mindspore 2.7.0__cp310-cp310-win_amd64.whl → 2.7.0rc1__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +1 -1
- mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
- mindspore/_checkparam.py +2 -2
- mindspore/_extends/builtin_operations.py +3 -3
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
- mindspore/_extends/parse/__init__.py +3 -3
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -0
- mindspore/_extends/parse/parser.py +22 -28
- mindspore/_extends/parse/standard_method.py +1 -15
- mindspore/_extends/pijit/pijit_func_white_list.py +5 -2
- mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
- mindspore/amp.py +18 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/common/__init__.py +12 -18
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +38 -102
- mindspore/common/_utils.py +1 -9
- mindspore/common/api.py +106 -155
- mindspore/common/{dynamic_shape/auto_dynamic_shape.py → auto_dynamic_shape.py} +23 -17
- mindspore/common/dtype.py +57 -98
- mindspore/common/dump.py +1 -1
- mindspore/common/file_system.py +9 -59
- mindspore/common/hook_handle.py +3 -22
- mindspore/common/np_dtype.py +3 -3
- mindspore/common/parameter.py +20 -4
- mindspore/common/recompute.py +4 -2
- mindspore/common/tensor.py +52 -38
- mindspore/communication/_hccl_management.py +297 -0
- mindspore/context.py +21 -15
- mindspore/dataset/__init__.py +1 -1
- mindspore/dataset/audio/transforms.py +1 -1
- mindspore/dataset/core/config.py +1 -35
- mindspore/dataset/engine/datasets.py +315 -330
- mindspore/dataset/engine/datasets_user_defined.py +22 -38
- mindspore/dataset/transforms/c_transforms.py +2 -2
- mindspore/dataset/transforms/transforms.py +3 -3
- mindspore/dataset/vision/__init__.py +1 -1
- mindspore/dataset/vision/py_transforms.py +8 -8
- mindspore/dataset/vision/transforms.py +5 -17
- mindspore/dataset/vision/utils.py +21 -632
- mindspore/device_context/ascend/op_tuning.py +1 -35
- mindspore/dnnl.dll +0 -0
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -3
- mindspore/include/api/cell.h +4 -28
- mindspore/include/api/cfg.h +7 -24
- mindspore/include/api/context.h +0 -1
- mindspore/include/api/delegate.h +2 -0
- mindspore/include/api/dual_abi_helper.h +19 -100
- mindspore/include/api/graph.h +1 -14
- mindspore/include/api/kernel.h +3 -16
- mindspore/include/api/kernel_api.h +1 -9
- mindspore/include/api/metrics/accuracy.h +0 -9
- mindspore/include/api/model.h +1 -5
- mindspore/include/api/model_group.h +0 -4
- mindspore/include/api/model_parallel_runner.h +0 -2
- mindspore/include/api/status.h +10 -48
- mindspore/include/api/types.h +1 -6
- mindspore/include/dataset/constants.h +0 -9
- mindspore/jpeg62.dll +0 -0
- mindspore/mindrecord/tools/cifar10.py +2 -3
- mindspore/mindrecord/tools/cifar10_to_mr.py +5 -5
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_cpu_res_manager.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/mindspore_ops_host.dll +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/distributed/__init__.py +0 -4
- mindspore/mint/distributed/distributed.py +14 -217
- mindspore/mint/nn/layer/_functions.py +2 -1
- mindspore/mint/nn/layer/conv.py +6 -6
- mindspore/mint/nn/layer/normalization.py +3 -3
- mindspore/nn/cell.py +174 -216
- mindspore/nn/layer/activation.py +2 -4
- mindspore/nn/layer/basic.py +13 -7
- mindspore/nn/layer/image.py +1 -1
- mindspore/nn/optim/adam.py +3 -1
- mindspore/nn/optim/lamb.py +3 -1
- mindspore/nn/optim/tft_wrapper.py +3 -2
- mindspore/nn/probability/distribution/_utils/utils.py +2 -2
- mindspore/nn/wrap/cell_wrapper.py +5 -39
- mindspore/nn/wrap/grad_reducer.py +15 -0
- mindspore/numpy/array_creations.py +2 -2
- mindspore/numpy/utils_const.py +1 -1
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
- mindspore/ops/_op_impl/cpu/__init__.py +0 -1
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +2 -12
- mindspore/ops/auto_generate/gen_extend_func.py +4 -4
- mindspore/ops/auto_generate/gen_ops_def.py +16 -290
- mindspore/ops/auto_generate/gen_ops_prim.py +76 -563
- mindspore/ops/composite/base.py +1 -1
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
- mindspore/ops/function/__init__.py +0 -1
- mindspore/ops/function/array_func.py +6 -10
- mindspore/ops/function/debug_func.py +2 -4
- mindspore/ops/function/grad/grad_func.py +12 -4
- mindspore/ops/function/math_func.py +32 -44
- mindspore/ops/function/nn_func.py +20 -18
- mindspore/ops/functional.py +1 -2
- mindspore/ops/functional_overload.py +12 -23
- mindspore/ops/operations/_inner_ops.py +12 -11
- mindspore/ops/operations/array_ops.py +50 -4
- mindspore/ops/operations/comm_ops.py +15 -1
- mindspore/ops/operations/custom_ops.py +4 -10
- mindspore/ops/operations/debug_ops.py +6 -6
- mindspore/ops/operations/manually_defined/ops_def.py +12 -12
- mindspore/ops/operations/math_ops.py +5 -5
- mindspore/ops/operations/nn_ops.py +1 -1
- mindspore/ops/primitive.py +10 -3
- mindspore/ops/tensor_method.py +7 -16
- mindspore/ops_generate/pyboost/gen_pyboost_func.py +16 -0
- mindspore/parallel/_auto_parallel_context.py +15 -5
- mindspore/parallel/_parallel_serialization.py +2 -3
- mindspore/parallel/_ps_context.py +2 -2
- mindspore/parallel/_transformer/transformer.py +4 -4
- mindspore/parallel/_utils.py +11 -5
- mindspore/parallel/auto_parallel.py +9 -23
- mindspore/parallel/checkpoint_transform.py +0 -2
- mindspore/parallel/cluster/process_entity/_api.py +1 -4
- mindspore/parallel/cluster/run.py +3 -5
- mindspore/parallel/function/reshard_func.py +5 -6
- mindspore/parallel/nn/parallel_cell_wrapper.py +3 -40
- mindspore/parallel/nn/parallel_grad_reducer.py +8 -0
- mindspore/parallel/shard.py +21 -7
- mindspore/parallel/transform_safetensors.py +4 -10
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +9 -10
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
- mindspore/profiler/common/msprof_cmd_tool.py +2 -2
- mindspore/profiler/common/path_manager.py +0 -9
- mindspore/profiler/common/profiler_context.py +2 -25
- mindspore/profiler/common/profiler_meta_data.py +0 -1
- mindspore/profiler/common/profiler_op_analyse.py +6 -10
- mindspore/{ops/_op_impl/cpu/joinedstr_op.py → profiler/common/validator/__init__.py} +1 -15
- mindspore/profiler/common/validator/validate_path.py +84 -0
- mindspore/profiler/dynamic_profiler.py +46 -91
- mindspore/profiler/envprofiler.py +5 -30
- mindspore/profiler/experimental_config.py +1 -16
- mindspore/profiler/platform/cpu_profiler.py +4 -10
- mindspore/profiler/platform/npu_profiler.py +1 -1
- mindspore/profiler/profiler.py +145 -193
- mindspore/profiler/profiler_action_controller.py +1 -1
- mindspore/profiler/profiler_interface.py +2 -2
- mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
- mindspore/runtime/__init__.py +4 -6
- mindspore/runtime/executor.py +0 -27
- mindspore/runtime/memory.py +0 -1
- mindspore/runtime/thread_bind_core.py +1 -1
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/_utils.py +3 -3
- mindspore/train/amp.py +3 -0
- mindspore/train/callback/_callback.py +1 -2
- mindspore/train/callback/_checkpoint.py +8 -1
- mindspore/train/callback/_flops_collector.py +6 -10
- mindspore/train/callback/_train_fault_tolerance.py +7 -3
- mindspore/train/data_sink.py +4 -4
- mindspore/train/dataset_helper.py +5 -5
- mindspore/train/model.py +20 -4
- mindspore/train/serialization.py +15 -35
- mindspore/train/train_thor/model_thor.py +2 -2
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/hooks.py +81 -0
- mindspore/utils/utils.py +8 -8
- mindspore/version.py +1 -1
- {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +1 -1
- {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +193 -192
- mindspore/_extends/parallel_compile/akg_compiler/custom.py +0 -1109
- mindspore/common/dynamic_shape/__init__.py +0 -0
- mindspore/common/dynamic_shape/enable_dynamic.py +0 -197
- /mindspore/common/{dynamic_shape/_auto_dynamic.py → _auto_dynamic.py} +0 -0
- {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
mindspore/nn/layer/activation.py
CHANGED
|
@@ -1269,10 +1269,8 @@ class PReLUExt(Cell):
|
|
|
1269
1269
|
:align: center
|
|
1270
1270
|
|
|
1271
1271
|
.. note::
|
|
1272
|
-
|
|
1273
|
-
|
|
1274
|
-
- In GE mode, the rank of the input tensor must be greater than 1;
|
|
1275
|
-
otherwise, an error will be triggered.
|
|
1272
|
+
Channel dim is the 2nd dim of input. When input has dims < 2, then there is
|
|
1273
|
+
no channel dim and the number of channels = 1.
|
|
1276
1274
|
|
|
1277
1275
|
Args:
|
|
1278
1276
|
num_parameters (int, optional): number of `w` to learn. Although it takes an int as input,
|
mindspore/nn/layer/basic.py
CHANGED
|
@@ -209,7 +209,7 @@ class DropoutExt(Cell):
|
|
|
209
209
|
Dropout is a means of regularization that reduces overfitting by preventing correlations between neuronal nodes.
|
|
210
210
|
The operator randomly sets some neurons output to 0 according to `p`, which means the probability of discarding
|
|
211
211
|
during training. And the return will be multiplied by :math:`\frac{1}{1-p}` during training.
|
|
212
|
-
During the reasoning, this layer returns the same Tensor as the `
|
|
212
|
+
During the reasoning, this layer returns the same Tensor as the `x`.
|
|
213
213
|
|
|
214
214
|
This technique is proposed in paper `Dropout: A Simple Way to Prevent Neural Networks from Overfitting
|
|
215
215
|
<http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf>`_ and proved to be effective to reduce
|
|
@@ -228,13 +228,14 @@ class DropoutExt(Cell):
|
|
|
228
228
|
If set to ``True`` , will do this operation in-place. Default: ``False`` .
|
|
229
229
|
|
|
230
230
|
Inputs:
|
|
231
|
-
- **
|
|
231
|
+
- **x** (Tensor) - The input of Dropout.
|
|
232
232
|
|
|
233
233
|
Outputs:
|
|
234
|
-
Tensor, output tensor with the same shape as the `
|
|
234
|
+
Tensor, output tensor with the same shape as the `x`.
|
|
235
235
|
|
|
236
236
|
Raises:
|
|
237
|
-
TypeError: If the dtype of `
|
|
237
|
+
TypeError: If the dtype of `p` is not float.
|
|
238
|
+
ValueError: If length of shape of `x` is less than 1.
|
|
238
239
|
|
|
239
240
|
Supported Platforms:
|
|
240
241
|
``Ascend``
|
|
@@ -258,12 +259,17 @@ class DropoutExt(Cell):
|
|
|
258
259
|
self.inplace = inplace
|
|
259
260
|
self.generator_step = Tensor(12, mstype.int64)
|
|
260
261
|
|
|
261
|
-
def construct(self,
|
|
262
|
+
def construct(self, x):
|
|
262
263
|
if not self.training or self.p == 0:
|
|
263
|
-
return
|
|
264
|
+
return x
|
|
264
265
|
|
|
265
266
|
seed, offset = default_generator._step(self.generator_step) # pylint: disable=protected-access
|
|
266
|
-
|
|
267
|
+
out, _ = ops.auto_generate.dropout_ext_op(x, self.p, seed, offset)
|
|
268
|
+
|
|
269
|
+
if self.inplace:
|
|
270
|
+
x.copy_(out)
|
|
271
|
+
return x
|
|
272
|
+
return out
|
|
267
273
|
|
|
268
274
|
|
|
269
275
|
class Dropout1d(Cell):
|
mindspore/nn/layer/image.py
CHANGED
|
@@ -111,7 +111,7 @@ def _convert_img_dtype_to_float32(img, max_val):
|
|
|
111
111
|
@constexpr
|
|
112
112
|
def _get_dtype_max(dtype):
|
|
113
113
|
"""get max of the dtype"""
|
|
114
|
-
np_type = mstype.
|
|
114
|
+
np_type = mstype.dtype_to_nptype(dtype)
|
|
115
115
|
if issubclass(np_type, numbers.Integral):
|
|
116
116
|
dtype_max = np.float64(np.iinfo(np_type).max).item()
|
|
117
117
|
else:
|
mindspore/nn/optim/adam.py
CHANGED
|
@@ -909,7 +909,9 @@ class AdamWeightDecay(Optimizer):
|
|
|
909
909
|
Note:
|
|
910
910
|
There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
|
|
911
911
|
and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
|
|
912
|
-
As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means
|
|
912
|
+
As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means, refer
|
|
913
|
+
document `LossScale <https://www.mindspore.cn/tutorials/en/master/beginner/mixed_precision.html>`_ to
|
|
914
|
+
process `loss_scale` correctly.
|
|
913
915
|
|
|
914
916
|
If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
|
|
915
917
|
'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
|
mindspore/nn/optim/lamb.py
CHANGED
|
@@ -131,7 +131,9 @@ class Lamb(Optimizer):
|
|
|
131
131
|
Note:
|
|
132
132
|
There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
|
|
133
133
|
and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
|
|
134
|
-
As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means.
|
|
134
|
+
As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means. Refer
|
|
135
|
+
document `LossScale <https://www.mindspore.cn/tutorials/en/master/beginner/mixed_precision.html>`_ to
|
|
136
|
+
process `loss_scale` correctly.
|
|
135
137
|
|
|
136
138
|
If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
|
|
137
139
|
'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
|
|
@@ -69,9 +69,10 @@ class OptTFTWrapper(Optimizer):
|
|
|
69
69
|
tft_env = os.getenv("MS_ENABLE_TFT", "")
|
|
70
70
|
if ("TTP:1" not in tft_env) and ("UCE:1" not in tft_env) and ("ARF:1" not in tft_env):
|
|
71
71
|
raise ValueError("MindIO TFT regitster need custom switch on[MS_ENABLE_TFT='{TTP:1,UCE:1,ARF:1}']!")
|
|
72
|
+
mode = context.get_context("mode")
|
|
72
73
|
device_target = context.get_context("device_target")
|
|
73
|
-
if device_target != "Ascend":
|
|
74
|
-
raise ValueError("MindIO adataper only support on Ascend device!")
|
|
74
|
+
if device_target != "Ascend" or mode != context.GRAPH_MODE:
|
|
75
|
+
raise ValueError("MindIO adataper only support on Ascend device with GRAPH Mode!")
|
|
75
76
|
self.opt = opt
|
|
76
77
|
self.report = TensorReport()
|
|
77
78
|
self.report_end = TensorReport()
|
|
@@ -298,7 +298,7 @@ class CheckTuple(PrimitiveWithInfer):
|
|
|
298
298
|
# The op is not used in a cell
|
|
299
299
|
if isinstance(x, tuple):
|
|
300
300
|
return x
|
|
301
|
-
if context.get_context("mode") ==
|
|
301
|
+
if context.get_context("mode") == 0:
|
|
302
302
|
return x["value"]
|
|
303
303
|
raise TypeError(f"For {name}, input type must be a tuple.")
|
|
304
304
|
|
|
@@ -349,7 +349,7 @@ def set_param_type(args, hint_type):
|
|
|
349
349
|
for name, arg in args.items():
|
|
350
350
|
if hasattr(arg, 'dtype'):
|
|
351
351
|
if isinstance(arg, np.ndarray):
|
|
352
|
-
cur_dtype = mstype.
|
|
352
|
+
cur_dtype = mstype.pytype_to_dtype(arg.dtype)
|
|
353
353
|
else:
|
|
354
354
|
cur_dtype = arg.dtype
|
|
355
355
|
if common_dtype is None:
|
|
@@ -23,7 +23,7 @@ from types import FunctionType, MethodType
|
|
|
23
23
|
|
|
24
24
|
from mindspore import log as logger
|
|
25
25
|
from mindspore.parallel._utils import _get_device_num, _get_gradients_mean,\
|
|
26
|
-
_get_parallel_mode, _get_enable_parallel_optimizer
|
|
26
|
+
_get_parallel_mode, _get_enable_parallel_optimizer, _is_pynative_parallel
|
|
27
27
|
from mindspore.context import ParallelMode
|
|
28
28
|
from mindspore import _checkparam as validator
|
|
29
29
|
from mindspore import ops, nn
|
|
@@ -397,7 +397,8 @@ class TrainOneStepCell(Cell):
|
|
|
397
397
|
self.reducer_flag = False
|
|
398
398
|
self.grad_reducer = nn.Identity()
|
|
399
399
|
self.parallel_mode = _get_parallel_mode()
|
|
400
|
-
self.reducer_flag = self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL)
|
|
400
|
+
self.reducer_flag = self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL) or \
|
|
401
|
+
_is_pynative_parallel()
|
|
401
402
|
if self.reducer_flag:
|
|
402
403
|
self.mean = _get_gradients_mean()
|
|
403
404
|
self.degree = _get_device_num()
|
|
@@ -859,7 +860,7 @@ class _BroadCastCell(Cell):
|
|
|
859
860
|
from mindspore import context
|
|
860
861
|
self.map_ = ops.Map()
|
|
861
862
|
self.params = tuple(params)
|
|
862
|
-
if context.get_context("device_target") == "Ascend":
|
|
863
|
+
if context.get_context("device_target") == "Ascend" and context.get_context("mode") != context.PYNATIVE_MODE:
|
|
863
864
|
rank_list = [id for id in range(0, get_group_size())]
|
|
864
865
|
create_group("BroadcastWorldGroup", rank_list)
|
|
865
866
|
self.broadcast = ops.Broadcast(0, group="BroadcastWorldGroup")
|
|
@@ -888,8 +889,6 @@ class PipelineCell(Cell):
|
|
|
888
889
|
micro_size (int): MicroBatch size.
|
|
889
890
|
stage_config (dict, optional): The stage configuration for each cell's execution in pipeline parallel.
|
|
890
891
|
Default ``None``.
|
|
891
|
-
segment_config (dict, optional): The segment configuration for each cell's execution in pipeline parallel.
|
|
892
|
-
Default ``None``.
|
|
893
892
|
|
|
894
893
|
Supported Platforms:
|
|
895
894
|
``Ascend`` ``GPU``
|
|
@@ -901,7 +900,7 @@ class PipelineCell(Cell):
|
|
|
901
900
|
>>> net = LeNet5()
|
|
902
901
|
>>> net = nn.PipelineCell(net, 4)
|
|
903
902
|
"""
|
|
904
|
-
def __init__(self, network, micro_size, stage_config=None
|
|
903
|
+
def __init__(self, network, micro_size, stage_config=None):
|
|
905
904
|
super(PipelineCell, self).__init__(auto_prefix=False)
|
|
906
905
|
self.network = network
|
|
907
906
|
self.micro_inputs = nn.CellList()
|
|
@@ -957,39 +956,6 @@ class PipelineCell(Cell):
|
|
|
957
956
|
print(cell_name)
|
|
958
957
|
raise KeyError("For 'PipelineCell', the argument 'stage_config' : {} is not "
|
|
959
958
|
"found in 'network' : {}".format(config_dict, network))
|
|
960
|
-
if segment_config is None:
|
|
961
|
-
return
|
|
962
|
-
self._config_segment(segment_config)
|
|
963
|
-
|
|
964
|
-
|
|
965
|
-
def _config_segment(self, segment_config=None):
|
|
966
|
-
"""
|
|
967
|
-
Config segment num for cell.
|
|
968
|
-
"""
|
|
969
|
-
config_dict = segment_config.copy()
|
|
970
|
-
for cell_name, cell in self.network.cells_and_names():
|
|
971
|
-
if cell_name in segment_config:
|
|
972
|
-
setattr(cell, "pipeline_segment", segment_config[cell_name])
|
|
973
|
-
del config_dict[cell_name]
|
|
974
|
-
if str(self.network) in segment_config:
|
|
975
|
-
setattr(self.network, "pipeline_segment", segment_config[str(self.network)])
|
|
976
|
-
del config_dict[str(self.network)]
|
|
977
|
-
# if there are any config elements left, print them
|
|
978
|
-
if config_dict:
|
|
979
|
-
for config_cell_name, config_segment_num in config_dict.items():
|
|
980
|
-
logger.error("pipeline_cell segment_config set pipeline_segment fail!")
|
|
981
|
-
logger.warning("config cell name:" + str(config_cell_name) +
|
|
982
|
-
" config segment num:" + str(config_segment_num))
|
|
983
|
-
logger.warning("network:" + str(self.network))
|
|
984
|
-
logger.warning("cell name available:")
|
|
985
|
-
for cell_name, _ in self.network.cells_and_names():
|
|
986
|
-
logger.warning(cell_name)
|
|
987
|
-
raise KeyError("For 'PipelineCell', the argument 'segment_config' : {} is not "
|
|
988
|
-
"found in 'network' : {}".format(config_dict, self.network))
|
|
989
|
-
|
|
990
|
-
|
|
991
|
-
def shard(self, in_strategy, out_strategy=None, parameter_plan=None, device="Ascend", level=0):
|
|
992
|
-
raise ValueError("For 'PipelineCell', no 'shard' on 'PipelineCell' is allowed.")
|
|
993
959
|
|
|
994
960
|
def construct(self, *inputs):
|
|
995
961
|
ret = None
|
|
@@ -394,6 +394,7 @@ class DistributedGradReducer(Cell):
|
|
|
394
394
|
|
|
395
395
|
def __init__(self, parameters, mean=None, degree=None, fusion_type=1, group=GlobalComm.WORLD_COMM_GROUP):
|
|
396
396
|
super(DistributedGradReducer, self).__init__(auto_prefix=False)
|
|
397
|
+
self._check_parallel_mode()
|
|
397
398
|
self.map_ = ops.Map()
|
|
398
399
|
self.mean = mean
|
|
399
400
|
if mean is None:
|
|
@@ -462,6 +463,13 @@ class DistributedGradReducer(Cell):
|
|
|
462
463
|
new_grad = self.map_(ops.partial(_cast_datatype), datatypes, new_grad)
|
|
463
464
|
return new_grad
|
|
464
465
|
|
|
466
|
+
def _check_parallel_mode(self):
|
|
467
|
+
"""check parallel mode"""
|
|
468
|
+
parallel_mode = context.get_auto_parallel_context('parallel_mode')
|
|
469
|
+
if context.get_context('mode') == context.GRAPH_MODE and parallel_mode in (
|
|
470
|
+
context.ParallelMode.SEMI_AUTO_PARALLEL, context.ParallelMode.AUTO_PARALLEL):
|
|
471
|
+
raise RuntimeError("{} can not use DistributedGradReducer in graph mode".format(parallel_mode))
|
|
472
|
+
|
|
465
473
|
|
|
466
474
|
grad_scale = ops.MultitypeFuncGraph("grad_scale")
|
|
467
475
|
shard_grad_scale = ops.MultitypeFuncGraph("shard_grad_scale")
|
|
@@ -579,6 +587,7 @@ class PipelineGradReducer(Cell):
|
|
|
579
587
|
"""
|
|
580
588
|
def __init__(self, parameters, scale_sense=1.0, opt_shard=None):
|
|
581
589
|
super(PipelineGradReducer, self).__init__(auto_prefix=False)
|
|
590
|
+
self._check_mode()
|
|
582
591
|
self.accu_grads = parameters.clone(prefix="accu_grads", init="zeros")
|
|
583
592
|
self.grad_reducer = Identity()
|
|
584
593
|
self.degree = Tensor(1, mstype.float32)
|
|
@@ -600,3 +609,9 @@ class PipelineGradReducer(Cell):
|
|
|
600
609
|
accu_grads = self.grad_reducer(self.accu_grads)
|
|
601
610
|
new_grads = self.hyper_map(ops.partial(grad_scale, self.scale_sense * self.degree), grads, accu_grads)
|
|
602
611
|
return new_grads
|
|
612
|
+
|
|
613
|
+
def _check_mode(self):
|
|
614
|
+
"""check parallel mode"""
|
|
615
|
+
mode = context.get_context('mode')
|
|
616
|
+
if mode != context.GRAPH_MODE:
|
|
617
|
+
raise RuntimeError(f"PipelineGradReducer only support graph mode, but get {mode}")
|
|
@@ -127,7 +127,7 @@ def asarray_const(a, dtype=None):
|
|
|
127
127
|
# If dtype is not specified, we keep consistent with numpy decision
|
|
128
128
|
# only exceptions are: we use int/float32
|
|
129
129
|
if dtype is None:
|
|
130
|
-
dtype = mstype.
|
|
130
|
+
dtype = mstype.pytype_to_dtype(a.dtype)
|
|
131
131
|
if dtype == mstype.float64:
|
|
132
132
|
dtype = mstype.float32
|
|
133
133
|
elif dtype == mstype.int64:
|
|
@@ -138,7 +138,7 @@ def asarray_const(a, dtype=None):
|
|
|
138
138
|
if isinstance(a, onp.ndarray) and dtype is None:
|
|
139
139
|
if a.dtype is onp.dtype('object'):
|
|
140
140
|
raise TypeError(f"For Tensor conversion, the input_data is {a} that contains unsupported element.")
|
|
141
|
-
dtype = mstype.
|
|
141
|
+
dtype = mstype.pytype_to_dtype(a.dtype)
|
|
142
142
|
a = Tensor.from_numpy(a)
|
|
143
143
|
|
|
144
144
|
return Tensor(a, dtype=dtype)
|
mindspore/numpy/utils_const.py
CHANGED
|
@@ -70,7 +70,7 @@ def _check_dtype(dtype):
|
|
|
70
70
|
elif dtype is float:
|
|
71
71
|
dtype = mstype.float32
|
|
72
72
|
else:
|
|
73
|
-
dtype = mstype.
|
|
73
|
+
dtype = mstype.pytype_to_dtype(dtype)
|
|
74
74
|
if dtype not in dtype_tuple:
|
|
75
75
|
raise TypeError(f"only {all_types} are allowed for dtype, but got {type(dtype)}")
|
|
76
76
|
return dtype
|
mindspore/opencv_core452.dll
CHANGED
|
Binary file
|
|
Binary file
|
mindspore/opencv_imgproc452.dll
CHANGED
|
Binary file
|
|
@@ -23,6 +23,15 @@ from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
|
|
|
23
23
|
from mindspore.ops._grad_experimental.grad_base import bprop_getters
|
|
24
24
|
|
|
25
25
|
|
|
26
|
+
@bprop_getters.register("raise")
|
|
27
|
+
def get_bprop_raise(self):
|
|
28
|
+
"""Grad definition for `raise` operation."""
|
|
29
|
+
def bprop(x, y, z, out, dout):
|
|
30
|
+
return x, y, z
|
|
31
|
+
|
|
32
|
+
return bprop
|
|
33
|
+
|
|
34
|
+
|
|
26
35
|
@bprop_getters.register(inner.ParallelResizeBilinear)
|
|
27
36
|
def get_bprop_parallel_resize_bilinear(self):
|
|
28
37
|
"""Grad definition for `ParallelResizeBilinear` operation."""
|
|
@@ -72,7 +72,6 @@ from .pyfunc import _pyfunc_cpu
|
|
|
72
72
|
from .buffer_append import _buffer_append_cpu
|
|
73
73
|
from .buffer_get import _buffer_get_cpu
|
|
74
74
|
from .raise_op import _raise_cpu
|
|
75
|
-
from .joinedstr_op import _joinedstr_cpu
|
|
76
75
|
from .buffer_sample import _buffer_sample_cpu
|
|
77
76
|
from .priority_replay_buffer import _prb_push_op_cpu
|
|
78
77
|
from .priority_replay_buffer import _prb_sample_op_cpu
|
|
@@ -96,8 +96,6 @@ op_args_default_value = {
|
|
|
96
96
|
"ConvTranspose2D": {"bias": None, "stride": 1, "padding": 0, "output_padding": 0, "groups": 1, "dilation": 1},
|
|
97
97
|
"Correlate": {"pad_mode": 'valid'},
|
|
98
98
|
"CountNonZero": {"dim": None},
|
|
99
|
-
"CrossEntropyLossGrad": {"weight": None, "grad_zloss": None, "lse_for_zloss": None, "reduction": 'mean', "ignore_index": -100, "label_smoothing": 0.0, "lse_square_scale_for_zloss": 0.0},
|
|
100
|
-
"CrossEntropyLoss": {"weight": None, "reduction": 'mean', "ignore_index": -100, "label_smoothing": 0.0, "lse_square_scale_for_zloss": 0.0, "return_zloss": False},
|
|
101
99
|
"Cross": {"dim": -65530},
|
|
102
100
|
"CumsumExt": {"dtype": None},
|
|
103
101
|
"CumProd": {"exclusive": False, "reverse": False},
|
|
@@ -184,7 +182,6 @@ op_args_default_value = {
|
|
|
184
182
|
"InplaceAddExt": {"alpha": 1},
|
|
185
183
|
"InplaceClampScalar": {"min": None, "max": None},
|
|
186
184
|
"InplaceClampTensor": {"min": None, "max": None},
|
|
187
|
-
"InplaceCopy": {"non_blocking": False},
|
|
188
185
|
"InplaceDivMods": {"rounding_mode": None},
|
|
189
186
|
"InplaceDivMod": {"rounding_mode": None},
|
|
190
187
|
"InplaceElu": {"alpha": 1.0},
|
|
@@ -242,8 +239,6 @@ op_args_default_value = {
|
|
|
242
239
|
"Meshgrid": {"indexing": 'xy'},
|
|
243
240
|
"MinimumGrad": {"grad_x": True, "grad_y": True},
|
|
244
241
|
"MinDim": {"keepdim": False},
|
|
245
|
-
"Mla": {"attn_mask": None, "deq_scale_qk": None, "deq_scale_pv": None, "q_seq_lens": None, "context_lens": None, "head_num": 32, "scale_value": 0.0, "kv_head_num": 1, "mask_mode": 'MASK_NONE', "is_ring": 0},
|
|
246
|
-
"MlaPreprocess": {"param_cache_mode": 0},
|
|
247
242
|
"MoeDistributeCombine": {"tp_send_counts": None, "x_active_mask": None, "activate_scale": None, "weight_scale": None, "group_list": None, "expand_scales": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_export_rank_num": 0, "global_bs": 0, "out_dtype": 0, "common_quant_mode": 0, "group_list_type": 0},
|
|
248
243
|
"MoeDistributeDispatch": {"expert_scales": None, "scales": None, "x_active_mask": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_expert_rank_num": 0, "quant_mode": 0, "global_bs": 0, "expert_token_nums_type": 0},
|
|
249
244
|
"MoeTokenPermuteGrad": {"num_topk": 1, "padded_mode": False},
|
|
@@ -305,7 +300,6 @@ op_args_default_value = {
|
|
|
305
300
|
"RFFTFreq": {"d": 1.0, "dtype": None},
|
|
306
301
|
"RFFTN": {"s": None, "dim": None, "norm": None},
|
|
307
302
|
"RFFT": {"n": None, "dim": -1, "norm": None},
|
|
308
|
-
"RingAttentionUpdate": {"actual_seq_qlen": None, "layout": 'SBH'},
|
|
309
303
|
"RmsNorm": {"epsilon": 1e-6},
|
|
310
304
|
"Roll": {"dims": None},
|
|
311
305
|
"RotaryPositionEmbeddingGrad": {"dx": None, "mode": 0},
|
|
@@ -421,6 +415,7 @@ op_args_default_value = {
|
|
|
421
415
|
"DeprecatedBaddbmm": {"beta": 1, "alpha": 1},
|
|
422
416
|
"DeprecatedBincount": {"weights": None, "minlength": 0},
|
|
423
417
|
"DeprecatedChunk": {"axis": 0},
|
|
418
|
+
"DeprecatedInplaceCopy": {"non_blocking": False},
|
|
424
419
|
"DeprecatedCountNonzero": {"axis": (), "keep_dims": False, "dtype": None},
|
|
425
420
|
"DeprecatedCumsum": {"axis": None, "dtype": None},
|
|
426
421
|
"DeprecatedDiv": {"rounding_mode": None},
|
|
@@ -483,8 +478,6 @@ op_labels = {
|
|
|
483
478
|
"InplaceAddmm": {"side_effect_mem": True},
|
|
484
479
|
"InplaceAddsExt": {"side_effect_mem": True},
|
|
485
480
|
"InplaceAddExt": {"side_effect_mem": True},
|
|
486
|
-
"InplaceBernoulliScalar": {"side_effect_mem": True},
|
|
487
|
-
"InplaceBernoulliTensor": {"side_effect_mem": True},
|
|
488
481
|
"InplaceCopy": {"side_effect_mem": True},
|
|
489
482
|
"InplaceDivMods": {"side_effect_mem": True},
|
|
490
483
|
"InplaceDivMod": {"side_effect_mem": True},
|
|
@@ -513,8 +506,6 @@ op_labels = {
|
|
|
513
506
|
"InplacePut": {"side_effect_mem": True},
|
|
514
507
|
"InplaceRandom": {"side_effect_mem": True},
|
|
515
508
|
"InplaceReLU": {"side_effect_mem": True},
|
|
516
|
-
"InplaceRemainderTensorScalar": {"side_effect_mem": True},
|
|
517
|
-
"InplaceRemainderTensorTensor": {"side_effect_mem": True},
|
|
518
509
|
"InplaceScatterAdd": {"side_effect_mem": True},
|
|
519
510
|
"InplaceScatterSrc": {"side_effect_mem": True},
|
|
520
511
|
"InplaceScatterSrcReduce": {"side_effect_mem": True},
|
|
@@ -526,9 +517,7 @@ op_labels = {
|
|
|
526
517
|
"InplaceTanh": {"side_effect_mem": True},
|
|
527
518
|
"InplaceThreshold": {"side_effect_mem": True},
|
|
528
519
|
"InplaceUniform": {"side_effect_mem": True},
|
|
529
|
-
"KvScaleCache": {"side_effect_mem": True},
|
|
530
520
|
"Log": {"cust_aicpu": 'Log', "base": -1.0, "scale": 1.0, "shift": 0.0},
|
|
531
|
-
"MlaPreprocess": {"side_effect_mem": True},
|
|
532
521
|
"NarrowView": {"side_effect_mem": True},
|
|
533
522
|
"ReshapeAndCache": {"side_effect_mem": True},
|
|
534
523
|
"ResizeD": {"mode": 'linear'},
|
|
@@ -543,4 +532,5 @@ op_labels = {
|
|
|
543
532
|
"UnstackExtView": {"side_effect_mem": True},
|
|
544
533
|
"KVCacheScatterUpdate": {"side_effect_mem": True},
|
|
545
534
|
"InplaceExponential": {"side_effect_mem": True},
|
|
535
|
+
"DeprecatedInplaceCopy": {"side_effect_mem": True},
|
|
546
536
|
}
|
|
@@ -118,11 +118,11 @@ def add(input, other, alpha=1):
|
|
|
118
118
|
input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
|
|
119
119
|
a bool or a tensor whose data type is
|
|
120
120
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
121
|
-
`
|
|
121
|
+
`bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
122
122
|
other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
|
|
123
123
|
a bool or a tensor whose data type is
|
|
124
124
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
125
|
-
`
|
|
125
|
+
`bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
126
126
|
alpha (number.Number): A scaling factor applied to `other`, default 1.
|
|
127
127
|
|
|
128
128
|
Returns:
|
|
@@ -2003,11 +2003,11 @@ def sub(input, other, alpha=1):
|
|
|
2003
2003
|
input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
|
|
2004
2004
|
a bool or a tensor whose data type is
|
|
2005
2005
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
2006
|
-
`
|
|
2006
|
+
`bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
2007
2007
|
other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
|
|
2008
2008
|
a bool or a tensor whose data type is
|
|
2009
2009
|
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
|
|
2010
|
-
`
|
|
2010
|
+
`bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
|
|
2011
2011
|
alpha (number.Number): A scaling factor applied to `other`, default 1.
|
|
2012
2012
|
|
|
2013
2013
|
Returns:
|