scale": None, "value_antiquant_offset": None, "key_shared_prefix": None, "value_shared_prefix": None, "actual_shared_prefix_len": None, "num_heads": 1, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "input_layout": 'BSH', "num_key_value_heads": 0, "sparse_mode": 0, "inner_precise": 1, "block_size": 0, "antiquant_mode": 0, "softmax_lse_flag": False, "key_antiquant_mode": 0, "value_antiquant_mode": 0},
382
383
  "GroupedMatmul": {"bias": None, "scale": None, "offset": None, "antiquant_scale": None, "antiquant_offset": None, "group_list": None, "split_item": 0, "group_type": -1, "transpose_a": False, "transpose_b": False},
383
384
  "GroupedMatmulV2": {"bias": None, "scale": None, "offset": None, "antiquant_scale": None, "antiquant_offset": None, "group_list": None, "split_item": 0, "group_type": -1},
384
- "GroupedMatmulV4": {"bias": None, "scale": None, "offset": None, "antiquant_scale": None, "antiquant_offset": None, "pre_token_scale": None, "group_list": None, "activation_input": None, "activation_quant_scale": None, "activation_quant_offset": None, "split_item": 0, "group_type": -1, "group_list_type": 0, "act_type": 0},
385
+ "GroupedMatmulV4": {"bias": None, "scale": None, "offset": None, "antiquant_scale": None, "antiquant_offset": None, "pre_token_scale": None, "group_list": None, "activation_input": None, "activation_quant_scale": None, "activation_quant_offset": None, "split_item": 0, "group_type": -1, "group_list_type": 0, "act_type": 0, "output_dtype": None},
385
386
  "KVCacheScatterUpdate": {"reduce": 'none'},
386
387
  "MatmulAllReduceAddRmsNorm": {"reduce_op": 'sum', "comm_turn": 0, "stream_mode": 1},
387
388
  "MoeFinalizeRouting": {"x2": None, "bias": None, "scales": None, "expanded_row_idx": None, "expanded_expert_idx": None},
@@ -415,7 +416,6 @@ op_args_default_value = {
415
416
  "DeprecatedBaddbmm": {"beta": 1, "alpha": 1},
416
417
  "DeprecatedBincount": {"weights": None, "minlength": 0},
417
418
  "DeprecatedChunk": {"axis": 0},
418
- "DeprecatedInplaceCopy": {"non_blocking": False},
419
419
  "DeprecatedCountNonzero": {"axis": (), "keep_dims": False, "dtype": None},
420
420
  "DeprecatedCumsum": {"axis": None, "dtype": None},
421
421
  "DeprecatedDiv": {"rounding_mode": None},
@@ -430,11 +430,13 @@ op_args_default_value = {
430
430
  "DeprecatedMedian": {"axis": -1, "keepdims": False},
431
431
  "DeprecatedMin": {"axis": None, "keepdims": False, "initial": None, "where": True, "return_indices": False},
432
432
  "DeprecatedNansum": {"axis": None, "keepdims": False, "dtype": None},
433
+ "DeprecatedPermute": {"axis": None},
433
434
  "DeprecatedProd": {"dim": None, "keepdim": False, "dtype": None},
434
435
  "DeprecatedRepeatInterleave": {"dim": None},
435
436
  "DeprecatedRoll": {"dims": None},
436
437
  "DeprecatedSort": {"axis": -1, "descending": False},
437
438
  "DeprecatedSplit": {"axis": 0},
439
+ "DeprecatedSqueeze": {"axis": None},
438
440
  "DeprecatedStd": {"axis": None, "ddof": 0, "keepdims": False},
439
441
  "DeprecatedSum": {"axis": None, "dtype": None, "keepdims": False, "initial": None},
440
442
  "DeprecatedTake": {"axis": None, "mode": 'clip'},
@@ -458,19 +460,10 @@ op_labels = {
458
460
  "BroadcastToView": {"side_effect_mem": True},
459
461
  "ChunkView": {"side_effect_mem": True},
460
462
  "DiagonalView": {"side_effect_mem": True},
461
- "DistCommAllReduce": {"side_effect_mem": True},
462
- "DistCommReduce": {"side_effect_mem": True},
463
463
  "DropoutExt": {"side_effect_hidden": True},
464
464
  "DropoutGenMaskExt": {"side_effect_hidden": True},
465
465
  "Dropout": {"side_effect_hidden": True},
466
- "EmbeddingApplyAdamW": {"_process_node_engine_id": 'PS'},
467
- "EmbeddingApplyAdam": {"_process_node_engine_id": 'PS'},
468
- "EmbeddingApplyAdaGrad": {"_process_node_engine_id": 'PS'},
469
- "EmbeddingApplyFtrl": {"_process_node_engine_id": 'PS'},
470
- "EmbeddingApplyRmsprop": {"_process_node_engine_id": 'PS'},
471
- "EmbeddingApplySgd": {"_process_node_engine_id": 'PS'},
472
466
  "Embedding": {"side_effect_mem": True},
473
- "EmbeddingTableEvict": {"_process_node_engine_id": 'PS'},
474
467
  "ExpandDimsView": {"side_effect_mem": True},
475
468
  "Generator": {"side_effect_mem": True},
476
469
  "GroupTopk": {"side_effect_mem": True},
@@ -478,6 +471,8 @@ op_labels = {
478
471
  "InplaceAddmm": {"side_effect_mem": True},
479
472
  "InplaceAddsExt": {"side_effect_mem": True},
480
473
  "InplaceAddExt": {"side_effect_mem": True},
474
+ "InplaceBernoulliScalar": {"side_effect_mem": True},
475
+ "InplaceBernoulliTensor": {"side_effect_mem": True},
481
476
  "InplaceCopy": {"side_effect_mem": True},
482
477
  "InplaceDivMods": {"side_effect_mem": True},
483
478
  "InplaceDivMod": {"side_effect_mem": True},
@@ -495,10 +490,12 @@ op_labels = {
495
490
  "InplaceGroupedMatmulAdd": {"side_effect_mem": True},
496
491
  "InplaceHardtanh": {"side_effect_mem": True},
497
492
  "InplaceIndexAddExt": {"side_effect_mem": True},
493
+ "InplaceIndexCopy": {"side_effect_mem": True},
498
494
  "InplaceIndexPut": {"side_effect_mem": True},
499
495
  "InplaceLog": {"side_effect_mem": True},
500
496
  "InplaceMaskedFillScalar": {"side_effect_mem": True},
501
497
  "InplaceMaskedFillTensor": {"side_effect_mem": True},
498
+ "InplaceMaskedScatter": {"side_effect_mem": True},
502
499
  "InplaceMatmulAdd": {"side_effect_mem": True},
503
500
  "InplaceMuls": {"side_effect_mem": True},
504
501
  "InplaceMul": {"side_effect_mem": True},
@@ -506,18 +503,24 @@ op_labels = {
506
503
  "InplacePut": {"side_effect_mem": True},
507
504
  "InplaceRandom": {"side_effect_mem": True},
508
505
  "InplaceReLU": {"side_effect_mem": True},
506
+ "InplaceRemainderTensorScalar": {"side_effect_mem": True},
507
+ "InplaceRemainderTensorTensor": {"side_effect_mem": True},
509
508
  "InplaceScatterAdd": {"side_effect_mem": True},
510
509
  "InplaceScatterSrc": {"side_effect_mem": True},
511
510
  "InplaceScatterSrcReduce": {"side_effect_mem": True},
512
511
  "InplaceScatterValue": {"side_effect_mem": True},
513
512
  "InplaceScatterValueReduce": {"side_effect_mem": True},
513
+ "InplaceSigmoid": {"side_effect_mem": True},
514
+ "InplaceSign": {"side_effect_mem": True},
514
515
  "InplaceSiLU": {"side_effect_mem": True},
515
516
  "InplaceSubExt": {"side_effect_mem": True},
516
517
  "InplaceSubScalar": {"side_effect_mem": True},
517
518
  "InplaceTanh": {"side_effect_mem": True},
518
519
  "InplaceThreshold": {"side_effect_mem": True},
519
520
  "InplaceUniform": {"side_effect_mem": True},
521
+ "KvScaleCache": {"side_effect_mem": True},
520
522
  "Log": {"cust_aicpu": 'Log', "base": -1.0, "scale": 1.0, "shift": 0.0},
523
+ "MlaPreprocess": {"side_effect_mem": True},
521
524
  "NarrowView": {"side_effect_mem": True},
522
525
  "ReshapeAndCache": {"side_effect_mem": True},
523
526
  "ResizeD": {"mode": 'linear'},
@@ -531,6 +534,7 @@ op_labels = {
531
534
  "TransposeView": {"side_effect_mem": True},
532
535
  "UnstackExtView": {"side_effect_mem": True},
533
536
  "KVCacheScatterUpdate": {"side_effect_mem": True},
537
+ "DistCommAllReduce": {"side_effect_mem": True},
538
+ "DistCommReduce": {"side_effect_mem": True},
534
539
  "InplaceExponential": {"side_effect_mem": True},
535
- "DeprecatedInplaceCopy": {"side_effect_mem": True},
536
540
  }
@@ -118,11 +118,11 @@ def add(input, other, alpha=1):
118
118
  input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
119
119
  a bool or a tensor whose data type is
120
120
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
121
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
121
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
122
122
  other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
123
123
  a bool or a tensor whose data type is
124
124
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
125
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
125
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
126
126
  alpha (number.Number): A scaling factor applied to `other`, default 1.
127
127
 
128
128
  Returns:
@@ -905,7 +905,6 @@ def histc(input, bins=100, min=0, max=0):
905
905
  Elements lower than min or higher than max are ignored.
906
906
 
907
907
  .. warning::
908
- This is an experimental API that is subject to change or deletion.
909
908
  If input is int64, valid values fit within int32; exceeding this may cause precision errors.
910
909
 
911
910
  Args:
@@ -1732,9 +1731,6 @@ def outer(input, vec2):
1732
1731
  Return outer product of `input` and `vec2`. If `input` is a vector of size :math:`n`
1733
1732
  and `vec2` is a vector of size :math:`m` , then output must be a matrix of shape :math:`(n, m)` .
1734
1733
 
1735
- .. warning::
1736
- This is an experimental API that is subject to change or deletion.
1737
-
1738
1734
  .. note::
1739
1735
  This function does not broadcast.
1740
1736
 
@@ -1957,14 +1953,13 @@ def stack(tensors, dim=0):
1957
1953
  :math:`(x_1, x_2, ..., x_{dim}, N, x_{dim+1}, ..., x_R)`.
1958
1954
 
1959
1955
  Args:
1960
- tensors (Union[tuple, list]): A Tuple or list of Tensor objects with the same shape and type.
1956
+ tensors (Union[tuple, list]): A Tuple or list of Tensor objects with the same shape.
1961
1957
  dim (int, optional): Dimension to stack. The range is [-(R+1), R+1). Default: ``0`` .
1962
1958
 
1963
1959
  Returns:
1964
- Tensor. A stacked Tensor with the same type as `tensors`.
1960
+ A stacked Tensor.
1965
1961
 
1966
1962
  Raises:
1967
- TypeError: If the data types of elements in `tensors` are not the same.
1968
1963
  ValueError: If `dim` is out of the range [-(R+1), R+1);
1969
1964
  or if the shapes of elements in `tensors` are not the same.
1970
1965
 
@@ -2003,11 +1998,11 @@ def sub(input, other, alpha=1):
2003
1998
  input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
2004
1999
  a bool or a tensor whose data type is
2005
2000
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
2006
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2001
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2007
2002
  other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
2008
2003
  a bool or a tensor whose data type is
2009
2004
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
2010
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2005
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2011
2006
  alpha (number.Number): A scaling factor applied to `other`, default 1.
2012
2007
 
2013
2008
  Returns: