mindspore 2.7.0rc1__cp310-cp310-win_amd64.whl → 2.7.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (370) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +5 -2
  3. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +2 -2
  7. mindspore/_extends/builtin_operations.py +3 -3
  8. mindspore/_extends/parallel_compile/akg_compiler/custom.py +1109 -0
  9. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  10. mindspore/_extends/parse/__init__.py +3 -3
  11. mindspore/_extends/parse/compile_config.py +24 -1
  12. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +6 -3
  13. mindspore/_extends/parse/parser.py +28 -22
  14. mindspore/_extends/parse/resources.py +1 -1
  15. mindspore/_extends/parse/standard_method.py +23 -2
  16. mindspore/_extends/parse/trope.py +2 -1
  17. mindspore/_extends/pijit/pijit_func_white_list.py +9 -27
  18. mindspore/amp.py +0 -18
  19. mindspore/avcodec-59.dll +0 -0
  20. mindspore/avdevice-59.dll +0 -0
  21. mindspore/avfilter-8.dll +0 -0
  22. mindspore/avformat-59.dll +0 -0
  23. mindspore/avutil-57.dll +0 -0
  24. mindspore/boost/base.py +29 -2
  25. mindspore/common/__init__.py +18 -12
  26. mindspore/common/_decorator.py +3 -2
  27. mindspore/common/_grad_function.py +3 -1
  28. mindspore/common/_tensor_cpp_method.py +1 -1
  29. mindspore/common/_tensor_docs.py +371 -96
  30. mindspore/common/_utils.py +7 -43
  31. mindspore/common/api.py +434 -135
  32. mindspore/common/dtype.py +98 -57
  33. mindspore/common/dump.py +7 -108
  34. mindspore/common/dynamic_shape/__init__.py +0 -0
  35. mindspore/common/{auto_dynamic_shape.py → dynamic_shape/auto_dynamic_shape.py} +15 -23
  36. mindspore/common/dynamic_shape/enable_dynamic.py +197 -0
  37. mindspore/common/file_system.py +59 -9
  38. mindspore/common/hook_handle.py +82 -3
  39. mindspore/common/jit_config.py +5 -1
  40. mindspore/common/jit_trace.py +27 -12
  41. mindspore/common/lazy_inline.py +5 -3
  42. mindspore/common/np_dtype.py +3 -3
  43. mindspore/common/parameter.py +17 -127
  44. mindspore/common/recompute.py +4 -13
  45. mindspore/common/tensor.py +50 -217
  46. mindspore/communication/_comm_helper.py +11 -1
  47. mindspore/communication/comm_func.py +138 -4
  48. mindspore/communication/management.py +85 -1
  49. mindspore/config/op_info.config +0 -15
  50. mindspore/context.py +20 -106
  51. mindspore/dataset/__init__.py +1 -1
  52. mindspore/dataset/audio/transforms.py +1 -1
  53. mindspore/dataset/core/config.py +35 -1
  54. mindspore/dataset/engine/datasets.py +338 -319
  55. mindspore/dataset/engine/datasets_user_defined.py +38 -22
  56. mindspore/dataset/engine/datasets_vision.py +1 -1
  57. mindspore/dataset/engine/validators.py +1 -15
  58. mindspore/dataset/transforms/c_transforms.py +2 -2
  59. mindspore/dataset/transforms/transforms.py +3 -3
  60. mindspore/dataset/vision/__init__.py +1 -1
  61. mindspore/dataset/vision/py_transforms.py +8 -8
  62. mindspore/dataset/vision/transforms.py +17 -5
  63. mindspore/dataset/vision/utils.py +632 -21
  64. mindspore/device_context/ascend/op_tuning.py +35 -1
  65. mindspore/dnnl.dll +0 -0
  66. mindspore/{profiler/common/validator → graph}/__init__.py +9 -1
  67. mindspore/graph/custom_pass.py +55 -0
  68. mindspore/include/api/cell.h +28 -4
  69. mindspore/include/api/cfg.h +24 -7
  70. mindspore/include/api/context.h +1 -0
  71. mindspore/include/api/delegate.h +0 -2
  72. mindspore/include/api/dual_abi_helper.h +100 -19
  73. mindspore/include/api/graph.h +14 -1
  74. mindspore/include/api/kernel.h +16 -3
  75. mindspore/include/api/kernel_api.h +9 -1
  76. mindspore/include/api/metrics/accuracy.h +9 -0
  77. mindspore/include/api/model.h +5 -1
  78. mindspore/include/api/model_group.h +4 -0
  79. mindspore/include/api/model_parallel_runner.h +2 -0
  80. mindspore/include/api/status.h +48 -10
  81. mindspore/include/api/types.h +6 -1
  82. mindspore/include/dataset/constants.h +9 -0
  83. mindspore/include/dataset/execute.h +2 -2
  84. mindspore/jpeg62.dll +0 -0
  85. mindspore/mindrecord/__init__.py +3 -3
  86. mindspore/mindrecord/common/exceptions.py +1 -0
  87. mindspore/mindrecord/config.py +1 -1
  88. mindspore/{parallel/mpi → mindrecord/core}/__init__.py +4 -1
  89. mindspore/mindrecord/{shardheader.py → core/shardheader.py} +2 -1
  90. mindspore/mindrecord/{shardindexgenerator.py → core/shardindexgenerator.py} +1 -1
  91. mindspore/mindrecord/{shardreader.py → core/shardreader.py} +2 -1
  92. mindspore/mindrecord/{shardsegment.py → core/shardsegment.py} +2 -2
  93. mindspore/mindrecord/{shardutils.py → core/shardutils.py} +1 -1
  94. mindspore/mindrecord/{shardwriter.py → core/shardwriter.py} +1 -1
  95. mindspore/mindrecord/filereader.py +4 -4
  96. mindspore/mindrecord/filewriter.py +5 -5
  97. mindspore/mindrecord/mindpage.py +2 -2
  98. mindspore/mindrecord/tools/cifar10.py +4 -3
  99. mindspore/mindrecord/tools/cifar100.py +1 -1
  100. mindspore/mindrecord/tools/cifar100_to_mr.py +1 -1
  101. mindspore/mindrecord/tools/cifar10_to_mr.py +6 -6
  102. mindspore/mindrecord/tools/csv_to_mr.py +1 -1
  103. mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
  104. mindspore/mindrecord/tools/mnist_to_mr.py +1 -1
  105. mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -1
  106. mindspore/mindspore_backend_common.dll +0 -0
  107. mindspore/mindspore_backend_manager.dll +0 -0
  108. mindspore/mindspore_cluster.dll +0 -0
  109. mindspore/mindspore_common.dll +0 -0
  110. mindspore/mindspore_core.dll +0 -0
  111. mindspore/mindspore_cpu.dll +0 -0
  112. mindspore/mindspore_dump.dll +0 -0
  113. mindspore/mindspore_frontend.dll +0 -0
  114. mindspore/mindspore_glog.dll +0 -0
  115. mindspore/mindspore_hardware_abstract.dll +0 -0
  116. mindspore/mindspore_memory_pool.dll +0 -0
  117. mindspore/mindspore_ms_backend.dll +0 -0
  118. mindspore/mindspore_ops.dll +0 -0
  119. mindspore/{mindspore_ops_host.dll → mindspore_ops_cpu.dll} +0 -0
  120. mindspore/mindspore_profiler.dll +0 -0
  121. mindspore/mindspore_pyboost.dll +0 -0
  122. mindspore/mindspore_pynative.dll +0 -0
  123. mindspore/mindspore_runtime_pipeline.dll +0 -0
  124. mindspore/mindspore_runtime_utils.dll +0 -0
  125. mindspore/mindspore_tools.dll +0 -0
  126. mindspore/mint/__init__.py +15 -10
  127. mindspore/mint/distributed/__init__.py +4 -0
  128. mindspore/mint/distributed/distributed.py +392 -69
  129. mindspore/mint/nn/__init__.py +2 -16
  130. mindspore/mint/nn/functional.py +4 -110
  131. mindspore/mint/nn/layer/__init__.py +0 -2
  132. mindspore/mint/nn/layer/_functions.py +1 -2
  133. mindspore/mint/nn/layer/activation.py +0 -6
  134. mindspore/mint/nn/layer/basic.py +0 -47
  135. mindspore/mint/nn/layer/conv.py +10 -10
  136. mindspore/mint/nn/layer/normalization.py +11 -16
  137. mindspore/mint/nn/layer/pooling.py +0 -4
  138. mindspore/nn/__init__.py +1 -3
  139. mindspore/nn/cell.py +231 -239
  140. mindspore/nn/layer/activation.py +4 -2
  141. mindspore/nn/layer/basic.py +56 -14
  142. mindspore/nn/layer/container.py +16 -0
  143. mindspore/nn/layer/embedding.py +4 -169
  144. mindspore/nn/layer/image.py +1 -1
  145. mindspore/nn/layer/normalization.py +2 -1
  146. mindspore/nn/layer/thor_layer.py +4 -85
  147. mindspore/nn/optim/ada_grad.py +0 -1
  148. mindspore/nn/optim/adafactor.py +0 -1
  149. mindspore/nn/optim/adam.py +32 -127
  150. mindspore/nn/optim/adamax.py +0 -1
  151. mindspore/nn/optim/asgd.py +0 -1
  152. mindspore/nn/optim/ftrl.py +8 -102
  153. mindspore/nn/optim/lamb.py +1 -4
  154. mindspore/nn/optim/lars.py +0 -3
  155. mindspore/nn/optim/lazyadam.py +25 -218
  156. mindspore/nn/optim/momentum.py +5 -43
  157. mindspore/nn/optim/optimizer.py +6 -55
  158. mindspore/nn/optim/proximal_ada_grad.py +0 -1
  159. mindspore/nn/optim/rmsprop.py +0 -1
  160. mindspore/nn/optim/rprop.py +0 -1
  161. mindspore/nn/optim/sgd.py +0 -1
  162. mindspore/nn/optim/tft_wrapper.py +2 -4
  163. mindspore/nn/optim/thor.py +0 -2
  164. mindspore/nn/probability/bijector/bijector.py +7 -8
  165. mindspore/nn/probability/bijector/gumbel_cdf.py +2 -2
  166. mindspore/nn/probability/bijector/power_transform.py +20 -21
  167. mindspore/nn/probability/bijector/scalar_affine.py +5 -5
  168. mindspore/nn/probability/bijector/softplus.py +13 -14
  169. mindspore/nn/probability/distribution/_utils/utils.py +2 -2
  170. mindspore/nn/wrap/cell_wrapper.py +39 -5
  171. mindspore/nn/wrap/grad_reducer.py +4 -89
  172. mindspore/numpy/array_creations.py +4 -4
  173. mindspore/numpy/fft.py +9 -9
  174. mindspore/numpy/utils_const.py +1 -1
  175. mindspore/{nn/reinforcement → onnx}/__init__.py +5 -8
  176. mindspore/onnx/onnx_export.py +137 -0
  177. mindspore/opencv_core4110.dll +0 -0
  178. mindspore/opencv_imgcodecs4110.dll +0 -0
  179. mindspore/{opencv_imgproc452.dll → opencv_imgproc4110.dll} +0 -0
  180. mindspore/ops/__init__.py +2 -0
  181. mindspore/ops/_grad_experimental/grad_comm_ops.py +38 -2
  182. mindspore/ops/_grad_experimental/grad_inner_ops.py +0 -9
  183. mindspore/ops/_op_impl/aicpu/__init__.py +0 -10
  184. mindspore/ops/_op_impl/cpu/__init__.py +1 -5
  185. mindspore/ops/_op_impl/cpu/{buffer_append.py → joinedstr_op.py} +8 -8
  186. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +28 -24
  187. mindspore/ops/auto_generate/gen_extend_func.py +6 -11
  188. mindspore/ops/auto_generate/gen_ops_def.py +385 -154
  189. mindspore/ops/auto_generate/gen_ops_prim.py +5676 -5167
  190. mindspore/ops/communication.py +97 -0
  191. mindspore/ops/composite/__init__.py +5 -2
  192. mindspore/ops/composite/base.py +16 -2
  193. mindspore/ops/composite/multitype_ops/__init__.py +3 -1
  194. mindspore/ops/composite/multitype_ops/_compile_utils.py +150 -8
  195. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  196. mindspore/ops/composite/multitype_ops/add_impl.py +7 -0
  197. mindspore/ops/composite/multitype_ops/mod_impl.py +27 -0
  198. mindspore/ops/function/__init__.py +2 -0
  199. mindspore/ops/function/array_func.py +24 -18
  200. mindspore/ops/function/comm_func.py +3883 -0
  201. mindspore/ops/function/debug_func.py +7 -6
  202. mindspore/ops/function/grad/grad_func.py +4 -12
  203. mindspore/ops/function/math_func.py +89 -86
  204. mindspore/ops/function/nn_func.py +92 -313
  205. mindspore/ops/function/random_func.py +9 -18
  206. mindspore/ops/functional.py +4 -1
  207. mindspore/ops/functional_overload.py +377 -30
  208. mindspore/ops/operations/__init__.py +2 -5
  209. mindspore/ops/operations/_custom_ops_utils.py +7 -9
  210. mindspore/ops/operations/_inner_ops.py +12 -50
  211. mindspore/ops/operations/_rl_inner_ops.py +0 -933
  212. mindspore/ops/operations/array_ops.py +5 -50
  213. mindspore/ops/operations/comm_ops.py +95 -17
  214. mindspore/ops/operations/custom_ops.py +237 -22
  215. mindspore/ops/operations/debug_ops.py +33 -35
  216. mindspore/ops/operations/manually_defined/ops_def.py +39 -318
  217. mindspore/ops/operations/math_ops.py +5 -5
  218. mindspore/ops/operations/nn_ops.py +3 -3
  219. mindspore/ops/operations/sparse_ops.py +0 -83
  220. mindspore/ops/primitive.py +4 -27
  221. mindspore/ops/tensor_method.py +88 -10
  222. mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +5 -5
  223. mindspore/ops_generate/aclnn/gen_aclnn_implement.py +8 -8
  224. mindspore/ops_generate/api/functions_cc_generator.py +53 -4
  225. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +25 -11
  226. mindspore/ops_generate/common/gen_constants.py +11 -10
  227. mindspore/ops_generate/common/op_proto.py +18 -1
  228. mindspore/ops_generate/common/template.py +102 -245
  229. mindspore/ops_generate/common/template_utils.py +212 -0
  230. mindspore/ops_generate/gen_custom_ops.py +69 -0
  231. mindspore/ops_generate/op_def/ops_def_cc_generator.py +78 -7
  232. mindspore/ops_generate/op_def_py/base_op_prim_py_generator.py +360 -0
  233. mindspore/ops_generate/op_def_py/custom_op_prim_py_generator.py +140 -0
  234. mindspore/ops_generate/op_def_py/op_def_py_generator.py +54 -7
  235. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -312
  236. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +74 -17
  237. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +22 -5
  238. mindspore/ops_generate/pyboost/gen_pyboost_func.py +0 -16
  239. mindspore/ops_generate/pyboost/op_template_parser.py +3 -2
  240. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +21 -5
  241. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +2 -2
  242. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +30 -10
  243. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +10 -3
  244. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +1 -1
  245. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +19 -9
  246. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +71 -28
  247. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +10 -9
  248. mindspore/ops_generate/pyboost/pyboost_utils.py +27 -16
  249. mindspore/ops_generate/resources/yaml_loader.py +13 -0
  250. mindspore/ops_generate/tensor_py_cc_generator.py +2 -2
  251. mindspore/parallel/_auto_parallel_context.py +5 -15
  252. mindspore/parallel/_cell_wrapper.py +1 -1
  253. mindspore/parallel/_parallel_serialization.py +4 -6
  254. mindspore/parallel/_ps_context.py +2 -2
  255. mindspore/parallel/_utils.py +34 -17
  256. mindspore/parallel/auto_parallel.py +23 -9
  257. mindspore/parallel/checkpoint_transform.py +20 -2
  258. mindspore/parallel/cluster/process_entity/_api.py +28 -33
  259. mindspore/parallel/cluster/process_entity/_utils.py +9 -5
  260. mindspore/parallel/cluster/run.py +5 -3
  261. mindspore/{experimental/llm_boost/ascend_native → parallel/distributed}/__init__.py +21 -22
  262. mindspore/parallel/distributed/distributed_data_parallel.py +393 -0
  263. mindspore/parallel/distributed/flatten_grad_buffer.py +295 -0
  264. mindspore/parallel/function/reshard_func.py +6 -5
  265. mindspore/parallel/nn/parallel_cell_wrapper.py +40 -3
  266. mindspore/parallel/nn/parallel_grad_reducer.py +0 -8
  267. mindspore/parallel/shard.py +7 -21
  268. mindspore/parallel/strategy.py +336 -0
  269. mindspore/parallel/transform_safetensors.py +127 -20
  270. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +13 -9
  271. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
  272. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +1 -1
  273. mindspore/profiler/common/constant.py +5 -0
  274. mindspore/profiler/common/file_manager.py +9 -0
  275. mindspore/profiler/common/msprof_cmd_tool.py +40 -4
  276. mindspore/profiler/common/path_manager.py +65 -24
  277. mindspore/profiler/common/profiler_context.py +27 -14
  278. mindspore/profiler/common/profiler_info.py +3 -3
  279. mindspore/profiler/common/profiler_meta_data.py +1 -0
  280. mindspore/profiler/common/profiler_op_analyse.py +10 -6
  281. mindspore/profiler/common/profiler_path_manager.py +13 -0
  282. mindspore/profiler/common/util.py +30 -3
  283. mindspore/profiler/dynamic_profiler.py +91 -46
  284. mindspore/profiler/envprofiler.py +30 -5
  285. mindspore/profiler/experimental_config.py +18 -2
  286. mindspore/profiler/platform/cpu_profiler.py +10 -4
  287. mindspore/profiler/platform/npu_profiler.py +34 -7
  288. mindspore/profiler/profiler.py +193 -145
  289. mindspore/profiler/profiler_action_controller.py +1 -1
  290. mindspore/profiler/profiler_interface.py +2 -2
  291. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  292. mindspore/run_check/_check_version.py +108 -24
  293. mindspore/runtime/__init__.py +9 -6
  294. mindspore/runtime/executor.py +35 -0
  295. mindspore/runtime/memory.py +113 -0
  296. mindspore/runtime/thread_bind_core.py +1 -1
  297. mindspore/swresample-4.dll +0 -0
  298. mindspore/swscale-6.dll +0 -0
  299. mindspore/tinyxml2.dll +0 -0
  300. mindspore/{experimental/llm_boost → tools}/__init__.py +5 -5
  301. mindspore/tools/data_dump.py +130 -0
  302. mindspore/tools/sdc_detect.py +91 -0
  303. mindspore/tools/stress_detect.py +63 -0
  304. mindspore/train/__init__.py +6 -6
  305. mindspore/train/_utils.py +8 -21
  306. mindspore/train/amp.py +6 -7
  307. mindspore/train/callback/_callback.py +2 -1
  308. mindspore/train/callback/_checkpoint.py +1 -17
  309. mindspore/train/callback/_flops_collector.py +10 -6
  310. mindspore/train/callback/_train_fault_tolerance.py +72 -25
  311. mindspore/train/data_sink.py +5 -9
  312. mindspore/train/dataset_helper.py +5 -5
  313. mindspore/train/model.py +41 -230
  314. mindspore/train/serialization.py +160 -401
  315. mindspore/train/train_thor/model_thor.py +2 -2
  316. mindspore/turbojpeg.dll +0 -0
  317. mindspore/utils/__init__.py +6 -3
  318. mindspore/utils/dlpack.py +92 -0
  319. mindspore/utils/dryrun.py +1 -1
  320. mindspore/utils/runtime_execution_order_check.py +10 -0
  321. mindspore/utils/sdc_detect.py +14 -12
  322. mindspore/utils/stress_detect.py +43 -0
  323. mindspore/utils/utils.py +152 -16
  324. mindspore/version.py +1 -1
  325. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/METADATA +3 -2
  326. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/RECORD +330 -344
  327. mindspore/_extends/remote/kernel_build_server_ascend.py +0 -75
  328. mindspore/communication/_hccl_management.py +0 -297
  329. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -207
  330. mindspore/experimental/llm_boost/ascend_native/llm_boost.py +0 -52
  331. mindspore/experimental/llm_boost/atb/__init__.py +0 -23
  332. mindspore/experimental/llm_boost/atb/boost_base.py +0 -385
  333. mindspore/experimental/llm_boost/atb/llama_boost.py +0 -137
  334. mindspore/experimental/llm_boost/atb/qwen_boost.py +0 -124
  335. mindspore/experimental/llm_boost/register.py +0 -130
  336. mindspore/experimental/llm_boost/utils.py +0 -31
  337. mindspore/include/OWNERS +0 -7
  338. mindspore/mindspore_cpu_res_manager.dll +0 -0
  339. mindspore/mindspore_ops_kernel_common.dll +0 -0
  340. mindspore/mindspore_res_manager.dll +0 -0
  341. mindspore/nn/optim/_dist_optimizer_registry.py +0 -111
  342. mindspore/nn/reinforcement/_batch_read_write.py +0 -142
  343. mindspore/nn/reinforcement/_tensors_queue.py +0 -152
  344. mindspore/nn/reinforcement/tensor_array.py +0 -145
  345. mindspore/opencv_core452.dll +0 -0
  346. mindspore/opencv_imgcodecs452.dll +0 -0
  347. mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +0 -113
  348. mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +0 -96
  349. mindspore/ops/_op_impl/aicpu/sparse_cross.py +0 -42
  350. mindspore/ops/_op_impl/cpu/buffer_get.py +0 -28
  351. mindspore/ops/_op_impl/cpu/buffer_sample.py +0 -28
  352. mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +0 -42
  353. mindspore/ops/operations/_tensor_array.py +0 -359
  354. mindspore/ops/operations/rl_ops.py +0 -288
  355. mindspore/parallel/_offload_context.py +0 -275
  356. mindspore/parallel/_recovery_context.py +0 -115
  357. mindspore/parallel/_transformer/__init__.py +0 -35
  358. mindspore/parallel/_transformer/layers.py +0 -765
  359. mindspore/parallel/_transformer/loss.py +0 -251
  360. mindspore/parallel/_transformer/moe.py +0 -693
  361. mindspore/parallel/_transformer/op_parallel_config.py +0 -222
  362. mindspore/parallel/_transformer/transformer.py +0 -3124
  363. mindspore/parallel/mpi/_mpi_config.py +0 -116
  364. mindspore/profiler/common/validator/validate_path.py +0 -84
  365. mindspore/train/memory_profiling_pb2.py +0 -298
  366. mindspore/utils/hooks.py +0 -81
  367. /mindspore/common/{_auto_dynamic.py → dynamic_shape/_auto_dynamic.py} +0 -0
  368. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/WHEEL +0 -0
  369. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/entry_points.txt +0 -0
  370. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/top_level.txt +0 -0
@@ -20,7 +20,7 @@ from mindspore.common._register_for_tensor import tensor_operator_registry
20
20
  from mindspore.ops import _constants
21
21
  from mindspore.ops.function import *
22
22
  from mindspore.ops.function.array_func import chunk_ext, zero_
23
- from mindspore.ops.function.math_func import all, argmax_ext, float_power_ext, erfinv_, tanh_, bernoulli_ext
23
+ from mindspore.ops.function.math_func import all, argmax_ext, float_power_ext, erfinv_, tanh_, bernoulli_ext, bernoulli_
24
24
  from mindspore.ops.function.random_func import random_, uniform_ext, uniform_, normal_, exponential_
25
25
  from mindspore.ops import operations as P
26
26
  from mindspore.ops.operations import array_ops
@@ -266,6 +266,7 @@ setattr(tensor_operator_registry, 'erf', erf)
266
266
  setattr(tensor_operator_registry, 'erfc', erfc)
267
267
  setattr(tensor_operator_registry, 'standard_normal', P.StandardNormal)
268
268
  setattr(tensor_operator_registry, 'sigmoid', sigmoid)
269
+ setattr(tensor_operator_registry, 'sigmoid_', auto_generate.inplace_sigmoid)
269
270
  setattr(tensor_operator_registry, 'median', Median)
270
271
  setattr(tensor_operator_registry, 'tanh', tanh)
271
272
  setattr(tensor_operator_registry, 'tanh_', tanh_)
@@ -397,6 +398,7 @@ setattr(tensor_operator_registry, 'inplace_scatter_add', auto_generate.inplace_s
397
398
  setattr(tensor_operator_registry, 'slice_scatter', slice_scatter)
398
399
  setattr(tensor_operator_registry, 'select_scatter', select_scatter)
399
400
  setattr(tensor_operator_registry, 'bernoulli', bernoulli_ext)
401
+ setattr(tensor_operator_registry, 'bernoulli_', bernoulli_)
400
402
  setattr(tensor_operator_registry, 'poisson', P.Poisson)
401
403
  setattr(tensor_operator_registry, 'randperm', P.Randperm)
402
404
  setattr(tensor_operator_registry, 'multinomial', multinomial)
@@ -451,6 +453,7 @@ setattr(tensor_operator_registry, 'ne', ne)
451
453
  setattr(tensor_operator_registry, 'not_equal', not_equal)
452
454
  setattr(tensor_operator_registry, 'sgn', sgn)
453
455
  setattr(tensor_operator_registry, 'sign', sign)
456
+ setattr(tensor_operator_registry, 'sign_', auto_generate.inplace_sign)
454
457
  setattr(tensor_operator_registry, 'signbit', signbit)
455
458
  setattr(tensor_operator_registry, 'sinh', sinh)
456
459
  setattr(tensor_operator_registry, 'trunc', trunc)
@@ -17,8 +17,11 @@ from mindspore._c_expression import _add_instance
17
17
  from mindspore._c_expression import _addcdiv_instance
18
18
  from mindspore._c_expression import _all_gather_matmul_instance
19
19
  from mindspore._c_expression import _any_instance
20
+ from mindspore._c_expression import _bernoulli__instance
20
21
  from mindspore._c_expression import _bitwise_not_instance
21
22
  from mindspore._c_expression import _clamp_instance
23
+ from mindspore._c_expression import _conv1d_instance
24
+ from mindspore._c_expression import _conv2d_instance
22
25
  from mindspore._c_expression import _conv3d_instance
23
26
  from mindspore._c_expression import _div_instance
24
27
  from mindspore._c_expression import _einsum_instance
@@ -31,6 +34,7 @@ from mindspore._c_expression import _gmm_instance
31
34
  from mindspore._c_expression import _gmm_backward_instance
32
35
  from mindspore._c_expression import _gmm_backward_fusion_instance
33
36
  from mindspore._c_expression import _greater_equal_instance
37
+ from mindspore._c_expression import _imag_instance
34
38
  from mindspore._c_expression import _index_add_instance
35
39
  from mindspore._c_expression import _kthvalue_instance
36
40
  from mindspore._c_expression import _lerp_instance
@@ -40,6 +44,7 @@ from mindspore._c_expression import _min_instance
40
44
  from mindspore._c_expression import _nansum_instance
41
45
  from mindspore._c_expression import _pixel_shuffle_instance
42
46
  from mindspore._c_expression import _quant_matmul_instance
47
+ from mindspore._c_expression import _real_instance
43
48
  from mindspore._c_expression import _remainder_instance
44
49
  from mindspore._c_expression import _repeat_interleave_instance
45
50
  from mindspore._c_expression import _rmod_instance
@@ -66,10 +71,10 @@ def add(*args, **kwargs):
66
71
  Args:
67
72
  input (Union[Tensor, number.Number, bool]): `input` is a number.Number or a bool or a tensor whose data type is
68
73
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
69
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
74
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
70
75
  other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
71
76
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
72
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
77
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
73
78
 
74
79
  Keyword Args:
75
80
  alpha (number.Number, optional): A scaling factor applied to `other`, default ``1``.
@@ -317,6 +322,15 @@ def any(*args, **kwargs):
317
322
  return _any_instance(*args, **kwargs)
318
323
 
319
324
 
325
+ def bernoulli_(*args, **kwargs):
326
+ r"""
327
+ bernoulli_(input, p, seed, offset) -> Tensor
328
+
329
+ Inner function, used for Tensor.bernoulli_.
330
+ """
331
+ return _bernoulli__instance(*args, **kwargs)
332
+
333
+
320
334
  def bitwise_not(*args, **kwargs):
321
335
  r"""
322
336
  bitwise_not(input) -> Tensor
@@ -429,6 +443,245 @@ def clip(*args, **kwargs):
429
443
  return _clamp_instance(*args, **kwargs)
430
444
 
431
445
 
446
+ def conv1d(*args, **kwargs):
447
+ r"""
448
+ conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
449
+
450
+ Applies a 1D convolution over an input tensor. The input tenor is typically
451
+ of shape :math:`(N, C_{in}, L_{in})`,
452
+ where :math:`N` is batch size, :math:`C` is channel number, :math:`L` is sequence length.
453
+
454
+ The output is calculated based on formula:
455
+
456
+ .. math::
457
+
458
+ \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
459
+ \sum_{k = 0}^{C_{in} - 1} \text{ccor}({\text{weight}(C_{\text{out}_j}, k), \text{X}(N_i, k)})
460
+
461
+ where :math:`bias` is the output channel bias, :math:`ccor` is
462
+ the `cross-correlation <https://en.wikipedia.org/wiki/Cross-correlation>`_,
463
+ :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
464
+
465
+ - :math:`i` corresponds to the batch number, the range is :math:`[0, N-1]`,
466
+ where :math:`N` is the batch size of the input.
467
+
468
+ - :math:`j` corresponds to the output channel, the range is :math:`[0, C_{out}-1]`,
469
+ where :math:`C_{out}` is the number of
470
+ output channels, which is also equal to the number of kernels.
471
+
472
+ - :math:`k` corresponds to the input channel, the range is :math:`[0, C_{in}-1]`,
473
+ where :math:`C_{in}` is the number of
474
+ input channels, which is also equal to the number of channels in the convolutional kernels.
475
+
476
+ Therefore, in the above formula, :math:`{bias}(C_{\text{out}_j})` represents the bias of the :math:`j`-th
477
+ output channel, :math:`{weight}(C_{\text{out}_j}, k)` represents the slice of the :math:`j`-th convolutional
478
+ kernel in the :math:`k`-th channel, and :math:`{X}(N_i, k)` represents the slice of the :math:`k`-th input
479
+ channel in the :math:`i`-th batch of the input feature map.
480
+
481
+ The shape of the convolutional kernel is given by :math:`(\text{kernel_size})`,
482
+ where :math:`\text{kernel_size}` is the length of the kernel.
483
+ If we consider the input and output channels as well as the `groups` parameter, the complete kernel shape
484
+ will be :math:`(C_{out}, C_{in} / \text{groups}, \text{kernel_size})`,
485
+ where `groups` is the number of groups dividing `x`'s input channel when applying groups convolution.
486
+
487
+ For more details about convolution layer, please refer to `Gradient Based Learning Applied to Document Recognition
488
+ <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
489
+
490
+ Args:
491
+ input (Tensor): Tensor of shape :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`.
492
+ weight (Tensor): Tensor of shape
493
+ :math:`(C_{out}, C_{in} / \text{groups}, \text{kernel_size})`, then the size of kernel
494
+ is :math:`(\text{kernel_size})`.
495
+ bias (Tensor, optional): Bias Tensor with shape :math:`(C_{out})`.
496
+ When bias is ``None`` , zeros will be used. Default: ``None`` .
497
+ stride (Union[int, tuple[int], list[int]], optional): The movement stride of the 1D convolution kernel.
498
+ The data type is an integer or a tuple of one integer. Default: ``1`` .
499
+ padding (Union[int, tuple[int], list[int], str], optional): The number of padding
500
+ on the input.
501
+ The data type is an integer or a tuple of one integer or string {`valid`, `same`}.
502
+ The value should be greater than or equal to 0. Default: ``0`` .
503
+
504
+ - ``"same"``: Pad the input around its edges so that the shape of input and output
505
+ are the same when `stride` is set to ``1``.
506
+ The amount of padding to is calculated by the operator internally, If the amount is even, it is
507
+ uniformly distributed around the input, if it is odd, the excess amount goes to the right side.
508
+ If this mode is set, `stride` must be 1.
509
+
510
+ - ``"valid"``: No padding is applied to the input, and the output returns the maximum
511
+ possible length. Extra sequence that could not complete a full stride will
512
+ be discarded.
513
+
514
+ dilation (Union[int, tuple[int], list[int]], optional): Specifies the dilation rate to use for
515
+ dilated convolution. It can be a single int or a tuple of 1 integer.
516
+ Assuming :math:`dilation=(d)`, the convolutional kernel samples the input with a
517
+ spacing of :math:`d-1` elements in the length direction.
518
+ Default: ``1`` .
519
+ groups (int, optional): Splits filter into groups, `in_channels` and `out_channels` must be
520
+ divisible by `groups`. If the groups is equal to `in_channels` and `out_channels`,
521
+ this 1D convolution layer also can be called 1D depthwise convolution layer. Default: ``1`` .
522
+ The following restraints should be met:
523
+
524
+ - :math:`(C_{in} \text{ % } \text{groups} == 0)`
525
+ - :math:`(C_{out} \text{ % } \text{groups} == 0)`
526
+ - :math:`(C_{out} >= \text{groups})`
527
+ - :math:`(\text{weight[1]} = C_{in} / \text{groups})`
528
+
529
+ Returns:
530
+ Tensor, the value that applied 1D convolution. The shape is :math:`(N, C_{out}, L_{out})`.
531
+ To see how different pad modes affect the output shape, please refer to
532
+ :class:`mindspore.mint.nn.Conv1d` for more details.
533
+
534
+ Raises:
535
+ RuntimeError: On Ascend, due to the limitation of the L1 cache size of different NPU chip, if input size or
536
+ kernel size is too large, it may trigger an error.
537
+ TypeError: If `in_channels`, `out_channels` or `groups` is not an int.
538
+ TypeError: If `kernel_size`, `stride` or `dilation` is neither an int not a tuple.
539
+ ValueError: Args and size of the input feature map should satisfy the output formula to ensure that the size of
540
+ the output feature map is positive; otherwise, an error will be reported.
541
+ ValueError: If `in_channels`, `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
542
+ ValueError: If `padding` is less than 0.
543
+ ValueError: If `padding` is `same` , `stride` is not equal to 1.
544
+ ValueError: The input parameters do not satisfy the convolution output formula.
545
+ ValueError: The `kernel_size` cannot exceed the size of the input feature map.
546
+ ValueError: The value of `padding` cannot cause the calculation area to exceed the input size.
547
+
548
+ Supported Platforms:
549
+ ``Ascend``
550
+
551
+ Examples:
552
+ >>> import mindspore
553
+ >>> import numpy as np
554
+ >>> from mindspore import Tensor, ops, mint
555
+ >>> x = Tensor(np.ones([10, 32, 32]), mindspore.float32)
556
+ >>> weight = Tensor(np.ones([32, 32, 3]), mindspore.float32)
557
+ >>> output = mint.nn.functional.conv1d(x, weight)
558
+ >>> print(output.shape)
559
+ (10, 32, 30)
560
+ """
561
+ return _conv1d_instance(*args, **kwargs)
562
+
563
+
564
+ def conv2d(*args, **kwargs):
565
+ r"""
566
+ Applies a 2D convolution over an input tensor. The input tensor is typically of
567
+ shape :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`,
568
+ where :math:`N` is batch size, :math:`C` is channel number, :math:`H` is feature height, :math:`W` is feature width.
569
+
570
+ The output is calculated based on formula:
571
+
572
+ .. math::
573
+
574
+ \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
575
+ \sum_{k = 0}^{C_{in} - 1} \text{ccor}({\text{weight}(C_{\text{out}_j}, k), \text{X}(N_i, k)})
576
+
577
+ where :math:`bias` is the output channel bias, :math:`ccor` is
578
+ the `cross-correlation <https://en.wikipedia.org/wiki/Cross-correlation>`_,
579
+ , :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
580
+
581
+ - :math:`i` corresponds to the batch number, the range is :math:`[0, N-1]`,
582
+ where :math:`N` is the batch size of the input.
583
+
584
+ - :math:`j` corresponds to the output channel, the range is :math:`[0, C_{out}-1]`,
585
+ where :math:`C_{out}` is the number of output channels, which is also equal to the number of kernels.
586
+
587
+ - :math:`k` corresponds to the input channel, the range is :math:`[0, C_{in}-1]`,
588
+ where :math:`C_{in}` is the number of
589
+ input channels, which is also equal to the number of channels in the convolutional kernels.
590
+
591
+ Therefore, in the above formula, :math:`{bias}(C_{out_j})` represents the bias of the :math:`j`-th
592
+ output channel, :math:`{weight}(C_{out_j}, k)` represents the slice of the :math:`j`-th convolutional
593
+ kernel in the :math:`k`-th channel, and :math:`{X}(N_i, k)` represents the slice of the :math:`k`-th input
594
+ channel in the :math:`i`-th batch of the input feature map.
595
+
596
+ The shape of the convolutional kernel is given by :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})`,
597
+ where :math:`\text{kernel_size[0]}` and :math:`\text{kernel_size[1]}` are the height and width of the kernel,
598
+ respectively.
599
+ If we consider the input and output channels as well as the `group` parameter, the complete kernel shape
600
+ will be :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})`,
601
+ where `group` is the number of groups dividing `x`'s input channel when applying group convolution.
602
+
603
+ For more details about convolution layer, please refer to `Gradient Based Learning Applied to Document Recognition
604
+ <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_ and
605
+ `ConvNets <http://cs231n.github.io/convolutional-networks/>`_.
606
+
607
+ .. warning::
608
+ This is an experimental API that is subject to change or deletion.
609
+
610
+ Args:
611
+ input (Tensor): Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`.
612
+ weight (Tensor): Tensor of shape
613
+ :math:`(N, C_{in} / \text{groups}, \text{kernel_size[0]}, \text{kernel_size[1]})`, then the size of kernel
614
+ is :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})`.
615
+ bias (Tensor, optional): Bias Tensor with shape :math:`(C_{out})`.
616
+ When bias is ``None`` , zeros will be used. Default: ``None`` .
617
+ stride (Union(int, tuple[int], list[int]), optional): The distance of kernel moving, an int number that
618
+ represents the height and width of movement are both strides, or a tuple of two int numbers that
619
+ represent height and width of movement respectively. Default: ``1`` .
620
+ padding (Union[int, tuple[int], list[int], str], optional): The number of padding
621
+ on the height and width directions of the input.
622
+ The data type is an integer or a tuple of two integers or string {`valid`, `same`}. If `padding` is an
623
+ integer, then `padding_{H}` and `padding_{W}` are all equal to `padding`.
624
+ If `padding` is a tuple of 2 integers, then `padding_{H}` and `padding_{W}`
625
+ is equal to `padding[0]` and `padding[1]` respectively.
626
+ The value should be greater than or equal to 0. Default: ``0`` .
627
+
628
+ - ``"same"``: Pad the input around its edges so that the shape of input and output
629
+ are the same when `stride` is set to ``1``.
630
+ The amount of padding to is calculated by the operator internally, If the amount is even, it is
631
+ uniformly distributed around the input, if it is odd, the excess amount goes to the right/bottom side.
632
+ If this mode is set, `stride` must be 1.
633
+
634
+ - ``"valid"``: No padding is applied to the input, and the output returns the maximum
635
+ possible height and width. Extra pixels that could not complete a full stride will
636
+ be discarded.
637
+
638
+ dilation (Union(int, tuple[int], list[int]), optional): Gaps between kernel elements.The data type
639
+ is int or a tuple of 2 integers. Specifies the dilation rate to use for dilated convolution.
640
+ If set to be :math:`k > 1`,
641
+ there will be :math:`k - 1` pixels skipped for each sampling location. Its value must
642
+ be greater than or equal to 1 and bounded by the height and width of the input `x`. Default: ``1`` .
643
+ groups (int, optional): Splits `input` into groups. Default: ``1`` .
644
+
645
+ - :math:`(C_{in} \text{ % } \text{groups} == 0)` , :math:`(C_{out} \text{ % } \text{groups} == 0)` ,
646
+ :math:`(C_{out} >= \text{groups})` , :math:`(\text{kernel_size[1]} = C_{in} / \text{groups})`
647
+
648
+ Returns:
649
+ Tensor, the value that applied 2D convolution. The shape is :math:`(N, C_{out}, H_{out}, W_{out})`.
650
+ To see how different pad modes affect the output shape, please refer to
651
+ :class:`mindspore.mint.nn.Conv2d` for more details.
652
+
653
+ Raises:
654
+ ValueError: Args and size of the input feature map should satisfy the output formula to ensure that the size of
655
+ the output feature map is positive; otherwise, an error will be reported. For more details on the output
656
+ formula, please refer to :class:`mindspore.mint.nn.Conv2d`.
657
+ RuntimeError: On Ascend, due to the limitation of the L1 cache size of different NPU chip, if input size or
658
+ kernel size is too large, it may trigger an error.
659
+ TypeError: If `in_channels` , `out_channels` or `groups` is not an int.
660
+ TypeError: If `kernel_size` , `stride` or `dilation` is neither an int nor a tuple.
661
+ TypeError: If `bias` is not a Tensor.
662
+ ValueError: If the shape of `bias` is not :math:`(C_{out})` .
663
+ ValueError: If `stride` or `dilation` is less than 1.
664
+ ValueError: If `padding` is `same` , `stride` is not equal to 1.
665
+ ValueError: The input parameters do not satisfy the convolution output formula.
666
+ ValueError: The KernelSize cannot exceed the size of the input feature map.
667
+ ValueError: The value of padding cannot cause the calculation area to exceed the input size.
668
+
669
+ Supported Platforms:
670
+ ``Ascend``
671
+
672
+ Examples:
673
+ >>> import mindspore
674
+ >>> import numpy as np
675
+ >>> from mindspore import Tensor, ops, mint
676
+ >>> x = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
677
+ >>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
678
+ >>> output = mint.nn.functional.conv2d(x, weight)
679
+ >>> print(output.shape)
680
+ (10, 32, 30, 30)
681
+ """
682
+ return _conv2d_instance(*args, **kwargs)
683
+
684
+
432
685
  def conv3d(*args, **kwargs):
433
686
  r"""
434
687
  conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
@@ -579,7 +832,7 @@ def div(*args, **kwargs):
579
832
  .. note::
580
833
  - When the two inputs have different shapes, they must be able to broadcast to a common shape.
581
834
  - The two inputs can not be bool type at the same time,
582
- [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type.
835
+ [True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
583
836
  - The two inputs comply with the implicit type conversion rules to make the data types
584
837
  consistent.
585
838
 
@@ -730,13 +983,10 @@ def einsum(*args, **kwargs):
730
983
 
731
984
  def empty(*args, **kwargs):
732
985
  r"""
733
- empty(*size, *, dtype=None, device=None) -> Tensor
986
+ empty(*size, *, dtype=None, device=None, pin_memory=False) -> Tensor
734
987
 
735
988
  Creates a tensor with uninitialized data, whose shape, dtype and device are described by the argument `size`,
736
- `dtype` and `device` respectively.
737
-
738
- .. warning::
739
- This is an experimental API that is subject to change or deletion.
989
+ `dtype` and `device` respectively. If `pin_memory` is True, the tensor will be allocated in pinned memory.
740
990
 
741
991
  Args:
742
992
  size (Union[tuple[int], list[int], int]): The specified shape of output tensor. Can be variable numbers of
@@ -745,15 +995,18 @@ def empty(*args, **kwargs):
745
995
  Keyword Args:
746
996
  dtype (:class:`mindspore.dtype`, optional): The specified type of output tensor. If `dtype` is ``None`` ,
747
997
  `mindspore.float32` will be used. Default: ``None`` .
748
- device (string, optional): The specified device of the output tensor. In PyNative mode, ``"Ascend"``, ``"npu"``,
998
+ device (str, optional): The specified device of the output tensor. In PyNative mode, ``"Ascend"``, ``"npu"``,
749
999
  ``"cpu"`` and ``"CPU"`` are supported. In graph mode O0, ``"Ascend"`` and ``"npu"`` are supported. If `device = None`,
750
1000
  `mindspore.context.device_target` will be used. Default ``None``.
1001
+ pin_memory (bool, optional): If set `pin_memory` to True, the tensor will be allocated in pinned memory, and `device`
1002
+ should be ``"cpu"`` or ``"CPU"`` . Default ``False``.
751
1003
 
752
1004
  Returns:
753
1005
  Tensor, whose shape, dtype and device are defined by input.
754
1006
 
755
1007
  Raises:
756
1008
  TypeError: If `size` is neither an int nor a tuple or list of int.
1009
+ RuntimeError: If `pin_memory` is True, and `device` is neither ``"cpu"`` nor ``"CPU"`` .
757
1010
 
758
1011
  Supported Platforms:
759
1012
  ``Ascend`` ``CPU``
@@ -771,13 +1024,10 @@ def empty(*args, **kwargs):
771
1024
 
772
1025
  def empty_like(*args, **kwargs):
773
1026
  r"""
774
- empty_like(input, *, dtype=None, device=None) -> Tensor
1027
+ empty_like(input, *, dtype=None, device=None, pin_memory=False) -> Tensor
775
1028
 
776
1029
  Returns an uninitialized Tensor with the same shape as the `input`. Its dtype is specified by `dtype` and its
777
- device is specified by `device`.
778
-
779
- .. warning::
780
- This is an experimental API that is subject to change or deletion.
1030
+ device is specified by `device`. If `pin_memory` is True, the tensor will be allocated in pinned memory.
781
1031
 
782
1032
  Args:
783
1033
  input (Tensor): Tensor of any dimension.
@@ -785,15 +1035,18 @@ def empty_like(*args, **kwargs):
785
1035
  Keyword Args:
786
1036
  dtype (:class:`mindspore.dtype`, optional): The specified dtype of the output tensor. If `dtype = None`, the
787
1037
  tensor will have the same dtype as input `input`. Default ``None``.
788
- device (string, optional): The specified device of the output tensor. In PyNative mode, ``"Ascend"``, ``"npu"``,
1038
+ device (str, optional): The specified device of the output tensor. In PyNative mode, ``"Ascend"``, ``"npu"``,
789
1039
  ``"cpu"`` and ``"CPU"`` are supported. In graph mode O0, ``"Ascend"`` and ``"npu"`` are supported. If `device = None`,
790
1040
  the value set by :func:`mindspore.set_device` will be used. Default ``None``.
1041
+ pin_memory (bool, optional): If set `pin_memory` to True, the tensor will be allocated in pinned memory, and `device`
1042
+ should be ``"cpu"`` or ``"CPU"`` . Default ``False``.
791
1043
 
792
1044
  Returns:
793
1045
  Tensor, has the same shape, type and device as `input` but with uninitialized data (May be a random value).
794
1046
 
795
1047
  Raises:
796
1048
  TypeError: If `input` is not a Tensor.
1049
+ RuntimeError: If `pin_memory` is True, and `device` is neither ``"cpu"`` nor ``"CPU"`` .
797
1050
 
798
1051
  Supported Platforms:
799
1052
  ``Ascend`` ``CPU``
@@ -833,9 +1086,6 @@ def floor_divide(*args, **kwargs):
833
1086
  where the :math:`floor` indicates the Floor operator. For more details,
834
1087
  please refer to the :class:`mindspore.mint.floor` operator.
835
1088
 
836
- .. warning::
837
- This is an experimental API that is subject to change or deletion.
838
-
839
1089
  Args:
840
1090
  input (Union[Tensor, Number, bool]): The first input is a number or
841
1091
  a bool or a tensor whose data type is number or bool.
@@ -1107,10 +1357,10 @@ def greater_equal(*args, **kwargs):
1107
1357
 
1108
1358
  Args:
1109
1359
  input (Union[Tensor, Number]): The first input is a number
1110
- or a tensor whose data type is `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_ or `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_.
1360
+ or a tensor whose data type is `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_ or `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_.
1111
1361
  other (Union[Tensor, Number]): Second input. When the first input is a Tensor, the second input should be a Number,
1112
- or a Tensor of the number or bool_ data type. When the first input is a Scalar,
1113
- the second input must be a Tensor of number or bool_ data type.
1362
+ or a Tensor of the number or bool data type. When the first input is a Scalar,
1363
+ the second input must be a Tensor of number or bool data type.
1114
1364
 
1115
1365
  Returns:
1116
1366
  Tensor, the shape is the same as the one after broadcasting, and the data type is bool.
@@ -1147,6 +1397,54 @@ def ge(*args, **kwargs):
1147
1397
  return _greater_equal_instance(*args, **kwargs)
1148
1398
 
1149
1399
 
1400
+ def imag(*args, **kwargs):
1401
+ r"""
1402
+ imag(input) -> Tensor
1403
+
1404
+ Return a new tensor containing the imaginary values of the input tensor.
1405
+ The returned tensor and input tensor share the same underlying storage.
1406
+
1407
+ Note:
1408
+ - Only support Pynative mode.
1409
+ - Only support complex64 and complex128 tensors.
1410
+
1411
+ Args:
1412
+ input (Tensor): The input tensor, the data type must be complex64 or complex128.
1413
+
1414
+ Returns:
1415
+ Tensor, the shape is same as `input`. The data type is float32 if `input` is complex64, float64 when `input` is complex128.
1416
+
1417
+ Raises:
1418
+ TypeError: If dtype of `input` is not complex64 or complex128.
1419
+ ValueError: If input tensor has no storage info.
1420
+
1421
+ Supported Platforms:
1422
+ ``Ascend``
1423
+
1424
+ Examples:
1425
+ >>> import mindspore
1426
+ >>> from mindspore import Tensor, ops, context
1427
+ >>> context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
1428
+ >>> real = Tensor([1.1, 2.1, 3.1], mindspore.float32)
1429
+ >>> imag = Tensor([4.1, 5.1, 6.1], mindspore.float32)
1430
+ >>> x = ops.Complex()(real, imag)
1431
+ >>> output = ops.functional_overload.imag(x)
1432
+ >>> print(output)
1433
+ [4.1 5.1 6.1]
1434
+ >>> print(output.dtype)
1435
+ Float32
1436
+ >>> real = Tensor([1.1, 2.1, 3.1], mindspore.float64)
1437
+ >>> imag = Tensor([4.1, 5.1, 6.1], mindspore.float64)
1438
+ >>> x = ops.Complex()(real, imag)
1439
+ >>> output = ops.functional_overload.imag(x)
1440
+ >>> print(output)
1441
+ [4.1 5.1 6.1]
1442
+ >>> print(output.dtype)
1443
+ Float64
1444
+ """
1445
+ return _imag_instance(*args, **kwargs)
1446
+
1447
+
1150
1448
  def index_add(*args, **kwargs):
1151
1449
  r"""
1152
1450
  index_add(input, dim, index, source, *, alpha=1) -> Tensor
@@ -1615,9 +1913,6 @@ def pixel_shuffle(*args, **kwargs):
1615
1913
  For detailed introduction to the pixel_shuffle algorithm, refer to
1616
1914
  `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158>`_ .
1617
1915
 
1618
- .. warning::
1619
- This is an experimental API that is subject to change or deletion.
1620
-
1621
1916
  Args:
1622
1917
  input (Tensor): Tensor of shape :math:`(*, C \times r^2, H, W)` . The dimension of `input` is larger than 2,
1623
1918
  and the length of third to last dimension can be divisible by the square of `upscale_factor`.
@@ -1699,6 +1994,53 @@ def quant_matmul(*args, **kwargs):
1699
1994
  return _quant_matmul_instance(*args, **kwargs)
1700
1995
 
1701
1996
 
1997
+ def real(*args, **kwargs):
1998
+ r"""
1999
+ real(input) -> Tensor
2000
+
2001
+ Return a new tensor containing the real values of the input tensor. If input is real, it is returned unchanged.
2002
+ The returned tensor and input tensor share the same underlying storage.
2003
+
2004
+ Note:
2005
+ Only support Pynative mode.
2006
+
2007
+ Args:
2008
+ input (Tensor): The input tensor.
2009
+
2010
+ Returns:
2011
+ Tensor, the shape is same as `input`. The data type is float32 if `input` is complex64, float64 when `input` is complex128.
2012
+ Otherwise, the data type is the same as `input`.
2013
+
2014
+ Raises:
2015
+ ValueError: If input tensor has no storage info.
2016
+
2017
+ Supported Platforms:
2018
+ ``Ascend``
2019
+
2020
+ Examples:
2021
+ >>> import mindspore
2022
+ >>> from mindspore import Tensor, ops, context
2023
+ >>> context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
2024
+ >>> real = Tensor([1.1, 2.1, 3.1], mindspore.float32)
2025
+ >>> imag = Tensor([4.1, 5.1, 6.1], mindspore.float32)
2026
+ >>> x = ops.Complex()(real, imag)
2027
+ >>> output = ops.functional_overload.real(x)
2028
+ >>> print(output)
2029
+ [1.1 2.1 3.1]
2030
+ >>> print(output.dtype)
2031
+ Float32
2032
+ >>> real = Tensor([1.1, 2.1, 3.1], mindspore.float64)
2033
+ >>> imag = Tensor([4.1, 5.1, 6.1], mindspore.float64)
2034
+ >>> x = ops.Complex()(real, imag)
2035
+ >>> output = ops.functional_overload.real(x)
2036
+ >>> print(output)
2037
+ [1.1 2.1 3.1]
2038
+ >>> print(output.dtype)
2039
+ Float64
2040
+ """
2041
+ return _real_instance(*args, **kwargs)
2042
+
2043
+
1702
2044
  def remainder(*args, **kwargs):
1703
2045
  r"""
1704
2046
  remainder(input, other) -> Tensor
@@ -1719,10 +2061,10 @@ def remainder(*args, **kwargs):
1719
2061
  input (Union[Tensor, numbers.Number, bool]): The dividend is a numbers.Number or
1720
2062
  a bool or a tensor whose data type is
1721
2063
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1722
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2064
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1723
2065
  other (Union[Tensor, numbers.Number, bool]): The divisor is a numbers.Number or
1724
- a bool or a tensor whose data type is number or bool\_ when the dividend is a tensor.
1725
- When the dividend is Scalar, the divisor must be a Tensor whose data type is number or bool\_.
2066
+ a bool or a tensor whose data type is number or bool when the dividend is a tensor.
2067
+ When the dividend is Scalar, the divisor must be a Tensor whose data type is number or bool.
1726
2068
 
1727
2069
  Returns:
1728
2070
  Tensor, with dtype promoted and shape broadcasted.
@@ -1816,10 +2158,10 @@ def sub(*args, **kwargs):
1816
2158
  Args:
1817
2159
  input (Union[Tensor, number.Number, bool]): `input` is a number.Number or a bool or a tensor whose data type is
1818
2160
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1819
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2161
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1820
2162
  other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
1821
2163
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1822
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2164
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1823
2165
 
1824
2166
  Keyword Args:
1825
2167
  alpha (number.Number, optional): A scaling factor applied to `other`, default ``1``.
@@ -1935,7 +2277,7 @@ def xlogy(*args, **kwargs):
1935
2277
  input (Union[Tensor, numbers.Number, bool]): The first input is a numbers.Number or
1936
2278
  a bool or a tensor whose data type is
1937
2279
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1938
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2280
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1939
2281
  other (Union[Tensor, numbers.Number, bool]): The second input is a numbers.Number or
1940
2282
  a bool or a tensor whose data type is number or bool when the first input is a tensor.
1941
2283
  When the first input is Scalar, the second input must be a Tensor whose data type is number or bool.
@@ -1969,9 +2311,12 @@ __all__ = [
1969
2311
  "addcdiv",
1970
2312
  "all_gather_matmul",
1971
2313
  "any",
2314
+ "bernoulli_",
1972
2315
  "bitwise_not",
1973
2316
  "clamp",
1974
2317
  "clip",
2318
+ "conv1d",
2319
+ "conv2d",
1975
2320
  "conv3d",
1976
2321
  "div",
1977
2322
  "divide",
@@ -1986,6 +2331,7 @@ __all__ = [
1986
2331
  "gmm_backward_fusion",
1987
2332
  "greater_equal",
1988
2333
  "ge",
2334
+ "imag",
1989
2335
  "index_add",
1990
2336
  "kthvalue",
1991
2337
  "lerp",
@@ -1995,6 +2341,7 @@ __all__ = [
1995
2341
  "nansum",
1996
2342
  "pixel_shuffle",
1997
2343
  "quant_matmul",
2344
+ "real",
1998
2345
  "remainder",
1999
2346
  "repeat_interleave",
2000
2347
  "rmod",
@@ -55,7 +55,7 @@ from .comm_ops import (AllGather, AllReduce, Reduce, NeighborExchange, NeighborE
55
55
  Broadcast, CollectiveGather, CollectiveScatter, Barrier, Send, Receive, BatchISendIRecv,
56
56
  _MirrorOperator, _MirrorMiniStepOperator, _MiniStepAllGather, ReduceOp, _VirtualDataset,
57
57
  _VirtualOutput, _VirtualDiv, _GetTensorSlice, _VirtualAdd, _VirtualAssignAdd, _VirtualAccuGrad,
58
- _HostAllGather, _HostReduceScatter, _MirrorMicroStepOperator, _MicroStepAllGather,
58
+ _HostAllGather, _HostReduceScatter, _MirrorMicroStepOperator, _MicroStepAllGather, AlltoAllVC,
59
59
  _VirtualPipelineEnd, AlltoAllV, ReduceScatter, _VirtualAssignKvCache, AllGatherV, ReduceScatterV)
60
60
  from .control_ops import GeSwitch, Merge
61
61
  from .custom_ops import (Custom, CustomOpBuilder)
@@ -129,7 +129,6 @@ from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, RandomGamm
129
129
  LogUniformCandidateSampler, TruncatedNormal, LogNormalReverse, NonDeterministicInts,
130
130
  ParameterizedTruncatedNormal, RandomPoisson, MultinomialWithReplacement, RandomShuffle,
131
131
  RandpermV2)
132
- from .rl_ops import (BufferAppend, BufferGetItem, BufferSample)
133
132
  from .sparse_ops import (
134
133
  SparseToDense, SparseTensorDenseMatmul, SparseTensorDenseAdd, SparseSlice)
135
134
  from .spectral_ops import (BartlettWindow, BlackmanWindow)
@@ -406,6 +405,7 @@ __all__ = [
406
405
  "AllReduce",
407
406
  "AllGatherV",
408
407
  "ReduceScatterV",
408
+ "AlltoAllVC",
409
409
  "Reduce",
410
410
  "_AllSwap",
411
411
  "ReduceScatter",
@@ -532,9 +532,6 @@ __all__ = [
532
532
  "HShrink",
533
533
  "PyExecute",
534
534
  "PyFunc",
535
- "BufferAppend",
536
- "BufferGetItem",
537
- "BufferSample",
538
535
  "Erfinv",
539
536
  "Conj",
540
537
  "Real",