mindspore 2.5.0__cp311-cp311-win_amd64.whl → 2.6.0rc1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/__init__.py +6 -4
- mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -0
- mindspore/_checkparam.py +3 -33
- mindspore/_deprecated/__init__.py +17 -0
- mindspore/_deprecated/jit.py +198 -0
- mindspore/_extends/builtin_operations.py +1 -1
- mindspore/_extends/parse/__init__.py +6 -7
- mindspore/_extends/parse/compile_config.py +19 -0
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
- mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
- mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
- mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
- mindspore/_extends/parse/parser.py +24 -193
- mindspore/_extends/parse/resources.py +1 -5
- mindspore/_extends/parse/standard_method.py +97 -74
- mindspore/_extends/pijit/__init__.py +2 -2
- mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
- mindspore/_extends/pijit/tensor_func_list.py +27 -0
- mindspore/_extends/utils.py +1 -1
- mindspore/amp.py +4 -4
- mindspore/atlprov.dll +0 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/__init__.py +2 -2
- mindspore/boost/base.py +3 -7
- mindspore/boost/boost_cell_wrapper.py +2 -2
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/common/__init__.py +4 -3
- mindspore/common/_grad_function.py +56 -0
- mindspore/common/_pijit_context.py +14 -5
- mindspore/common/_register_for_tensor.py +1 -1
- mindspore/common/_stub_tensor.py +5 -10
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +1915 -3287
- mindspore/common/api.py +341 -354
- mindspore/common/auto_dynamic_shape.py +41 -44
- mindspore/common/dtype.py +5 -2
- mindspore/common/dump.py +7 -5
- mindspore/common/file_system.py +3 -0
- mindspore/common/hook_handle.py +5 -3
- mindspore/common/initializer.py +10 -6
- mindspore/common/jit_begin_end.py +94 -0
- mindspore/common/jit_config.py +6 -1
- mindspore/common/jit_context.py +76 -0
- mindspore/common/jit_trace.py +378 -0
- mindspore/common/lazy_inline.py +2 -2
- mindspore/common/mutable.py +5 -4
- mindspore/common/parameter.py +106 -39
- mindspore/common/seed.py +2 -2
- mindspore/common/sparse_tensor.py +23 -17
- mindspore/common/tensor.py +297 -714
- mindspore/communication/__init__.py +7 -5
- mindspore/communication/_comm_helper.py +47 -2
- mindspore/communication/comm_func.py +70 -53
- mindspore/communication/management.py +83 -17
- mindspore/context.py +214 -560
- mindspore/dataset/__init__.py +44 -20
- mindspore/dataset/audio/__init__.py +2 -8
- mindspore/dataset/audio/transforms.py +3 -17
- mindspore/dataset/core/config.py +3 -3
- mindspore/dataset/engine/cache_client.py +1 -1
- mindspore/dataset/engine/datasets.py +102 -120
- mindspore/dataset/engine/datasets_audio.py +22 -22
- mindspore/dataset/engine/datasets_standard_format.py +43 -24
- mindspore/dataset/engine/datasets_text.py +78 -85
- mindspore/dataset/engine/datasets_user_defined.py +108 -76
- mindspore/dataset/engine/datasets_vision.py +111 -108
- mindspore/dataset/engine/iterators.py +5 -3
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
- mindspore/dataset/engine/samplers.py +279 -57
- mindspore/dataset/engine/serializer_deserializer.py +2 -1
- mindspore/dataset/engine/validators.py +10 -0
- mindspore/dataset/text/__init__.py +7 -6
- mindspore/dataset/text/transforms.py +6 -5
- mindspore/dataset/text/utils.py +3 -3
- mindspore/dataset/transforms/__init__.py +0 -9
- mindspore/dataset/transforms/transforms.py +3 -3
- mindspore/dataset/utils/browse_dataset.py +1 -1
- mindspore/dataset/vision/__init__.py +2 -9
- mindspore/dataset/vision/transforms.py +202 -158
- mindspore/dataset/vision/utils.py +7 -5
- mindspore/device_context/ascend/op_debug.py +60 -1
- mindspore/device_context/ascend/op_tuning.py +0 -4
- mindspore/device_manager.py +39 -3
- mindspore/dnnl.dll +0 -0
- mindspore/dpcmi.dll +0 -0
- mindspore/experimental/es/embedding_service.py +35 -27
- mindspore/experimental/map_parameter.py +4 -4
- mindspore/experimental/optim/adadelta.py +22 -26
- mindspore/experimental/optim/adagrad.py +4 -4
- mindspore/experimental/optim/adam.py +4 -0
- mindspore/experimental/optim/adamax.py +4 -4
- mindspore/experimental/optim/adamw.py +4 -0
- mindspore/experimental/optim/asgd.py +1 -1
- mindspore/experimental/optim/lr_scheduler.py +40 -22
- mindspore/experimental/optim/radam.py +5 -5
- mindspore/experimental/optim/rprop.py +1 -1
- mindspore/experimental/optim/sgd.py +1 -1
- mindspore/hal/contiguous_tensors_handle.py +6 -10
- mindspore/hal/device.py +55 -81
- mindspore/hal/event.py +38 -55
- mindspore/hal/memory.py +93 -144
- mindspore/hal/stream.py +81 -125
- mindspore/include/dataset/constants.h +7 -4
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +40 -2
- mindspore/mindrecord/__init__.py +20 -7
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/__init__.py +131 -700
- mindspore/mint/distributed/__init__.py +5 -1
- mindspore/mint/distributed/distributed.py +194 -109
- mindspore/mint/linalg/__init__.py +2 -0
- mindspore/mint/nn/__init__.py +280 -18
- mindspore/mint/nn/functional.py +282 -64
- mindspore/mint/nn/layer/__init__.py +4 -0
- mindspore/mint/nn/layer/_functions.py +7 -3
- mindspore/mint/nn/layer/activation.py +120 -13
- mindspore/mint/nn/layer/conv.py +218 -24
- mindspore/mint/nn/layer/normalization.py +15 -16
- mindspore/mint/nn/layer/padding.py +1 -1
- mindspore/mint/nn/layer/pooling.py +66 -1
- mindspore/mint/optim/__init__.py +2 -1
- mindspore/mint/optim/sgd.py +171 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +4 -1
- mindspore/nn/cell.py +1250 -176
- mindspore/nn/layer/activation.py +23 -21
- mindspore/nn/layer/basic.py +22 -16
- mindspore/nn/layer/container.py +1 -1
- mindspore/nn/layer/conv.py +22 -17
- mindspore/nn/layer/embedding.py +9 -8
- mindspore/nn/layer/normalization.py +48 -42
- mindspore/nn/layer/pooling.py +75 -31
- mindspore/nn/layer/transformer.py +11 -10
- mindspore/nn/learning_rate_schedule.py +4 -2
- mindspore/nn/loss/loss.py +27 -19
- mindspore/nn/optim/ada_grad.py +6 -5
- mindspore/nn/optim/adadelta.py +9 -7
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +16 -12
- mindspore/nn/optim/adamax.py +8 -7
- mindspore/nn/optim/adasum.py +5 -5
- mindspore/nn/optim/asgd.py +1 -1
- mindspore/nn/optim/ftrl.py +11 -9
- mindspore/nn/optim/lamb.py +1 -1
- mindspore/nn/optim/lazyadam.py +12 -10
- mindspore/nn/optim/momentum.py +7 -6
- mindspore/nn/optim/optimizer.py +2 -2
- mindspore/nn/optim/proximal_ada_grad.py +12 -10
- mindspore/nn/optim/rmsprop.py +13 -12
- mindspore/nn/optim/rprop.py +9 -7
- mindspore/nn/optim/sgd.py +9 -6
- mindspore/nn/optim/tft_wrapper.py +5 -2
- mindspore/nn/probability/bijector/bijector.py +17 -11
- mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
- mindspore/nn/probability/bijector/invert.py +2 -2
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +3 -2
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +1 -1
- mindspore/nn/probability/distribution/cauchy.py +4 -2
- mindspore/nn/probability/distribution/exponential.py +6 -7
- mindspore/nn/probability/distribution/gamma.py +2 -2
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/half_normal.py +5 -3
- mindspore/nn/probability/distribution/logistic.py +5 -3
- mindspore/nn/probability/distribution/poisson.py +1 -1
- mindspore/nn/probability/distribution/uniform.py +5 -3
- mindspore/nn/reinforcement/_tensors_queue.py +1 -1
- mindspore/nn/reinforcement/tensor_array.py +1 -1
- mindspore/nn/wrap/__init__.py +6 -6
- mindspore/nn/wrap/cell_wrapper.py +178 -117
- mindspore/nn/wrap/grad_reducer.py +45 -36
- mindspore/nn/wrap/loss_scale.py +3 -3
- mindspore/numpy/array_creations.py +3 -3
- mindspore/numpy/array_ops.py +1 -1
- mindspore/numpy/math_ops.py +4 -4
- mindspore/numpy/utils.py +1 -2
- mindspore/numpy/utils_const.py +1 -2
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +3 -2
- mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
- mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
- mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
- mindspore/ops/_register_for_op.py +0 -11
- mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
- mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
- mindspore/ops/_vmap/vmap_array_ops.py +7 -6
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
- mindspore/ops/_vmap/vmap_math_ops.py +4 -7
- mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
- mindspore/ops/auto_generate/__init__.py +4 -3
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +102 -49
- mindspore/ops/auto_generate/gen_extend_func.py +281 -135
- mindspore/ops/auto_generate/gen_ops_def.py +2574 -2326
- mindspore/ops/auto_generate/gen_ops_prim.py +8566 -2755
- mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
- mindspore/ops/composite/__init__.py +2 -1
- mindspore/ops/composite/base.py +19 -24
- mindspore/ops/composite/math_ops.py +6 -16
- mindspore/ops/composite/multitype_ops/__init__.py +5 -2
- mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -3
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
- mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
- mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
- mindspore/ops/function/__init__.py +28 -2
- mindspore/ops/function/_add_attr_func.py +58 -0
- mindspore/ops/function/array_func.py +1629 -2345
- mindspore/ops/function/clip_func.py +38 -45
- mindspore/ops/function/debug_func.py +36 -44
- mindspore/ops/function/grad/__init__.py +1 -0
- mindspore/ops/function/grad/grad_func.py +104 -71
- mindspore/ops/function/image_func.py +1 -1
- mindspore/ops/function/linalg_func.py +46 -78
- mindspore/ops/function/math_func.py +3035 -3705
- mindspore/ops/function/nn_func.py +676 -241
- mindspore/ops/function/other_func.py +159 -1
- mindspore/ops/function/parameter_func.py +17 -30
- mindspore/ops/function/random_func.py +204 -361
- mindspore/ops/function/reshard_func.py +4 -70
- mindspore/ops/function/sparse_func.py +3 -3
- mindspore/ops/function/sparse_unary_func.py +5 -5
- mindspore/ops/function/spectral_func.py +25 -58
- mindspore/ops/function/vmap_func.py +24 -17
- mindspore/ops/functional.py +6 -4
- mindspore/ops/functional_overload.py +547 -4
- mindspore/ops/op_info_register.py +32 -244
- mindspore/ops/operations/__init__.py +10 -5
- mindspore/ops/operations/_custom_ops_utils.py +247 -0
- mindspore/ops/operations/_grad_ops.py +1 -10
- mindspore/ops/operations/_inner_ops.py +5 -76
- mindspore/ops/operations/_ms_kernel.py +4 -10
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/_scalar_ops.py +3 -2
- mindspore/ops/operations/_sequence_ops.py +1 -1
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/array_ops.py +37 -22
- mindspore/ops/operations/comm_ops.py +150 -107
- mindspore/ops/operations/custom_ops.py +221 -23
- mindspore/ops/operations/debug_ops.py +115 -16
- mindspore/ops/operations/inner_ops.py +1 -1
- mindspore/ops/operations/linalg_ops.py +1 -58
- mindspore/ops/operations/manually_defined/_inner.py +1 -1
- mindspore/ops/operations/manually_defined/ops_def.py +746 -79
- mindspore/ops/operations/math_ops.py +21 -18
- mindspore/ops/operations/nn_ops.py +65 -191
- mindspore/ops/operations/other_ops.py +62 -9
- mindspore/ops/operations/random_ops.py +13 -7
- mindspore/ops/operations/reshard_ops.py +1 -1
- mindspore/ops/operations/sparse_ops.py +2 -2
- mindspore/ops/primitive.py +43 -32
- mindspore/ops/tensor_method.py +232 -13
- mindspore/ops_generate/__init__.py +0 -5
- mindspore/ops_generate/aclnn/__init__.py +0 -0
- mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
- mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
- mindspore/ops_generate/api/__init__.py +0 -0
- mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
- mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
- mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
- mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
- mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
- mindspore/ops_generate/api/gen_api.py +103 -0
- mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
- mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
- mindspore/ops_generate/common/__init__.py +0 -0
- mindspore/ops_generate/common/gen_constants.py +91 -0
- mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
- mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
- mindspore/ops_generate/{template.py → common/template.py} +96 -84
- mindspore/ops_generate/gen_ops.py +23 -325
- mindspore/ops_generate/op_def/__init__.py +0 -0
- mindspore/ops_generate/op_def/gen_op_def.py +90 -0
- mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
- mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -7
- mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
- mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
- mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
- mindspore/ops_generate/op_def_py/__init__.py +0 -0
- mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
- mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
- mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
- mindspore/ops_generate/pyboost/__init__.py +0 -0
- mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
- mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
- mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
- mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
- mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
- mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
- mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
- mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
- mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
- mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
- mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
- mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
- mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
- mindspore/ops_generate/resources/__init__.py +0 -0
- mindspore/ops_generate/resources/resource_list.py +30 -0
- mindspore/ops_generate/resources/resource_loader.py +36 -0
- mindspore/ops_generate/resources/resource_manager.py +64 -0
- mindspore/ops_generate/resources/yaml_loader.py +88 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
- mindspore/parallel/__init__.py +6 -2
- mindspore/parallel/_auto_parallel_context.py +133 -6
- mindspore/parallel/_cell_wrapper.py +130 -15
- mindspore/parallel/_parallel_serialization.py +95 -4
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +7 -2
- mindspore/parallel/_tensor.py +142 -18
- mindspore/parallel/_utils.py +198 -25
- mindspore/parallel/algo_parameter_config.py +3 -3
- mindspore/parallel/auto_parallel.py +732 -0
- mindspore/parallel/checkpoint_convert.py +159 -0
- mindspore/parallel/checkpoint_transform.py +656 -37
- mindspore/parallel/cluster/process_entity/_api.py +151 -19
- mindspore/parallel/cluster/run.py +1 -1
- mindspore/parallel/function/__init__.py +24 -0
- mindspore/parallel/function/reshard_func.py +259 -0
- mindspore/parallel/nn/__init__.py +25 -0
- mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
- mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
- mindspore/parallel/parameter_broadcast.py +24 -13
- mindspore/parallel/shard.py +137 -61
- mindspore/parallel/transform_safetensors.py +287 -95
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +9 -5
- mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
- mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +22 -0
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
- mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
- mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
- mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
- mindspore/profiler/common/constant.py +12 -0
- mindspore/profiler/common/msprof_cmd_tool.py +42 -23
- mindspore/profiler/common/path_manager.py +24 -0
- mindspore/profiler/common/profiler_context.py +26 -2
- mindspore/profiler/common/profiler_meta_data.py +74 -0
- mindspore/profiler/common/profiler_parameters.py +59 -18
- mindspore/profiler/common/profiler_path_manager.py +66 -7
- mindspore/profiler/dynamic_profiler.py +112 -79
- mindspore/profiler/envprofiler.py +26 -1
- mindspore/profiler/experimental_config.py +197 -0
- mindspore/profiler/mstx.py +57 -14
- mindspore/profiler/platform/npu_profiler.py +33 -7
- mindspore/profiler/profiler.py +541 -45
- mindspore/profiler/profiler_action_controller.py +1 -1
- mindspore/profiler/profiler_interface.py +4 -0
- mindspore/profiler/schedule.py +57 -22
- mindspore/rewrite/api/node.py +15 -13
- mindspore/rewrite/api/symbol_tree.py +1 -1
- mindspore/run_check/_check_version.py +25 -14
- mindspore/run_check/run_check.py +1 -1
- mindspore/runtime/__init__.py +2 -2
- mindspore/runtime/executor.py +40 -11
- mindspore/runtime/memory.py +25 -8
- mindspore/safeguard/rewrite_obfuscation.py +12 -9
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +8 -8
- mindspore/train/_utils.py +35 -7
- mindspore/train/amp.py +1 -1
- mindspore/train/callback/__init__.py +2 -2
- mindspore/train/callback/_callback.py +2 -16
- mindspore/train/callback/_checkpoint.py +24 -40
- mindspore/train/callback/_cluster_monitor.py +14 -18
- mindspore/train/callback/_flops_collector.py +2 -3
- mindspore/train/callback/_history.py +7 -4
- mindspore/train/callback/_lambda_callback.py +2 -2
- mindspore/train/callback/_landscape.py +0 -3
- mindspore/train/callback/_loss_monitor.py +2 -1
- mindspore/train/callback/_on_request_exit.py +6 -5
- mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
- mindspore/train/callback/_summary_collector.py +8 -13
- mindspore/train/callback/_time_monitor.py +2 -1
- mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +179 -103
- mindspore/train/data_sink.py +25 -2
- mindspore/train/dataset_helper.py +4 -5
- mindspore/train/loss_scale_manager.py +8 -7
- mindspore/train/metrics/accuracy.py +3 -3
- mindspore/train/metrics/confusion_matrix.py +9 -9
- mindspore/train/metrics/error.py +3 -3
- mindspore/train/metrics/hausdorff_distance.py +4 -4
- mindspore/train/metrics/mean_surface_distance.py +3 -3
- mindspore/train/metrics/metric.py +0 -12
- mindspore/train/metrics/occlusion_sensitivity.py +4 -2
- mindspore/train/metrics/precision.py +8 -6
- mindspore/train/metrics/recall.py +9 -9
- mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
- mindspore/train/mind_ir_pb2.py +19 -12
- mindspore/train/model.py +176 -103
- mindspore/train/serialization.py +246 -988
- mindspore/train/summary/_summary_adapter.py +2 -2
- mindspore/train/summary/summary_record.py +1 -1
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +3 -2
- mindspore/utils/dryrun.py +4 -2
- mindspore/utils/hooks.py +81 -0
- mindspore/utils/utils.py +138 -4
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +2 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +483 -438
- mindspore/_install_custom.py +0 -43
- mindspore/common/_register_for_adapter.py +0 -74
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
- mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
- mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
- mindspore/ops_generate/gen_constants.py +0 -190
- mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
- mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
- /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
mindspore/nn/layer/activation.py
CHANGED
|
@@ -82,7 +82,7 @@ class CELU(Cell):
|
|
|
82
82
|
:align: center
|
|
83
83
|
|
|
84
84
|
Args:
|
|
85
|
-
alpha (float): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
|
|
85
|
+
alpha (float, optional): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
|
|
86
86
|
|
|
87
87
|
Inputs:
|
|
88
88
|
- **x** (Tensor) - The input of CELU. The required dtype is float16 or float32.
|
|
@@ -136,20 +136,22 @@ class Softmin(Cell):
|
|
|
136
136
|
where :math:`x_{i}` is the :math:`i`-th slice in the given dimension of the input Tensor.
|
|
137
137
|
|
|
138
138
|
Args:
|
|
139
|
-
axis (Union[int, tuple[int]]): The axis to apply Softmin operation,
|
|
140
|
-
the
|
|
139
|
+
axis (Union[int, tuple[int]], optional): The axis to apply Softmin operation,
|
|
140
|
+
if the dimension of input `x` is x.ndim,
|
|
141
|
+
the range of axis is :math:`[-x.ndim, x.ndim)`. -1 means the last dimension.
|
|
142
|
+
Default: ``-1`` . In CPU environment, `axis` only supports int type.
|
|
141
143
|
|
|
142
144
|
Inputs:
|
|
143
145
|
- **x** (Tensor) - Tensor for computing Softmin functions with data type of float16 or float32.
|
|
144
146
|
|
|
145
147
|
Outputs:
|
|
146
|
-
Tensor, which has the same type and shape as `x` with values in the range [0,1]
|
|
148
|
+
Tensor, which has the same type and shape as `x` with values in the range :math:`[0, 1]`.
|
|
147
149
|
|
|
148
150
|
Raises:
|
|
149
151
|
TypeError: If `axis` is neither an int nor a tuple.
|
|
150
152
|
TypeError: If dtype of `x` is neither float16 nor float32.
|
|
151
153
|
ValueError: If `axis` is a tuple whose length is less than 1.
|
|
152
|
-
ValueError: If `axis` is a tuple whose elements are not all in the range [-x.ndim, x.ndim)
|
|
154
|
+
ValueError: If `axis` is a tuple whose elements are not all in the range :math:`[-x.ndim, x.ndim)`.
|
|
153
155
|
|
|
154
156
|
Supported Platforms:
|
|
155
157
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -957,7 +959,7 @@ class GELU(Cell):
|
|
|
957
959
|
:align: center
|
|
958
960
|
|
|
959
961
|
Args:
|
|
960
|
-
approximate (bool): Whether to enable approximation. Default: ``True`` .
|
|
962
|
+
approximate (bool, optional): Whether to enable approximation. Default: ``True`` .
|
|
961
963
|
|
|
962
964
|
If `approximate` is ``True``, The gaussian error linear activation is:
|
|
963
965
|
|
|
@@ -965,7 +967,14 @@ class GELU(Cell):
|
|
|
965
967
|
|
|
966
968
|
else, it is:
|
|
967
969
|
|
|
968
|
-
:math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / \sqrt(2)))`, where P(X) ~ N(0, 1)
|
|
970
|
+
:math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / \sqrt(2)))`, where :math:`P(X) ~ N(0, 1)`.
|
|
971
|
+
|
|
972
|
+
Note:
|
|
973
|
+
- when calculating the input gradient of GELU with an input value of infinity, there are differences
|
|
974
|
+
in the output of the backward between ``Ascend`` and ``GPU``.
|
|
975
|
+
- when x is -inf, the computation result of ``Ascend`` is 0, and the computation result of ``GPU`` is Nan.
|
|
976
|
+
- when x is inf, the computation result of ``Ascend`` is dy, and the computation result of ``GPU`` is Nan.
|
|
977
|
+
- In mathematical terms, the result of Ascend has higher precision.
|
|
969
978
|
|
|
970
979
|
Inputs:
|
|
971
980
|
- **x** (Tensor) - The input of GELU with data type of float16, float32, or float64.
|
|
@@ -974,13 +983,6 @@ class GELU(Cell):
|
|
|
974
983
|
Outputs:
|
|
975
984
|
Tensor, with the same type and shape as the `x`.
|
|
976
985
|
|
|
977
|
-
Note:
|
|
978
|
-
when calculating the input gradient of GELU with an input value of infinity, there are differences
|
|
979
|
-
in the output of the backward between ``Ascend`` and ``GPU``.
|
|
980
|
-
when x is -inf, the computation result of ``Ascend`` is 0, and the computation result of ``GPU`` is Nan.
|
|
981
|
-
when x is inf, the computation result of ``Ascend`` is dy, and the computation result of ``GPU`` is Nan.
|
|
982
|
-
In mathematical terms, the result of Ascend has higher precision.
|
|
983
|
-
|
|
984
986
|
Raises:
|
|
985
987
|
TypeError: If dtype of `x` is not one of float16, float32, or float64.
|
|
986
988
|
|
|
@@ -1165,7 +1167,7 @@ class PReLU(Cell):
|
|
|
1165
1167
|
|
|
1166
1168
|
where :math:`x_i` is an element of an channel of the input.
|
|
1167
1169
|
|
|
1168
|
-
Here :math:`w` is a learnable parameter with a default initial value 0.25
|
|
1170
|
+
Here :math:`w` is a learnable parameter with a default initial value ``0.25``.
|
|
1169
1171
|
Parameter :math:`w` has dimensionality of the argument channel. If called without argument
|
|
1170
1172
|
channel, a single parameter :math:`w` will be shared across all channels.
|
|
1171
1173
|
|
|
@@ -1175,9 +1177,9 @@ class PReLU(Cell):
|
|
|
1175
1177
|
:align: center
|
|
1176
1178
|
|
|
1177
1179
|
Args:
|
|
1178
|
-
channel (int): The elements number of parameter :math:`w`.
|
|
1179
|
-
It could be an int, and the value is 1 or the channels number of input tensor `x`. Default: ``1`` .
|
|
1180
|
-
w (Union[float, list, Tensor]): The initial value of parameter. It could be a float, a float list or
|
|
1180
|
+
channel (int, optional): The elements number of parameter :math:`w`.
|
|
1181
|
+
It could be an int, and the value is ``1`` or the channels number of input tensor `x`. Default: ``1`` .
|
|
1182
|
+
w (Union[float, list, Tensor], optional): The initial value of parameter. It could be a float, a float list or
|
|
1181
1183
|
a tensor has the same dtype as the input tensor `x`. Default: ``0.25`` .
|
|
1182
1184
|
|
|
1183
1185
|
Inputs:
|
|
@@ -1189,7 +1191,7 @@ class PReLU(Cell):
|
|
|
1189
1191
|
|
|
1190
1192
|
Raises:
|
|
1191
1193
|
TypeError: If `channel` is not an int.
|
|
1192
|
-
TypeError: If `w` is not one of a float, a float
|
|
1194
|
+
TypeError: If `w` is not one of a float, a list[float], a Tensor[float].
|
|
1193
1195
|
TypeError: If dtype of `x` is neither float16 nor float32.
|
|
1194
1196
|
ValueError: If the `x` is a 0-D or 1-D Tensor on Ascend.
|
|
1195
1197
|
ValueError: If `channel` is less than 1.
|
|
@@ -1728,7 +1730,7 @@ class GLU(Cell):
|
|
|
1728
1730
|
Here :math:`\sigma` is the sigmoid function, and :math:`\otimes` is the Hadamard product.
|
|
1729
1731
|
|
|
1730
1732
|
Args:
|
|
1731
|
-
axis (int): the axis to split the input. Default: ``-1`` , the last axis in `x`.
|
|
1733
|
+
axis (int, optional): the axis to split the input. Default: ``-1`` , the last axis in `x`.
|
|
1732
1734
|
|
|
1733
1735
|
Inputs:
|
|
1734
1736
|
- **x** (Tensor) - :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions.
|
|
@@ -1811,7 +1813,7 @@ def get_activation(name, prim_name=None):
|
|
|
1811
1813
|
>>> import mindspore.nn as nn
|
|
1812
1814
|
>>> sigmoid = nn.get_activation('sigmoid')
|
|
1813
1815
|
>>> print(sigmoid)
|
|
1814
|
-
Sigmoid
|
|
1816
|
+
Sigmoid()
|
|
1815
1817
|
"""
|
|
1816
1818
|
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
|
|
1817
1819
|
if name is None:
|
mindspore/nn/layer/basic.py
CHANGED
|
@@ -226,7 +226,8 @@ class DropoutExt(Cell):
|
|
|
226
226
|
Args:
|
|
227
227
|
p (float, optional): The dropout rate of input neurons, E.g. `p` =0.9, dropping out 90% of input neurons.
|
|
228
228
|
Default: ``0.5`` .
|
|
229
|
-
inplace (bool, optional):
|
|
229
|
+
inplace (bool, optional): Whether to enable the operation in-place.
|
|
230
|
+
If set to ``True`` , will do this operation in-place. Default: ``False`` .
|
|
230
231
|
|
|
231
232
|
Inputs:
|
|
232
233
|
- **x** (Tensor) - The input of Dropout.
|
|
@@ -347,8 +348,8 @@ class Dropout2d(Cell):
|
|
|
347
348
|
|
|
348
349
|
For example, the :math:`j\_th` channel of the :math:`i\_th` sample in the batched input is a to-be-processed
|
|
349
350
|
`2D` tensor input[i,j].
|
|
350
|
-
|
|
351
|
-
|
|
351
|
+
At each forward propagation,
|
|
352
|
+
each channel will be independently determined to be set to zero with probability `p`.
|
|
352
353
|
|
|
353
354
|
`Dropout2d` can improve the independence between channel feature maps.
|
|
354
355
|
|
|
@@ -631,25 +632,27 @@ class Dense(Cell):
|
|
|
631
632
|
where :math:`X` is the input tensors, :math:`\text{activation}` is the activation function passed as the activation
|
|
632
633
|
argument (if passed in), :math:`\text{kernel}` is a weight matrix with the same
|
|
633
634
|
data type as the :math:`X` created by the layer, and :math:`\text{bias}` is a bias vector
|
|
634
|
-
with the same data type as the :math:`X` created by the layer (only if has_bias is True).
|
|
635
|
+
with the same data type as the :math:`X` created by the layer (only if `has_bias` is ``True``).
|
|
635
636
|
|
|
636
637
|
.. warning::
|
|
637
|
-
|
|
638
|
+
On the Ascend platform, if `bias` is ``False`` , the `x` cannot be greater than 6D in PYNATIVE or KBK mode.
|
|
638
639
|
|
|
639
640
|
Args:
|
|
640
641
|
in_channels (int): The number of channels in the input space.
|
|
641
642
|
out_channels (int): The number of channels in the output space.
|
|
642
|
-
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter.
|
|
643
|
-
is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
643
|
+
weight_init (Union[Tensor, str, Initializer, numbers.Number], optional): The trainable weight_init parameter.
|
|
644
|
+
The dtype is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
644
645
|
weight will be initialized using HeUniform.
|
|
645
|
-
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter.
|
|
646
|
-
same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
646
|
+
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): The trainable bias_init parameter.
|
|
647
|
+
The dtype is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
|
|
647
648
|
bias will be initialized using Uniform.
|
|
648
|
-
has_bias (bool): Specifies whether the layer uses a bias vector :math:`\text{bias}`.
|
|
649
|
-
|
|
649
|
+
has_bias (bool, optional): Specifies whether the layer uses a bias vector :math:`\text{bias}`.
|
|
650
|
+
Default: ``True``.
|
|
651
|
+
activation (Union[str, Cell, Primitive, None], optional): activate function applied to
|
|
652
|
+
the output of the fully connected
|
|
650
653
|
layer. Both activation name, e.g. 'relu', and mindspore activation function, e.g. mindspore.ops.ReLU(),
|
|
651
654
|
are supported. Default: ``None`` .
|
|
652
|
-
dtype (:class:`mindspore.dtype
|
|
655
|
+
dtype (:class:`mindspore.dtype`, optional): Data type of Parameter. Default: ``mstype.float32`` .
|
|
653
656
|
When `weight_init` is Tensor, Parameter has the same data type as `weight_init` ,
|
|
654
657
|
in other cases, Parameter has the same data type as `dtype`, the same goes for `bias_init`.
|
|
655
658
|
|
|
@@ -668,7 +671,7 @@ class Dense(Cell):
|
|
|
668
671
|
is not equal to `out_channels` or shape[1] of `weight_init` is not equal to `in_channels`.
|
|
669
672
|
ValueError: If length of shape of `bias_init` is not equal to 1
|
|
670
673
|
or shape[0] of `bias_init` is not equal to `out_channels`.
|
|
671
|
-
RuntimeError:
|
|
674
|
+
RuntimeError: On the Ascend platform, if `bias` is ``False`` and `x` is greater than 6D in PYNATIVE or KBK mode.
|
|
672
675
|
|
|
673
676
|
Supported Platforms:
|
|
674
677
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -770,6 +773,9 @@ class Linear(Cell):
|
|
|
770
773
|
.. math::
|
|
771
774
|
\text{outputs} = X * kernel + bias
|
|
772
775
|
|
|
776
|
+
.. warning::
|
|
777
|
+
On the Ascend platform, if `bias` is ``False`` , the `x` cannot be greater than 6D in PYNATIVE or KBK mode.
|
|
778
|
+
|
|
773
779
|
where :math:`X` is the input tensors, :math:`\text{kernel}` is a weight matrix with the same
|
|
774
780
|
data type as the :math:`X` created by the layer, and :math:`\text{bias}` is a bias vector
|
|
775
781
|
with the same data type as the :math:`X` created by the layer (only if the parameter `bias` is True).
|
|
@@ -808,7 +814,7 @@ class Linear(Cell):
|
|
|
808
814
|
is not equal to `out_features` or shape[1] of `weight_init` is not equal to `in_features`.
|
|
809
815
|
ValueError: If length of shape of `bias_init` is not equal to 1
|
|
810
816
|
or shape[0] of `bias_init` is not equal to `out_features`.
|
|
811
|
-
RuntimeError:
|
|
817
|
+
RuntimeError: On the Ascend platform, if `bias` is ``False`` and `x` is greater than 6D in PYNATIVE or KBK mode.
|
|
812
818
|
|
|
813
819
|
Supported Platforms:
|
|
814
820
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -1565,7 +1571,7 @@ class Roll(Cell):
|
|
|
1565
1571
|
else:
|
|
1566
1572
|
if not isinstance(self.axis, (list, tuple)):
|
|
1567
1573
|
self.op_list.append(
|
|
1568
|
-
(P.Roll(
|
|
1574
|
+
(P.Roll(shifts=self.shift, dims=0), self.axis))
|
|
1569
1575
|
else:
|
|
1570
1576
|
if len(self.shift) != len(self.axis):
|
|
1571
1577
|
raise ValueError(f"For '{self.cls_name}', the shape of 'shift' and the shape of 'axis' must be "
|
|
@@ -1573,7 +1579,7 @@ class Roll(Cell):
|
|
|
1573
1579
|
f"and the length of 'axis' {len(self.axis)}.")
|
|
1574
1580
|
for idx, _ in enumerate(self.axis):
|
|
1575
1581
|
self.op_list.append(
|
|
1576
|
-
(P.Roll(
|
|
1582
|
+
(P.Roll(shifts=self.shift[idx], dims=0), self.axis[idx]))
|
|
1577
1583
|
|
|
1578
1584
|
def construct(self, input_x):
|
|
1579
1585
|
dim = len(self.shape_op(input_x))
|
mindspore/nn/layer/container.py
CHANGED
|
@@ -648,7 +648,7 @@ class CellDict(_CellDictBase, Cell):
|
|
|
648
648
|
Remove key from the CellDict and return its cell.
|
|
649
649
|
|
|
650
650
|
Args:
|
|
651
|
-
key (
|
|
651
|
+
key (str): key to pop from the CellDict.
|
|
652
652
|
|
|
653
653
|
Raises:
|
|
654
654
|
KeyError: If `key` not exist in CellDict when attempt to access cell.
|
mindspore/nn/layer/conv.py
CHANGED
|
@@ -856,11 +856,12 @@ class Conv3dTranspose(_Conv):
|
|
|
856
856
|
where :math:`N` is batch size, :math:`C_{in}` is a number of
|
|
857
857
|
channels, :math:`D_{in}, H_{in}, W_{in}` are the depth, height and width of the feature layer respectively.
|
|
858
858
|
|
|
859
|
-
When Conv3d and Conv3dTranspose are initialized with the same parameters, and `pad_mode` is set to 'pad'
|
|
859
|
+
When Conv3d and Conv3dTranspose are initialized with the same parameters, and `pad_mode` is set to ``'pad'``,
|
|
860
860
|
:math:`dilation * (kernel\_size - 1) - padding` amount of zero will be paded to the depth, height and width
|
|
861
861
|
directions of the input, they are inverses of each other in regard to the input and output shapes in this case.
|
|
862
|
-
However, when `stride` > 1, Conv2d maps multiple input shapes to the same output shape.
|
|
863
|
-
|
|
862
|
+
However, when `stride` > 1, Conv2d maps multiple input shapes to the same output shape.
|
|
863
|
+
For the detailed information of Deconvolutional network,
|
|
864
|
+
refer to `Deconvolutional Networks <https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf>`_.
|
|
864
865
|
|
|
865
866
|
Note:
|
|
866
867
|
For Atlas A2 training series products, `output_padding` is currently not supported.
|
|
@@ -872,7 +873,7 @@ class Conv3dTranspose(_Conv):
|
|
|
872
873
|
The data type is an integer or a tuple of three integers. An integer represents the depth, height
|
|
873
874
|
and width of the convolution kernel. A tuple of three integers represents the depth, height
|
|
874
875
|
and width of the convolution kernel respectively.
|
|
875
|
-
stride (Union[int, tuple[int]]): The movement stride of the 3D convolution kernel.
|
|
876
|
+
stride (Union[int, tuple[int]], optional): The movement stride of the 3D convolution kernel.
|
|
876
877
|
The data type is an integer or a tuple of three integers. An integer represents the movement step size
|
|
877
878
|
in depth, height and width directions. A tuple of three integers represents the movement step size
|
|
878
879
|
in the depth, height and width directions respectively. Default: ``1`` .
|
|
@@ -892,13 +893,15 @@ class Conv3dTranspose(_Conv):
|
|
|
892
893
|
in the depth, height and width dimension is determined by the `padding` parameter.
|
|
893
894
|
If this mode is set, `padding` must be greater than or equal to 0.
|
|
894
895
|
|
|
895
|
-
padding (Union(int, tuple[int])): The number of padding on the depth, height and
|
|
896
|
+
padding (Union(int, tuple[int]), optional): The number of padding on the depth, height and
|
|
897
|
+
width directions of the input.
|
|
896
898
|
The data type is an integer or a tuple of six integers. If `padding` is an integer,
|
|
897
899
|
then the head, tail, top, bottom, left, and right padding are all equal to `padding`.
|
|
898
900
|
If `padding` is a tuple of six integers, then the head, tail, top, bottom, left, and right padding
|
|
899
901
|
is equal to `padding[0]`, `padding[1]`, `padding[2]`, `padding[3]`, `padding[4]` and `padding[5]`
|
|
900
902
|
respectively. The value should be greater than or equal to 0. Default: ``0`` .
|
|
901
|
-
dilation (Union[int, tuple[int]]): Specifies the dilation rate to use for dilated convolution.
|
|
903
|
+
dilation (Union[int, tuple[int]], optional): Specifies the dilation rate to use for dilated convolution.
|
|
904
|
+
The data type
|
|
902
905
|
can be a single int or a tuple of 3 integers. A single int means the dilation size is the same in the
|
|
903
906
|
depth, height and width directions. A tuple of 3 ints represents the dilation size in the depth, height
|
|
904
907
|
and width directions, respectively.
|
|
@@ -908,33 +911,35 @@ class Conv3dTranspose(_Conv):
|
|
|
908
911
|
The values in the depth, height and width dimensions are in
|
|
909
912
|
the ranges [1, D], [1, H] and [1, W], respectively.
|
|
910
913
|
Default: ``1`` .
|
|
911
|
-
group (int): Splits filter into groups, `in_channels` and `out_channels` must be
|
|
914
|
+
group (int, optional): Splits filter into groups, `in_channels` and `out_channels` must be
|
|
912
915
|
divisible by `group`. Default: ``1`` .
|
|
913
|
-
output_padding (Union(int, tuple[int])): The number of padding on the depth,
|
|
916
|
+
output_padding (Union(int, tuple[int]), optional): The number of padding on the depth,
|
|
917
|
+
height and width directions of
|
|
914
918
|
the output. The data type is an integer or a tuple of three integers. If `output_padding` is an integer,
|
|
915
919
|
then the depth, height, and width dimension padding are all equal to `output_padding`.
|
|
916
920
|
If `output_padding` is a tuple of three integers, then the depth, height, and width padding is equal to
|
|
917
921
|
`output_padding[0]`, `output_padding[1]` and `output_padding[2]` respectively.
|
|
918
922
|
The value should be greater than or equal to 0.
|
|
919
923
|
Default: ``0`` .
|
|
920
|
-
has_bias (bool): Whether the Conv3dTranspose layer has a bias parameter. Default: ``False`` .
|
|
921
|
-
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initialization method of
|
|
924
|
+
has_bias (bool, optional): Whether the Conv3dTranspose layer has a bias parameter. Default: ``False`` .
|
|
925
|
+
weight_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of
|
|
926
|
+
weight parameter.
|
|
922
927
|
It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified,
|
|
923
928
|
values from ``'TruncatedNormal'`` , ``'Normal'`` , ``'Uniform'`` , ``'HeUniform'`` and ``'XavierUniform'``
|
|
924
929
|
distributions as well as constant ``'One'`` and ``'Zero'`` distributions are possible. Alias
|
|
925
930
|
``'xavier_uniform'`` , ``'he_uniform'`` , ``'ones'`` and ``'zeros'`` are acceptable. Uppercase and
|
|
926
931
|
lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ``None`` ,
|
|
927
932
|
weight will be initialized using HeUniform.
|
|
928
|
-
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initialization method of bias parameter.
|
|
933
|
+
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of bias parameter.
|
|
929
934
|
Available initialization methods are the same as 'weight_init'. Refer to the values of
|
|
930
935
|
Initializer for more details. Default: ``None`` , bias will be initialized using Uniform.
|
|
931
|
-
data_format (str): The optional value for data format. Currently only support ``'NCDHW'`` .
|
|
936
|
+
data_format (str, optional): The optional value for data format. Currently only support ``'NCDHW'`` .
|
|
932
937
|
Default: ``'NCDHW'`` .
|
|
933
|
-
dtype (:class:`mindspore.dtype
|
|
938
|
+
dtype (:class:`mindspore.dtype`, optional): Dtype of Parameters. Default: ``mstype.float32`` .
|
|
934
939
|
|
|
935
940
|
Inputs:
|
|
936
941
|
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
|
|
937
|
-
Currently input data dtype only
|
|
942
|
+
Currently input data dtype only supports float16 and float32.
|
|
938
943
|
|
|
939
944
|
Outputs:
|
|
940
945
|
Tensor, the shape is :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`.
|
|
@@ -980,10 +985,10 @@ class Conv3dTranspose(_Conv):
|
|
|
980
985
|
TypeError: If input data type is not float16 or float32.
|
|
981
986
|
ValueError: If `in_channels`, `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
|
|
982
987
|
ValueError: If `padding` is less than 0.
|
|
983
|
-
ValueError: If `pad_mode` is not one of 'same'
|
|
988
|
+
ValueError: If `pad_mode` is not one of ``'same'``, ``'valid'``, ``'pad'``.
|
|
984
989
|
ValueError: If `padding` is a tuple whose length is not equal to 6.
|
|
985
|
-
ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0, 0, 0).
|
|
986
|
-
ValueError: If `data_format` is not 'NCDHW'
|
|
990
|
+
ValueError: If `pad_mode` is not equal to ``'pad'`` and `padding` is not equal to (0, 0, 0, 0, 0, 0).
|
|
991
|
+
ValueError: If `data_format` is not ``'NCDHW'``.
|
|
987
992
|
|
|
988
993
|
Supported Platforms:
|
|
989
994
|
``Ascend`` ``GPU`` ``CPU``
|
mindspore/nn/layer/embedding.py
CHANGED
|
@@ -220,18 +220,19 @@ class EmbeddingExt(Cell):
|
|
|
220
220
|
>>> import mindspore
|
|
221
221
|
>>> import numpy as np
|
|
222
222
|
>>> from mindspore import Tensor, nn
|
|
223
|
+
>>> mindspore.set_seed(0)
|
|
223
224
|
>>> input = Tensor([[1, 0, 1, 1], [0, 0, 1, 0]])
|
|
224
225
|
>>> embedding = nn.EmbeddingExt(num_embeddings=10, embedding_dim=3)
|
|
225
226
|
>>> output = embedding(input)
|
|
226
227
|
>>> print(output)
|
|
227
|
-
[[[
|
|
228
|
-
[
|
|
229
|
-
[
|
|
230
|
-
[
|
|
231
|
-
[[
|
|
232
|
-
[
|
|
233
|
-
[
|
|
234
|
-
[
|
|
228
|
+
[[[ 0.6712398 0.5407775 1.0317237]
|
|
229
|
+
[-0.49091062 -0.42302188 -1.4807187]
|
|
230
|
+
[ 0.6712398 0.5407775 1.0317237]
|
|
231
|
+
[ 0.0024154 0.5407775 1.0317237]]
|
|
232
|
+
[[-0.49091062 -0.42302188 -1.4807187]
|
|
233
|
+
[-0.49091062 -0.42302188 -1.4807187]
|
|
234
|
+
[ 0.6712398 0.5407775 1.0317237]
|
|
235
|
+
[-0.49091062 -0.42302188 -1.4807187]]]
|
|
235
236
|
"""
|
|
236
237
|
|
|
237
238
|
def __init__(self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0,
|
|
@@ -286,37 +286,40 @@ class BatchNorm2d(_BatchNorm):
|
|
|
286
286
|
Note that the formula for updating the :math:`moving\_mean` and :math:`moving\_var` is
|
|
287
287
|
|
|
288
288
|
.. math::
|
|
289
|
-
\text{moving_mean}=\text{moving_mean*momentum}+μ_β\text{*(1
|
|
290
|
-
\text{moving_var}=\text{moving_var*momentum}+σ^2_β\text{*(1
|
|
289
|
+
\text{moving_mean}=\text{moving_mean*momentum}+μ_β\text{*(1-momentum)}\\
|
|
290
|
+
\text{moving_var}=\text{moving_var*momentum}+σ^2_β\text{*(1-momentum)}
|
|
291
291
|
|
|
292
292
|
where :math:`moving\_mean` is the updated mean, :math:`moving\_var` is the updated variance,
|
|
293
|
-
:math:`μ_β, σ^2_β` are the observed value (mean and variance) of each batch of data.
|
|
293
|
+
:math:`μ_β, σ^2_β` are the observed value (mean and variance respectively) of each batch of data.
|
|
294
294
|
|
|
295
295
|
Args:
|
|
296
296
|
num_features (int): The number of channels of the input tensor. Expected input size is :math:`(N, C, H, W)`,
|
|
297
297
|
`C` represents the number of channels.
|
|
298
|
-
eps (float): :math:`\epsilon` added to the denominator for numerical stability. Default: ``1e-5`` .
|
|
299
|
-
momentum (float): A floating hyperparameter of the momentum for the
|
|
298
|
+
eps (float, optional): :math:`\epsilon` added to the denominator for numerical stability. Default: ``1e-5`` .
|
|
299
|
+
momentum (float, optional): A floating hyperparameter of the momentum for the
|
|
300
300
|
running_mean and running_var computation. Default: ``0.9`` .
|
|
301
|
-
affine (bool): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta` can be learned.
|
|
301
|
+
affine (bool, optional): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta` can be learned.
|
|
302
302
|
Default: ``True`` .
|
|
303
|
-
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
303
|
+
gamma_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the
|
|
304
|
+
:math:`\gamma` weight.
|
|
304
305
|
The values of str refer to the function `mindspore.common.initializer
|
|
305
306
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
306
307
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
307
|
-
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
308
|
+
beta_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the
|
|
309
|
+
:math:`\beta` weight.
|
|
308
310
|
The values of str refer to the function `mindspore.common.initializer
|
|
309
311
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
310
312
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
|
|
311
|
-
moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving mean.
|
|
313
|
+
moving_mean_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving mean.
|
|
312
314
|
The values of str refer to the function `mindspore.common.initializer
|
|
313
315
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
314
316
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
|
|
315
|
-
moving_var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for
|
|
317
|
+
moving_var_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for
|
|
318
|
+
the moving variance.
|
|
316
319
|
The values of str refer to the function `mindspore.common.initializer
|
|
317
320
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
318
321
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
319
|
-
use_batch_statistics (bool): Default: ``None`` .
|
|
322
|
+
use_batch_statistics (bool, optional): Default: ``None`` .
|
|
320
323
|
|
|
321
324
|
- If ``true`` , use the mean value and variance value of current batch data and track running mean
|
|
322
325
|
and running variance.
|
|
@@ -325,9 +328,9 @@ class BatchNorm2d(_BatchNorm):
|
|
|
325
328
|
training and evaluation mode. During training, the parameter is set to true, and during evaluation, the
|
|
326
329
|
parameter is set to false.
|
|
327
330
|
|
|
328
|
-
data_format (str): The optional value for data format, is ``'NHWC'`` or ``'NCHW'`` .
|
|
331
|
+
data_format (str, optional): The optional value for data format, is ``'NHWC'`` or ``'NCHW'`` .
|
|
329
332
|
Default: ``'NCHW'`` .
|
|
330
|
-
dtype (:class:`mindspore.dtype
|
|
333
|
+
dtype (:class:`mindspore.dtype`, optional): Dtype of Parameters. Default: ``mstype.float32`` .
|
|
331
334
|
|
|
332
335
|
Inputs:
|
|
333
336
|
- **x** (Tensor) - Tensor of shape :math:`(N, C, H, W)`. Supported types: float16, float32.
|
|
@@ -340,7 +343,7 @@ class BatchNorm2d(_BatchNorm):
|
|
|
340
343
|
TypeError: If `eps` is not a float.
|
|
341
344
|
ValueError: If `num_features` is less than 1.
|
|
342
345
|
ValueError: If `momentum` is not in range [0, 1].
|
|
343
|
-
ValueError: If `data_format` is neither 'NHWC' not 'NCHW'
|
|
346
|
+
ValueError: If `data_format` is neither ``'NHWC'`` not ``'NCHW'``.
|
|
344
347
|
|
|
345
348
|
Supported Platforms:
|
|
346
349
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -508,32 +511,34 @@ class SyncBatchNorm(_BatchNorm):
|
|
|
508
511
|
|
|
509
512
|
Args:
|
|
510
513
|
num_features (int): `C` from an expected input of size :math:`(N, C, H, W)`.
|
|
511
|
-
eps (float): :math:`\epsilon`, a value added to the denominator for numerical stability.
|
|
512
|
-
|
|
514
|
+
eps (float, optional): :math:`\epsilon`, a value added to the denominator for numerical stability.
|
|
515
|
+
Default: ``1e-5`` .
|
|
516
|
+
momentum (float, optional): A floating hyperparameter of the momentum for the
|
|
513
517
|
running_mean and running_var computation. Default: ``0.9`` .
|
|
514
|
-
affine (bool): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta`
|
|
518
|
+
affine (bool, optional): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta` are learnable
|
|
519
|
+
parameters. When set to ``False`` , :math:`\gamma` and :math:`\beta` are unlearnable parameters.
|
|
515
520
|
Default: ``True`` .
|
|
516
|
-
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\gamma`
|
|
517
|
-
The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
|
|
521
|
+
gamma_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the :math:`\gamma`
|
|
522
|
+
weight. The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
|
|
518
523
|
``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` .
|
|
519
|
-
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\beta` weight.
|
|
524
|
+
beta_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the :math:`\beta` weight.
|
|
520
525
|
The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
|
|
521
526
|
``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` .
|
|
522
|
-
moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving mean.
|
|
527
|
+
moving_mean_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving mean.
|
|
523
528
|
The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
|
|
524
529
|
``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` .
|
|
525
|
-
moving_var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving
|
|
526
|
-
The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
|
|
530
|
+
moving_var_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving
|
|
531
|
+
variance. The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
|
|
527
532
|
``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` .
|
|
528
|
-
use_batch_statistics (bool): If ``true`` , use the mean value and variance value of current batch
|
|
529
|
-
``false`` , use the mean value and variance value of specified value. If ``None`` , training
|
|
530
|
-
use the mean and variance of current batch data and track the running mean and variance, eval
|
|
531
|
-
use the running mean and variance. Default: ``None`` .
|
|
532
|
-
process_groups (list): A list to divide devices into different sync groups, containing N subtraction
|
|
533
|
-
Each subtraction list contains int numbers identifying rank ids which need to be synchronized in the
|
|
534
|
-
group. All int values must be in [0, rank_size) and different from each other. Default: ``None`` ,
|
|
533
|
+
use_batch_statistics (bool, optional): If ``true`` , use the mean value and variance value of current batch
|
|
534
|
+
data. If ``false`` , use the mean value and variance value of specified value. If ``None`` , training
|
|
535
|
+
process will use the mean and variance of current batch data and track the running mean and variance, eval
|
|
536
|
+
process will use the running mean and variance. Default: ``None`` .
|
|
537
|
+
process_groups (list, optional): A list to divide devices into different sync groups, containing N subtraction
|
|
538
|
+
lists. Each subtraction list contains int numbers identifying rank ids which need to be synchronized in the
|
|
539
|
+
same group. All int values must be in [0, rank_size) and different from each other. Default: ``None`` ,
|
|
535
540
|
indicating synchronization across all devices.
|
|
536
|
-
dtype (:class:`mindspore.dtype
|
|
541
|
+
dtype (:class:`mindspore.dtype`, optional): Dtype of Parameters. Default: ``mstype.float32`` .
|
|
537
542
|
|
|
538
543
|
Inputs:
|
|
539
544
|
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
|
@@ -558,14 +563,14 @@ class SyncBatchNorm(_BatchNorm):
|
|
|
558
563
|
|
|
559
564
|
For the Ascend devices, users need to prepare the rank table, set rank_id and device_id.
|
|
560
565
|
Please see the `Ascend tutorial
|
|
561
|
-
<https://www.mindspore.cn/
|
|
566
|
+
<https://www.mindspore.cn/tutorials/en/master/parallel/rank_table.html>`_
|
|
562
567
|
for more details.
|
|
563
568
|
|
|
564
569
|
For the GPU devices, users need to prepare the host file and mpi, please see the `mpirun Startup
|
|
565
|
-
<https://www.mindspore.cn/
|
|
570
|
+
<https://www.mindspore.cn/tutorials/en/master/parallel/mpirun.html>`_ .
|
|
566
571
|
|
|
567
572
|
For the CPU device, users need to write a dynamic cluster startup script, please see the `Dynamic Cluster
|
|
568
|
-
Startup <https://www.mindspore.cn/
|
|
573
|
+
Startup <https://www.mindspore.cn/tutorials/en/master/parallel/dynamic_cluster.html>`_ .
|
|
569
574
|
|
|
570
575
|
This example should be run with multiple devices.
|
|
571
576
|
|
|
@@ -987,8 +992,8 @@ class InstanceNorm1d(_InstanceNorm):
|
|
|
987
992
|
ValueError: If `num_features` is less than 1.
|
|
988
993
|
ValueError: If `momentum` is not in range [0, 1].
|
|
989
994
|
ValueError: If the shape of `gamma_init` / `beta_init` is not :math:`(C)`.
|
|
990
|
-
KeyError: If any of `gamma_init`/`beta_init` is str and
|
|
991
|
-
|
|
995
|
+
KeyError: If any of `gamma_init`/`beta_init` is str and
|
|
996
|
+
there is no homonymous class inheriting from `Initializer`.
|
|
992
997
|
|
|
993
998
|
Supported Platforms:
|
|
994
999
|
``GPU``
|
|
@@ -1065,8 +1070,8 @@ class InstanceNorm2d(_InstanceNorm):
|
|
|
1065
1070
|
ValueError: If `num_features` is less than 1.
|
|
1066
1071
|
ValueError: If `momentum` is not in range [0, 1].
|
|
1067
1072
|
ValueError: If the shape of `gamma_init` / `beta_init` is not :math:`(C)`.
|
|
1068
|
-
KeyError: If any of `gamma_init`/`beta_init` is str and
|
|
1069
|
-
|
|
1073
|
+
KeyError: If any of `gamma_init`/`beta_init` is str and
|
|
1074
|
+
there is no homonymous class inheriting from `Initializer`.
|
|
1070
1075
|
|
|
1071
1076
|
Supported Platforms:
|
|
1072
1077
|
``GPU``
|
|
@@ -1171,10 +1176,11 @@ class GroupNorm(Cell):
|
|
|
1171
1176
|
|
|
1172
1177
|
Group Normalization is widely used in recurrent neural networks. It applies
|
|
1173
1178
|
normalization on a mini-batch of inputs for each single training case as described
|
|
1174
|
-
in the paper `Group Normalization <https://arxiv.org/pdf/1803.08494.pdf>`_.
|
|
1175
|
-
|
|
1176
|
-
|
|
1177
|
-
and
|
|
1179
|
+
in the paper `Group Normalization <https://arxiv.org/pdf/1803.08494.pdf>`_.
|
|
1180
|
+
Group Normalization
|
|
1181
|
+
divides the channels into groups and computes within each group the mean and variance for normalization.
|
|
1182
|
+
:math:`\gamma` and :math:`\beta` are scale
|
|
1183
|
+
and shift values obtained by training learning.
|
|
1178
1184
|
It can be described using the following formula:
|
|
1179
1185
|
|
|
1180
1186
|
.. math::
|