mindspore 2.5.0__cp311-cp311-win_amd64.whl → 2.6.0rc1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (491) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +6 -4
  5. mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
  8. mindspore/_check_jit_forbidden_api.py +3 -0
  9. mindspore/_checkparam.py +3 -33
  10. mindspore/_deprecated/__init__.py +17 -0
  11. mindspore/_deprecated/jit.py +198 -0
  12. mindspore/_extends/builtin_operations.py +1 -1
  13. mindspore/_extends/parse/__init__.py +6 -7
  14. mindspore/_extends/parse/compile_config.py +19 -0
  15. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
  16. mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
  17. mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
  18. mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
  19. mindspore/_extends/parse/parser.py +24 -193
  20. mindspore/_extends/parse/resources.py +1 -5
  21. mindspore/_extends/parse/standard_method.py +97 -74
  22. mindspore/_extends/pijit/__init__.py +2 -2
  23. mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
  24. mindspore/_extends/pijit/tensor_func_list.py +27 -0
  25. mindspore/_extends/utils.py +1 -1
  26. mindspore/amp.py +4 -4
  27. mindspore/atlprov.dll +0 -0
  28. mindspore/avcodec-59.dll +0 -0
  29. mindspore/avdevice-59.dll +0 -0
  30. mindspore/avfilter-8.dll +0 -0
  31. mindspore/avformat-59.dll +0 -0
  32. mindspore/avutil-57.dll +0 -0
  33. mindspore/boost/__init__.py +2 -2
  34. mindspore/boost/base.py +3 -7
  35. mindspore/boost/boost_cell_wrapper.py +2 -2
  36. mindspore/c1.dll +0 -0
  37. mindspore/c1xx.dll +0 -0
  38. mindspore/c2.dll +0 -0
  39. mindspore/common/__init__.py +4 -3
  40. mindspore/common/_grad_function.py +56 -0
  41. mindspore/common/_pijit_context.py +14 -5
  42. mindspore/common/_register_for_tensor.py +1 -1
  43. mindspore/common/_stub_tensor.py +5 -10
  44. mindspore/common/_tensor_cpp_method.py +1 -1
  45. mindspore/common/_tensor_docs.py +1915 -3287
  46. mindspore/common/api.py +341 -354
  47. mindspore/common/auto_dynamic_shape.py +41 -44
  48. mindspore/common/dtype.py +5 -2
  49. mindspore/common/dump.py +7 -5
  50. mindspore/common/file_system.py +3 -0
  51. mindspore/common/hook_handle.py +5 -3
  52. mindspore/common/initializer.py +10 -6
  53. mindspore/common/jit_begin_end.py +94 -0
  54. mindspore/common/jit_config.py +6 -1
  55. mindspore/common/jit_context.py +76 -0
  56. mindspore/common/jit_trace.py +378 -0
  57. mindspore/common/lazy_inline.py +2 -2
  58. mindspore/common/mutable.py +5 -4
  59. mindspore/common/parameter.py +106 -39
  60. mindspore/common/seed.py +2 -2
  61. mindspore/common/sparse_tensor.py +23 -17
  62. mindspore/common/tensor.py +297 -714
  63. mindspore/communication/__init__.py +7 -5
  64. mindspore/communication/_comm_helper.py +47 -2
  65. mindspore/communication/comm_func.py +70 -53
  66. mindspore/communication/management.py +83 -17
  67. mindspore/context.py +214 -560
  68. mindspore/dataset/__init__.py +44 -20
  69. mindspore/dataset/audio/__init__.py +2 -8
  70. mindspore/dataset/audio/transforms.py +3 -17
  71. mindspore/dataset/core/config.py +3 -3
  72. mindspore/dataset/engine/cache_client.py +1 -1
  73. mindspore/dataset/engine/datasets.py +102 -120
  74. mindspore/dataset/engine/datasets_audio.py +22 -22
  75. mindspore/dataset/engine/datasets_standard_format.py +43 -24
  76. mindspore/dataset/engine/datasets_text.py +78 -85
  77. mindspore/dataset/engine/datasets_user_defined.py +108 -76
  78. mindspore/dataset/engine/datasets_vision.py +111 -108
  79. mindspore/dataset/engine/iterators.py +5 -3
  80. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
  81. mindspore/dataset/engine/samplers.py +279 -57
  82. mindspore/dataset/engine/serializer_deserializer.py +2 -1
  83. mindspore/dataset/engine/validators.py +10 -0
  84. mindspore/dataset/text/__init__.py +7 -6
  85. mindspore/dataset/text/transforms.py +6 -5
  86. mindspore/dataset/text/utils.py +3 -3
  87. mindspore/dataset/transforms/__init__.py +0 -9
  88. mindspore/dataset/transforms/transforms.py +3 -3
  89. mindspore/dataset/utils/browse_dataset.py +1 -1
  90. mindspore/dataset/vision/__init__.py +2 -9
  91. mindspore/dataset/vision/transforms.py +202 -158
  92. mindspore/dataset/vision/utils.py +7 -5
  93. mindspore/device_context/ascend/op_debug.py +60 -1
  94. mindspore/device_context/ascend/op_tuning.py +0 -4
  95. mindspore/device_manager.py +39 -3
  96. mindspore/dnnl.dll +0 -0
  97. mindspore/dpcmi.dll +0 -0
  98. mindspore/experimental/es/embedding_service.py +35 -27
  99. mindspore/experimental/map_parameter.py +4 -4
  100. mindspore/experimental/optim/adadelta.py +22 -26
  101. mindspore/experimental/optim/adagrad.py +4 -4
  102. mindspore/experimental/optim/adam.py +4 -0
  103. mindspore/experimental/optim/adamax.py +4 -4
  104. mindspore/experimental/optim/adamw.py +4 -0
  105. mindspore/experimental/optim/asgd.py +1 -1
  106. mindspore/experimental/optim/lr_scheduler.py +40 -22
  107. mindspore/experimental/optim/radam.py +5 -5
  108. mindspore/experimental/optim/rprop.py +1 -1
  109. mindspore/experimental/optim/sgd.py +1 -1
  110. mindspore/hal/contiguous_tensors_handle.py +6 -10
  111. mindspore/hal/device.py +55 -81
  112. mindspore/hal/event.py +38 -55
  113. mindspore/hal/memory.py +93 -144
  114. mindspore/hal/stream.py +81 -125
  115. mindspore/include/dataset/constants.h +7 -4
  116. mindspore/include/dataset/execute.h +2 -2
  117. mindspore/jpeg62.dll +0 -0
  118. mindspore/log.py +40 -2
  119. mindspore/mindrecord/__init__.py +20 -7
  120. mindspore/mindspore_backend_common.dll +0 -0
  121. mindspore/mindspore_backend_manager.dll +0 -0
  122. mindspore/mindspore_common.dll +0 -0
  123. mindspore/mindspore_core.dll +0 -0
  124. mindspore/mindspore_dump.dll +0 -0
  125. mindspore/mindspore_frontend.dll +0 -0
  126. mindspore/mindspore_glog.dll +0 -0
  127. mindspore/mindspore_memory_pool.dll +0 -0
  128. mindspore/mindspore_ms_backend.dll +0 -0
  129. mindspore/mindspore_ops.dll +0 -0
  130. mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
  131. mindspore/mindspore_ops_kernel_common.dll +0 -0
  132. mindspore/mindspore_profiler.dll +0 -0
  133. mindspore/mindspore_pyboost.dll +0 -0
  134. mindspore/mindspore_pynative.dll +0 -0
  135. mindspore/mindspore_res_manager.dll +0 -0
  136. mindspore/mindspore_runtime_pipeline.dll +0 -0
  137. mindspore/mint/__init__.py +131 -700
  138. mindspore/mint/distributed/__init__.py +5 -1
  139. mindspore/mint/distributed/distributed.py +194 -109
  140. mindspore/mint/linalg/__init__.py +2 -0
  141. mindspore/mint/nn/__init__.py +280 -18
  142. mindspore/mint/nn/functional.py +282 -64
  143. mindspore/mint/nn/layer/__init__.py +4 -0
  144. mindspore/mint/nn/layer/_functions.py +7 -3
  145. mindspore/mint/nn/layer/activation.py +120 -13
  146. mindspore/mint/nn/layer/conv.py +218 -24
  147. mindspore/mint/nn/layer/normalization.py +15 -16
  148. mindspore/mint/nn/layer/padding.py +1 -1
  149. mindspore/mint/nn/layer/pooling.py +66 -1
  150. mindspore/mint/optim/__init__.py +2 -1
  151. mindspore/mint/optim/sgd.py +171 -0
  152. mindspore/msobj140.dll +0 -0
  153. mindspore/mspdb140.dll +0 -0
  154. mindspore/mspdbcore.dll +0 -0
  155. mindspore/mspdbst.dll +0 -0
  156. mindspore/mspft140.dll +0 -0
  157. mindspore/msvcdis140.dll +0 -0
  158. mindspore/msvcp140_1.dll +0 -0
  159. mindspore/msvcp140_2.dll +0 -0
  160. mindspore/msvcp140_atomic_wait.dll +0 -0
  161. mindspore/msvcp140_codecvt_ids.dll +0 -0
  162. mindspore/nn/__init__.py +4 -1
  163. mindspore/nn/cell.py +1250 -176
  164. mindspore/nn/layer/activation.py +23 -21
  165. mindspore/nn/layer/basic.py +22 -16
  166. mindspore/nn/layer/container.py +1 -1
  167. mindspore/nn/layer/conv.py +22 -17
  168. mindspore/nn/layer/embedding.py +9 -8
  169. mindspore/nn/layer/normalization.py +48 -42
  170. mindspore/nn/layer/pooling.py +75 -31
  171. mindspore/nn/layer/transformer.py +11 -10
  172. mindspore/nn/learning_rate_schedule.py +4 -2
  173. mindspore/nn/loss/loss.py +27 -19
  174. mindspore/nn/optim/ada_grad.py +6 -5
  175. mindspore/nn/optim/adadelta.py +9 -7
  176. mindspore/nn/optim/adafactor.py +1 -1
  177. mindspore/nn/optim/adam.py +16 -12
  178. mindspore/nn/optim/adamax.py +8 -7
  179. mindspore/nn/optim/adasum.py +5 -5
  180. mindspore/nn/optim/asgd.py +1 -1
  181. mindspore/nn/optim/ftrl.py +11 -9
  182. mindspore/nn/optim/lamb.py +1 -1
  183. mindspore/nn/optim/lazyadam.py +12 -10
  184. mindspore/nn/optim/momentum.py +7 -6
  185. mindspore/nn/optim/optimizer.py +2 -2
  186. mindspore/nn/optim/proximal_ada_grad.py +12 -10
  187. mindspore/nn/optim/rmsprop.py +13 -12
  188. mindspore/nn/optim/rprop.py +9 -7
  189. mindspore/nn/optim/sgd.py +9 -6
  190. mindspore/nn/optim/tft_wrapper.py +5 -2
  191. mindspore/nn/probability/bijector/bijector.py +17 -11
  192. mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
  193. mindspore/nn/probability/bijector/invert.py +2 -2
  194. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  195. mindspore/nn/probability/bijector/softplus.py +3 -2
  196. mindspore/nn/probability/distribution/beta.py +3 -3
  197. mindspore/nn/probability/distribution/categorical.py +1 -1
  198. mindspore/nn/probability/distribution/cauchy.py +4 -2
  199. mindspore/nn/probability/distribution/exponential.py +6 -7
  200. mindspore/nn/probability/distribution/gamma.py +2 -2
  201. mindspore/nn/probability/distribution/gumbel.py +2 -2
  202. mindspore/nn/probability/distribution/half_normal.py +5 -3
  203. mindspore/nn/probability/distribution/logistic.py +5 -3
  204. mindspore/nn/probability/distribution/poisson.py +1 -1
  205. mindspore/nn/probability/distribution/uniform.py +5 -3
  206. mindspore/nn/reinforcement/_tensors_queue.py +1 -1
  207. mindspore/nn/reinforcement/tensor_array.py +1 -1
  208. mindspore/nn/wrap/__init__.py +6 -6
  209. mindspore/nn/wrap/cell_wrapper.py +178 -117
  210. mindspore/nn/wrap/grad_reducer.py +45 -36
  211. mindspore/nn/wrap/loss_scale.py +3 -3
  212. mindspore/numpy/array_creations.py +3 -3
  213. mindspore/numpy/array_ops.py +1 -1
  214. mindspore/numpy/math_ops.py +4 -4
  215. mindspore/numpy/utils.py +1 -2
  216. mindspore/numpy/utils_const.py +1 -2
  217. mindspore/opencv_core452.dll +0 -0
  218. mindspore/opencv_imgcodecs452.dll +0 -0
  219. mindspore/opencv_imgproc452.dll +0 -0
  220. mindspore/ops/__init__.py +3 -2
  221. mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
  222. mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
  223. mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
  224. mindspore/ops/_register_for_op.py +0 -11
  225. mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
  226. mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
  227. mindspore/ops/_vmap/vmap_array_ops.py +7 -6
  228. mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
  229. mindspore/ops/_vmap/vmap_math_ops.py +4 -7
  230. mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
  231. mindspore/ops/auto_generate/__init__.py +4 -3
  232. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +102 -49
  233. mindspore/ops/auto_generate/gen_extend_func.py +281 -135
  234. mindspore/ops/auto_generate/gen_ops_def.py +2574 -2326
  235. mindspore/ops/auto_generate/gen_ops_prim.py +8566 -2755
  236. mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
  237. mindspore/ops/composite/__init__.py +2 -1
  238. mindspore/ops/composite/base.py +19 -24
  239. mindspore/ops/composite/math_ops.py +6 -16
  240. mindspore/ops/composite/multitype_ops/__init__.py +5 -2
  241. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -3
  242. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
  243. mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
  244. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  245. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  246. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
  247. mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
  248. mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
  249. mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
  250. mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
  251. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
  252. mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
  253. mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
  254. mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
  255. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
  256. mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
  257. mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
  258. mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
  259. mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
  260. mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
  261. mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
  262. mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
  263. mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
  264. mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
  265. mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
  266. mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
  267. mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
  268. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
  269. mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
  270. mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
  271. mindspore/ops/function/__init__.py +28 -2
  272. mindspore/ops/function/_add_attr_func.py +58 -0
  273. mindspore/ops/function/array_func.py +1629 -2345
  274. mindspore/ops/function/clip_func.py +38 -45
  275. mindspore/ops/function/debug_func.py +36 -44
  276. mindspore/ops/function/grad/__init__.py +1 -0
  277. mindspore/ops/function/grad/grad_func.py +104 -71
  278. mindspore/ops/function/image_func.py +1 -1
  279. mindspore/ops/function/linalg_func.py +46 -78
  280. mindspore/ops/function/math_func.py +3035 -3705
  281. mindspore/ops/function/nn_func.py +676 -241
  282. mindspore/ops/function/other_func.py +159 -1
  283. mindspore/ops/function/parameter_func.py +17 -30
  284. mindspore/ops/function/random_func.py +204 -361
  285. mindspore/ops/function/reshard_func.py +4 -70
  286. mindspore/ops/function/sparse_func.py +3 -3
  287. mindspore/ops/function/sparse_unary_func.py +5 -5
  288. mindspore/ops/function/spectral_func.py +25 -58
  289. mindspore/ops/function/vmap_func.py +24 -17
  290. mindspore/ops/functional.py +6 -4
  291. mindspore/ops/functional_overload.py +547 -4
  292. mindspore/ops/op_info_register.py +32 -244
  293. mindspore/ops/operations/__init__.py +10 -5
  294. mindspore/ops/operations/_custom_ops_utils.py +247 -0
  295. mindspore/ops/operations/_grad_ops.py +1 -10
  296. mindspore/ops/operations/_inner_ops.py +5 -76
  297. mindspore/ops/operations/_ms_kernel.py +4 -10
  298. mindspore/ops/operations/_rl_inner_ops.py +1 -1
  299. mindspore/ops/operations/_scalar_ops.py +3 -2
  300. mindspore/ops/operations/_sequence_ops.py +1 -1
  301. mindspore/ops/operations/_tensor_array.py +1 -1
  302. mindspore/ops/operations/array_ops.py +37 -22
  303. mindspore/ops/operations/comm_ops.py +150 -107
  304. mindspore/ops/operations/custom_ops.py +221 -23
  305. mindspore/ops/operations/debug_ops.py +115 -16
  306. mindspore/ops/operations/inner_ops.py +1 -1
  307. mindspore/ops/operations/linalg_ops.py +1 -58
  308. mindspore/ops/operations/manually_defined/_inner.py +1 -1
  309. mindspore/ops/operations/manually_defined/ops_def.py +746 -79
  310. mindspore/ops/operations/math_ops.py +21 -18
  311. mindspore/ops/operations/nn_ops.py +65 -191
  312. mindspore/ops/operations/other_ops.py +62 -9
  313. mindspore/ops/operations/random_ops.py +13 -7
  314. mindspore/ops/operations/reshard_ops.py +1 -1
  315. mindspore/ops/operations/sparse_ops.py +2 -2
  316. mindspore/ops/primitive.py +43 -32
  317. mindspore/ops/tensor_method.py +232 -13
  318. mindspore/ops_generate/__init__.py +0 -5
  319. mindspore/ops_generate/aclnn/__init__.py +0 -0
  320. mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
  321. mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
  322. mindspore/ops_generate/api/__init__.py +0 -0
  323. mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
  324. mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
  325. mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
  326. mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
  327. mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
  328. mindspore/ops_generate/api/gen_api.py +103 -0
  329. mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
  330. mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
  331. mindspore/ops_generate/common/__init__.py +0 -0
  332. mindspore/ops_generate/common/gen_constants.py +91 -0
  333. mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
  334. mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
  335. mindspore/ops_generate/{template.py → common/template.py} +96 -84
  336. mindspore/ops_generate/gen_ops.py +23 -325
  337. mindspore/ops_generate/op_def/__init__.py +0 -0
  338. mindspore/ops_generate/op_def/gen_op_def.py +90 -0
  339. mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
  340. mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -7
  341. mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
  342. mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
  343. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
  344. mindspore/ops_generate/op_def_py/__init__.py +0 -0
  345. mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
  346. mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
  347. mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
  348. mindspore/ops_generate/pyboost/__init__.py +0 -0
  349. mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
  350. mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
  351. mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
  352. mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
  353. mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
  354. mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
  355. mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
  356. mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
  357. mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
  358. mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
  359. mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
  360. mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
  361. mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
  362. mindspore/ops_generate/resources/__init__.py +0 -0
  363. mindspore/ops_generate/resources/resource_list.py +30 -0
  364. mindspore/ops_generate/resources/resource_loader.py +36 -0
  365. mindspore/ops_generate/resources/resource_manager.py +64 -0
  366. mindspore/ops_generate/resources/yaml_loader.py +88 -0
  367. mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
  368. mindspore/parallel/__init__.py +6 -2
  369. mindspore/parallel/_auto_parallel_context.py +133 -6
  370. mindspore/parallel/_cell_wrapper.py +130 -15
  371. mindspore/parallel/_parallel_serialization.py +95 -4
  372. mindspore/parallel/_ps_context.py +1 -1
  373. mindspore/parallel/_recovery_context.py +7 -2
  374. mindspore/parallel/_tensor.py +142 -18
  375. mindspore/parallel/_utils.py +198 -25
  376. mindspore/parallel/algo_parameter_config.py +3 -3
  377. mindspore/parallel/auto_parallel.py +732 -0
  378. mindspore/parallel/checkpoint_convert.py +159 -0
  379. mindspore/parallel/checkpoint_transform.py +656 -37
  380. mindspore/parallel/cluster/process_entity/_api.py +151 -19
  381. mindspore/parallel/cluster/run.py +1 -1
  382. mindspore/parallel/function/__init__.py +24 -0
  383. mindspore/parallel/function/reshard_func.py +259 -0
  384. mindspore/parallel/nn/__init__.py +25 -0
  385. mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
  386. mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
  387. mindspore/parallel/parameter_broadcast.py +24 -13
  388. mindspore/parallel/shard.py +137 -61
  389. mindspore/parallel/transform_safetensors.py +287 -95
  390. mindspore/pgodb140.dll +0 -0
  391. mindspore/pgort140.dll +0 -0
  392. mindspore/profiler/__init__.py +9 -5
  393. mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
  394. mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
  395. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
  396. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +22 -0
  397. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
  398. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
  399. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
  400. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
  401. mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
  402. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
  403. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
  404. mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
  405. mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
  406. mindspore/profiler/common/constant.py +12 -0
  407. mindspore/profiler/common/msprof_cmd_tool.py +42 -23
  408. mindspore/profiler/common/path_manager.py +24 -0
  409. mindspore/profiler/common/profiler_context.py +26 -2
  410. mindspore/profiler/common/profiler_meta_data.py +74 -0
  411. mindspore/profiler/common/profiler_parameters.py +59 -18
  412. mindspore/profiler/common/profiler_path_manager.py +66 -7
  413. mindspore/profiler/dynamic_profiler.py +112 -79
  414. mindspore/profiler/envprofiler.py +26 -1
  415. mindspore/profiler/experimental_config.py +197 -0
  416. mindspore/profiler/mstx.py +57 -14
  417. mindspore/profiler/platform/npu_profiler.py +33 -7
  418. mindspore/profiler/profiler.py +541 -45
  419. mindspore/profiler/profiler_action_controller.py +1 -1
  420. mindspore/profiler/profiler_interface.py +4 -0
  421. mindspore/profiler/schedule.py +57 -22
  422. mindspore/rewrite/api/node.py +15 -13
  423. mindspore/rewrite/api/symbol_tree.py +1 -1
  424. mindspore/run_check/_check_version.py +25 -14
  425. mindspore/run_check/run_check.py +1 -1
  426. mindspore/runtime/__init__.py +2 -2
  427. mindspore/runtime/executor.py +40 -11
  428. mindspore/runtime/memory.py +25 -8
  429. mindspore/safeguard/rewrite_obfuscation.py +12 -9
  430. mindspore/swresample-4.dll +0 -0
  431. mindspore/swscale-6.dll +0 -0
  432. mindspore/tbbmalloc.dll +0 -0
  433. mindspore/tinyxml2.dll +0 -0
  434. mindspore/train/__init__.py +8 -8
  435. mindspore/train/_utils.py +35 -7
  436. mindspore/train/amp.py +1 -1
  437. mindspore/train/callback/__init__.py +2 -2
  438. mindspore/train/callback/_callback.py +2 -16
  439. mindspore/train/callback/_checkpoint.py +24 -40
  440. mindspore/train/callback/_cluster_monitor.py +14 -18
  441. mindspore/train/callback/_flops_collector.py +2 -3
  442. mindspore/train/callback/_history.py +7 -4
  443. mindspore/train/callback/_lambda_callback.py +2 -2
  444. mindspore/train/callback/_landscape.py +0 -3
  445. mindspore/train/callback/_loss_monitor.py +2 -1
  446. mindspore/train/callback/_on_request_exit.py +6 -5
  447. mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
  448. mindspore/train/callback/_summary_collector.py +8 -13
  449. mindspore/train/callback/_time_monitor.py +2 -1
  450. mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +179 -103
  451. mindspore/train/data_sink.py +25 -2
  452. mindspore/train/dataset_helper.py +4 -5
  453. mindspore/train/loss_scale_manager.py +8 -7
  454. mindspore/train/metrics/accuracy.py +3 -3
  455. mindspore/train/metrics/confusion_matrix.py +9 -9
  456. mindspore/train/metrics/error.py +3 -3
  457. mindspore/train/metrics/hausdorff_distance.py +4 -4
  458. mindspore/train/metrics/mean_surface_distance.py +3 -3
  459. mindspore/train/metrics/metric.py +0 -12
  460. mindspore/train/metrics/occlusion_sensitivity.py +4 -2
  461. mindspore/train/metrics/precision.py +8 -6
  462. mindspore/train/metrics/recall.py +9 -9
  463. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  464. mindspore/train/mind_ir_pb2.py +19 -12
  465. mindspore/train/model.py +176 -103
  466. mindspore/train/serialization.py +246 -988
  467. mindspore/train/summary/_summary_adapter.py +2 -2
  468. mindspore/train/summary/summary_record.py +1 -1
  469. mindspore/turbojpeg.dll +0 -0
  470. mindspore/utils/__init__.py +3 -2
  471. mindspore/utils/dryrun.py +4 -2
  472. mindspore/utils/hooks.py +81 -0
  473. mindspore/utils/utils.py +138 -4
  474. mindspore/vcmeta.dll +0 -0
  475. mindspore/vcruntime140.dll +0 -0
  476. mindspore/vcruntime140_1.dll +0 -0
  477. mindspore/version.py +1 -1
  478. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +2 -1
  479. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +483 -438
  480. mindspore/_install_custom.py +0 -43
  481. mindspore/common/_register_for_adapter.py +0 -74
  482. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
  483. mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
  484. mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
  485. mindspore/ops_generate/gen_constants.py +0 -190
  486. mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
  487. mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
  488. /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
  489. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
  490. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +0 -0
  491. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
@@ -28,8 +28,8 @@ from mindspore.common import dtype as mstype
28
28
  from mindspore.common.tensor import Tensor
29
29
  from mindspore.ops._utils import get_broadcast_shape
30
30
  from mindspore.ops.primitive import Primitive, PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register, _run_op
31
- from mindspore._c_expression import Tensor as Tensor_
32
- from ..auto_generate import (Add, Addcdiv, Addcmul, ReduceMean, ReduceSum, ReduceAll, ReduceAny,
31
+ from mindspore._c_expression import TensorPy as Tensor_
32
+ from ..auto_generate import (Add, Addcdiv, AddcdivExt, Addcmul, AddcmulExt, ReduceMean, ReduceSum, ReduceAll, ReduceAny,
33
33
  ReduceMax, ReduceMin, ReduceProd, Betainc, Neg, MatMul, BatchMatMul,
34
34
  Mul, Square, Rsqrt, Sqrt, Reciprocal, Pow, Exp, Cdist,
35
35
  Logit, ReduceStd, Expm1, Log, Log1p, Erf, Erfc,
@@ -819,6 +819,7 @@ class InplaceIndexAdd(Primitive):
819
819
  """Initialize InplaceIndexAdd"""
820
820
  self.init_prim_io_names(inputs=['var', 'indices', 'updates'], outputs=['var'])
821
821
  self.axis = axis
822
+ self.add_prim_attr('side_effect_mem', True)
822
823
  validator.check_value_type('axis', axis, [int], self.name)
823
824
 
824
825
 
@@ -1128,7 +1129,7 @@ class Histogram(Primitive):
1128
1129
  class HistogramFixedWidth(PrimitiveWithInfer):
1129
1130
  """
1130
1131
  Returns a rank 1 histogram counting the number of entries in values that fall into every bin. The bins are equal
1131
- width and determined by the inputs `range` and the arguments `nbins`.
1132
+ width and determined by the input `range` and the argument `nbins`.
1132
1133
 
1133
1134
  Args:
1134
1135
  nbins (int): The number of histogram bins, the type is a positive integer.
@@ -1349,7 +1350,7 @@ class MulNoNan(_MathBinaryOp):
1349
1350
  int32, int64, float16, float32, float64, complex64, complex128 currently or scalar.
1350
1351
 
1351
1352
  Outputs:
1352
- Tensor, the shape is the same as the shape after broadcasting,
1353
+ Tensor, the shape is the same as the shape of input Tensor after broadcasting,
1353
1354
  and the data type is the one with higher precision among the two inputs.
1354
1355
 
1355
1356
  Raises:
@@ -1735,7 +1736,8 @@ class ApproximateEqual(_LogicBinaryOp):
1735
1736
  the relatively highest precision data type.
1736
1737
 
1737
1738
  Args:
1738
- tolerance (float): The maximum deviation that two elements can be considered equal. Default: ``1e-05`` .
1739
+ tolerance (float, optional): The maximum deviation that two elements can be considered equal.
1740
+ Default: ``1e-05`` .
1739
1741
 
1740
1742
  Inputs:
1741
1743
  - **x** (Tensor) - A tensor. Must be one of the following types: float32, float16.
@@ -1917,14 +1919,14 @@ class NPUGetFloatStatus(Primitive):
1917
1919
  :class:`mindspore.ops.NPUGetFloatStatus` updates the flag which is
1918
1920
  the output tensor of :class:`mindspore.ops.NPUAllocFloatStatus` with the latest overflow status.
1919
1921
 
1920
-
1921
1922
  Note:
1922
1923
  The flag is a tensor whose shape is :math:`(8,)` and data type is `mindspore.dtype.float32`.
1923
1924
  If the sum of the flag equals to 0, there is no overflow happened. If the sum of the
1924
1925
  flag is bigger than 0, there is overflow happened.
1925
1926
  In addition, there are strict sequencing requirements for use, i.e., before
1926
1927
  using the NPUGetFloatStatus operator, need to ensure that the NPUClearFlotStatus
1927
- and your compute has been executed. We use :class:`mindspore.ops.Depend` to ensure the execution order.
1928
+ and your compute has been executed. We use :class:`mindspore.ops.Depend`
1929
+ to ensure the correct execution order.
1928
1930
 
1929
1931
  Inputs:
1930
1932
  - **x** (Tensor) - The output tensor of `NPUAllocFloatStatus`.
@@ -1932,7 +1934,7 @@ class NPUGetFloatStatus(Primitive):
1932
1934
  :math:`(N,*)` where :math:`*` means, any number of additional dimensions, its rank should be less than 8.
1933
1935
 
1934
1936
  Outputs:
1935
- Tensor, has the same shape as `x`. All the elements in the tensor will be zero.
1937
+ Tensor, has the same shape as `x`.
1936
1938
 
1937
1939
  Raises:
1938
1940
  TypeError: If `x` is not a Tensor.
@@ -3386,9 +3388,8 @@ class Imag(Primitive):
3386
3388
 
3387
3389
  Examples:
3388
3390
  >>> import mindspore
3389
- >>> import numpy as np
3390
- >>> from mindspore import Tensor, ops
3391
- >>> x = Tensor(np.asarray(np.complex(1.3+0.4j)), mindspore.complex64)
3391
+ >>> from mindspore import ops
3392
+ >>> x = mindspore.tensor(1.3+0.4j, mindspore.complex64)
3392
3393
  >>> imag = ops.Imag()
3393
3394
  >>> output = imag(x)
3394
3395
  >>> print(output)
@@ -3889,8 +3890,8 @@ class Digamma(Primitive):
3889
3890
  Tensor, has the same dtype as `x`.
3890
3891
 
3891
3892
  Raises:
3892
- TypeError: If x is not a Tensor.
3893
- TypeError: If dtype of input x is not float16 or float32 or float64.
3893
+ TypeError: If `x` is not a Tensor.
3894
+ TypeError: If dtype of input `x` is not float16 or float32 or float64.
3894
3895
 
3895
3896
  Supported Platforms:
3896
3897
  ``GPU`` ``CPU``
@@ -4042,7 +4043,10 @@ class Median(Primitive):
4042
4043
  axis (int, optional): The specified dimension to compute median. Default: ``0`` .
4043
4044
  keep_dims (bool, optional): Whether the output tensor need to retain `axis` dimension or not.
4044
4045
  Default: ``False`` .
4045
- ignore_nan (bool, optional): Whether to ignore the NaN values in input Tensor. Default: ``False`` .
4046
+ ignore_nan (bool, optional): Whether to ignore the ``NaN`` values in input Tensor. When ``False``, if the
4047
+ input range (determined by `global_median`) contains a ``NaN`` value, the corresponding element of
4048
+ `values` is ``NaN``. When ``True``, calculates the median of the remaining elements after excluding
4049
+ ``NaN``. Default: ``False`` .
4046
4050
 
4047
4051
  Inputs:
4048
4052
  - **x** (Tensor) - A Tensor to calculate median with.
@@ -4433,8 +4437,7 @@ class CholeskySolve(Primitive):
4433
4437
 
4434
4438
  class TrilIndices(Primitive):
4435
4439
  r"""
4436
- Calculates the indices of the lower triangular elements in a `row` * `col` matrix
4437
- and returns them as a 2-by-N Tensor.
4440
+ Computes the indices of the lower triangular elements of a 2D matrix and returns them as a Tensor.
4438
4441
 
4439
4442
  .. warning::
4440
4443
  This is an experimental API that is subject to change or deletion.
@@ -4635,9 +4638,9 @@ class TriuIndices(Primitive):
4635
4638
  An optional data type of ``mstype.int32`` and ``mstype.int64`` . Default: ``mstype.int32`` .
4636
4639
 
4637
4640
  Outputs:
4638
- - **y** (Tensor) - indices of the elements in lower triangular part of matrix. The type specified by `dtype`.
4641
+ - **y** (Tensor) - indices of the elements in upper triangular part of matrix. The type specified by `dtype`.
4639
4642
  The shape of output is :math:`(2, tril\_size)`, where :math:`tril\_size` is the number of elements in the
4640
- lower triangular matrix.
4643
+ upper triangular matrix.
4641
4644
 
4642
4645
  Supported Platforms:
4643
4646
  ``Ascend`` ``GPU`` ``CPU``
@@ -37,11 +37,11 @@ from ..auto_generate import (CeLU, Flatten, LogSoftmax, LogSoftmaxExt, GLU, ReLU
37
37
  Elu, Sigmoid, Softmax, SoftplusExt, HSwish, HSigmoid, AvgPool, BiasAdd,
38
38
  NLLLoss, OneHot, GeLU, FastGeLU, PReLU, RmsNorm, IncreFlashAttention, MSELossExt,
39
39
  GridSampler3D, GridSampler2D, LayerNorm, LayerNormExt, HShrink, AdamWeightDecay, Dropout,
40
- ApplyRotaryPosEmb, PagedAttention, PagedAttentionMask, ReshapeAndCache,
40
+ ApplyRotaryPosEmb, GroupTopk, PagedAttention, PagedAttentionMask, ReshapeAndCache,
41
41
  FlashAttentionScore, PromptFlashAttention, Embedding, UpsampleNearest1D, UpsampleNearest2D,
42
42
  UpsampleNearest3D, UpsampleTrilinear3D,
43
- UpsampleBilinear2D, UpsampleLinear1D,
44
- BinaryCrossEntropy, BCEWithLogitsLoss, SoftShrink,
43
+ SoftMarginLoss, UpsampleBilinear2D, UpsampleLinear1D,
44
+ BinaryCrossEntropy, BCEWithLogitsLoss, SoftShrink, AdaptiveMaxPool2D,
45
45
  SmoothL1Loss)
46
46
  from .manually_defined import BatchNorm
47
47
 
@@ -249,78 +249,6 @@ class AdaptiveAvgPool2D(Primitive):
249
249
  self.add_prim_attr('output_size', self.output_size)
250
250
 
251
251
 
252
- class AdaptiveMaxPool2D(Primitive):
253
- r"""
254
- Performs 2D adaptive max pooling on a multi-plane input signal.
255
-
256
- Refer to :func:`mindspore.ops.adaptive_max_pool2d` for more details.
257
-
258
- Args:
259
- output_size (Union[int, tuple]): The target output size. `output_size` can be a tuple :math:`(H, W)`,
260
- or an int H for :math:`(H, H)`. :math:`H` and :math:`W` can be int or None.
261
- If it is None, it means the output size is the same as the input size.
262
-
263
- Inputs:
264
- - **input_x** (Tensor) - The input of AdaptiveMaxPool2D, which is a 3D or 4D tensor,
265
- with float16, float32 or float64 data type.
266
-
267
- Outputs:
268
- Tensor, with the same type as the `input_x`.
269
-
270
- Supported Platforms:
271
- ``Ascend`` ``GPU`` ``CPU``
272
-
273
- Examples:
274
- >>> # case 1: output_size=(None, 2)
275
- >>> input_x = Tensor(np.array([[[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
276
- ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
277
- ... [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]]), mindspore.float32)
278
- >>> adaptive_max_pool_2d = ops.AdaptiveMaxPool2D((None, 2))
279
- >>> output = adaptive_max_pool_2d(input_x)
280
- >>> print(output[0])
281
- [[[[2. 3.]
282
- [5. 6.]
283
- [8. 9.]]
284
- [[2. 3.]
285
- [5. 6.]
286
- [8. 9.]]
287
- [[2. 3.]
288
- [5. 6.]
289
- [8. 9.]]]]
290
- >>> # case 2: output_size=2
291
- >>> adaptive_max_pool_2d = ops.AdaptiveMaxPool2D(2)
292
- >>> output = adaptive_max_pool_2d(input_x)
293
- >>> print(output[0])
294
- [[[[5. 6.]
295
- [8. 9.]]
296
- [[5. 6.]
297
- [8. 9.]]
298
- [[5. 6.]
299
- [8. 9.]]]]
300
- >>> # case 3: output_size=(1, 2)
301
- >>> adaptive_max_pool_2d = ops.AdaptiveMaxPool2D((1, 2))
302
- >>> output = adaptive_max_pool_2d(input_x)
303
- >>> print(output[0])
304
- [[[[8. 9.]]
305
- [[8. 9.]]
306
- [[8. 9.]]]]
307
- """
308
-
309
- @prim_attr_register
310
- def __init__(self, output_size):
311
- """Initialize AdaptiveMaxPool2D."""
312
- validator.check_value_type("output_size", output_size, [int, tuple], self.name)
313
- if isinstance(output_size, tuple):
314
- validator.check_int(len(output_size), 2, validator.EQ,
315
- 'length of output_size', self.name)
316
- self.output_size = (output_size, output_size) if isinstance(self.output_size, int) else output_size
317
- self.output_size = (-1 if self.output_size[0] is None else self.output_size[0],
318
- -1 if self.output_size[1] is None else self.output_size[1])
319
- for size in self.output_size:
320
- validator.check_number("output_size", size, -1, validator.GE, None)
321
- self.add_prim_attr('output_size', self.output_size)
322
-
323
-
324
252
  class AdaptiveMaxPool3D(Primitive):
325
253
  r"""
326
254
  Performs 3D adaptive max pooling on a multi-plane input signal.
@@ -883,13 +811,13 @@ class Conv2D(Primitive):
883
811
 
884
812
  Inputs:
885
813
  - **x** (Tensor) - Input tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` or
886
- :math:`(N, H_{in}, W_{in}, C_{in}, )` depending on `data_format` .
814
+ :math:`(N, H_{in}, W_{in}, C_{in})` depending on `data_format` .
887
815
  - **weight** (Tensor) - The convolutional kernel value, it should has shape
888
816
  :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})` .
889
817
 
890
818
  Outputs:
891
819
  Tensor, the value that applied 2D convolution. The shape is :math:`(N, C_{out}, H_{out}, W_{out})`
892
- or :math:`(N, H_{out}, W_{out}, C_{out}, )`.
820
+ or :math:`(N, H_{out}, W_{out}, C_{out})`.
893
821
  To see how different pad modes affect the output shape, please refer to
894
822
  :class:`mindspore.nn.Conv2d` for more details.
895
823
 
@@ -2055,17 +1983,18 @@ class Conv2DTranspose(Conv2DBackpropInput):
2055
1983
  If this mode is set, `pad` must be greater than or equal to 0.
2056
1984
 
2057
1985
  Please refer to :class:`mindspore.nn.Conv2dTranspose` for more specifications about `pad_mode`.
2058
- pad (Union[int, tuple[int]]): The pad value to be filled. Default: ``0`` . If `pad` is an integer, the paddings
2059
- of top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers,
2060
- the padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3]
2061
- correspondingly.
2062
- pad_list (Union[str, None]): The pad list like (top, bottom, left, right). Default: ``None`` .
2063
- mode (int): Modes for different convolutions. The value is currently not used. Default: ``1`` .
2064
- stride (Union[int, tuple[int]]): The stride to be applied to the convolution filter. Default: ``1`` .
2065
- dilation (Union[int, tuple[int]]): Specifies the dilation rate to be used for the dilated convolution.
1986
+ pad (Union[int, tuple[int]], optional): The pad value to be filled. Default: ``0`` .
1987
+ If `pad` is an integer, the paddings
1988
+ of top, bottom, left and right are the same, equal to pad. If `pad` is a tuple of four integers,
1989
+ the padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3]
1990
+ correspondingly.
1991
+ pad_list (Union[str, None], optional): The pad list like (top, bottom, left, right). Default: ``None`` .
1992
+ mode (int, optional): Modes for different convolutions. The value is currently not used. Default: ``1`` .
1993
+ stride (Union[int, tuple[int]], optional): The stride to be applied to the convolution filter. Default: ``1`` .
1994
+ dilation (Union[int, tuple[int]], optional): Specifies the dilation rate to be used for the dilated convolution.
2066
1995
  Default: ``1`` .
2067
- group (int): Splits input into groups. Default: ``1`` .
2068
- data_format (str): The format of input and output data. It should be ``'NHWC'`` or ``'NCHW'`` .
1996
+ group (int, optional): Splits input into groups. Default: ``1`` .
1997
+ data_format (str, optional): The format of input and output data. It should be ``'NHWC'`` or ``'NCHW'`` .
2069
1998
  Default is ``'NCHW'`` .
2070
1999
 
2071
2000
  Inputs:
@@ -2133,7 +2062,7 @@ class SoftmaxCrossEntropyWithLogits(Primitive):
2133
2062
  - **labels** (Tensor) - Ground truth labels, with shape :math:`(N, C)`, has the same data type with `logits`.
2134
2063
 
2135
2064
  Outputs:
2136
- Tuple of 2 tensors(loss, dlogits), the `loss` shape is :math:`(N,)`,
2065
+ Tuple of 2 tensors( `loss` , `dlogits` ), the `loss` shape is :math:`(N,)`,
2137
2066
  and the `dlogits` with the same shape as `logits`.
2138
2067
 
2139
2068
  Raises:
@@ -2167,7 +2096,7 @@ class SparseSoftmaxCrossEntropyWithLogits(Primitive):
2167
2096
  r"""
2168
2097
  Computes the softmax cross-entropy value between logits and sparse encoding labels.
2169
2098
 
2170
- Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
2099
+ Sets input logits as `X`, input label as `Y`, output as `loss`. The formula is as follows:
2171
2100
 
2172
2101
  .. math::
2173
2102
  \begin{array}{ll} \\
@@ -2177,7 +2106,7 @@ class SparseSoftmaxCrossEntropyWithLogits(Primitive):
2177
2106
  \end{array}
2178
2107
 
2179
2108
  Args:
2180
- is_grad (bool): If ``True`` , this operation returns the computed gradient. Default: ``False`` .
2109
+ is_grad (bool, optional): If ``True`` , this operation returns the computed gradient. Default: ``False`` .
2181
2110
 
2182
2111
  Inputs:
2183
2112
  - **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type must be float16 or float32.
@@ -2185,7 +2114,7 @@ class SparseSoftmaxCrossEntropyWithLogits(Primitive):
2185
2114
  Data type must be int32 or int64.
2186
2115
 
2187
2116
  Outputs:
2188
- Tensor, if `is_grad` is False, the output tensor is the value of loss which is a scalar tensor;
2117
+ Tensor, if `is_grad` is ``False``, the output tensor is the value of loss;
2189
2118
  if `is_grad` is ``True`` , the output tensor is the gradient of input with the same shape as `logits`.
2190
2119
 
2191
2120
  Raises:
@@ -2284,10 +2213,10 @@ class ApplyMomentum(Primitive):
2284
2213
  Refer to :class:`mindspore.nn.Momentum` for more details about the formula and usage.
2285
2214
 
2286
2215
  Args:
2287
- use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors
2216
+ use_locking (bool, optional): Whether to enable a lock to protect the variable and accumulation tensors
2288
2217
  from being updated. Default: ``False`` .
2289
- use_nesterov (bool): Enable Nesterov momentum. Default: ``False`` .
2290
- gradient_scale (float): The scale of the gradient. Default: ``1.0`` .
2218
+ use_nesterov (bool, optional): Enable Nesterov momentum. Default: ``False`` .
2219
+ gradient_scale (float, optional): The scale of the gradient. Default: ``1.0`` .
2291
2220
 
2292
2221
  Inputs:
2293
2222
  - **variable** (Union[Parameter, Tensor]) - Weights to be updated. Data type must be float64, int64, float,
@@ -2424,63 +2353,6 @@ class MultiMarginLoss(Primitive):
2424
2353
  return super().__call__(x, target, weight)
2425
2354
 
2426
2355
 
2427
- class SoftMarginLoss(Primitive):
2428
- r"""
2429
- SoftMarginLoss operation.
2430
-
2431
- Creates a criterion that optimizes a two-class classification
2432
- logistic loss between input tensor :math:`x` and target tensor :math:`y`
2433
- (containing 1 or -1).
2434
-
2435
- .. math::
2436
- \text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
2437
-
2438
- where :math:`x.nelement()` is the number of elements of x.
2439
-
2440
- Args:
2441
- reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
2442
- ``'sum'`` . Default: ``'mean'`` .
2443
-
2444
- - ``'none'``: no reduction will be applied.
2445
- - ``'mean'``: compute and return the mean of elements in the output.
2446
- - ``'sum'``: the output elements will be summed.
2447
-
2448
- Inputs:
2449
- - **logits** (Tensor) - Predict data. Data type must be float16 or float32.
2450
- - **labels** (Tensor) - Ground truth data, with the same type and shape as `logits`.
2451
-
2452
- Outputs:
2453
- Tensor or Scalar, if `reduction` is ``"none"``, its shape is the same as `logits`.
2454
- Otherwise, a scalar value will be returned.
2455
-
2456
- Raises:
2457
- TypeError: If `logits` or `labels` is not a Tensor.
2458
- TypeError: If dtype of `logits` or `labels` is neither float16 nor float32.
2459
- ValueError: If shape of `logits` is not the same as `labels`.
2460
- ValueError: If `reduction` is not one of ``"none"`` , ``"mean"`` or ``"sum"`` .
2461
-
2462
- Supported Platforms:
2463
- ``Ascend`` ``GPU``
2464
-
2465
- Examples:
2466
- >>> import mindspore
2467
- >>> import numpy as np
2468
- >>> from mindspore import Tensor, ops
2469
- >>> loss = ops.SoftMarginLoss()
2470
- >>> logits = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32)
2471
- >>> labels = Tensor(np.array([[-1, 1], [1, -1]]), mindspore.float32)
2472
- >>> output = loss(logits, labels)
2473
- >>> print(output)
2474
- 0.6764238
2475
- """
2476
-
2477
- @prim_attr_register
2478
- def __init__(self, reduction="mean"):
2479
- """Initialize SoftMarginLoss"""
2480
- self.init_prim_io_names(inputs=['predict', 'label'], outputs=['loss'])
2481
- self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
2482
-
2483
-
2484
2356
  class L2Loss(Primitive):
2485
2357
  r"""
2486
2358
  Calculates half of the L2 norm, but do not square the result.
@@ -2744,12 +2616,12 @@ class ApplyRMSProp(PrimitiveWithInfer):
2744
2616
  :math:`\eta` represents `learning_rate`. :math:`\nabla Q_{i}(w)` represents `grad`.
2745
2617
 
2746
2618
  .. warning::
2747
- Note that in dense implementation of this algorithm, "mean_square" and "moment" will update even if "grad" is 0,
2748
- but in this sparse implementation, "mean_square" and "moment" will not update
2749
- in iterations during which "grad" is 0.
2619
+ Note that in dense implementation of this algorithm, `mean_square` and `moment` will update even if `grad` is 0,
2620
+ but in this sparse implementation, `mean_square` and `moment` will not update
2621
+ in iterations during which `grad` is 0.
2750
2622
 
2751
2623
  Args:
2752
- use_locking (bool): Whether to enable a lock to protect the variable and accumulation tensors
2624
+ use_locking (bool, optional): Whether to enable a lock to protect the variable and accumulation tensors
2753
2625
  from being updated. Default: ``False`` .
2754
2626
 
2755
2627
  Inputs:
@@ -3407,7 +3279,7 @@ class ComputeAccidentalHits(Primitive):
3407
3279
  the weight is FLOAT_MAX. FLOAT_MAX indicates the max value in the type of Float
3408
3280
 
3409
3281
  Args:
3410
- num_true (int): The number of target classes per training example. Default: ``1`` .
3282
+ num_true (int, optional): The number of target classes per training example. Default: ``1`` .
3411
3283
 
3412
3284
  Inputs:
3413
3285
  - **true_classes** (Tensor) - The target classes. With data type of int64
@@ -4212,7 +4084,7 @@ class KLDivLoss(Primitive):
4212
4084
  or ``'sum'``.
4213
4085
 
4214
4086
  Args:
4215
- reduction (str): Specifies the reduction to be applied to the output.
4087
+ reduction (str, optional): Specifies the reduction to be applied to the output.
4216
4088
  Default: ``'mean'`` .
4217
4089
 
4218
4090
  - ``'none'``: no reduction will be applied.
@@ -4233,7 +4105,7 @@ class KLDivLoss(Primitive):
4233
4105
  TypeError: If neither `logits` nor `labels` is a Tensor.
4234
4106
  TypeError: If dtype of `logits` or `labels` is not currently supported.
4235
4107
  ValueError: If shape of `logits` is not the same as `labels`.
4236
- RuntimeError: If `logits` or `labels` is a scalar when `reduction` is 'batchmean'.
4108
+ RuntimeError: If `logits` or `labels` is a scalar when `reduction` is ``'batchmean'``.
4237
4109
 
4238
4110
  Supported Platforms:
4239
4111
  ``Ascend`` ``GPU`` ``CPU``
@@ -4710,9 +4582,10 @@ class SparseApplyAdagradV2(Primitive):
4710
4582
  Args:
4711
4583
  lr (float): Learning rate.
4712
4584
  epsilon (float): A small value added for numerical stability.
4713
- use_locking (bool): If ``True`` , the `var` and `accum` tensors will be protected from being updated.
4585
+ use_locking (bool, optional): If ``True`` , the `var` and `accum` tensors will be protected from being updated.
4714
4586
  Default: ``False`` .
4715
- update_slots (bool): If ``True`` , the computation logic will be different to `False`. Default: ``True`` .
4587
+ update_slots (bool, optional): If ``True`` , the computation logic will be different to `False`.
4588
+ Default: ``True`` .
4716
4589
 
4717
4590
  Inputs:
4718
4591
  - **var** (Union[Parameter, Tensor]) - Variable to be updated. The data type must be float16 or float32.
@@ -4801,8 +4674,8 @@ class ApplyProximalAdagrad(Primitive):
4801
4674
  the relatively highest priority data type.
4802
4675
 
4803
4676
  Args:
4804
- use_locking (bool): If ``True`` , the var and accumulation tensors will be protected from being updated.
4805
- Default: ``False`` .
4677
+ use_locking (bool, optional): If ``True`` , the var and accumulation tensors will be protected
4678
+ from being updated. Default: ``False`` .
4806
4679
 
4807
4680
  Inputs:
4808
4681
  - **var** (Union[Parameter, Tensor]) - Variable to be updated. The data type must be float16 or float32.
@@ -5699,7 +5572,7 @@ class Dropout3D(PrimitiveWithInfer):
5699
5572
  Dropout3D can improve the independence between channel feature maps.
5700
5573
 
5701
5574
  Args:
5702
- keep_prob (float): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8,
5575
+ keep_prob (float, optional): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8,
5703
5576
  means dropping out 20% of channels. Default: ``0.5`` .
5704
5577
 
5705
5578
  Inputs:
@@ -5751,12 +5624,14 @@ class CTCLoss(Primitive):
5751
5624
  such that the length of target series must be less than or equal to the length of input.
5752
5625
 
5753
5626
  Args:
5754
- preprocess_collapse_repeated (bool): If ``True`` , repeated labels will be collapsed prior to the CTC
5627
+ preprocess_collapse_repeated (bool, optional): If ``True`` , repeated labels will be collapsed prior to the CTC
5755
5628
  calculation. Default: ``False`` .
5756
- ctc_merge_repeated (bool): If ``False`` , during CTC calculation, repeated non-blank labels will not be merged
5629
+ ctc_merge_repeated (bool, optional): If ``False`` , during CTC calculation,
5630
+ repeated non-blank labels will not be merged
5757
5631
  and these labels will be interpreted as individual ones. This is a simplified
5758
5632
  version of CTC. Default: ``True`` .
5759
- ignore_longer_outputs_than_inputs (bool): If ``True`` , sequences with longer outputs than inputs will be
5633
+ ignore_longer_outputs_than_inputs (bool, optional): If ``True`` ,
5634
+ sequences with longer outputs than inputs will be
5760
5635
  ignored. Default: ``False`` .
5761
5636
 
5762
5637
  Inputs:
@@ -6330,10 +6205,7 @@ class AvgPool3D(Primitive):
6330
6205
 
6331
6206
  Typically the input is of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`, AvgPool3D outputs
6332
6207
  regional average in the :math:`(D_{in}, H_{in}, W_{in})`-dimension. Given kernel size
6333
- :math:`ks = (d_{ker}, h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1, s_2)`, the operation is as follows.
6334
-
6335
- .. warning::
6336
- "kernel_size" is in the range [1, 255]. "strides" is in the range [1, 63].
6208
+ :math:`ks = (d_{ker}, h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1, s_2)`, the operation is as follows:
6337
6209
 
6338
6210
  .. math::
6339
6211
  \text{output}(N_i, C_j, d, h, w) =
@@ -6344,12 +6216,13 @@ class AvgPool3D(Primitive):
6344
6216
  This interface currently does not support Atlas A2 training series products.
6345
6217
 
6346
6218
  Args:
6347
- kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
6219
+ kernel_size (Union[int, tuple[int]], optional): The size of kernel used to take the average value,
6348
6220
  is an int number that represents depth, height and width are both kernel_size, or a tuple
6349
- of three int numbers that represent depth, height and width respectively. Default: ``1`` .
6350
- strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
6221
+ of three int numbers that represent depth, height and width respectively.
6222
+ Default: ``1`` . The value range is: [1, 255].
6223
+ strides (Union[int, tuple[int]], optional): The distance of kernel moving, an int number that represents
6351
6224
  the depth, height and width of movement are both strides, or a tuple of three int numbers that
6352
- represent depth, height and width of movement respectively. Default: ``1`` .
6225
+ represent depth, height and width of movement respectively. Default: ``1`` . The value range is: [1, 63].
6353
6226
  pad_mode (str, optional): Specifies the padding mode with a padding value of 0. It can be set to:
6354
6227
  ``"same"`` , ``"valid"`` or ``"pad"`` . Default: ``"valid"`` .
6355
6228
 
@@ -6366,16 +6239,18 @@ class AvgPool3D(Primitive):
6366
6239
  in the depth, height and width dimension is determined by the `pad` parameter.
6367
6240
  If this mode is set, `pad` must be greater than or equal to 0.
6368
6241
 
6369
- pad (Union(int, tuple[int], list[int])): The pad value to be filled. Default: ``0`` . If `pad` is an integer,
6242
+ pad (Union(int, tuple[int], list[int]), optional): The pad value to be filled. Default: ``0`` .
6243
+ If `pad` is an integer,
6370
6244
  the paddings of head, tail, top, bottom, left and right are the same, equal to pad.
6371
6245
  If `pad` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equal to
6372
6246
  pad[0], pad[1], pad[2], pad[3], pad[4] and pad[5] correspondingly.
6373
- ceil_mode (bool): If ``True`` , ceil instead of floor to compute the output shape. Default: ``False`` .
6374
- count_include_pad (bool): If ``True`` , averaging calculation will include the zero-padding.
6247
+ ceil_mode (bool, optional): If ``True`` , ceil instead of floor to compute the output shape.
6248
+ Default: ``False`` .
6249
+ count_include_pad (bool, optional): If ``True`` , averaging calculation will include the zero-padding.
6375
6250
  Default: ``True`` .
6376
- divisor_override (int): If specified, it will be used as divisor in the averaging calculation,
6251
+ divisor_override (int, optional): If specified, it will be used as divisor in the averaging calculation,
6377
6252
  otherwise kernel_size will be used. Default: ``0`` .
6378
- data_format (str) : The optional value for data format. Currently only support ``'NCDHW'`` .
6253
+ data_format (str, optional): The optional value for data format. Currently only support ``'NCDHW'`` .
6379
6254
  Default: ``'NCDHW'`` .
6380
6255
 
6381
6256
  Inputs:
@@ -6980,9 +6855,9 @@ class CTCLossV2(Primitive):
6980
6855
  and its correlated gradient to zero. Default: ``False`` .
6981
6856
 
6982
6857
  Inputs:
6983
- - **log_probs** (Tensor) - A tensor of shape :math:`(T, N, C)`, where :math:`T` is input length, :math:`N` is
6858
+ - **log_probs** (Tensor) - A 3D tensor of shape :math:`(T, N, C)`, where :math:`T` is input length, :math:`N` is
6984
6859
  batch size and :math:`C` is number of classes (including blank). Supported dtypes: float32, float64.
6985
- - **targets** (Tensor) - A tensor of shape :math:`(N, S)`, where :math:`S` is max target length,
6860
+ - **targets** (Tensor) - A 2D tensor of shape :math:`(N, S)`, where :math:`S` is max target length,
6986
6861
  means the target sequences. Supported dtypes: int32, int64.
6987
6862
  - **input_lengths** (Union(Tuple, Tensor)) - A tuple or Tensor of shape :math:`(N)`.
6988
6863
  It means the lengths of the input. Supported dtypes: int32, int64.
@@ -7053,7 +6928,7 @@ class CTCLossV2Grad(Primitive):
7053
6928
 
7054
6929
  Args:
7055
6930
  blank (int): The blank label. Default: ``0`` .
7056
- reduction (string): Apply specific reduction method to the output. Currently only support 'none'.
6931
+ reduction (str): Apply specific reduction method to the output. Currently only support 'none'.
7057
6932
  Default: ``"none"`` .
7058
6933
  zero_infinity (bool): Whether to set infinite loss and correlation gradient to zero. Default: ``False`` .
7059
6934
 
@@ -7527,9 +7402,8 @@ class ApplyAdagradDA(Primitive):
7527
7402
  >>> global_step = Tensor(2, mstype.int32)
7528
7403
  >>> output = net(grad, lr, l1, l2, global_step)
7529
7404
  >>> print(output)
7530
- (Tensor(shape=[2, 2], dtype=Float32, value=
7531
- [[-7.39064650e-04, -1.36888528e-03],
7532
- [-5.96988888e-04, -1.42478070e-03]]))
7405
+ [[-0.00073906, -0.00136889],
7406
+ [-0.00059699, -0.00142478]]
7533
7407
  """
7534
7408
 
7535
7409
  __mindspore_signature__ = (
@@ -8058,7 +7932,7 @@ class ApplyAdamWithAmsgradV2(Primitive):
8058
7932
 
8059
7933
  Args:
8060
7934
  use_locking (bool): If ``True`` , updating of the `var`, `m`, and `v` tensors will
8061
- be protected by a lock; Otherwise the behavior is undefined, but may exhibit less contention.
7935
+ be protected by a lock; Otherwise some contention may occur.
8062
7936
  Default: ``False`` .
8063
7937
 
8064
7938
  Inputs:
@@ -8606,13 +8480,13 @@ class TripletMarginLoss(Primitive):
8606
8480
  - **margin** (Tensor) - Make a margin between the positive pair and the negative pair.
8607
8481
 
8608
8482
  Outputs:
8609
- Union[Tensor, Scalar], if `reduction` is ``"none"``, its shape is :math:`(N)`.
8483
+ Union[Tensor, Scalar], if `reduction` is ``"none"``, a Ten sor will be returned with a shape of :math:`(N)`.
8610
8484
  Otherwise, a scalar value will be returned.
8611
8485
 
8612
8486
  Raises:
8613
- TypeError: If `x` or `positive` or `negative` or `margin` is not a Tensor.
8614
- TypeError: If dtype of `x` or `positive` or `negative` is not BasicType.
8615
- TypeError: If dtype of `x`, `positive` and `negative` is not the same.
8487
+ TypeError: If `x`, `positive`, `negative`, or `margin` is not a Tensor.
8488
+ TypeError: If dtype of `x`, `positive`, or `negative` is not BasicType.
8489
+ TypeError: If dtypes of `x`, `positive` and `negative` are not the same.
8616
8490
  TypeError: If `margin` is not float32.
8617
8491
  TypeError: If `p` is not an int.
8618
8492
  TypeError: If `eps` is not a float.
@@ -8622,7 +8496,7 @@ class TripletMarginLoss(Primitive):
8622
8496
  ValueError: If the dimension of input `x` or `positive` or `negative`
8623
8497
  is bigger than or equal to 8.
8624
8498
  ValueError: If length of shape of `margin` is not 0.
8625
- ValueError: If shape of `x`, `positive` and `negative` cannot broadcast.
8499
+ ValueError: If shapes of `x`, `positive` and `negative` cannot broadcast.
8626
8500
  ValueError: If `reduction` is not one of ``'none'``, ``'mean'``, ``'sum'``.
8627
8501
 
8628
8502
  Supported Platforms: