mindspore 2.7.0__cp310-cp310-win_amd64.whl → 2.7.0rc1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (196) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +1 -1
  3. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +2 -2
  7. mindspore/_extends/builtin_operations.py +3 -3
  8. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  9. mindspore/_extends/parse/__init__.py +3 -3
  10. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -0
  11. mindspore/_extends/parse/parser.py +22 -28
  12. mindspore/_extends/parse/standard_method.py +1 -15
  13. mindspore/_extends/pijit/pijit_func_white_list.py +5 -2
  14. mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
  15. mindspore/amp.py +18 -0
  16. mindspore/avcodec-59.dll +0 -0
  17. mindspore/avdevice-59.dll +0 -0
  18. mindspore/avfilter-8.dll +0 -0
  19. mindspore/avformat-59.dll +0 -0
  20. mindspore/avutil-57.dll +0 -0
  21. mindspore/common/__init__.py +12 -18
  22. mindspore/common/_tensor_cpp_method.py +1 -1
  23. mindspore/common/_tensor_docs.py +38 -102
  24. mindspore/common/_utils.py +1 -9
  25. mindspore/common/api.py +106 -155
  26. mindspore/common/{dynamic_shape/auto_dynamic_shape.py → auto_dynamic_shape.py} +23 -17
  27. mindspore/common/dtype.py +57 -98
  28. mindspore/common/dump.py +1 -1
  29. mindspore/common/file_system.py +9 -59
  30. mindspore/common/hook_handle.py +3 -22
  31. mindspore/common/np_dtype.py +3 -3
  32. mindspore/common/parameter.py +20 -4
  33. mindspore/common/recompute.py +4 -2
  34. mindspore/common/tensor.py +52 -38
  35. mindspore/communication/_hccl_management.py +297 -0
  36. mindspore/context.py +21 -15
  37. mindspore/dataset/__init__.py +1 -1
  38. mindspore/dataset/audio/transforms.py +1 -1
  39. mindspore/dataset/core/config.py +1 -35
  40. mindspore/dataset/engine/datasets.py +315 -330
  41. mindspore/dataset/engine/datasets_user_defined.py +22 -38
  42. mindspore/dataset/transforms/c_transforms.py +2 -2
  43. mindspore/dataset/transforms/transforms.py +3 -3
  44. mindspore/dataset/vision/__init__.py +1 -1
  45. mindspore/dataset/vision/py_transforms.py +8 -8
  46. mindspore/dataset/vision/transforms.py +5 -17
  47. mindspore/dataset/vision/utils.py +21 -632
  48. mindspore/device_context/ascend/op_tuning.py +1 -35
  49. mindspore/dnnl.dll +0 -0
  50. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -3
  51. mindspore/include/api/cell.h +4 -28
  52. mindspore/include/api/cfg.h +7 -24
  53. mindspore/include/api/context.h +0 -1
  54. mindspore/include/api/delegate.h +2 -0
  55. mindspore/include/api/dual_abi_helper.h +19 -100
  56. mindspore/include/api/graph.h +1 -14
  57. mindspore/include/api/kernel.h +3 -16
  58. mindspore/include/api/kernel_api.h +1 -9
  59. mindspore/include/api/metrics/accuracy.h +0 -9
  60. mindspore/include/api/model.h +1 -5
  61. mindspore/include/api/model_group.h +0 -4
  62. mindspore/include/api/model_parallel_runner.h +0 -2
  63. mindspore/include/api/status.h +10 -48
  64. mindspore/include/api/types.h +1 -6
  65. mindspore/include/dataset/constants.h +0 -9
  66. mindspore/jpeg62.dll +0 -0
  67. mindspore/mindrecord/tools/cifar10.py +2 -3
  68. mindspore/mindrecord/tools/cifar10_to_mr.py +5 -5
  69. mindspore/mindspore_backend_common.dll +0 -0
  70. mindspore/mindspore_backend_manager.dll +0 -0
  71. mindspore/mindspore_common.dll +0 -0
  72. mindspore/mindspore_core.dll +0 -0
  73. mindspore/mindspore_cpu_res_manager.dll +0 -0
  74. mindspore/mindspore_dump.dll +0 -0
  75. mindspore/mindspore_frontend.dll +0 -0
  76. mindspore/mindspore_glog.dll +0 -0
  77. mindspore/mindspore_memory_pool.dll +0 -0
  78. mindspore/mindspore_ms_backend.dll +0 -0
  79. mindspore/mindspore_ops.dll +0 -0
  80. mindspore/mindspore_ops_host.dll +0 -0
  81. mindspore/mindspore_ops_kernel_common.dll +0 -0
  82. mindspore/mindspore_profiler.dll +0 -0
  83. mindspore/mindspore_pyboost.dll +0 -0
  84. mindspore/mindspore_pynative.dll +0 -0
  85. mindspore/mindspore_res_manager.dll +0 -0
  86. mindspore/mindspore_runtime_pipeline.dll +0 -0
  87. mindspore/mint/distributed/__init__.py +0 -4
  88. mindspore/mint/distributed/distributed.py +14 -217
  89. mindspore/mint/nn/layer/_functions.py +2 -1
  90. mindspore/mint/nn/layer/conv.py +6 -6
  91. mindspore/mint/nn/layer/normalization.py +3 -3
  92. mindspore/nn/cell.py +174 -216
  93. mindspore/nn/layer/activation.py +2 -4
  94. mindspore/nn/layer/basic.py +13 -7
  95. mindspore/nn/layer/image.py +1 -1
  96. mindspore/nn/optim/adam.py +3 -1
  97. mindspore/nn/optim/lamb.py +3 -1
  98. mindspore/nn/optim/tft_wrapper.py +3 -2
  99. mindspore/nn/probability/distribution/_utils/utils.py +2 -2
  100. mindspore/nn/wrap/cell_wrapper.py +5 -39
  101. mindspore/nn/wrap/grad_reducer.py +15 -0
  102. mindspore/numpy/array_creations.py +2 -2
  103. mindspore/numpy/utils_const.py +1 -1
  104. mindspore/opencv_core452.dll +0 -0
  105. mindspore/opencv_imgcodecs452.dll +0 -0
  106. mindspore/opencv_imgproc452.dll +0 -0
  107. mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
  108. mindspore/ops/_op_impl/cpu/__init__.py +0 -1
  109. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +2 -12
  110. mindspore/ops/auto_generate/gen_extend_func.py +4 -4
  111. mindspore/ops/auto_generate/gen_ops_def.py +16 -290
  112. mindspore/ops/auto_generate/gen_ops_prim.py +76 -563
  113. mindspore/ops/composite/base.py +1 -1
  114. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  115. mindspore/ops/function/__init__.py +0 -1
  116. mindspore/ops/function/array_func.py +6 -10
  117. mindspore/ops/function/debug_func.py +2 -4
  118. mindspore/ops/function/grad/grad_func.py +12 -4
  119. mindspore/ops/function/math_func.py +32 -44
  120. mindspore/ops/function/nn_func.py +20 -18
  121. mindspore/ops/functional.py +1 -2
  122. mindspore/ops/functional_overload.py +12 -23
  123. mindspore/ops/operations/_inner_ops.py +12 -11
  124. mindspore/ops/operations/array_ops.py +50 -4
  125. mindspore/ops/operations/comm_ops.py +15 -1
  126. mindspore/ops/operations/custom_ops.py +4 -10
  127. mindspore/ops/operations/debug_ops.py +6 -6
  128. mindspore/ops/operations/manually_defined/ops_def.py +12 -12
  129. mindspore/ops/operations/math_ops.py +5 -5
  130. mindspore/ops/operations/nn_ops.py +1 -1
  131. mindspore/ops/primitive.py +10 -3
  132. mindspore/ops/tensor_method.py +7 -16
  133. mindspore/ops_generate/pyboost/gen_pyboost_func.py +16 -0
  134. mindspore/parallel/_auto_parallel_context.py +15 -5
  135. mindspore/parallel/_parallel_serialization.py +2 -3
  136. mindspore/parallel/_ps_context.py +2 -2
  137. mindspore/parallel/_transformer/transformer.py +4 -4
  138. mindspore/parallel/_utils.py +11 -5
  139. mindspore/parallel/auto_parallel.py +9 -23
  140. mindspore/parallel/checkpoint_transform.py +0 -2
  141. mindspore/parallel/cluster/process_entity/_api.py +1 -4
  142. mindspore/parallel/cluster/run.py +3 -5
  143. mindspore/parallel/function/reshard_func.py +5 -6
  144. mindspore/parallel/nn/parallel_cell_wrapper.py +3 -40
  145. mindspore/parallel/nn/parallel_grad_reducer.py +8 -0
  146. mindspore/parallel/shard.py +21 -7
  147. mindspore/parallel/transform_safetensors.py +4 -10
  148. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +9 -10
  149. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
  150. mindspore/profiler/common/msprof_cmd_tool.py +2 -2
  151. mindspore/profiler/common/path_manager.py +0 -9
  152. mindspore/profiler/common/profiler_context.py +2 -25
  153. mindspore/profiler/common/profiler_meta_data.py +0 -1
  154. mindspore/profiler/common/profiler_op_analyse.py +6 -10
  155. mindspore/{ops/_op_impl/cpu/joinedstr_op.py → profiler/common/validator/__init__.py} +1 -15
  156. mindspore/profiler/common/validator/validate_path.py +84 -0
  157. mindspore/profiler/dynamic_profiler.py +46 -91
  158. mindspore/profiler/envprofiler.py +5 -30
  159. mindspore/profiler/experimental_config.py +1 -16
  160. mindspore/profiler/platform/cpu_profiler.py +4 -10
  161. mindspore/profiler/platform/npu_profiler.py +1 -1
  162. mindspore/profiler/profiler.py +145 -193
  163. mindspore/profiler/profiler_action_controller.py +1 -1
  164. mindspore/profiler/profiler_interface.py +2 -2
  165. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  166. mindspore/runtime/__init__.py +4 -6
  167. mindspore/runtime/executor.py +0 -27
  168. mindspore/runtime/memory.py +0 -1
  169. mindspore/runtime/thread_bind_core.py +1 -1
  170. mindspore/swresample-4.dll +0 -0
  171. mindspore/swscale-6.dll +0 -0
  172. mindspore/tinyxml2.dll +0 -0
  173. mindspore/train/_utils.py +3 -3
  174. mindspore/train/amp.py +3 -0
  175. mindspore/train/callback/_callback.py +1 -2
  176. mindspore/train/callback/_checkpoint.py +8 -1
  177. mindspore/train/callback/_flops_collector.py +6 -10
  178. mindspore/train/callback/_train_fault_tolerance.py +7 -3
  179. mindspore/train/data_sink.py +4 -4
  180. mindspore/train/dataset_helper.py +5 -5
  181. mindspore/train/model.py +20 -4
  182. mindspore/train/serialization.py +15 -35
  183. mindspore/train/train_thor/model_thor.py +2 -2
  184. mindspore/turbojpeg.dll +0 -0
  185. mindspore/utils/hooks.py +81 -0
  186. mindspore/utils/utils.py +8 -8
  187. mindspore/version.py +1 -1
  188. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +1 -1
  189. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +193 -192
  190. mindspore/_extends/parallel_compile/akg_compiler/custom.py +0 -1109
  191. mindspore/common/dynamic_shape/__init__.py +0 -0
  192. mindspore/common/dynamic_shape/enable_dynamic.py +0 -197
  193. /mindspore/common/{dynamic_shape/_auto_dynamic.py → _auto_dynamic.py} +0 -0
  194. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
  195. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
  196. {mindspore-2.7.0.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
@@ -250,11 +250,11 @@ def add_ext(input, other, alpha=1):
250
250
  input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
251
251
  a bool or a tensor whose data type is
252
252
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
253
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
253
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
254
254
  other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
255
255
  a bool or a tensor whose data type is
256
256
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
257
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
257
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
258
258
  alpha (number.Number): A scaling factor applied to `other`, default 1.
259
259
 
260
260
  Returns:
@@ -312,7 +312,7 @@ def add(input, other):
312
312
 
313
313
  Note:
314
314
  - The two inputs can not be bool type at the same time,
315
- [True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
315
+ [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type.
316
316
  - Support broadcast, support implicit type conversion and type promotion.
317
317
  - When the input is a tensor, the dimension should be greater than or equal to 1.
318
318
 
@@ -1985,112 +1985,6 @@ def count_nonzero(input, dim=None):
1985
1985
  return count_nonzero_op(input, dim)
1986
1986
 
1987
1987
 
1988
- def cross_entropy_loss_grad(grad_loss, log_prob, target, weight=None, grad_zloss=None, lse_for_zloss=None, reduction='mean', ignore_index=-100, label_smoothing=0.0, lse_square_scale_for_zloss=0.0):
1989
- r"""
1990
-
1991
- """
1992
- return cross_entropy_loss_grad_op(grad_loss, log_prob, target, weight, grad_zloss, lse_for_zloss, reduction, ignore_index, label_smoothing, lse_square_scale_for_zloss)
1993
-
1994
-
1995
- def cross_entropy_loss(input, target, weight=None, reduction='mean', ignore_index=-100, label_smoothing=0.0, lse_square_scale_for_zloss=0.0, return_zloss=False):
1996
- r"""
1997
- Computes the cross entropy loss between input and target.
1998
-
1999
- Assume the number of classes :math:`C` in the range :math:`[0, C)`,
2000
- the loss with reduction=none can be described as:
2001
-
2002
- .. math::
2003
-
2004
- \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
2005
- l_n = - w_{y_n} \log \frac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})}
2006
- \cdot \mathbb{1}\{y_n \not= \text{ignore_index}\}
2007
-
2008
- where :math:`x` is the inputs, :math:`y` is the target, :math:`w` is the weight, :math:`N` is the batch size,
2009
- :math:`c` belonging to :math:`[0, C-1]` is class index, where :math:`C` is the number of classes.
2010
-
2011
- If `reduction` is not ``None`` (default ``'mean'`` ), then
2012
-
2013
- .. math::
2014
-
2015
- \ell(x, y) = \begin{cases}
2016
- \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n} \cdot \mathbb{1}\{y_n \not= \text{ignore_index}\}} l_n, &
2017
- \text{if reduction} = \text{'mean',}\\
2018
- \sum_{n=1}^N l_n, &
2019
- \text{if reduction} = \text{'sum'.}
2020
- \end{cases}
2021
-
2022
- .. warning::
2023
- This is an experimental API that is subject to change or deletion.
2024
-
2025
- Inputs:
2026
- - **input** (Tensor) - Tensor of shape of :math:`(N, C)` where `C = number of classes`, data type must be bfloat16, float16 or float32.
2027
- - **target** (Tensor) - For class indices, tensor of shape :math:`(N)`, data type must be int64. The value must be in range [0, C).
2028
- - **weight** (Tensor, optional) - A rescaling weight applied to the loss of each batch element.
2029
- If not None, the shape is :math:`(C,)`, data type must be float32. Default: ``None`` .
2030
- - **reduction** (str, optional) - Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
2031
- ``'sum'`` . Default: ``'mean'`` .
2032
-
2033
- - ``'none'``: no reduction will be applied.
2034
- - ``'mean'``: compute and return the weighted mean of elements in the output.
2035
- - ``'sum'``: the output elements will be summed.
2036
-
2037
- - **ignore_index** (int, optional) - Specifies a target value that is ignored and does not contribute to the input
2038
- gradient. When set to negative values, no target value is ignored. It should be int64.
2039
- Default: ``-100`` .
2040
- - **label_smoothing** (float, optional) - Label smoothing values, a regularization tool used to prevent the model
2041
- from overfitting when calculating Loss. This value must be 0.0 currently. Default: ``0.0`` .
2042
- - **lse_square_scale_for_zloss** (float, optional) - The value range is [0.0, 1.0), not enabled for now, can only be 0.0. Default: ``0.0`` .
2043
- - **return_zloss** (float, optional) - Not enabled for now, can only be ``False``. Default: ``False`` .
2044
-
2045
- Outputs:
2046
- A tuple consisting of 4 Tensors.
2047
-
2048
- - **loss** (Tensor) - loss between `input` and `target`, the dtype is the same as `input`.
2049
-
2050
- - If `reduction` is ``'none'`` , the shape is :math:`(N,)` .
2051
- - If `reduction` is ``'sum'` or ``'mean'`, the shape is :math:`(1,)` .
2052
-
2053
- - **log_prob** (Tensor) - the shape is :math:`(N, C)` with the same dtype as `input`.
2054
- - **zloss** (Tensor) - the shape is :math:`(N,)` if `return_zloss` is True, or the shape is :math:`(0,)` with the same dtype as `input`. This parameter is disabled for now.
2055
- - **lse_for_zloss** (Tensor) - the shape is :math:`(N,)` if `lse_square_scale_for_zloss` is not 0.0, or the shape is :math:`(0,)` with the same dtype as `input`. This parameter is disabled for now.
2056
-
2057
-
2058
- Raises:
2059
- ValueError: If `reduction` is not one of ``'none'``, ``'mean'`` or ``'sum'``.
2060
- TypeError: If `input`, `target` or `weight` is not a Tensor.
2061
-
2062
- Supported Platforms:
2063
- ``Ascend``
2064
-
2065
- Examples:
2066
- >>> import mindspore
2067
- >>> import numpy as np
2068
- >>> from mindspore import Tensor, nn, ops
2069
- >>>
2070
- >>>
2071
- >>> class Net(nn.Cell):
2072
- ... def __init__(self):
2073
- ... super(Net, self).__init__()
2074
- ... self.cross_entropy_loss = ops.auto_generate.CrossEntropyLoss()
2075
- ...
2076
- ... def construct(self, input, target, weight):
2077
- ... result = self.cross_entropy_loss(input, target, weight)
2078
- ... return result
2079
- ...
2080
- >>>
2081
- >>> net = Net()
2082
- >>> input = Tensor(np.array([[0.2, 0.7, 0.1], [0.2, 0.7, 0.1]]), mindspore.float32)
2083
- >>> target = Tensor(np.array([0, 1]), mindspore.int64)
2084
- >>> weight = Tensor(np.array([1, 0.5, 0.5]), mindspore.float32)
2085
- >>> output = net(input, target, weight)
2086
- >>> print(output[:2])
2087
- (Tensor(shape=[1], dtype=Float32, value= [ 1.10128295e+00]), Tensor(shape=[2, 3], dtype=Float32, value=
2088
- [[-1.26794958e+00, -7.67949641e-01, -1.36794960e+00],
2089
- [-1.26794958e+00, -7.67949641e-01, -1.36794960e+00]]))
2090
- """
2091
- return cross_entropy_loss_op(input, target, weight, reduction, ignore_index, label_smoothing, lse_square_scale_for_zloss, return_zloss)
2092
-
2093
-
2094
1988
  def cummax(input, axis):
2095
1989
  r"""
2096
1990
  Return the cumulative maximum values and their indices along the given axis of the tensor.
@@ -3632,7 +3526,7 @@ def gather(input_params, input_indices, axis, batch_dims=0):
3632
3526
  - The value of input_indices must be in the range of `[0, input_param.shape[axis])`.
3633
3527
  On CPU and GPU, an error is raised if an out of bound indice is found. On Ascend, the results may be
3634
3528
  undefined.
3635
- - The data type of input_params cannot be `mindspore.bool` .
3529
+ - The data type of input_params cannot be `mindspore.bool_` .
3636
3530
  - The shape of returned tensor is :math:`input\_params.shape[:axis] + input\_indices.shape[batch\_dims:] + input\_params.shape[axis + 1:]` .
3637
3531
 
3638
3532
  Args:
@@ -4728,7 +4622,7 @@ def index(input, indices):
4728
4622
  [2 6 5]
4729
4623
  >>> input2 = Tensor(np.arange(4 * 3 * 3).reshape(4, 3, 3), mindspore.int32)
4730
4624
  >>> indices3 = Tensor(np.array([1, 0]), mindspore.int32)
4731
- >>> indices4 = Tensor(np.array([1, 1, 0]), mindspore.bool)
4625
+ >>> indices4 = Tensor(np.array([1, 1, 0]), mindspore.bool_)
4732
4626
  >>> output2 = ops.auto_generate.index(input2, [indices3, indices4])
4733
4627
  >>> print(output2)
4734
4628
  [[ 9 10 11]
@@ -4804,20 +4698,6 @@ def inplace_add_ext(input, other, alpha=1):
4804
4698
  return inplace_add_ext_op(input, other, alpha)
4805
4699
 
4806
4700
 
4807
- def inplace_bernoulli_scalar(input, p, seed, offset):
4808
- r"""
4809
-
4810
- """
4811
- return inplace_bernoulli_scalar_op(input, p, seed, offset)
4812
-
4813
-
4814
- def inplace_bernoulli_tensor(input, p, seed, offset):
4815
- r"""
4816
-
4817
- """
4818
- return inplace_bernoulli_tensor_op(input, p, seed, offset)
4819
-
4820
-
4821
4701
  def inplace_clamp_scalar(input, min=None, max=None):
4822
4702
  r"""
4823
4703
 
@@ -4832,11 +4712,11 @@ def inplace_clamp_tensor(input, min=None, max=None):
4832
4712
  return inplace_clamp_tensor_op(input, min, max)
4833
4713
 
4834
4714
 
4835
- def inplace_copy(input, src, non_blocking=False):
4715
+ def inplace_copy(input, src):
4836
4716
  r"""
4837
4717
 
4838
4718
  """
4839
- return inplace_copy_op(input, src, non_blocking)
4719
+ return inplace_copy_op(input, src)
4840
4720
 
4841
4721
 
4842
4722
  def divmod_scalar_(input, other, rounding_mode=None):
@@ -5611,13 +5491,6 @@ def kthvalue(input, k, dim=-1, keepdim=False):
5611
5491
  return kthvalue_op(input, k, dim, keepdim)
5612
5492
 
5613
5493
 
5614
- def kv_scale_cache(key_scale, value_scale, key_value_scale_cache, batch_valid_length, cache_mode):
5615
- r"""
5616
-
5617
- """
5618
- return kv_scale_cache_op(key_scale, value_scale, key_value_scale_cache, batch_valid_length, cache_mode)
5619
-
5620
-
5621
5494
  def l1_loss_ext(input, target, reduction='mean'):
5622
5495
  r"""
5623
5496
  Calculate the mean absolute error between the `input` value and the `target` value.
@@ -6273,7 +6146,7 @@ def masked_fill(input_x, mask, value):
6273
6146
  Examples:
6274
6147
  >>> import mindspore
6275
6148
  >>> input_x = mindspore.tensor([1., 2., 3., 4.], mindspore.float32)
6276
- >>> mask = mindspore.tensor([True, True, False, True], mindspore.bool)
6149
+ >>> mask = mindspore.tensor([True, True, False, True], mindspore.bool_)
6277
6150
  >>> output = mindspore.ops.masked_fill(input_x, mask, 0.5)
6278
6151
  >>> print(output)
6279
6152
  [0.5 0.5 3. 0.5]
@@ -6281,13 +6154,6 @@ def masked_fill(input_x, mask, value):
6281
6154
  return masked_fill_op(input_x, mask, value)
6282
6155
 
6283
6156
 
6284
- def masked_scatter(input, mask, source):
6285
- r"""
6286
-
6287
- """
6288
- return masked_scatter_op(input, mask, source)
6289
-
6290
-
6291
6157
  def masked_select(input, mask):
6292
6158
  r"""
6293
6159
  Return a new 1-D tensor which indexes the `input` tensor according to the boolean `mask`.
@@ -6307,7 +6173,7 @@ def masked_select(input, mask):
6307
6173
  Examples:
6308
6174
  >>> import mindspore
6309
6175
  >>> x = mindspore.tensor([1, 2, 3, 4], mindspore.int64)
6310
- >>> mask = mindspore.tensor([1, 0, 1, 0], mindspore.bool)
6176
+ >>> mask = mindspore.tensor([1, 0, 1, 0], mindspore.bool_)
6311
6177
  >>> output = mindspore.ops.masked_select(x, mask)
6312
6178
  >>> print(output)
6313
6179
  [1 3]
@@ -6684,20 +6550,6 @@ def mish_ext(input):
6684
6550
  return mish_ext_op(input)
6685
6551
 
6686
6552
 
6687
- def mla(query, q_rope, kv_cache, k_rope, block_tables, attn_mask=None, deq_scale_qk=None, deq_scale_pv=None, q_seq_lens=None, context_lens=None, head_num=32, scale_value=0.0, kv_head_num=1, mask_mode='MASK_NONE', is_ring=0):
6688
- r"""
6689
-
6690
- """
6691
- return mla_op(query, q_rope, kv_cache, k_rope, block_tables, attn_mask, deq_scale_qk, deq_scale_pv, q_seq_lens, context_lens, head_num, scale_value, kv_head_num, mask_mode, is_ring)
6692
-
6693
-
6694
- def mla_preprocess(input1, gamma1, beta1, quant_scale1, quant_offset1, wdqkv, bias1, gamma2, beta2, quant_scale2, quant_offset2, gamma3, sin1, cos1, sin2, cos2, key_cache, slot_mapping, wuq, bias2, slot_wuk, de_scale1, de_scale2, ctkv_scale, qnope_scale, krope_cache, param_cache_mode=0):
6695
- r"""
6696
-
6697
- """
6698
- return mla_preprocess_op(input1, gamma1, beta1, quant_scale1, quant_offset1, wdqkv, bias1, gamma2, beta2, quant_scale2, quant_offset2, gamma3, sin1, cos1, sin2, cos2, key_cache, slot_mapping, wuq, bias2, slot_wuk, de_scale1, de_scale2, ctkv_scale, qnope_scale, krope_cache, param_cache_mode)
6699
-
6700
-
6701
6553
  def mm_ext(input, mat2):
6702
6554
  r"""
6703
6555
  Returns the matrix product of two arrays.
@@ -7126,7 +6978,7 @@ def mul(input, other):
7126
6978
  - When the two inputs have different shapes,
7127
6979
  they must be able to broadcast to a common shape.
7128
6980
  - The two inputs can not be bool type at the same time,
7129
- [True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
6981
+ [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type.
7130
6982
  - Support implicit type conversion and type promotion.
7131
6983
 
7132
6984
  Args:
@@ -7522,10 +7374,8 @@ def prelu(input, weight):
7522
7374
  :align: center
7523
7375
 
7524
7376
  .. note::
7525
- - Channel dim is the 2nd dim of input. When input has dims < 2, then there is
7526
- no channel dim and the number of channels = 1.
7527
- - In GE mode, the rank of the input tensor must be greater than 1;
7528
- otherwise, an error will be triggered.
7377
+ Channel dim is the 2nd dim of input. When input has dims < 2, then there is
7378
+ no channel dim and the number of channels = 1.
7529
7379
 
7530
7380
  Args:
7531
7381
  input (Tensor): The input Tensor of the activation function.
@@ -8170,78 +8020,6 @@ def rfft(input, n=None, dim=-1, norm=None):
8170
8020
  return rfft_op(input, n, dim, norm)
8171
8021
 
8172
8022
 
8173
- def ring_attention_update(prev_attn_out, prev_softmax_max, prev_softmax_sum, cur_attn_out, cur_softmax_max, cur_softmax_sum, actual_seq_qlen=None, layout='SBH'):
8174
- r"""
8175
- The RingAttentionUpdate operator updates the output of two FlashAttention operations based on their respective softmax max and softmax sum values.
8176
-
8177
- - S: Sequence length
8178
- - B: Batch dimension
8179
- - H: Hidden layer size, equals to N * D
8180
- - T: time, equals to B*S
8181
- - N: Number of attention heads
8182
- - D: Head dimension
8183
-
8184
- .. warning::
8185
- - It is only supported on Atlas A2 Training Series Products.
8186
- - This is an experimental API that is subject to change or deletion.
8187
- - When `layout` is ``"TND"``, the last dimension of `prev_attn_out` must be a multiple of 64.
8188
- - When `layout` is ``"TND"``, `actual_seq_qlen` is mandatory.
8189
- - When `layout` is ``"TND"``, N x D must satisfy the constraint:
8190
- (AlignUp(NxD, 64)x(DataSizex6+8))+(AlignUp(Nx8, 64)x56) <= 192x1024.
8191
- DataSize is 4 bytes when `prev_attn_out` dtype is float32, 2 bytes when dtype is float16 / bfloat16.
8192
- - When `layout` is ``"TND"``, if `actual_seq_qlen` is not a non-decreasing sequence from 0 to T, the result is undefined.
8193
-
8194
- Args:
8195
- prev_attn_out (Tensor): Output of the first FlashAttention operation. The dtype is float16, float32, bfloat16.
8196
- The shape is :math:`(S, B, H)` or :math:`(T, N, D)`.
8197
- prev_softmax_max (Tensor): The max values from the first FlashAttention softmax computation. The dtype float32.
8198
- The shape is :math:`(B, N, S, 8)` or :math:`(T, N, 8)`. The last dimension contains 8 identical values, which must be positive.
8199
- prev_softmax_sum (Tensor): The sum values from the first FlashAttention softmax computation.
8200
- It has the same shape and dtype as `prev_softmax_max`.
8201
- cur_attn_out (Tensor): Output of the second FlashAttention operation. It has the same shape and dtype as `prev_attn_out`.
8202
- cur_softmax_max (Tensor): The max values from the second FlashAttention softmax computation. It has the same shape and dtype as `prev_softmax_max`.
8203
- cur_softmax_sum (Tensor):The sum values from the second FlashAttention softmax computation. It has the same shape and dtype as `prev_softmax_max`.
8204
- actual_seq_qlen (Tensor, optional): Cumulative sequence length, starting from 0. Required if `layout` is ``"TND"``. Does not take effect if `layout` is ``"SBH"``.
8205
- The tensor must be 1D and contain non-decreasing integer values starting from 0 to T. Default: ``None``.
8206
- layout (str, optional): Indicates the input layout, currently support ``"TND"`` and ``"SBH"``. Default: ``"SBH"``.
8207
-
8208
- Returns:
8209
- tuple (Tensor), tuple of 3 tensors.
8210
-
8211
- - **attn_out** (Tensor) - The updated attention out, with the same shape and dtype as `prev_attn_out`.
8212
- - **softmax_max** (Tensor) - The updated softmax max values, with the same shape and dtype as `prev_softmax_max`.
8213
- - **softmax_sum** (Tensor) - The updated softmax sum values, with the same shape and dtype as `prev_softmax_max`.
8214
-
8215
- Raises:
8216
- RuntimeError: If `layout` is ``"TND"``, and `prev_attn_out`'s last dimension is not aligned to 64.
8217
- RuntimeError: If `layout` is ``"TND"``, and `actual_seq_qlen` is not provided.
8218
- RuntimeError: If `layout` is ``"TND"``, and `actual_seq_qlen` is not a non-decreasing sequence from 0 to T.
8219
- RuntimeError: If `layout` is ``"TND"``, and `prev_attn_out` exceeds the size constraints.
8220
-
8221
- Supported Platforms:
8222
- ``Ascend``
8223
-
8224
- Examples:
8225
- >>> import numpy as np
8226
- >>> import mindspore
8227
- >>> from mindspore import Tensor, ops
8228
- >>> np.random.seed(123)
8229
- >>> S, B, H, N= 4, 6, 16, 8
8230
- >>> prev_attn_out = np.random.uniform(-1.0, 1.0, size=(S, B, H)).astype(np.float32)
8231
- >>> prev_softmax_max = np.random.uniform(-1.0, 1.0, size=(B, N, S, 8)).astype(np.float32)
8232
- >>> prev_softmax_sum = np.random.uniform(-1.0, 1.0, size=(B, N, S, 8)).astype(np.float32)
8233
- >>> cur_attn_out = np.random.uniform(-1.0, 1.0, size=(S, B, H)).astype(np.float32)
8234
- >>> cur_softmax_max = np.random.uniform(-1.0, 1.0, size=(B, N, S, 8)).astype(np.float32)
8235
- >>> cur_softmax_sum = np.random.uniform(-1.0, 1.0, size=(B, N, S, 8)).astype(np.float32)
8236
- >>> inputs_np = [prev_attn_out, prev_softmax_max, prev_softmax_sum, cur_attn_out, cur_softmax_max, cur_softmax_sum]
8237
- >>> inputs_ms = [Tensor(item) for item in inputs_np]
8238
- >>> out = ops.ring_attention_update(*inputs_ms)
8239
- >>> print(out[0].shape)
8240
- (4, 6, 16)
8241
- """
8242
- return ring_attention_update_op(prev_attn_out, prev_softmax_max, prev_softmax_sum, cur_attn_out, cur_softmax_max, cur_softmax_sum, actual_seq_qlen, layout)
8243
-
8244
-
8245
8023
  def rms_norm(x, gamma, epsilon=1e-6):
8246
8024
  r"""
8247
8025
  The RmsNorm(Root Mean Square Layer Normalization) operator is a normalization operation. Compared to
@@ -8437,7 +8215,7 @@ def scalar_cast(input_x, input_y):
8437
8215
 
8438
8216
  Args:
8439
8217
  input_x (scalar): The input scalar. Only constant value is allowed.
8440
- input_y (mindspore.dtype): The type to be cast. Only constant value is allowed. And the value should only be mindspore.int64, mindspore.float64, or mindspore.bool.
8218
+ input_y (mindspore.dtype): The type to be cast. Only constant value is allowed. And the value should only be mindspore.int64, mindspore.float64, or mindspore.bool_.
8441
8219
 
8442
8220
  Returns:
8443
8221
  Scalar. The type is the same as the python type corresponding to `input_y`.
@@ -8947,58 +8725,6 @@ def sin(input):
8947
8725
  return sin_op(input)
8948
8726
 
8949
8727
 
8950
- def smooth_l1_loss(prediction, target, beta=1.0, reduction='none'):
8951
- r"""
8952
- Calculate the smooth L1 loss, and the L1 loss function has robustness.
8953
-
8954
- Refer to :func:`mindspore.ops.smooth_l1_loss` for more details.
8955
-
8956
- .. warning::
8957
- This API has poor performance on CPU and it is recommended to run it on the Ascend/GPU.
8958
-
8959
- Args:
8960
- beta (number, optional): A parameter used to control the point where the function will change between
8961
- L1 to L2 loss. Default: ``1.0`` .
8962
-
8963
- - Ascend: The value should be equal to or greater than zero.
8964
- - CPU/GPU: The value should be greater than zero.
8965
- reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
8966
- ``'sum'`` . Default: ``'none'`` .
8967
-
8968
- - ``'none'``: no reduction will be applied.
8969
- - ``'mean'``: compute and return the mean of elements in the output.
8970
- - ``'sum'``: the output elements will be summed.
8971
-
8972
- Inputs:
8973
- - **logits** (Tensor) - Input Tensor of any dimension. Supported dtypes:
8974
-
8975
- - Ascend: float16, float32, bfloat16.
8976
- - CPU/GPU: float16, float32, float64.
8977
- - **labels** (Tensor) - Ground truth data.
8978
-
8979
- - CPU/Ascend: has the same shape as the `logits`, `logits` and `labels` comply with the implicit type conversion rules to make the data types consistent.
8980
- - GPU: has the same shape and dtype as the `logits`.
8981
-
8982
- Outputs:
8983
- Tensor, if `reduction` is ``'none'``, then output is a tensor with the same shape as `logits`. Otherwise the shape of output tensor is :math:`()`.
8984
-
8985
- Supported Platforms:
8986
- ``Ascend`` ``GPU`` ``CPU``
8987
-
8988
- Examples:
8989
- >>> import mindspore
8990
- >>> import numpy as np
8991
- >>> from mindspore import Tensor, ops
8992
- >>> loss = ops.SmoothL1Loss()
8993
- >>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
8994
- >>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
8995
- >>> output = loss(logits, labels)
8996
- >>> print(output)
8997
- [0. 0. 0.5]
8998
- """
8999
- return smooth_l1_loss_impl(prediction, target, beta, reduction)
9000
-
9001
-
9002
8728
  def softplus_ext(input, beta=1, threshold=20):
9003
8729
  r"""
9004
8730
  Applies softplus function to `input` element-wise.
@@ -9458,11 +9184,11 @@ def sub_ext(input, other, alpha=1):
9458
9184
  input (Union[Tensor, number.Number, bool]): The first input is a number.Number or
9459
9185
  a bool or a tensor whose data type is
9460
9186
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
9461
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
9187
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
9462
9188
  other (Union[Tensor, number.Number, bool]): The second input, is a number.Number or
9463
9189
  a bool or a tensor whose data type is
9464
9190
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
9465
- `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
9191
+ `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
9466
9192
  alpha (number.Number): A scaling factor applied to `other`, default 1.
9467
9193
 
9468
9194
  Returns:
@@ -9507,7 +9233,7 @@ def sub(input, other):
9507
9233
  Note:
9508
9234
  - When the two inputs have different shapes, they must be able to broadcast to a common shape.
9509
9235
  - The two inputs can not be bool type at the same time,
9510
- [True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
9236
+ [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type.
9511
9237
  - Support implicit type conversion and type promotion.
9512
9238
 
9513
9239
  Args: