mindspore 2.7.0__cp310-cp310-win_amd64.whl → 2.7.0rc1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (196) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +1 -1
  3. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +2 -2
  7. mindspore/_extends/builtin_operations.py +3 -3
  8. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  9. mindspore/_extends/parse/__init__.py +3 -3
  10. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -0
  11. mindspore/_extends/parse/parser.py +22 -28
  12. mindspore/_extends/parse/standard_method.py +1 -15
  13. mindspore/_extends/pijit/pijit_func_white_list.py +5 -2
  14. mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
  15. mindspore/amp.py +18 -0
  16. mindspore/avcodec-59.dll +0 -0
  17. mindspore/avdevice-59.dll +0 -0
  18. mindspore/avfilter-8.dll +0 -0
  19. mindspore/avformat-59.dll +0 -0
  20. mindspore/avutil-57.dll +0 -0
  21. mindspore/common/__init__.py +12 -18
  22. mindspore/common/_tensor_cpp_method.py +1 -1
  23. mindspore/common/_tensor_docs.py +38 -102
  24. mindspore/common/_utils.py +1 -9
  25. mindspore/common/api.py +106 -155
  26. mindspore/common/{dynamic_shape/auto_dynamic_shape.py → auto_dynamic_shape.py} +23 -17
  27. mindspore/common/dtype.py +57 -98
  28. mindspore/common/dump.py +1 -1
  29. mindspore/common/file_system.py +9 -59
  30. mindspore/common/hook_handle.py +3 -22
  31. mindspore/common/np_dtype.py +3 -3
  32. mindspore/common/parameter.py +20 -4
  33. mindspore/common/recompute.py +4 -2
  34. mindspore/common/tensor.py +52 -38
  35. mindspore/communication/_hccl_management.py +297 -0
  36. mindspore/context.py +21 -15
  37. mindspore/dataset/__init__.py +1 -1
  38. mindspore/dataset/audio/transforms.py +1 -1
  39. mindspore/dataset/core/config.py +1 -35
  40. mindspore/dataset/engine/datasets.py +315 -330
  41. mindspore/dataset/engine/datasets_user_defined.py +22 -38
  42. mindspore/dataset/transforms/c_transforms.py +2 -2
  43. mindspore/dataset/transforms/transforms.py +3 -3
  44. mindspore/dataset/vision/__init__.py +1 -1
  45. mindspore/dataset/vision/py_transforms.py +8 -8
  46. mindspore/dataset/vision/transforms.py +5 -17
  47. mindspore/dataset/vision/utils.py +21 -632
  48. mindspore/device_context/ascend/op_tuning.py +1 -35
  49. mindspore/dnnl.dll +0 -0
  50. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -3
  51. mindspore/include/api/cell.h +4 -28
  52. mindspore/include/api/cfg.h +7 -24
  53. mindspore/include/api/context.h +0 -1
  54. mindspore/include/api/delegate.h +2 -0
  55. mindspore/include/api/dual_abi_helper.h +19 -100
  56. mindspore/include/api/graph.h +1 -14
  57. mindspore/include/api/kernel.h +3 -16
  58. mindspore/include/api/kernel_api.h +1 -9
  59. mindspore/include/api/metrics/accuracy.h +0 -9
  60. mindspore/include/api/model.h +1 -5
  61. mindspore/include/api/model_group.h +0 -4
  62. mindspore/include/api/model_parallel_runner.h +0 -2
  63. mindspore/include/api/status.h +10 -48
  64. mindspore/include/api/types.h +1 -6
  65. mindspore/include/dataset/constants.h +0 -9
  66. mindspore/jpeg62.dll +0 -0
  67. mindspore/mindrecord/tools/cifar10.py +2 -3
  68. mindspore/mindrecord/tools/cifar10_to_mr.py +5 -5
  69. mindspore/mindspore_backend_common.dll +0 -0
  70. mindspore/mindspore_backend_manager.dll +0 -0
  71. mindspore/mindspore_common.dll +0 -0
  72. mindspore/mindspore_core.dll +0 -0
  73. mindspore/mindspore_cpu_res_manager.dll +0 -0
  74. mindspore/mindspore_dump.dll +0 -0
  75. mindspore/mindspore_frontend.dll +0 -0
  76. mindspore/mindspore_glog.dll +0 -0
  77. mindspore/mindspore_memory_pool.dll +0 -0
  78. mindspore/mindspore_ms_backend.dll +0 -0
  79. mindspore/mindspore_ops.dll +0 -0
  80. mindspore/mindspore_ops_host.dll +0 -0
  81. mindspore/mindspore_ops_kernel_common.dll +0 -0
  82. mindspore/mindspore_profiler.dll +0 -0
  83. mindspore/mindspore_pyboost.dll +0 -0
  84. mindspore/mindspore_pynative.dll +0 -0
  85. mindspore/mindspore_res_manager.dll +0 -0
  86. mindspore/mindspore_runtime_pipeline.dll +0 -0
  87. mindspore/mint/distributed/__init__.py +0 -4
  88. mindspore/mint/distributed/distributed.py +14 -217
  89. mindspore/mint/nn/layer/_functions.py +2 -1
  90. mindspore/mint/nn/layer/conv.py +6 -6
  91. mindspore/mint/nn/layer/normalization.py +3 -3
  92. mindspore/nn/cell.py +174 -216
  93. mindspore/nn/layer/activation.py +2 -4
  94. mindspore/nn/layer/basic.py +13 -7
  95. mindspore/nn/layer/image.py +1 -1
  96. mindspore/nn/optim/adam.py +3 -1
  97. mindspore/nn/optim/lamb.py +3 -1
  98. mindspore/nn/optim/tft_wrapper.py +3 -2
  99. mindspore/nn/probability/distribution/_utils/utils.py +2 -2
  100. mindspore/nn/wrap/cell_wrapper.py +5 -39
  101. mindspore/nn/wrap/grad_reducer.py +15 -0
  102. mindspore/numpy/array_creations.py +2 -2
  103. mindspore/numpy/utils_const.py +1 -1
  104. mindspore/opencv_core452.dll +0 -0
  105. mindspore/opencv_imgcodecs452.dll +0 -0
  106. mindspore/opencv_imgproc452.dll +0 -0
  107. mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
  108. mindspore/ops/_op_impl/cpu/__init__.py +0 -1
  109. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +2 -12
  110. mindspore/ops/auto_generate/gen_extend_func.py +4 -4
  111. mindspore/ops/auto_generate/gen_ops_def.py +16 -290
  112. mindspore/ops/auto_generate/gen_ops_prim.py +76 -563
  113. mindspore/ops/composite/base.py +1 -1
  114. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  115. mindspore/ops/function/__init__.py +0 -1
  116. mindspore/ops/function/array_func.py +6 -10
  117. mindspore/ops/function/debug_func.py +2 -4
  118. mindspore/ops/function/grad/grad_func.py +12 -4
  119. mindspore/ops/function/math_func.py +32 -44
  120. mindspore/ops/function/nn_func.py +20 -18
  121. mindspore/ops/functional.py +1 -2
  122. mindspore/ops/functional_overload.py +12 -23
  123. mindspore/ops/operations/_inner_ops.py +12 -11
  124. mindspore/ops/operations/array_ops.py +50 -4
  125. mindspore/ops/operations/comm_ops.py +15 -1
  126. mindspore/ops/operations/custom_ops.py +4 -10
  127. mindspore/ops/operations/debug_ops.py +6 -6
  128. mindspore/ops/operations/manually_defined/ops_def.py +12 -12
  129. mindspore/ops/operations/math_ops.py +5 -5
  130. mindspore/ops/operations/nn_ops.py +1 -1
  131. mindspore/ops/primitive.py +10 -3
  132. mindspore/ops/tensor_method.py +7 -16
  133. mindspore/ops_generate/pyboost/gen_pyboost_func.py +16 -0
  134. mindspore/parallel/_auto_parallel_context.py +15 -5
  135. mindspore/parallel/_parallel_serialization.py +2 -3
  136. mindspore/parallel/_ps_context.py +2 -2
  137. mindspore/parallel/_transformer/transformer.py +4 -4
  138. mindspore/parallel/_utils.py +11 -5
  139. mindspore/parallel/auto_parallel.py +9 -23
  140. mindspore/parallel/checkpoint_transform.py +0 -2
  141. mindspore/parallel/cluster/process_entity/_api.py +1 -4
  142. mindspore/parallel/cluster/run.py +3 -5
  143. mindspore/parallel/function/reshard_func.py +5 -6
  144. mindspore/parallel/nn/parallel_cell_wrapper.py +3 -40
  145. mindspore/parallel/nn/parallel_grad_reducer.py +8 -0
  146. mindspore/parallel/shard.py +21 -7
  147. mindspore/parallel/transform_safetensors.py +4 -10
  148. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +9 -10
  149. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
  150. mindspore/profiler/common/msprof_cmd_tool.py +2 -2
  151. mindspore/profiler/common/path_manager.py +0 -9
  152. mindspore/profiler/common/profiler_context.py +2 -25
  153. mindspore/profiler/common/profiler_meta_data.py +0 -1
  154. mindspore/profiler/common/profiler_op_analyse.py +6 -10
  155. mindspore/{ops/_op_impl/cpu/joinedstr_op.py → profiler/common/validator/__init__.py} +1 -15
  156. mindspore/profiler/common/validator/validate_path.py +84 -0
  157. mindspore/profiler/dynamic_profiler.py +46 -91
  158. mindspore/profiler/envprofiler.py +5 -30
  159. mindspore/profiler/experimental_config.py +1 -16
  160. mindspore/profiler/platform/cpu_profiler.py +4 -10
  161. mindspore/profiler/platform/npu_profiler.py +1 -1
  162. mindspore/profiler/profiler.py +145 -193
  163. mindspore/profiler/profiler_action_controller.py +1 -1
  164. mindspore/profiler/profiler_interface.py +2 -2
  165. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  166. mindspore/runtime/__init__.py +4 -6
  167. mindspore/runtime/executor.py +0 -27
  168. mindspore/runtime/memory.py +0 -1
  169. mindspore/runtime/thread_bind_core.py +1 -1
  170. mindspore/swresample-4.dll +0 -0
  171. mindspore/swscale-6.dll +0 -0
  172. mindspore/tinyxml2.dll +0 -0
  173. mindspore/train/_utils.py +3 -3
  174. mindspore/train/amp.py +3 -0
  175. mindspore/train/callback/_callback.py +1 -2
  176. mindspore/train/callback/_checkpoint.py +8 -1
  177. mindspore/train/callback/_flops_collector.py +6 -10
  178. mindspore/train/callback/_train_fault_tolerance.py +7 -3
  179. mindspore/train/data_sink.py +4 -4
  180. mindspore/train/dataset_helper.py +5 -5
  181. mindspore/train/model.py +20 -4
  182. mindspore/train/serialization.py +15 -35
  183. mindspore/train/train_thor/model_thor.py +2 -2
  184. mindspore/turbojpeg.dll +0 -0
  185. mindspore/utils/hooks.py +81 -0
  186. mindspore/utils/utils.py +8 -8
  187. mindspore/version.py +1 -1
  188. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +1 -1
  189. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +193 -192
  190. mindspore/_extends/parallel_compile/akg_compiler/custom.py +0 -1109
  191. mindspore/common/dynamic_shape/__init__.py +0 -0
  192. mindspore/common/dynamic_shape/enable_dynamic.py +0 -197
  193. /mindspore/common/{dynamic_shape/_auto_dynamic.py → _auto_dynamic.py} +0 -0
  194. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
  195. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
  196. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
@@ -1269,10 +1269,8 @@ class PReLUExt(Cell):
1269
1269
  :align: center
1270
1270
 
1271
1271
  .. note::
1272
- - Channel dim is the 2nd dim of input. When input has dims < 2, then there is
1273
- no channel dim and the number of channels = 1.
1274
- - In GE mode, the rank of the input tensor must be greater than 1;
1275
- otherwise, an error will be triggered.
1272
+ Channel dim is the 2nd dim of input. When input has dims < 2, then there is
1273
+ no channel dim and the number of channels = 1.
1276
1274
 
1277
1275
  Args:
1278
1276
  num_parameters (int, optional): number of `w` to learn. Although it takes an int as input,
@@ -209,7 +209,7 @@ class DropoutExt(Cell):
209
209
  Dropout is a means of regularization that reduces overfitting by preventing correlations between neuronal nodes.
210
210
  The operator randomly sets some neurons output to 0 according to `p`, which means the probability of discarding
211
211
  during training. And the return will be multiplied by :math:`\frac{1}{1-p}` during training.
212
- During the reasoning, this layer returns the same Tensor as the `input`.
212
+ During the reasoning, this layer returns the same Tensor as the `x`.
213
213
 
214
214
  This technique is proposed in paper `Dropout: A Simple Way to Prevent Neural Networks from Overfitting
215
215
  <http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf>`_ and proved to be effective to reduce
@@ -228,13 +228,14 @@ class DropoutExt(Cell):
228
228
  If set to ``True`` , will do this operation in-place. Default: ``False`` .
229
229
 
230
230
  Inputs:
231
- - **input** (Tensor) - The input of Dropout.
231
+ - **x** (Tensor) - The input of Dropout.
232
232
 
233
233
  Outputs:
234
- Tensor, output tensor with the same shape as the `input`.
234
+ Tensor, output tensor with the same shape as the `x`.
235
235
 
236
236
  Raises:
237
- TypeError: If the dtype of `inplace` is not bool.
237
+ TypeError: If the dtype of `p` is not float.
238
+ ValueError: If length of shape of `x` is less than 1.
238
239
 
239
240
  Supported Platforms:
240
241
  ``Ascend``
@@ -258,12 +259,17 @@ class DropoutExt(Cell):
258
259
  self.inplace = inplace
259
260
  self.generator_step = Tensor(12, mstype.int64)
260
261
 
261
- def construct(self, input):
262
+ def construct(self, x):
262
263
  if not self.training or self.p == 0:
263
- return input
264
+ return x
264
265
 
265
266
  seed, offset = default_generator._step(self.generator_step) # pylint: disable=protected-access
266
- return ops.auto_generate.func_dropout_ext_op(input, self.p, self.training, self.inplace, seed, offset)
267
+ out, _ = ops.auto_generate.dropout_ext_op(x, self.p, seed, offset)
268
+
269
+ if self.inplace:
270
+ x.copy_(out)
271
+ return x
272
+ return out
267
273
 
268
274
 
269
275
  class Dropout1d(Cell):
@@ -111,7 +111,7 @@ def _convert_img_dtype_to_float32(img, max_val):
111
111
  @constexpr
112
112
  def _get_dtype_max(dtype):
113
113
  """get max of the dtype"""
114
- np_type = mstype._dtype_to_nptype(dtype) # pylint:disable=protected-access
114
+ np_type = mstype.dtype_to_nptype(dtype)
115
115
  if issubclass(np_type, numbers.Integral):
116
116
  dtype_max = np.float64(np.iinfo(np_type).max).item()
117
117
  else:
@@ -909,7 +909,9 @@ class AdamWeightDecay(Optimizer):
909
909
  Note:
910
910
  There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
911
911
  and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
912
- As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means.
912
+ As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means, refer
913
+ document `LossScale <https://www.mindspore.cn/tutorials/en/master/beginner/mixed_precision.html>`_ to
914
+ process `loss_scale` correctly.
913
915
 
914
916
  If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
915
917
  'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
@@ -131,7 +131,9 @@ class Lamb(Optimizer):
131
131
  Note:
132
132
  There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
133
133
  and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
134
- As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means.
134
+ As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means. Refer
135
+ document `LossScale <https://www.mindspore.cn/tutorials/en/master/beginner/mixed_precision.html>`_ to
136
+ process `loss_scale` correctly.
135
137
 
136
138
  If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
137
139
  'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
@@ -69,9 +69,10 @@ class OptTFTWrapper(Optimizer):
69
69
  tft_env = os.getenv("MS_ENABLE_TFT", "")
70
70
  if ("TTP:1" not in tft_env) and ("UCE:1" not in tft_env) and ("ARF:1" not in tft_env):
71
71
  raise ValueError("MindIO TFT regitster need custom switch on[MS_ENABLE_TFT='{TTP:1,UCE:1,ARF:1}']!")
72
+ mode = context.get_context("mode")
72
73
  device_target = context.get_context("device_target")
73
- if device_target != "Ascend":
74
- raise ValueError("MindIO adataper only support on Ascend device!")
74
+ if device_target != "Ascend" or mode != context.GRAPH_MODE:
75
+ raise ValueError("MindIO adataper only support on Ascend device with GRAPH Mode!")
75
76
  self.opt = opt
76
77
  self.report = TensorReport()
77
78
  self.report_end = TensorReport()
@@ -298,7 +298,7 @@ class CheckTuple(PrimitiveWithInfer):
298
298
  # The op is not used in a cell
299
299
  if isinstance(x, tuple):
300
300
  return x
301
- if context.get_context("mode") == context.GRAPH_MODE:
301
+ if context.get_context("mode") == 0:
302
302
  return x["value"]
303
303
  raise TypeError(f"For {name}, input type must be a tuple.")
304
304
 
@@ -349,7 +349,7 @@ def set_param_type(args, hint_type):
349
349
  for name, arg in args.items():
350
350
  if hasattr(arg, 'dtype'):
351
351
  if isinstance(arg, np.ndarray):
352
- cur_dtype = mstype._pytype_to_dtype(arg.dtype) # pylint:disable=protected-access
352
+ cur_dtype = mstype.pytype_to_dtype(arg.dtype)
353
353
  else:
354
354
  cur_dtype = arg.dtype
355
355
  if common_dtype is None:
@@ -23,7 +23,7 @@ from types import FunctionType, MethodType
23
23
 
24
24
  from mindspore import log as logger
25
25
  from mindspore.parallel._utils import _get_device_num, _get_gradients_mean,\
26
- _get_parallel_mode, _get_enable_parallel_optimizer
26
+ _get_parallel_mode, _get_enable_parallel_optimizer, _is_pynative_parallel
27
27
  from mindspore.context import ParallelMode
28
28
  from mindspore import _checkparam as validator
29
29
  from mindspore import ops, nn
@@ -397,7 +397,8 @@ class TrainOneStepCell(Cell):
397
397
  self.reducer_flag = False
398
398
  self.grad_reducer = nn.Identity()
399
399
  self.parallel_mode = _get_parallel_mode()
400
- self.reducer_flag = self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL)
400
+ self.reducer_flag = self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL) or \
401
+ _is_pynative_parallel()
401
402
  if self.reducer_flag:
402
403
  self.mean = _get_gradients_mean()
403
404
  self.degree = _get_device_num()
@@ -859,7 +860,7 @@ class _BroadCastCell(Cell):
859
860
  from mindspore import context
860
861
  self.map_ = ops.Map()
861
862
  self.params = tuple(params)
862
- if context.get_context("device_target") == "Ascend":
863
+ if context.get_context("device_target") == "Ascend" and context.get_context("mode") != context.PYNATIVE_MODE:
863
864
  rank_list = [id for id in range(0, get_group_size())]
864
865
  create_group("BroadcastWorldGroup", rank_list)
865
866
  self.broadcast = ops.Broadcast(0, group="BroadcastWorldGroup")
@@ -888,8 +889,6 @@ class PipelineCell(Cell):
888
889
  micro_size (int): MicroBatch size.
889
890
  stage_config (dict, optional): The stage configuration for each cell's execution in pipeline parallel.
890
891
  Default ``None``.
891
- segment_config (dict, optional): The segment configuration for each cell's execution in pipeline parallel.
892
- Default ``None``.
893
892
 
894
893
  Supported Platforms:
895
894
  ``Ascend`` ``GPU``
@@ -901,7 +900,7 @@ class PipelineCell(Cell):
901
900
  >>> net = LeNet5()
902
901
  >>> net = nn.PipelineCell(net, 4)
903
902
  """
904
- def __init__(self, network, micro_size, stage_config=None, segment_config=None):
903
+ def __init__(self, network, micro_size, stage_config=None):
905
904
  super(PipelineCell, self).__init__(auto_prefix=False)
906
905
  self.network = network
907
906
  self.micro_inputs = nn.CellList()
@@ -957,39 +956,6 @@ class PipelineCell(Cell):
957
956
  print(cell_name)
958
957
  raise KeyError("For 'PipelineCell', the argument 'stage_config' : {} is not "
959
958
  "found in 'network' : {}".format(config_dict, network))
960
- if segment_config is None:
961
- return
962
- self._config_segment(segment_config)
963
-
964
-
965
- def _config_segment(self, segment_config=None):
966
- """
967
- Config segment num for cell.
968
- """
969
- config_dict = segment_config.copy()
970
- for cell_name, cell in self.network.cells_and_names():
971
- if cell_name in segment_config:
972
- setattr(cell, "pipeline_segment", segment_config[cell_name])
973
- del config_dict[cell_name]
974
- if str(self.network) in segment_config:
975
- setattr(self.network, "pipeline_segment", segment_config[str(self.network)])
976
- del config_dict[str(self.network)]
977
- # if there are any config elements left, print them
978
- if config_dict:
979
- for config_cell_name, config_segment_num in config_dict.items():
980
- logger.error("pipeline_cell segment_config set pipeline_segment fail!")
981
- logger.warning("config cell name:" + str(config_cell_name) +
982
- " config segment num:" + str(config_segment_num))
983
- logger.warning("network:" + str(self.network))
984
- logger.warning("cell name available:")
985
- for cell_name, _ in self.network.cells_and_names():
986
- logger.warning(cell_name)
987
- raise KeyError("For 'PipelineCell', the argument 'segment_config' : {} is not "
988
- "found in 'network' : {}".format(config_dict, self.network))
989
-
990
-
991
- def shard(self, in_strategy, out_strategy=None, parameter_plan=None, device="Ascend", level=0):
992
- raise ValueError("For 'PipelineCell', no 'shard' on 'PipelineCell' is allowed.")
993
959
 
994
960
  def construct(self, *inputs):
995
961
  ret = None
@@ -394,6 +394,7 @@ class DistributedGradReducer(Cell):
394
394
 
395
395
  def __init__(self, parameters, mean=None, degree=None, fusion_type=1, group=GlobalComm.WORLD_COMM_GROUP):
396
396
  super(DistributedGradReducer, self).__init__(auto_prefix=False)
397
+ self._check_parallel_mode()
397
398
  self.map_ = ops.Map()
398
399
  self.mean = mean
399
400
  if mean is None:
@@ -462,6 +463,13 @@ class DistributedGradReducer(Cell):
462
463
  new_grad = self.map_(ops.partial(_cast_datatype), datatypes, new_grad)
463
464
  return new_grad
464
465
 
466
+ def _check_parallel_mode(self):
467
+ """check parallel mode"""
468
+ parallel_mode = context.get_auto_parallel_context('parallel_mode')
469
+ if context.get_context('mode') == context.GRAPH_MODE and parallel_mode in (
470
+ context.ParallelMode.SEMI_AUTO_PARALLEL, context.ParallelMode.AUTO_PARALLEL):
471
+ raise RuntimeError("{} can not use DistributedGradReducer in graph mode".format(parallel_mode))
472
+
465
473
 
466
474
  grad_scale = ops.MultitypeFuncGraph("grad_scale")
467
475
  shard_grad_scale = ops.MultitypeFuncGraph("shard_grad_scale")
@@ -579,6 +587,7 @@ class PipelineGradReducer(Cell):
579
587
  """
580
588
  def __init__(self, parameters, scale_sense=1.0, opt_shard=None):
581
589
  super(PipelineGradReducer, self).__init__(auto_prefix=False)
590
+ self._check_mode()
582
591
  self.accu_grads = parameters.clone(prefix="accu_grads", init="zeros")
583
592
  self.grad_reducer = Identity()
584
593
  self.degree = Tensor(1, mstype.float32)
@@ -600,3 +609,9 @@ class PipelineGradReducer(Cell):
600
609
  accu_grads = self.grad_reducer(self.accu_grads)
601
610
  new_grads = self.hyper_map(ops.partial(grad_scale, self.scale_sense * self.degree), grads, accu_grads)
602
611
  return new_grads
612
+
613
+ def _check_mode(self):
614
+ """check parallel mode"""
615
+ mode = context.get_context('mode')
616
+ if mode != context.GRAPH_MODE:
617
+ raise RuntimeError(f"PipelineGradReducer only support graph mode, but get {mode}")
@@ -127,7 +127,7 @@ def asarray_const(a, dtype=None):
127
127
  # If dtype is not specified, we keep consistent with numpy decision
128
128
  # only exceptions are: we use int/float32
129
129
  if dtype is None:
130
- dtype = mstype._pytype_to_dtype(a.dtype) # pylint:disable=protected-access
130
+ dtype = mstype.pytype_to_dtype(a.dtype)
131
131
  if dtype == mstype.float64:
132
132
  dtype = mstype.float32
133
133
  elif dtype == mstype.int64:
@@ -138,7 +138,7 @@ def asarray_const(a, dtype=None):
138
138
  if isinstance(a, onp.ndarray) and dtype is None:
139
139
  if a.dtype is onp.dtype('object'):
140
140
  raise TypeError(f"For Tensor conversion, the input_data is {a} that contains unsupported element.")
141
- dtype = mstype._pytype_to_dtype(a.dtype) # pylint:disable=protected-access
141
+ dtype = mstype.pytype_to_dtype(a.dtype)
142
142
  a = Tensor.from_numpy(a)
143
143
 
144
144
  return Tensor(a, dtype=dtype)
@@ -70,7 +70,7 @@ def _check_dtype(dtype):
70
70
  elif dtype is float:
71
71
  dtype = mstype.float32
72
72
  else:
73
- dtype = mstype._pytype_to_dtype(dtype) # pylint:disable=protected-access
73
+ dtype = mstype.pytype_to_dtype(dtype)
74
74
  if dtype not in dtype_tuple:
75
75
  raise TypeError(f"only {all_types} are allowed for dtype, but got {type(dtype)}")
76
76
  return dtype
Binary file
Binary file
Binary file
@@ -23,6 +23,15 @@ from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
23
23
  from mindspore.ops._grad_experimental.grad_base import bprop_getters
24
24
 
25
25
 
26
+ @bprop_getters.register("raise")
27
+ def get_bprop_raise(self):
28
+ """Grad definition for `raise` operation."""
29
+ def bprop(x, y, z, out, dout):
30
+ return x, y, z
31
+
32
+ return bprop
33
+
34
+
26
35
  @bprop_getters.register(inner.ParallelResizeBilinear)
27
36
  def get_bprop_parallel_resize_bilinear(self):
28
37
  """Grad definition for `ParallelResizeBilinear` operation."""
@@ -72,7 +72,6 @@ from .pyfunc import _pyfunc_cpu
72
72
  from .buffer_append import _buffer_append_cpu
73
73
  from .buffer_get import _buffer_get_cpu
74
74
  from .raise_op import _raise_cpu
75
- from .joinedstr_op import _joinedstr_cpu
76
75
  from .buffer_sample import _buffer_sample_cpu
77
76
  from .priority_replay_buffer import _prb_push_op_cpu
78
77
  from .priority_replay_buffer import _prb_sample_op_cpu
@@ -96,8 +96,6 @@ op_args_default_value = {
96
96
  "ConvTranspose2D": {"bias": None, "stride": 1, "padding": 0, "output_padding": 0, "groups": 1, "dilation": 1},
97
97
  "Correlate": {"pad_mode": 'valid'},
98
98
  "CountNonZero": {"dim": None},
99
- "CrossEntropyLossGrad": {"weight": None, "grad_zloss": None, "lse_for_zloss": None, "reduction": 'mean', "ignore_index": -100, "label_smoothing": 0.0, "lse_square_scale_for_zloss": 0.0},
100
- "CrossEntropyLoss": {"weight": None, "reduction": 'mean', "ignore_index": -100, "label_smoothing": 0.0, "lse_square_scale_for_zloss": 0.0, "return_zloss": False},
101
99
  "Cross": {"dim": -65530},
102
100
  "CumsumExt": {"dtype": None},
103
101
  "CumProd": {"exclusive": False, "reverse": False},
@@ -184,7 +182,6 @@ op_args_default_value = {
184
182
  "InplaceAddExt": {"alpha": 1},
185
183
  "InplaceClampScalar": {"min": None, "max": None},
186
184
  "InplaceClampTensor": {"min": None, "max": None},
187
- "InplaceCopy": {"non_blocking": False},
188
185
  "InplaceDivMods": {"rounding_mode": None},
189
186
  "InplaceDivMod": {"rounding_mode": None},
190
187
  "InplaceElu": {"alpha": 1.0},
@@ -242,8 +239,6 @@ op_args_default_value = {
242
239
  "Meshgrid": {"indexing": 'xy'},
243
240
  "MinimumGrad": {"grad_x": True, "grad_y": True},
244
241
  "MinDim": {"keepdim": False},
245
- "Mla": {"attn_mask": None, "deq_scale_qk": None, "deq_scale_pv": None, "q_seq_lens": None, "context_lens": None, "head_num": 32, "scale_value": 0.0, "kv_head_num": 1, "mask_mode": 'MASK_NONE', "is_ring": 0},
246
- "MlaPreprocess": {"param_cache_mode": 0},
247
242
  "MoeDistributeCombine": {"tp_send_counts": None, "x_active_mask": None, "activate_scale": None, "weight_scale": None, "group_list": None, "expand_scales": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_export_rank_num": 0, "global_bs": 0, "out_dtype": 0, "common_quant_mode": 0, "group_list_type": 0},
248
243
  "MoeDistributeDispatch": {"expert_scales": None, "scales": None, "x_active_mask": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_expert_rank_num": 0, "quant_mode": 0, "global_bs": 0, "expert_token_nums_type": 0},
249
244
  "MoeTokenPermuteGrad": {"num_topk": 1, "padded_mode": False},
@@ -305,7 +300,6 @@ op_args_default_value = {
305
300
  "RFFTFreq": {"d": 1.0, "dtype": None},
306
301
  "RFFTN": {"s": None, "dim": None, "norm": None},
307
302
  "RFFT": {"n": None, "dim": -1, "norm": None},
308
- "RingAttentionUpdate": {"actual_seq_qlen": None, "layout": 'SBH'},
309
303
  "RmsNorm": {"epsilon": 1e-6},
310
304
  "Roll": {"dims": None},
311
305
  "RotaryPositionEmbeddingGrad": {"dx": None, "mode": 0},
@@ -421,6 +415,7 @@ op_args_default_value = {
421
415
  "DeprecatedBaddbmm": {"beta": 1, "alpha": 1},
422
416
  "DeprecatedBincount": {"weights": None, "minlength": 0},
423
417
  "DeprecatedChunk": {"axis": 0},
418
+ "DeprecatedInplaceCopy": {"non_blocking": False},
424
419
  "DeprecatedCountNonzero": {"axis": (), "keep_dims": False, "dtype": None},
425
420
  "DeprecatedCumsum": {"axis": None, "dtype": None},
426
421
  "DeprecatedDiv": {"rounding_mode": None},
@@ -483,8 +478,6 @@ op_labels = {
483
478
  "InplaceAddmm": {"side_effect_mem": True},
484
479
  "InplaceAddsExt": {"side_effect_mem": True},
485
480
  "InplaceAddExt": {"side_effect_mem": True},
486
- "InplaceBernoulliScalar": {"side_effect_mem": True},
487
- "InplaceBernoulliTensor": {"side_effect_mem": True},
488
481
  "InplaceCopy": {"side_effect_mem": True},
489
482
  "InplaceDivMods": {"side_effect_mem": True},
490
483
  "InplaceDivMod": {"side_effect_mem": True},
@@ -513,8 +506,6 @@ op_labels = {
513
506
  "InplacePut": {"side_effect_mem": True},
514
507
  "InplaceRandom": {"side_effect_mem": True},
515
508
  "InplaceReLU": {"side_effect_mem": True},
516
- "InplaceRemainderTensorScalar": {"side_effect_mem": True},
517
- "InplaceRemainderTensorTensor": {"side_effect_mem": True},
518
509
  "InplaceScatterAdd": {"side_effect_mem": True},
519
510
  "InplaceScatterSrc": {"side_effect_mem": True},
520
511
  "InplaceScatterSrcReduce": {"side_effect_mem": True},
@@ -526,9 +517,7 @@ op_labels = {
526
517
  "InplaceTanh": {"side_effect_mem": True},
527
518
  "InplaceThreshold": {"side_effect_mem": True},
528
519
  "InplaceUniform": {"side_effect_mem": True},
529
- "KvScaleCache": {"side_effect_mem": True},
530
520
  "Log": {"cust_aicpu": 'Log', "base": -1.0, "scale": 1.0, "shift": 0.0},
531
- "MlaPreprocess": {"side_effect_mem": True},
532
521
  "NarrowView": {"side_effect_mem": True},
533
522
  "ReshapeAndCache": {"side_effect_mem": True},
534
523
  "ResizeD": {"mode": 'linear'},
@@ -543,4 +532,5 @@ op_labels = {
543
532
  "UnstackExtView": {"side_effect_mem": True},
544
533
  "KVCacheScatterUpdate": {"side_effect_mem": True},
545
534
  "InplaceExponential": {"side_effect_mem": True},
535
+ "DeprecatedInplaceCopy": {"side_effect_mem": True},
546
536
  }
@@ -118,11 +118,11 @@ def add(input, other, alpha=1):
118
118
  input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
119
119
  a bool or a tensor whose data type is
120
120
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
121
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
121
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
122
122
  other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
123
123
  a bool or a tensor whose data type is
124
124
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
125
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
125
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
126
126
  alpha (number.Number): A scaling factor applied to `other`, default 1.
127
127
 
128
128
  Returns:
@@ -2003,11 +2003,11 @@ def sub(input, other, alpha=1):
2003
2003
  input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
2004
2004
  a bool or a tensor whose data type is
2005
2005
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
2006
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2006
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2007
2007
  other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
2008
2008
  a bool or a tensor whose data type is
2009
2009
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
2010
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2010
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
2011
2011
  alpha (number.Number): A scaling factor applied to `other`, default 1.
2012
2012
 
2013
2013
  Returns: