mindspore 2.7.0__cp310-cp310-win_amd64.whl → 2.7.0rc1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (196) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +1 -1
  3. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +2 -2
  7. mindspore/_extends/builtin_operations.py +3 -3
  8. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  9. mindspore/_extends/parse/__init__.py +3 -3
  10. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -0
  11. mindspore/_extends/parse/parser.py +22 -28
  12. mindspore/_extends/parse/standard_method.py +1 -15
  13. mindspore/_extends/pijit/pijit_func_white_list.py +5 -2
  14. mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
  15. mindspore/amp.py +18 -0
  16. mindspore/avcodec-59.dll +0 -0
  17. mindspore/avdevice-59.dll +0 -0
  18. mindspore/avfilter-8.dll +0 -0
  19. mindspore/avformat-59.dll +0 -0
  20. mindspore/avutil-57.dll +0 -0
  21. mindspore/common/__init__.py +12 -18
  22. mindspore/common/_tensor_cpp_method.py +1 -1
  23. mindspore/common/_tensor_docs.py +38 -102
  24. mindspore/common/_utils.py +1 -9
  25. mindspore/common/api.py +106 -155
  26. mindspore/common/{dynamic_shape/auto_dynamic_shape.py → auto_dynamic_shape.py} +23 -17
  27. mindspore/common/dtype.py +57 -98
  28. mindspore/common/dump.py +1 -1
  29. mindspore/common/file_system.py +9 -59
  30. mindspore/common/hook_handle.py +3 -22
  31. mindspore/common/np_dtype.py +3 -3
  32. mindspore/common/parameter.py +20 -4
  33. mindspore/common/recompute.py +4 -2
  34. mindspore/common/tensor.py +52 -38
  35. mindspore/communication/_hccl_management.py +297 -0
  36. mindspore/context.py +21 -15
  37. mindspore/dataset/__init__.py +1 -1
  38. mindspore/dataset/audio/transforms.py +1 -1
  39. mindspore/dataset/core/config.py +1 -35
  40. mindspore/dataset/engine/datasets.py +315 -330
  41. mindspore/dataset/engine/datasets_user_defined.py +22 -38
  42. mindspore/dataset/transforms/c_transforms.py +2 -2
  43. mindspore/dataset/transforms/transforms.py +3 -3
  44. mindspore/dataset/vision/__init__.py +1 -1
  45. mindspore/dataset/vision/py_transforms.py +8 -8
  46. mindspore/dataset/vision/transforms.py +5 -17
  47. mindspore/dataset/vision/utils.py +21 -632
  48. mindspore/device_context/ascend/op_tuning.py +1 -35
  49. mindspore/dnnl.dll +0 -0
  50. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -3
  51. mindspore/include/api/cell.h +4 -28
  52. mindspore/include/api/cfg.h +7 -24
  53. mindspore/include/api/context.h +0 -1
  54. mindspore/include/api/delegate.h +2 -0
  55. mindspore/include/api/dual_abi_helper.h +19 -100
  56. mindspore/include/api/graph.h +1 -14
  57. mindspore/include/api/kernel.h +3 -16
  58. mindspore/include/api/kernel_api.h +1 -9
  59. mindspore/include/api/metrics/accuracy.h +0 -9
  60. mindspore/include/api/model.h +1 -5
  61. mindspore/include/api/model_group.h +0 -4
  62. mindspore/include/api/model_parallel_runner.h +0 -2
  63. mindspore/include/api/status.h +10 -48
  64. mindspore/include/api/types.h +1 -6
  65. mindspore/include/dataset/constants.h +0 -9
  66. mindspore/jpeg62.dll +0 -0
  67. mindspore/mindrecord/tools/cifar10.py +2 -3
  68. mindspore/mindrecord/tools/cifar10_to_mr.py +5 -5
  69. mindspore/mindspore_backend_common.dll +0 -0
  70. mindspore/mindspore_backend_manager.dll +0 -0
  71. mindspore/mindspore_common.dll +0 -0
  72. mindspore/mindspore_core.dll +0 -0
  73. mindspore/mindspore_cpu_res_manager.dll +0 -0
  74. mindspore/mindspore_dump.dll +0 -0
  75. mindspore/mindspore_frontend.dll +0 -0
  76. mindspore/mindspore_glog.dll +0 -0
  77. mindspore/mindspore_memory_pool.dll +0 -0
  78. mindspore/mindspore_ms_backend.dll +0 -0
  79. mindspore/mindspore_ops.dll +0 -0
  80. mindspore/mindspore_ops_host.dll +0 -0
  81. mindspore/mindspore_ops_kernel_common.dll +0 -0
  82. mindspore/mindspore_profiler.dll +0 -0
  83. mindspore/mindspore_pyboost.dll +0 -0
  84. mindspore/mindspore_pynative.dll +0 -0
  85. mindspore/mindspore_res_manager.dll +0 -0
  86. mindspore/mindspore_runtime_pipeline.dll +0 -0
  87. mindspore/mint/distributed/__init__.py +0 -4
  88. mindspore/mint/distributed/distributed.py +14 -217
  89. mindspore/mint/nn/layer/_functions.py +2 -1
  90. mindspore/mint/nn/layer/conv.py +6 -6
  91. mindspore/mint/nn/layer/normalization.py +3 -3
  92. mindspore/nn/cell.py +174 -216
  93. mindspore/nn/layer/activation.py +2 -4
  94. mindspore/nn/layer/basic.py +13 -7
  95. mindspore/nn/layer/image.py +1 -1
  96. mindspore/nn/optim/adam.py +3 -1
  97. mindspore/nn/optim/lamb.py +3 -1
  98. mindspore/nn/optim/tft_wrapper.py +3 -2
  99. mindspore/nn/probability/distribution/_utils/utils.py +2 -2
  100. mindspore/nn/wrap/cell_wrapper.py +5 -39
  101. mindspore/nn/wrap/grad_reducer.py +15 -0
  102. mindspore/numpy/array_creations.py +2 -2
  103. mindspore/numpy/utils_const.py +1 -1
  104. mindspore/opencv_core452.dll +0 -0
  105. mindspore/opencv_imgcodecs452.dll +0 -0
  106. mindspore/opencv_imgproc452.dll +0 -0
  107. mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
  108. mindspore/ops/_op_impl/cpu/__init__.py +0 -1
  109. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +2 -12
  110. mindspore/ops/auto_generate/gen_extend_func.py +4 -4
  111. mindspore/ops/auto_generate/gen_ops_def.py +16 -290
  112. mindspore/ops/auto_generate/gen_ops_prim.py +76 -563
  113. mindspore/ops/composite/base.py +1 -1
  114. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  115. mindspore/ops/function/__init__.py +0 -1
  116. mindspore/ops/function/array_func.py +6 -10
  117. mindspore/ops/function/debug_func.py +2 -4
  118. mindspore/ops/function/grad/grad_func.py +12 -4
  119. mindspore/ops/function/math_func.py +32 -44
  120. mindspore/ops/function/nn_func.py +20 -18
  121. mindspore/ops/functional.py +1 -2
  122. mindspore/ops/functional_overload.py +12 -23
  123. mindspore/ops/operations/_inner_ops.py +12 -11
  124. mindspore/ops/operations/array_ops.py +50 -4
  125. mindspore/ops/operations/comm_ops.py +15 -1
  126. mindspore/ops/operations/custom_ops.py +4 -10
  127. mindspore/ops/operations/debug_ops.py +6 -6
  128. mindspore/ops/operations/manually_defined/ops_def.py +12 -12
  129. mindspore/ops/operations/math_ops.py +5 -5
  130. mindspore/ops/operations/nn_ops.py +1 -1
  131. mindspore/ops/primitive.py +10 -3
  132. mindspore/ops/tensor_method.py +7 -16
  133. mindspore/ops_generate/pyboost/gen_pyboost_func.py +16 -0
  134. mindspore/parallel/_auto_parallel_context.py +15 -5
  135. mindspore/parallel/_parallel_serialization.py +2 -3
  136. mindspore/parallel/_ps_context.py +2 -2
  137. mindspore/parallel/_transformer/transformer.py +4 -4
  138. mindspore/parallel/_utils.py +11 -5
  139. mindspore/parallel/auto_parallel.py +9 -23
  140. mindspore/parallel/checkpoint_transform.py +0 -2
  141. mindspore/parallel/cluster/process_entity/_api.py +1 -4
  142. mindspore/parallel/cluster/run.py +3 -5
  143. mindspore/parallel/function/reshard_func.py +5 -6
  144. mindspore/parallel/nn/parallel_cell_wrapper.py +3 -40
  145. mindspore/parallel/nn/parallel_grad_reducer.py +8 -0
  146. mindspore/parallel/shard.py +21 -7
  147. mindspore/parallel/transform_safetensors.py +4 -10
  148. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +9 -10
  149. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
  150. mindspore/profiler/common/msprof_cmd_tool.py +2 -2
  151. mindspore/profiler/common/path_manager.py +0 -9
  152. mindspore/profiler/common/profiler_context.py +2 -25
  153. mindspore/profiler/common/profiler_meta_data.py +0 -1
  154. mindspore/profiler/common/profiler_op_analyse.py +6 -10
  155. mindspore/{ops/_op_impl/cpu/joinedstr_op.py → profiler/common/validator/__init__.py} +1 -15
  156. mindspore/profiler/common/validator/validate_path.py +84 -0
  157. mindspore/profiler/dynamic_profiler.py +46 -91
  158. mindspore/profiler/envprofiler.py +5 -30
  159. mindspore/profiler/experimental_config.py +1 -16
  160. mindspore/profiler/platform/cpu_profiler.py +4 -10
  161. mindspore/profiler/platform/npu_profiler.py +1 -1
  162. mindspore/profiler/profiler.py +145 -193
  163. mindspore/profiler/profiler_action_controller.py +1 -1
  164. mindspore/profiler/profiler_interface.py +2 -2
  165. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  166. mindspore/runtime/__init__.py +4 -6
  167. mindspore/runtime/executor.py +0 -27
  168. mindspore/runtime/memory.py +0 -1
  169. mindspore/runtime/thread_bind_core.py +1 -1
  170. mindspore/swresample-4.dll +0 -0
  171. mindspore/swscale-6.dll +0 -0
  172. mindspore/tinyxml2.dll +0 -0
  173. mindspore/train/_utils.py +3 -3
  174. mindspore/train/amp.py +3 -0
  175. mindspore/train/callback/_callback.py +1 -2
  176. mindspore/train/callback/_checkpoint.py +8 -1
  177. mindspore/train/callback/_flops_collector.py +6 -10
  178. mindspore/train/callback/_train_fault_tolerance.py +7 -3
  179. mindspore/train/data_sink.py +4 -4
  180. mindspore/train/dataset_helper.py +5 -5
  181. mindspore/train/model.py +20 -4
  182. mindspore/train/serialization.py +15 -35
  183. mindspore/train/train_thor/model_thor.py +2 -2
  184. mindspore/turbojpeg.dll +0 -0
  185. mindspore/utils/hooks.py +81 -0
  186. mindspore/utils/utils.py +8 -8
  187. mindspore/version.py +1 -1
  188. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +1 -1
  189. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +193 -192
  190. mindspore/_extends/parallel_compile/akg_compiler/custom.py +0 -1109
  191. mindspore/common/dynamic_shape/__init__.py +0 -0
  192. mindspore/common/dynamic_shape/enable_dynamic.py +0 -197
  193. /mindspore/common/{dynamic_shape/_auto_dynamic.py → _auto_dynamic.py} +0 -0
  194. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
  195. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
  196. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
@@ -72,7 +72,7 @@ Note:
72
72
  - When `self` and `other` have different shapes,
73
73
  they must be able to broadcast to a common shape.
74
74
  - `self` and `other` can not be bool type at the same time,
75
- [True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
75
+ [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type.
76
76
  - `self` and `other` comply with the implicit type conversion rules to make the data types
77
77
  consistent.
78
78
  - The dimension of `self` should be greater than or equal to 1.
@@ -80,7 +80,7 @@ Note:
80
80
  Args:
81
81
  other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
82
82
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
83
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
83
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
84
84
 
85
85
  Returns:
86
86
  Tensor with a shape that is the same as the broadcasted shape of `self` and `other`,
@@ -131,7 +131,7 @@ Note:
131
131
  Args:
132
132
  other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
133
133
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
134
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
134
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
135
135
 
136
136
  Keyword Args:
137
137
  alpha (number.Number): A scaling factor applied to `other`, default 1.
@@ -319,7 +319,29 @@ Examples:
319
319
  .. method:: Tensor.any(dim=None, keepdim=False) -> Tensor
320
320
  :noindex:
321
321
 
322
- For details, please refer to :func:`mindspore.mint.any`.
322
+ Tests if any element in tensor evaluates to `True` along the given axes.
323
+
324
+ Args:
325
+ dim (int, optional): The dimensions to reduce. If ``None`` , all dimensions are reduced. Default ``None`` .
326
+ keepdim (bool, optional): Whether the output tensor has dim retained or not. Default ``False`` .
327
+
328
+ Returns:
329
+ Tensor
330
+
331
+ Supported Platforms:
332
+ ``Ascend`` ``GPU`` ``CPU``
333
+
334
+ Examples:
335
+ >>> import mindspore
336
+ >>> x = mindspore.tensor([[True, False], [True, True]])
337
+ >>>
338
+ >>> # case 1: By default, mindspore.Tensor.any tests along all the axes.
339
+ >>> x.any()
340
+ Tensor(shape=[], dtype=Bool, value= True)
341
+ >>>
342
+ >>> # case 2: Reduces a dimension along dim 1, with keepdim False.
343
+ >>> x.any(dim=1)
344
+ Tensor(shape=[2], dtype=Bool, value= [ True, True])
323
345
  """)
324
346
  attach_docstr("arccosh", r"""arccosh() -> Tensor
325
347
 
@@ -797,17 +819,11 @@ Copies the elements from `src` into `self` tensor and returns `self`.
797
819
 
798
820
  .. warning::
799
821
  This is an experimental API that is subject to change or deletion.
800
-
801
- If Copying is performed between Ascend and Ascend, the `src` tensor must be broadcastable with the `self` tensor,
802
- and they can be of different data types.
803
- Copying is performed between CPU and Ascend or CPU and CPU are only supported if `self` and `src` have
804
- the same shape and data type and they are all contiguous.
822
+ The `src` tensor must be broadcastable with the `self` tensor. It may be of a different data type.
805
823
 
806
824
  Args:
807
825
  src (Tensor): the source tensor to copy from.
808
- non_blocking (bool, optional): If ``True`` and copying is performed between CPU and Ascend, and `self` and `src`
809
- have the same shape and data type and are contiguous. The copy may occur asynchronously with respect to the
810
- host. For other cases, this argument has no effect. Default: ``False``.
826
+ non_blocking (bool, optional): no effect currently. Default: ``False``.
811
827
 
812
828
  Returns:
813
829
  Return self Tensor.
@@ -885,7 +901,7 @@ Args:
885
901
  keep_dims (bool, optional): Whether to maintain dimensions specified by `axis`.
886
902
  If true, keep these reduced dimensions and the length is 1.
887
903
  If false, don't keep these dimensions. Default: ``False`` .
888
- dtype (Union[Number, mindspore.bool], optional): The data type of the output tensor.
904
+ dtype (Union[Number, mindspore.bool\_], optional): The data type of the output tensor.
889
905
  Default: ``None`` .
890
906
 
891
907
  Returns:
@@ -1486,7 +1502,7 @@ where params represents the input `input_params`, and indices represents the ind
1486
1502
  On CPU and GPU, an error is raised if an out of bound indice is found. On Ascend, the results may be
1487
1503
  undefined.
1488
1504
  - The data type of self cannot be
1489
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ on Ascend
1505
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ on Ascend
1490
1506
  platform currently.
1491
1507
 
1492
1508
  Args:
@@ -1907,13 +1923,13 @@ Examples:
1907
1923
  >>> import mindspore
1908
1924
  >>> import numpy as np
1909
1925
  >>> from mindspore import Tensor
1910
- >>> input = Tensor(np.array([True, False, True]), mindspore.bool)
1911
- >>> other = Tensor(np.array([True, True, False]), mindspore.bool)
1926
+ >>> input = Tensor(np.array([True, False, True]), mindspore.bool_)
1927
+ >>> other = Tensor(np.array([True, True, False]), mindspore.bool_)
1912
1928
  >>> output = input.logical_xor(other)
1913
1929
  >>> print(output)
1914
1930
  [ False True True]
1915
- >>> x = Tensor(1, mindspore.bool)
1916
- >>> other = Tensor(0, mindspore.bool)
1931
+ >>> x = Tensor(1, mindspore.bool_)
1932
+ >>> other = Tensor(0, mindspore.bool_)
1917
1933
  >>> output = input.logical_xor(other)
1918
1934
  >>> print(output)
1919
1935
  True
@@ -1947,43 +1963,6 @@ In-place version of :func:`mindspore.Tensor.masked_fill`.
1947
1963
  .. warning::
1948
1964
  This is an experimental API that is subject to change or deletion.
1949
1965
  """)
1950
- attach_docstr("masked_scatter", r"""masked_scatter(mask, source) -> Tensor
1951
-
1952
- Returns a Tensor. Updates the value in the "self Tensor" with the `tensor` value according to the mask.
1953
- The shape of `mask` and the shape of the "self Tensor" must be the same or `mask` is broadcastable.
1954
-
1955
- .. warning::
1956
- This is an experimental API that is subject to change or deletion.
1957
-
1958
- Args:
1959
- mask (Tensor[bool]): A bool tensor with a shape broadcastable to the "self Tensor".
1960
- source (Tensor): A tensor with the same data type as the "self Tensor". The number
1961
- of elements must be greater than or equal to the number of True's in `mask`.
1962
-
1963
- Returns:
1964
- Tensor, with the same type and shape as the "self Tensor".
1965
-
1966
- Raises:
1967
- TypeError: If `mask` or `source` is not a Tensor.
1968
- TypeError: If data type of the "self Tensor" is not be supported.
1969
- TypeError: If dtype of `mask` is not bool.
1970
- TypeError: If the dim of the "self Tensor" is less than the dim of `mask`.
1971
- ValueError: If `mask` can not be broadcastable to the "self Tensor".
1972
- ValueError: If the number of elements in `source` is less than the number of elements to be updated in the tensor.
1973
-
1974
- Supported Platforms:
1975
- ``Ascend`` ``CPU``
1976
-
1977
- Examples:
1978
- >>> import numpy as np
1979
- >>> import mindspore
1980
- >>> from mindspore import Tensor
1981
- >>> source = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32)
1982
- >>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_)
1983
- >>> tensor = Tensor(np.array([5., 6., 7.]), mindspore.float32)
1984
- >>> output = source.masked_scatter(mask, tensor)
1985
- >>> print(output)
1986
- [5. 6. 3. 7.]""")
1987
1966
  attach_docstr("masked_select", r"""masked_select(mask) -> Tensor
1988
1967
 
1989
1968
  For details, please refer to :func:`mindspore.ops.masked_select`.""")
@@ -2510,7 +2489,7 @@ Note:
2510
2489
  - When `self` and `other` have different shapes,
2511
2490
  `other` be able to broadcast to a `self`.
2512
2491
  - `self` and `other` can not be bool type at the same time,
2513
- [True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
2492
+ [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type.
2514
2493
 
2515
2494
  Args:
2516
2495
  other (Union[Tensor, number.Number, bool]): `other` is a number.Number or
@@ -2956,11 +2935,11 @@ Supports broadcasting to a common shape and implicit type promotion.
2956
2935
 
2957
2936
  The dividend `self` is a tensor whose data type is
2958
2937
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
2959
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2938
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2960
2939
 
2961
2940
  Args:
2962
2941
  other (Union[Tensor, numbers.Number, bool]): The divisor is a numbers.Number or
2963
- a bool or a tensor whose data type is number or bool when the dividend is a tensor.
2942
+ a bool or a tensor whose data type is number or bool\_ when the dividend is a tensor.
2964
2943
 
2965
2944
  Returns:
2966
2945
  Tensor, with dtype promoted and shape broadcasted.
@@ -3028,49 +3007,6 @@ Examples:
3028
3007
  >>> print(output)
3029
3008
  [2. 1. 0.]
3030
3009
  """)
3031
- attach_docstr("remainder_", r"""remainder_(other) -> Tensor
3032
-
3033
- Computes the remainder of `self` divided by `other` element-wise. The result has the same sign as the divisor `other`
3034
- and its absolute value is less than that of `other`.
3035
-
3036
- .. code-block::
3037
-
3038
- remainder(self, other) == self - self.div(other, rounding_mode="floor") * other
3039
-
3040
- .. warning::
3041
- This is an experimental API that is subject to change or deletion.
3042
-
3043
- Note:
3044
- - Complex inputs are not supported.
3045
- - The dividend `self` is a tensor whose data type is
3046
- `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
3047
- - When `self` and `other` have different shapes, `other` should be able to broadcast to a `self`.
3048
-
3049
- Args:
3050
- other (Union[Tensor, number, bool]): The divisor is a number or
3051
- a bool or a tensor whose data type is number or bool.
3052
-
3053
- Returns:
3054
- Tensor, the shape and the data type are the same as those of `self` .
3055
-
3056
- Raises:
3057
- RuntimeError: If `other` cannot be broadcast to `self`.
3058
-
3059
- Supported Platforms:
3060
- ``Ascend``
3061
-
3062
- Examples:
3063
- >>> import mindspore
3064
- >>> from mindspore import Tensor
3065
- >>> import numpy as np
3066
- >>> x = Tensor(np.array([2, 4, -1]), mindspore.int32)
3067
- >>> other = Tensor(np.array([3, -6, -2]), mindspore.int32)
3068
- >>> output = x.remainder_(other)
3069
- >>> print(output)
3070
- [ 2 -2 -1]
3071
- >>> print(x)
3072
- [ 2 -2 -1]
3073
- """)
3074
3010
  attach_docstr("repeat", r"""repeat(*repeats)
3075
3011
 
3076
3012
  Copy the elements in each dimension of a Tensor based on the specified number of repetition times.
@@ -4169,7 +4105,7 @@ Args:
4169
4105
  other (Union[Tensor, number.Number, bool]): The second self, is a number.Number or
4170
4106
  a bool or a tensor whose data type is
4171
4107
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
4172
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
4108
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
4173
4109
 
4174
4110
  Keyword Args:
4175
4111
  alpha (number.Number, optional): A scaling factor applied to `other`, default ``1``.
@@ -1,6 +1,6 @@
1
1
  # This is the Python adaptation and derivative work of Myia (https://github.com/mila-iqia/myia/).
2
2
  #
3
- # Copyright 2022-2025 Huawei Technologies Co., Ltd
3
+ # Copyright 2022 Huawei Technologies Co., Ltd
4
4
  #
5
5
  # Licensed under the Apache License, Version 2.0 (the "License");
6
6
  # you may not use this file except in compliance with the License.
@@ -18,7 +18,6 @@
18
18
 
19
19
  import os
20
20
  import math
21
- import types
22
21
  import ctypes
23
22
  import functools
24
23
 
@@ -47,13 +46,6 @@ def is_dim_unknown(shape):
47
46
  return False
48
47
 
49
48
 
50
- def get_func(func):
51
- """Get function object"""
52
- if isinstance(func, types.MethodType):
53
- return func.__func__
54
- return func
55
-
56
-
57
49
  def get_slice_num(dtype, shape):
58
50
  """Check whether size of data is too huge, and cut it to a smaller one, return slice num."""
59
51
  slice_num = 1