mindspore 2.5.0__cp311-cp311-win_amd64.whl → 2.6.0rc1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/__init__.py +6 -4
- mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -0
- mindspore/_checkparam.py +3 -33
- mindspore/_deprecated/__init__.py +17 -0
- mindspore/_deprecated/jit.py +198 -0
- mindspore/_extends/builtin_operations.py +1 -1
- mindspore/_extends/parse/__init__.py +6 -7
- mindspore/_extends/parse/compile_config.py +19 -0
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
- mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
- mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
- mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
- mindspore/_extends/parse/parser.py +24 -193
- mindspore/_extends/parse/resources.py +1 -5
- mindspore/_extends/parse/standard_method.py +97 -74
- mindspore/_extends/pijit/__init__.py +2 -2
- mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
- mindspore/_extends/pijit/tensor_func_list.py +27 -0
- mindspore/_extends/utils.py +1 -1
- mindspore/amp.py +4 -4
- mindspore/atlprov.dll +0 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/__init__.py +2 -2
- mindspore/boost/base.py +3 -7
- mindspore/boost/boost_cell_wrapper.py +2 -2
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/common/__init__.py +4 -3
- mindspore/common/_grad_function.py +56 -0
- mindspore/common/_pijit_context.py +14 -5
- mindspore/common/_register_for_tensor.py +1 -1
- mindspore/common/_stub_tensor.py +5 -10
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +1915 -3287
- mindspore/common/api.py +341 -354
- mindspore/common/auto_dynamic_shape.py +41 -44
- mindspore/common/dtype.py +5 -2
- mindspore/common/dump.py +7 -5
- mindspore/common/file_system.py +3 -0
- mindspore/common/hook_handle.py +5 -3
- mindspore/common/initializer.py +10 -6
- mindspore/common/jit_begin_end.py +94 -0
- mindspore/common/jit_config.py +6 -1
- mindspore/common/jit_context.py +76 -0
- mindspore/common/jit_trace.py +378 -0
- mindspore/common/lazy_inline.py +2 -2
- mindspore/common/mutable.py +5 -4
- mindspore/common/parameter.py +106 -39
- mindspore/common/seed.py +2 -2
- mindspore/common/sparse_tensor.py +23 -17
- mindspore/common/tensor.py +297 -714
- mindspore/communication/__init__.py +7 -5
- mindspore/communication/_comm_helper.py +47 -2
- mindspore/communication/comm_func.py +70 -53
- mindspore/communication/management.py +83 -17
- mindspore/context.py +214 -560
- mindspore/dataset/__init__.py +44 -20
- mindspore/dataset/audio/__init__.py +2 -8
- mindspore/dataset/audio/transforms.py +3 -17
- mindspore/dataset/core/config.py +3 -3
- mindspore/dataset/engine/cache_client.py +1 -1
- mindspore/dataset/engine/datasets.py +102 -120
- mindspore/dataset/engine/datasets_audio.py +22 -22
- mindspore/dataset/engine/datasets_standard_format.py +43 -24
- mindspore/dataset/engine/datasets_text.py +78 -85
- mindspore/dataset/engine/datasets_user_defined.py +108 -76
- mindspore/dataset/engine/datasets_vision.py +111 -108
- mindspore/dataset/engine/iterators.py +5 -3
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
- mindspore/dataset/engine/samplers.py +279 -57
- mindspore/dataset/engine/serializer_deserializer.py +2 -1
- mindspore/dataset/engine/validators.py +10 -0
- mindspore/dataset/text/__init__.py +7 -6
- mindspore/dataset/text/transforms.py +6 -5
- mindspore/dataset/text/utils.py +3 -3
- mindspore/dataset/transforms/__init__.py +0 -9
- mindspore/dataset/transforms/transforms.py +3 -3
- mindspore/dataset/utils/browse_dataset.py +1 -1
- mindspore/dataset/vision/__init__.py +2 -9
- mindspore/dataset/vision/transforms.py +202 -158
- mindspore/dataset/vision/utils.py +7 -5
- mindspore/device_context/ascend/op_debug.py +60 -1
- mindspore/device_context/ascend/op_tuning.py +0 -4
- mindspore/device_manager.py +39 -3
- mindspore/dnnl.dll +0 -0
- mindspore/dpcmi.dll +0 -0
- mindspore/experimental/es/embedding_service.py +35 -27
- mindspore/experimental/map_parameter.py +4 -4
- mindspore/experimental/optim/adadelta.py +22 -26
- mindspore/experimental/optim/adagrad.py +4 -4
- mindspore/experimental/optim/adam.py +4 -0
- mindspore/experimental/optim/adamax.py +4 -4
- mindspore/experimental/optim/adamw.py +4 -0
- mindspore/experimental/optim/asgd.py +1 -1
- mindspore/experimental/optim/lr_scheduler.py +40 -22
- mindspore/experimental/optim/radam.py +5 -5
- mindspore/experimental/optim/rprop.py +1 -1
- mindspore/experimental/optim/sgd.py +1 -1
- mindspore/hal/contiguous_tensors_handle.py +6 -10
- mindspore/hal/device.py +55 -81
- mindspore/hal/event.py +38 -55
- mindspore/hal/memory.py +93 -144
- mindspore/hal/stream.py +81 -125
- mindspore/include/dataset/constants.h +7 -4
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +40 -2
- mindspore/mindrecord/__init__.py +20 -7
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/__init__.py +131 -700
- mindspore/mint/distributed/__init__.py +5 -1
- mindspore/mint/distributed/distributed.py +194 -109
- mindspore/mint/linalg/__init__.py +2 -0
- mindspore/mint/nn/__init__.py +280 -18
- mindspore/mint/nn/functional.py +282 -64
- mindspore/mint/nn/layer/__init__.py +4 -0
- mindspore/mint/nn/layer/_functions.py +7 -3
- mindspore/mint/nn/layer/activation.py +120 -13
- mindspore/mint/nn/layer/conv.py +218 -24
- mindspore/mint/nn/layer/normalization.py +15 -16
- mindspore/mint/nn/layer/padding.py +1 -1
- mindspore/mint/nn/layer/pooling.py +66 -1
- mindspore/mint/optim/__init__.py +2 -1
- mindspore/mint/optim/sgd.py +171 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +4 -1
- mindspore/nn/cell.py +1250 -176
- mindspore/nn/layer/activation.py +23 -21
- mindspore/nn/layer/basic.py +22 -16
- mindspore/nn/layer/container.py +1 -1
- mindspore/nn/layer/conv.py +22 -17
- mindspore/nn/layer/embedding.py +9 -8
- mindspore/nn/layer/normalization.py +48 -42
- mindspore/nn/layer/pooling.py +75 -31
- mindspore/nn/layer/transformer.py +11 -10
- mindspore/nn/learning_rate_schedule.py +4 -2
- mindspore/nn/loss/loss.py +27 -19
- mindspore/nn/optim/ada_grad.py +6 -5
- mindspore/nn/optim/adadelta.py +9 -7
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +16 -12
- mindspore/nn/optim/adamax.py +8 -7
- mindspore/nn/optim/adasum.py +5 -5
- mindspore/nn/optim/asgd.py +1 -1
- mindspore/nn/optim/ftrl.py +11 -9
- mindspore/nn/optim/lamb.py +1 -1
- mindspore/nn/optim/lazyadam.py +12 -10
- mindspore/nn/optim/momentum.py +7 -6
- mindspore/nn/optim/optimizer.py +2 -2
- mindspore/nn/optim/proximal_ada_grad.py +12 -10
- mindspore/nn/optim/rmsprop.py +13 -12
- mindspore/nn/optim/rprop.py +9 -7
- mindspore/nn/optim/sgd.py +9 -6
- mindspore/nn/optim/tft_wrapper.py +5 -2
- mindspore/nn/probability/bijector/bijector.py +17 -11
- mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
- mindspore/nn/probability/bijector/invert.py +2 -2
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +3 -2
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +1 -1
- mindspore/nn/probability/distribution/cauchy.py +4 -2
- mindspore/nn/probability/distribution/exponential.py +6 -7
- mindspore/nn/probability/distribution/gamma.py +2 -2
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/half_normal.py +5 -3
- mindspore/nn/probability/distribution/logistic.py +5 -3
- mindspore/nn/probability/distribution/poisson.py +1 -1
- mindspore/nn/probability/distribution/uniform.py +5 -3
- mindspore/nn/reinforcement/_tensors_queue.py +1 -1
- mindspore/nn/reinforcement/tensor_array.py +1 -1
- mindspore/nn/wrap/__init__.py +6 -6
- mindspore/nn/wrap/cell_wrapper.py +178 -117
- mindspore/nn/wrap/grad_reducer.py +45 -36
- mindspore/nn/wrap/loss_scale.py +3 -3
- mindspore/numpy/array_creations.py +3 -3
- mindspore/numpy/array_ops.py +1 -1
- mindspore/numpy/math_ops.py +4 -4
- mindspore/numpy/utils.py +1 -2
- mindspore/numpy/utils_const.py +1 -2
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +3 -2
- mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
- mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
- mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
- mindspore/ops/_register_for_op.py +0 -11
- mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
- mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
- mindspore/ops/_vmap/vmap_array_ops.py +7 -6
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
- mindspore/ops/_vmap/vmap_math_ops.py +4 -7
- mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
- mindspore/ops/auto_generate/__init__.py +4 -3
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +102 -49
- mindspore/ops/auto_generate/gen_extend_func.py +281 -135
- mindspore/ops/auto_generate/gen_ops_def.py +2574 -2326
- mindspore/ops/auto_generate/gen_ops_prim.py +8566 -2755
- mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
- mindspore/ops/composite/__init__.py +2 -1
- mindspore/ops/composite/base.py +19 -24
- mindspore/ops/composite/math_ops.py +6 -16
- mindspore/ops/composite/multitype_ops/__init__.py +5 -2
- mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -3
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
- mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
- mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
- mindspore/ops/function/__init__.py +28 -2
- mindspore/ops/function/_add_attr_func.py +58 -0
- mindspore/ops/function/array_func.py +1629 -2345
- mindspore/ops/function/clip_func.py +38 -45
- mindspore/ops/function/debug_func.py +36 -44
- mindspore/ops/function/grad/__init__.py +1 -0
- mindspore/ops/function/grad/grad_func.py +104 -71
- mindspore/ops/function/image_func.py +1 -1
- mindspore/ops/function/linalg_func.py +46 -78
- mindspore/ops/function/math_func.py +3035 -3705
- mindspore/ops/function/nn_func.py +676 -241
- mindspore/ops/function/other_func.py +159 -1
- mindspore/ops/function/parameter_func.py +17 -30
- mindspore/ops/function/random_func.py +204 -361
- mindspore/ops/function/reshard_func.py +4 -70
- mindspore/ops/function/sparse_func.py +3 -3
- mindspore/ops/function/sparse_unary_func.py +5 -5
- mindspore/ops/function/spectral_func.py +25 -58
- mindspore/ops/function/vmap_func.py +24 -17
- mindspore/ops/functional.py +6 -4
- mindspore/ops/functional_overload.py +547 -4
- mindspore/ops/op_info_register.py +32 -244
- mindspore/ops/operations/__init__.py +10 -5
- mindspore/ops/operations/_custom_ops_utils.py +247 -0
- mindspore/ops/operations/_grad_ops.py +1 -10
- mindspore/ops/operations/_inner_ops.py +5 -76
- mindspore/ops/operations/_ms_kernel.py +4 -10
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/_scalar_ops.py +3 -2
- mindspore/ops/operations/_sequence_ops.py +1 -1
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/array_ops.py +37 -22
- mindspore/ops/operations/comm_ops.py +150 -107
- mindspore/ops/operations/custom_ops.py +221 -23
- mindspore/ops/operations/debug_ops.py +115 -16
- mindspore/ops/operations/inner_ops.py +1 -1
- mindspore/ops/operations/linalg_ops.py +1 -58
- mindspore/ops/operations/manually_defined/_inner.py +1 -1
- mindspore/ops/operations/manually_defined/ops_def.py +746 -79
- mindspore/ops/operations/math_ops.py +21 -18
- mindspore/ops/operations/nn_ops.py +65 -191
- mindspore/ops/operations/other_ops.py +62 -9
- mindspore/ops/operations/random_ops.py +13 -7
- mindspore/ops/operations/reshard_ops.py +1 -1
- mindspore/ops/operations/sparse_ops.py +2 -2
- mindspore/ops/primitive.py +43 -32
- mindspore/ops/tensor_method.py +232 -13
- mindspore/ops_generate/__init__.py +0 -5
- mindspore/ops_generate/aclnn/__init__.py +0 -0
- mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
- mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
- mindspore/ops_generate/api/__init__.py +0 -0
- mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
- mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
- mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
- mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
- mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
- mindspore/ops_generate/api/gen_api.py +103 -0
- mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
- mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
- mindspore/ops_generate/common/__init__.py +0 -0
- mindspore/ops_generate/common/gen_constants.py +91 -0
- mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
- mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
- mindspore/ops_generate/{template.py → common/template.py} +96 -84
- mindspore/ops_generate/gen_ops.py +23 -325
- mindspore/ops_generate/op_def/__init__.py +0 -0
- mindspore/ops_generate/op_def/gen_op_def.py +90 -0
- mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
- mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -7
- mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
- mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
- mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
- mindspore/ops_generate/op_def_py/__init__.py +0 -0
- mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
- mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
- mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
- mindspore/ops_generate/pyboost/__init__.py +0 -0
- mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
- mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
- mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
- mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
- mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
- mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
- mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
- mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
- mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
- mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
- mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
- mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
- mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
- mindspore/ops_generate/resources/__init__.py +0 -0
- mindspore/ops_generate/resources/resource_list.py +30 -0
- mindspore/ops_generate/resources/resource_loader.py +36 -0
- mindspore/ops_generate/resources/resource_manager.py +64 -0
- mindspore/ops_generate/resources/yaml_loader.py +88 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
- mindspore/parallel/__init__.py +6 -2
- mindspore/parallel/_auto_parallel_context.py +133 -6
- mindspore/parallel/_cell_wrapper.py +130 -15
- mindspore/parallel/_parallel_serialization.py +95 -4
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +7 -2
- mindspore/parallel/_tensor.py +142 -18
- mindspore/parallel/_utils.py +198 -25
- mindspore/parallel/algo_parameter_config.py +3 -3
- mindspore/parallel/auto_parallel.py +732 -0
- mindspore/parallel/checkpoint_convert.py +159 -0
- mindspore/parallel/checkpoint_transform.py +656 -37
- mindspore/parallel/cluster/process_entity/_api.py +151 -19
- mindspore/parallel/cluster/run.py +1 -1
- mindspore/parallel/function/__init__.py +24 -0
- mindspore/parallel/function/reshard_func.py +259 -0
- mindspore/parallel/nn/__init__.py +25 -0
- mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
- mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
- mindspore/parallel/parameter_broadcast.py +24 -13
- mindspore/parallel/shard.py +137 -61
- mindspore/parallel/transform_safetensors.py +287 -95
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +9 -5
- mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
- mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +22 -0
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
- mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
- mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
- mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
- mindspore/profiler/common/constant.py +12 -0
- mindspore/profiler/common/msprof_cmd_tool.py +42 -23
- mindspore/profiler/common/path_manager.py +24 -0
- mindspore/profiler/common/profiler_context.py +26 -2
- mindspore/profiler/common/profiler_meta_data.py +74 -0
- mindspore/profiler/common/profiler_parameters.py +59 -18
- mindspore/profiler/common/profiler_path_manager.py +66 -7
- mindspore/profiler/dynamic_profiler.py +112 -79
- mindspore/profiler/envprofiler.py +26 -1
- mindspore/profiler/experimental_config.py +197 -0
- mindspore/profiler/mstx.py +57 -14
- mindspore/profiler/platform/npu_profiler.py +33 -7
- mindspore/profiler/profiler.py +541 -45
- mindspore/profiler/profiler_action_controller.py +1 -1
- mindspore/profiler/profiler_interface.py +4 -0
- mindspore/profiler/schedule.py +57 -22
- mindspore/rewrite/api/node.py +15 -13
- mindspore/rewrite/api/symbol_tree.py +1 -1
- mindspore/run_check/_check_version.py +25 -14
- mindspore/run_check/run_check.py +1 -1
- mindspore/runtime/__init__.py +2 -2
- mindspore/runtime/executor.py +40 -11
- mindspore/runtime/memory.py +25 -8
- mindspore/safeguard/rewrite_obfuscation.py +12 -9
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +8 -8
- mindspore/train/_utils.py +35 -7
- mindspore/train/amp.py +1 -1
- mindspore/train/callback/__init__.py +2 -2
- mindspore/train/callback/_callback.py +2 -16
- mindspore/train/callback/_checkpoint.py +24 -40
- mindspore/train/callback/_cluster_monitor.py +14 -18
- mindspore/train/callback/_flops_collector.py +2 -3
- mindspore/train/callback/_history.py +7 -4
- mindspore/train/callback/_lambda_callback.py +2 -2
- mindspore/train/callback/_landscape.py +0 -3
- mindspore/train/callback/_loss_monitor.py +2 -1
- mindspore/train/callback/_on_request_exit.py +6 -5
- mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
- mindspore/train/callback/_summary_collector.py +8 -13
- mindspore/train/callback/_time_monitor.py +2 -1
- mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +179 -103
- mindspore/train/data_sink.py +25 -2
- mindspore/train/dataset_helper.py +4 -5
- mindspore/train/loss_scale_manager.py +8 -7
- mindspore/train/metrics/accuracy.py +3 -3
- mindspore/train/metrics/confusion_matrix.py +9 -9
- mindspore/train/metrics/error.py +3 -3
- mindspore/train/metrics/hausdorff_distance.py +4 -4
- mindspore/train/metrics/mean_surface_distance.py +3 -3
- mindspore/train/metrics/metric.py +0 -12
- mindspore/train/metrics/occlusion_sensitivity.py +4 -2
- mindspore/train/metrics/precision.py +8 -6
- mindspore/train/metrics/recall.py +9 -9
- mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
- mindspore/train/mind_ir_pb2.py +19 -12
- mindspore/train/model.py +176 -103
- mindspore/train/serialization.py +246 -988
- mindspore/train/summary/_summary_adapter.py +2 -2
- mindspore/train/summary/summary_record.py +1 -1
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +3 -2
- mindspore/utils/dryrun.py +4 -2
- mindspore/utils/hooks.py +81 -0
- mindspore/utils/utils.py +138 -4
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +2 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +483 -438
- mindspore/_install_custom.py +0 -43
- mindspore/common/_register_for_adapter.py +0 -74
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
- mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
- mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
- mindspore/ops_generate/gen_constants.py +0 -190
- mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
- mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
- /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright
|
|
1
|
+
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
2
2
|
#
|
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
# you may not use this file except in compliance with the License.
|
|
@@ -17,17 +17,20 @@ from mindspore.common import dtype as mstype
|
|
|
17
17
|
from mindspore.ops.auto_generate.pyboost_inner_prim import *
|
|
18
18
|
|
|
19
19
|
|
|
20
|
-
def
|
|
20
|
+
def acosh(input):
|
|
21
21
|
r"""
|
|
22
|
-
Computes
|
|
22
|
+
Computes inverse hyperbolic cosine of the inputs element-wise.
|
|
23
23
|
|
|
24
24
|
.. math::
|
|
25
25
|
|
|
26
|
-
out_i = \
|
|
26
|
+
out_i = \cosh^{-1}(input_i)
|
|
27
|
+
|
|
28
|
+
.. note::
|
|
29
|
+
Given an input tensor input, the function computes inverse hyperbolic cosine of every element.
|
|
30
|
+
Input range is [1, inf].
|
|
27
31
|
|
|
28
32
|
Args:
|
|
29
|
-
input (Tensor): The
|
|
30
|
-
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
33
|
+
input (Tensor): The input tensor of inverse hyperbolic cosine function.
|
|
31
34
|
|
|
32
35
|
Returns:
|
|
33
36
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -42,28 +45,25 @@ def acos(input):
|
|
|
42
45
|
>>> import mindspore
|
|
43
46
|
>>> import numpy as np
|
|
44
47
|
>>> from mindspore import Tensor, ops
|
|
45
|
-
>>> input = Tensor(np.array([0
|
|
46
|
-
>>> output = ops.
|
|
48
|
+
>>> input = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
|
|
49
|
+
>>> output = ops.acosh_ext(input)
|
|
47
50
|
>>> print(output)
|
|
48
|
-
[0.
|
|
51
|
+
[0. 0.9624236 1.7627472 5.298292 ]
|
|
49
52
|
"""
|
|
50
|
-
return
|
|
53
|
+
return acosh_impl(input)
|
|
51
54
|
|
|
52
55
|
|
|
53
|
-
def
|
|
56
|
+
def acos(input):
|
|
54
57
|
r"""
|
|
55
|
-
Computes
|
|
58
|
+
Computes arccosine of input tensors element-wise.
|
|
56
59
|
|
|
57
60
|
.. math::
|
|
58
61
|
|
|
59
|
-
out_i = \
|
|
60
|
-
|
|
61
|
-
.. note::
|
|
62
|
-
Given an input tensor input, the function computes inverse hyperbolic cosine of every element.
|
|
63
|
-
Input range is [1, inf].
|
|
62
|
+
out_i = \cos^{-1}(input_i)
|
|
64
63
|
|
|
65
64
|
Args:
|
|
66
|
-
input (Tensor): The
|
|
65
|
+
input (Tensor): The shape of tensor is
|
|
66
|
+
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
67
67
|
|
|
68
68
|
Returns:
|
|
69
69
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -78,12 +78,12 @@ def acosh(input):
|
|
|
78
78
|
>>> import mindspore
|
|
79
79
|
>>> import numpy as np
|
|
80
80
|
>>> from mindspore import Tensor, ops
|
|
81
|
-
>>> input = Tensor(np.array([
|
|
82
|
-
>>> output = ops.
|
|
81
|
+
>>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
|
82
|
+
>>> output = ops.acos_ext(input)
|
|
83
83
|
>>> print(output)
|
|
84
|
-
[0.
|
|
84
|
+
[0.7377037 1.5307857 1.2661037 0.9764114]
|
|
85
85
|
"""
|
|
86
|
-
return
|
|
86
|
+
return acos_impl(input)
|
|
87
87
|
|
|
88
88
|
|
|
89
89
|
def adaptive_avg_pool2d_grad(grad_output, x):
|
|
@@ -246,7 +246,7 @@ def argmin(input, dim=None, keepdim=False):
|
|
|
246
246
|
return argmin_impl(input, dim, keepdim)
|
|
247
247
|
|
|
248
248
|
|
|
249
|
-
def argsort(input, dim=-1, descending=False):
|
|
249
|
+
def argsort(input, dim=-1, descending=False, stable=False):
|
|
250
250
|
r"""
|
|
251
251
|
Sorts the input tensor along the given dimension in specified order and return the sorted indices.
|
|
252
252
|
|
|
@@ -259,10 +259,17 @@ def argsort(input, dim=-1, descending=False):
|
|
|
259
259
|
The Ascend backend only supports sorting the last dimension.
|
|
260
260
|
descending (bool, optional): The sort order. If `descending` is ``True`` then the elements
|
|
261
261
|
are sorted in descending order by value. Otherwise sort in ascending order. Default: ``False`` .
|
|
262
|
+
stable (bool, optional): Whether to use stable sorting algorithm. Default: ``False``.
|
|
262
263
|
|
|
263
264
|
Returns:
|
|
264
265
|
Tensor, the indices of sorted input tensor. Data type is int64.
|
|
265
266
|
|
|
267
|
+
Raises:
|
|
268
|
+
ValueError: If `dim` is out of range.
|
|
269
|
+
TypeError: If dtype of `dim` is not int32.
|
|
270
|
+
TypeError: If dtype of `descending` is not bool.
|
|
271
|
+
TypeError: If dtype of `stable` is not bool.
|
|
272
|
+
|
|
266
273
|
Supported Platforms:
|
|
267
274
|
``Ascend``
|
|
268
275
|
|
|
@@ -278,20 +285,19 @@ def argsort(input, dim=-1, descending=False):
|
|
|
278
285
|
[2 0 1]
|
|
279
286
|
[0 1 2]]
|
|
280
287
|
"""
|
|
281
|
-
return argsort_impl(input, dim, descending)
|
|
288
|
+
return argsort_impl(input, dim, descending, stable)
|
|
282
289
|
|
|
283
290
|
|
|
284
|
-
def
|
|
291
|
+
def asinh(input):
|
|
285
292
|
r"""
|
|
286
|
-
Computes
|
|
293
|
+
Computes inverse hyperbolic sine of the input element-wise.
|
|
287
294
|
|
|
288
295
|
.. math::
|
|
289
296
|
|
|
290
|
-
out_i = \
|
|
297
|
+
out_i = \sinh^{-1}(input_i)
|
|
291
298
|
|
|
292
299
|
Args:
|
|
293
|
-
input (Tensor): The
|
|
294
|
-
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
300
|
+
input (Tensor): The input tensor of inverse hyperbolic sine function.
|
|
295
301
|
|
|
296
302
|
Returns:
|
|
297
303
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -306,24 +312,25 @@ def asin(input):
|
|
|
306
312
|
>>> import mindspore
|
|
307
313
|
>>> import numpy as np
|
|
308
314
|
>>> from mindspore import Tensor, ops
|
|
309
|
-
>>> input = Tensor(np.array([0
|
|
310
|
-
>>> output = ops.
|
|
315
|
+
>>> input = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32)
|
|
316
|
+
>>> output = ops.asinh_ext(input)
|
|
311
317
|
>>> print(output)
|
|
312
|
-
[
|
|
318
|
+
[-2.3124385 1.1947632 1.8184465 5.298342 ]
|
|
313
319
|
"""
|
|
314
|
-
return
|
|
320
|
+
return asinh_impl(input)
|
|
315
321
|
|
|
316
322
|
|
|
317
|
-
def
|
|
323
|
+
def asin(input):
|
|
318
324
|
r"""
|
|
319
|
-
Computes
|
|
325
|
+
Computes arcsine of input tensors element-wise.
|
|
320
326
|
|
|
321
327
|
.. math::
|
|
322
328
|
|
|
323
|
-
out_i = \
|
|
329
|
+
out_i = \sin^{-1}(input_i)
|
|
324
330
|
|
|
325
331
|
Args:
|
|
326
|
-
input (Tensor): The
|
|
332
|
+
input (Tensor): The shape of tensor is
|
|
333
|
+
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
327
334
|
|
|
328
335
|
Returns:
|
|
329
336
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -338,12 +345,12 @@ def asinh(input):
|
|
|
338
345
|
>>> import mindspore
|
|
339
346
|
>>> import numpy as np
|
|
340
347
|
>>> from mindspore import Tensor, ops
|
|
341
|
-
>>> input = Tensor(np.array([
|
|
342
|
-
>>> output = ops.
|
|
348
|
+
>>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
|
349
|
+
>>> output = ops.asin_ext(input)
|
|
343
350
|
>>> print(output)
|
|
344
|
-
[
|
|
351
|
+
[0.8330927 0.04001068 0.30469266 0.59438497 ]
|
|
345
352
|
"""
|
|
346
|
-
return
|
|
353
|
+
return asin_impl(input)
|
|
347
354
|
|
|
348
355
|
|
|
349
356
|
def atan2(input, other):
|
|
@@ -505,15 +512,15 @@ def bincount(input, weights=None, minlength=0):
|
|
|
505
512
|
``Ascend``
|
|
506
513
|
|
|
507
514
|
Examples:
|
|
508
|
-
>>> from mindspore import mint
|
|
509
|
-
>>> print(mint.bincount(np.arange(5)))
|
|
510
|
-
[1
|
|
511
|
-
>>> print(mint.bincount(np.array([0, 1, 1, 3, 2, 1, 7])))
|
|
512
|
-
[1
|
|
513
|
-
>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
|
|
514
|
-
>>> x = np.array([0, 1, 1, 2, 2, 2])
|
|
515
|
+
>>> from mindspore import mint, Tensor
|
|
516
|
+
>>> print(mint.bincount(Tensor(np.arange(5))))
|
|
517
|
+
[1 1 1 1 1]
|
|
518
|
+
>>> print(mint.bincount(Tensor(np.array([0, 1, 1, 3, 2, 1, 7]))))
|
|
519
|
+
[1 3 1 1 0 0 0 1]
|
|
520
|
+
>>> w = Tensor(np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6])) # weights
|
|
521
|
+
>>> x = Tensor(np.array([0, 1, 1, 2, 2, 2]))
|
|
515
522
|
>>> print(mint.bincount(x, weights=w, minlength=5))
|
|
516
|
-
[0.3 0.7 1.1 0.0
|
|
523
|
+
[0.3 0.7 1.1 0. 0. ]
|
|
517
524
|
"""
|
|
518
525
|
return bincount_impl(input, weights, minlength)
|
|
519
526
|
|
|
@@ -716,6 +723,54 @@ def cumsum(input, dim, dtype=None):
|
|
|
716
723
|
return cumsum_impl(input, dim, dtype)
|
|
717
724
|
|
|
718
725
|
|
|
726
|
+
def diag(input, diagonal=0):
|
|
727
|
+
r"""
|
|
728
|
+
If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.
|
|
729
|
+
|
|
730
|
+
If input is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements of input.
|
|
731
|
+
|
|
732
|
+
The argument diagonal controls which diagonal to consider:
|
|
733
|
+
|
|
734
|
+
- If `diagonal` = 0, it is the main diagonal.
|
|
735
|
+
|
|
736
|
+
- If `diagonal` > 0, it is above the main diagonal.
|
|
737
|
+
|
|
738
|
+
- If `diagonal` < 0, it is below the main diagonal.
|
|
739
|
+
|
|
740
|
+
.. warning::
|
|
741
|
+
This is an experimental API that is subject to change or deletion.
|
|
742
|
+
|
|
743
|
+
Args:
|
|
744
|
+
input (Tensor): The input tensor.
|
|
745
|
+
diagonal (int, optional): the diagonal to consider. Defaults: ``0``.
|
|
746
|
+
|
|
747
|
+
Returns:
|
|
748
|
+
Tensor, has the same dtype as the `input`, its shape is up to `diagonal`.
|
|
749
|
+
|
|
750
|
+
- If `input` shape is :math:`(x_0)` : then output shape is :math:`(x_0 + \left | diagonal \right | , x_0 + \left | diagonal \right | )` 2-D Tensor.
|
|
751
|
+
|
|
752
|
+
- If `input` shape is :math:`(x_0, x_1)` : then output shape is main diagonal to move :math:`(\left | diagonal \right |)` elements remains elements' length 1-D Tensor.
|
|
753
|
+
|
|
754
|
+
Raises:
|
|
755
|
+
TypeError: If `input` is not a Tensor.
|
|
756
|
+
ValueError: If shape of `input` is not 1-D and 2-D.
|
|
757
|
+
|
|
758
|
+
Supported Platforms:
|
|
759
|
+
``Ascend``
|
|
760
|
+
|
|
761
|
+
Examples:
|
|
762
|
+
>>> from mindspore import Tensor, mint
|
|
763
|
+
>>> input = Tensor([1, 2, 3, 4]).astype('int32')
|
|
764
|
+
>>> output = mint.diag(input)
|
|
765
|
+
>>> print(output)
|
|
766
|
+
[[1 0 0 0]
|
|
767
|
+
[0 2 0 0]
|
|
768
|
+
[0 0 3 0]
|
|
769
|
+
[0 0 0 4]]
|
|
770
|
+
"""
|
|
771
|
+
return diag_impl(input, diagonal)
|
|
772
|
+
|
|
773
|
+
|
|
719
774
|
def elu(input, alpha=1.0):
|
|
720
775
|
r"""
|
|
721
776
|
Exponential Linear Unit activation function.
|
|
@@ -956,6 +1011,56 @@ def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
|
|
|
956
1011
|
return unfold_impl(input, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
|
|
957
1012
|
|
|
958
1013
|
|
|
1014
|
+
def index_add(input, dim, index, source, alpha=1):
|
|
1015
|
+
r"""
|
|
1016
|
+
Accumulate the elements of `alpha` times `source` into the `input` by adding to the index in the order given in `index`. For example, if ``dim == 0`` , ``index[i] == j`` , and ``alpha = -1`` , then the `i` th row of `source` is subtracted from the `j` th row of `input` . The `dim` th dimension of `source` must have the same size as the length of `index` , and all other dimensions must match `input`, or an error will be raised. For a 3-D tensor, the output is defined as follows:
|
|
1017
|
+
|
|
1018
|
+
.. math::
|
|
1019
|
+
\begin{array}{ll}
|
|
1020
|
+
input[index[i],\ :,\ :]\ +=\ alpha * source[i,\ :,\ :] \qquad \#if\ dim == 0 \\
|
|
1021
|
+
input[:,\ \ index[i],\ :]\ +=\ alpha * source[:,\ \ i,\ :] \qquad \#if\ dim == 1 \\
|
|
1022
|
+
input[:,\ :,\ \ index[i]]\ +=\ alpha * source[:,\ :,\ \ i] \qquad\#if\ dim == 2 \\
|
|
1023
|
+
\end{array}
|
|
1024
|
+
|
|
1025
|
+
.. warning::
|
|
1026
|
+
This is an experimental API that is subject to change or deletion.
|
|
1027
|
+
|
|
1028
|
+
Args:
|
|
1029
|
+
input (Tensor): The input Tensor.
|
|
1030
|
+
dim (int): The dimension along which to index.
|
|
1031
|
+
index (Tensor): Add the value of "input Tensor" and `source` along the dimension of the `dim` according to the specified index value, with data type int32. The `index` must be 1D with the same size as the size of `source` in the `dim` dimension. The values of `index` should be in [0, b), where the b is the size of "input Tensor" in the `dim` dimension.
|
|
1032
|
+
source (Tensor): The input tensor with the value to add. Must have same data type as "input Tensor". The shape must be the same as "input Tensor" except the `dim` th dimension.
|
|
1033
|
+
alpha (number, optional): The scalar multiplier for source. Default: ``1``.
|
|
1034
|
+
|
|
1035
|
+
Returns:
|
|
1036
|
+
Tensor, has the same shape and dtype as `input`.
|
|
1037
|
+
|
|
1038
|
+
Raises:
|
|
1039
|
+
TypeError: If neither `index` nor `source` is a Tensor.
|
|
1040
|
+
ValueError: If the value of `dim` is out of the dimension range of `source` shape.
|
|
1041
|
+
ValueError: If `index` rank is not the same as `source` rank.
|
|
1042
|
+
ValueError: If shape of `index` is not 1D or size of `index` is not equal to dimension of source[dim].
|
|
1043
|
+
ValueError: If the shape of `source` is not the same as that of `input` except the `dim` axis.
|
|
1044
|
+
|
|
1045
|
+
Supported Platforms:
|
|
1046
|
+
``Ascend``
|
|
1047
|
+
|
|
1048
|
+
Examples:
|
|
1049
|
+
>>> import numpy as np
|
|
1050
|
+
>>> import mindspore
|
|
1051
|
+
>>> from mindspore import Tensor, ops
|
|
1052
|
+
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
|
|
1053
|
+
>>> index = Tensor(np.array([0, 2]), mindspore.int32)
|
|
1054
|
+
>>> y = Tensor(np.array([[0.5, 1.0], [1.0, 1.5], [2.0, 2.5]]), mindspore.float32)
|
|
1055
|
+
>>> output = ops.auto_generate.index_add_ext(x, 1, index, y, alpha=1)
|
|
1056
|
+
>>> print(output)
|
|
1057
|
+
[[ 1.5 2. 4. ]
|
|
1058
|
+
[ 5. 5. 7.5]
|
|
1059
|
+
[ 9. 8. 11.5]]
|
|
1060
|
+
"""
|
|
1061
|
+
return index_add_impl(input, dim, index, source, alpha)
|
|
1062
|
+
|
|
1063
|
+
|
|
959
1064
|
def index_select(input, dim, index):
|
|
960
1065
|
r"""
|
|
961
1066
|
Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
|
|
@@ -1002,18 +1107,18 @@ def index_select(input, dim, index):
|
|
|
1002
1107
|
return index_select_impl(input, dim, index)
|
|
1003
1108
|
|
|
1004
1109
|
|
|
1005
|
-
def
|
|
1110
|
+
def inplace_adds(input, other, alpha=1):
|
|
1006
1111
|
r"""
|
|
1007
1112
|
None
|
|
1008
1113
|
"""
|
|
1009
|
-
return
|
|
1114
|
+
return inplace_adds_impl(input, other, alpha)
|
|
1010
1115
|
|
|
1011
1116
|
|
|
1012
|
-
def
|
|
1117
|
+
def inplace_add(input, other, alpha=1):
|
|
1013
1118
|
r"""
|
|
1014
1119
|
None
|
|
1015
1120
|
"""
|
|
1016
|
-
return
|
|
1121
|
+
return inplace_add_impl(input, other, alpha)
|
|
1017
1122
|
|
|
1018
1123
|
|
|
1019
1124
|
def sub_tensor_(input, other, alpha=1):
|
|
@@ -1028,7 +1133,6 @@ def isneginf(input):
|
|
|
1028
1133
|
Determines which elements are -inf for each position.
|
|
1029
1134
|
|
|
1030
1135
|
.. warning::
|
|
1031
|
-
- This is an experimental API that is subject to change.
|
|
1032
1136
|
- This API can be used only on the Atlas A2 training series.
|
|
1033
1137
|
|
|
1034
1138
|
Args:
|
|
@@ -1207,7 +1311,6 @@ def log2(input):
|
|
|
1207
1311
|
y_i = \log_2(x_i)
|
|
1208
1312
|
|
|
1209
1313
|
.. warning::
|
|
1210
|
-
- This is an experimental API that is subject to change or deletion.
|
|
1211
1314
|
- If the input value of operator Log2 is within the range (0, 0.01] or [0.95, 1.05], the output accuracy
|
|
1212
1315
|
may be affacted.
|
|
1213
1316
|
|
|
@@ -1215,10 +1318,8 @@ def log2(input):
|
|
|
1215
1318
|
input (Tensor): Input Tensor of any dimension. The value must be greater than 0.
|
|
1216
1319
|
|
|
1217
1320
|
Returns:
|
|
1218
|
-
Tensor, has the same shape as the `input
|
|
1219
|
-
|
|
1220
|
-
- if `input.dtype` is in [float16, float32, float64, bfloat16], the output dtype is the same as the `input.dtype`.
|
|
1221
|
-
- if `input.dtype` is integer or boolean type, the output dtype is float32.
|
|
1321
|
+
Tensor, has the same shape as the `input`. If `input.dtype` is of integer or boolean type, the output dtype
|
|
1322
|
+
will be float32. Otherwise, the output dtype will be the same as `input.dtype`.
|
|
1222
1323
|
|
|
1223
1324
|
Raises:
|
|
1224
1325
|
TypeError: If `input` is not a Tensor.
|
|
@@ -1238,48 +1339,6 @@ def log2(input):
|
|
|
1238
1339
|
return log2_impl(input)
|
|
1239
1340
|
|
|
1240
1341
|
|
|
1241
|
-
def log_softmax(input, dim=None, dtype=None):
|
|
1242
|
-
r"""
|
|
1243
|
-
Applies the Log Softmax function to the input tensor on the specified axis.
|
|
1244
|
-
Supposes a slice in the given axis, :math:`x` for each element :math:`x_i`,
|
|
1245
|
-
the Log Softmax function is shown as follows:
|
|
1246
|
-
|
|
1247
|
-
.. math::
|
|
1248
|
-
\text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
|
1249
|
-
|
|
1250
|
-
where :math:`N` is the length of the Tensor.
|
|
1251
|
-
|
|
1252
|
-
Args:
|
|
1253
|
-
input (Tensor): The input Tensor.
|
|
1254
|
-
dim (int, optional): The axis to perform the Log softmax operation. Default: ``None`` .
|
|
1255
|
-
|
|
1256
|
-
Keyword Args:
|
|
1257
|
-
dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If not set to None, the input
|
|
1258
|
-
Tensor will be cast to `dtype` before the operation is performed. This is useful for preventing overflows.
|
|
1259
|
-
If set to None, stay the same as original Tensor. Default: ``None`` . Supported data type is {float16, float32, double, bfloat16}.
|
|
1260
|
-
|
|
1261
|
-
Returns:
|
|
1262
|
-
Tensor, with the same shape as the input.
|
|
1263
|
-
|
|
1264
|
-
Raises:
|
|
1265
|
-
TypeError: If `dim` is not an int.
|
|
1266
|
-
ValueError: If `dim` is not in range [-len(input.shape), len(input.shape)).
|
|
1267
|
-
|
|
1268
|
-
Supported Platforms:
|
|
1269
|
-
``Ascend``
|
|
1270
|
-
|
|
1271
|
-
Examples:
|
|
1272
|
-
>>> import mindspore
|
|
1273
|
-
>>> import numpy as np
|
|
1274
|
-
>>> from mindspore import Tensor, ops
|
|
1275
|
-
>>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
|
|
1276
|
-
>>> output = ops.auto_generate.log_softmax(logits, dim=-1)
|
|
1277
|
-
>>> print(output)
|
|
1278
|
-
[-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
|
|
1279
|
-
"""
|
|
1280
|
-
return log_softmax_impl(input, dim, dtype)
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
1342
|
def logaddexp(input, other):
|
|
1284
1343
|
r"""
|
|
1285
1344
|
Computes the logarithm of the sum of exponentiations of the inputs.
|
|
@@ -1297,7 +1356,7 @@ def logaddexp(input, other):
|
|
|
1297
1356
|
input (Tensor): Input Tensor. The dtype of `input` must be float.
|
|
1298
1357
|
other (Tensor): Input Tensor. The dtype of `other` must be float.
|
|
1299
1358
|
If the shape of `input` is not equal to the shape of `other`,
|
|
1300
|
-
they must be broadcastable to a common shape
|
|
1359
|
+
they must be broadcastable to a common shape.
|
|
1301
1360
|
|
|
1302
1361
|
Returns:
|
|
1303
1362
|
Tensor, with the same dtype as `input` and `other`.
|
|
@@ -1368,6 +1427,48 @@ def logsumexp(input, dim, keepdim=False):
|
|
|
1368
1427
|
return logsumexp_impl(input, dim, keepdim)
|
|
1369
1428
|
|
|
1370
1429
|
|
|
1430
|
+
def log_softmax(input, dim=None, dtype=None):
|
|
1431
|
+
r"""
|
|
1432
|
+
Applies the Log Softmax function to the input tensor on the specified axis.
|
|
1433
|
+
Supposes a slice in the given axis, :math:`x` for each element :math:`x_i`,
|
|
1434
|
+
the Log Softmax function is shown as follows:
|
|
1435
|
+
|
|
1436
|
+
.. math::
|
|
1437
|
+
\text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
|
1438
|
+
|
|
1439
|
+
where :math:`N` is the length of the Tensor.
|
|
1440
|
+
|
|
1441
|
+
Args:
|
|
1442
|
+
input (Tensor): The input Tensor.
|
|
1443
|
+
dim (int, optional): The axis to perform the Log softmax operation. Default: ``None`` .
|
|
1444
|
+
|
|
1445
|
+
Keyword Args:
|
|
1446
|
+
dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If not set to None, the input
|
|
1447
|
+
Tensor will be cast to `dtype` before the operation is performed. This is useful for preventing overflows.
|
|
1448
|
+
If set to None, stay the same as original Tensor. Default: ``None`` . Supported data type is {float16, float32, double, bfloat16}.
|
|
1449
|
+
|
|
1450
|
+
Returns:
|
|
1451
|
+
Tensor, with the same shape as the input.
|
|
1452
|
+
|
|
1453
|
+
Raises:
|
|
1454
|
+
TypeError: If `dim` is not an int.
|
|
1455
|
+
ValueError: If `dim` is not in range [-len(input.shape), len(input.shape)).
|
|
1456
|
+
|
|
1457
|
+
Supported Platforms:
|
|
1458
|
+
``Ascend``
|
|
1459
|
+
|
|
1460
|
+
Examples:
|
|
1461
|
+
>>> import mindspore
|
|
1462
|
+
>>> import numpy as np
|
|
1463
|
+
>>> from mindspore import Tensor, ops
|
|
1464
|
+
>>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
|
|
1465
|
+
>>> output = ops.auto_generate.log_softmax(logits, dim=-1)
|
|
1466
|
+
>>> print(output)
|
|
1467
|
+
[-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
|
|
1468
|
+
"""
|
|
1469
|
+
return log_softmax_impl(input, dim, dtype)
|
|
1470
|
+
|
|
1471
|
+
|
|
1371
1472
|
def matmul(input, other):
|
|
1372
1473
|
r"""
|
|
1373
1474
|
None
|
|
@@ -2025,50 +2126,63 @@ def sub(input, other, alpha=1):
|
|
|
2025
2126
|
|
|
2026
2127
|
def sum(input, dim=None, keepdim=False, dtype=None):
|
|
2027
2128
|
r"""
|
|
2028
|
-
|
|
2029
|
-
and the parameters `axis0` and `axis1` correspond to `dim0` and `dim1` in the reference interface respectively.
|
|
2030
|
-
|
|
2031
|
-
.. warning::
|
|
2032
|
-
This is an experimental API that is subject to change or deletion.
|
|
2033
|
-
|
|
2034
|
-
Refer to :func:`mindspore.mint.transpose` for more details.
|
|
2035
|
-
"""
|
|
2036
|
-
return sum_impl(input, dim, keepdim, dtype)
|
|
2037
|
-
|
|
2038
|
-
|
|
2039
|
-
def t(input):
|
|
2040
|
-
r"""
|
|
2041
|
-
Transpose the input tensor.
|
|
2129
|
+
Calculate sum of Tensor elements over a given dim.
|
|
2042
2130
|
|
|
2043
|
-
|
|
2044
|
-
|
|
2131
|
+
Note:
|
|
2132
|
+
The `dim` with tensor type is only used for compatibility with older versions and is not recommended.
|
|
2045
2133
|
|
|
2046
2134
|
Args:
|
|
2047
2135
|
input (Tensor): The input tensor.
|
|
2136
|
+
dim (Union[None, int, tuple(int), list(int), Tensor]): Dimensions along which a sum is performed.
|
|
2137
|
+
If ``None`` , sum all the elements of the input tensor.
|
|
2138
|
+
If the `dim` is a tuple or list of ints, a sum is performed on all the dimensions specified in the tuple.
|
|
2139
|
+
Must be in the range :math:`[-input.ndim, input.ndim)` . Default: ``None`` .
|
|
2140
|
+
keepdim (bool): Whether the output tensor has `dim` retained or not.
|
|
2141
|
+
If ``True`` , keep these reduced dimensions and the length is 1.
|
|
2142
|
+
If ``False`` , don't keep these dimensions. Default: ``False`` .
|
|
2143
|
+
dtype (:class:`mindspore.dtype`): The desired data type of returned Tensor. Default: ``None`` .
|
|
2048
2144
|
|
|
2049
2145
|
Returns:
|
|
2050
|
-
Tensor,
|
|
2146
|
+
A Tensor, sum of elements over a given `dim` in `input`.
|
|
2051
2147
|
|
|
2052
2148
|
Raises:
|
|
2053
|
-
|
|
2054
|
-
|
|
2055
|
-
|
|
2149
|
+
TypeError: If `input` is not a Tensor.
|
|
2150
|
+
TypeError: If `dim` is not an int, tulpe(int), list(int), Tensor or None.
|
|
2151
|
+
ValueError: If `dim` is not in the range :math:`[-input.ndim, input.ndim)` .
|
|
2152
|
+
TypeError: If `keepdim` is not a bool.
|
|
2056
2153
|
|
|
2057
2154
|
Supported Platforms:
|
|
2058
|
-
``Ascend``
|
|
2155
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
2059
2156
|
|
|
2060
2157
|
Examples:
|
|
2061
2158
|
>>> import mindspore
|
|
2062
2159
|
>>> import numpy as np
|
|
2063
2160
|
>>> from mindspore import Tensor, ops
|
|
2064
|
-
>>>
|
|
2065
|
-
>>>
|
|
2066
|
-
|
|
2067
|
-
[[
|
|
2068
|
-
|
|
2069
|
-
|
|
2161
|
+
>>> from mindspore import dtype as mstype
|
|
2162
|
+
>>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
|
|
2163
|
+
... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
|
|
2164
|
+
... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mstype.float32)
|
|
2165
|
+
>>> out = ops.sum_ext(x)
|
|
2166
|
+
>>> print(out)
|
|
2167
|
+
270.0
|
|
2168
|
+
>>> out = ops.sum_ext(x, dim=2)
|
|
2169
|
+
>>> print(out)
|
|
2170
|
+
[[ 6. 12. 18.]
|
|
2171
|
+
[24. 30. 36.]
|
|
2172
|
+
[42. 48. 54.]]
|
|
2173
|
+
>>> out = ops.sum_ext(x, dim=2, keepdim=True)
|
|
2174
|
+
>>> print(out)
|
|
2175
|
+
[[[ 6.]
|
|
2176
|
+
[12.]
|
|
2177
|
+
[18.]]
|
|
2178
|
+
[[24.]
|
|
2179
|
+
[30.]
|
|
2180
|
+
[36.]]
|
|
2181
|
+
[[42.]
|
|
2182
|
+
[48.]
|
|
2183
|
+
[54.]]]
|
|
2070
2184
|
"""
|
|
2071
|
-
return
|
|
2185
|
+
return sum_impl(input, dim, keepdim, dtype)
|
|
2072
2186
|
|
|
2073
2187
|
|
|
2074
2188
|
def topk(input, k, dim=-1, largest=True, sorted=True):
|
|
@@ -2127,7 +2241,7 @@ def topk(input, k, dim=-1, largest=True, sorted=True):
|
|
|
2127
2241
|
(Tensor(shape=[3, 2], dtype=Float32, value=
|
|
2128
2242
|
[[ 9.67299998e-01, 5.36800027e-01],
|
|
2129
2243
|
[ 6.52499974e-01, 4.68499988e-01],
|
|
2130
|
-
[ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=
|
|
2244
|
+
[ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=Int64, value=
|
|
2131
2245
|
[[3, 0],
|
|
2132
2246
|
[1, 2],
|
|
2133
2247
|
[2, 3]]))
|
|
@@ -2136,7 +2250,7 @@ def topk(input, k, dim=-1, largest=True, sorted=True):
|
|
|
2136
2250
|
(Tensor(shape=[3, 2], dtype=Float32, value=
|
|
2137
2251
|
[[ 2.44700000e-01, 4.30200011e-01],
|
|
2138
2252
|
[ 1.86800003e-01, 4.38800007e-01],
|
|
2139
|
-
[ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=
|
|
2253
|
+
[ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=Int64, value=
|
|
2140
2254
|
[[1, 2],
|
|
2141
2255
|
[3, 0],
|
|
2142
2256
|
[0, 1]]))
|
|
@@ -2148,9 +2262,6 @@ def trace(input):
|
|
|
2148
2262
|
r"""
|
|
2149
2263
|
Returns a new tensor that is the sum of the `input` main trace.
|
|
2150
2264
|
|
|
2151
|
-
Note:
|
|
2152
|
-
Input must be tensor.
|
|
2153
|
-
|
|
2154
2265
|
Args:
|
|
2155
2266
|
input (Tensor): 2-D Tensor.
|
|
2156
2267
|
|
|
@@ -2226,3 +2337,38 @@ def tril(input, diagonal=0):
|
|
|
2226
2337
|
"""
|
|
2227
2338
|
return tril_impl(input, diagonal)
|
|
2228
2339
|
|
|
2340
|
+
|
|
2341
|
+
def t(input):
|
|
2342
|
+
r"""
|
|
2343
|
+
Transpose the input tensor.
|
|
2344
|
+
|
|
2345
|
+
.. warning::
|
|
2346
|
+
This is an experimental API that is subject to change or deletion.
|
|
2347
|
+
|
|
2348
|
+
Args:
|
|
2349
|
+
input (Tensor): The input tensor.
|
|
2350
|
+
|
|
2351
|
+
Returns:
|
|
2352
|
+
Tensor, transpose 2D tensor, return 1D tensor as it is.
|
|
2353
|
+
|
|
2354
|
+
Raises:
|
|
2355
|
+
ValueError: If the dimension of `input` is greater than 2.
|
|
2356
|
+
ValueError: If `input` is empty.
|
|
2357
|
+
TypeError: If `input` is not a tensor.
|
|
2358
|
+
|
|
2359
|
+
Supported Platforms:
|
|
2360
|
+
``Ascend``
|
|
2361
|
+
|
|
2362
|
+
Examples:
|
|
2363
|
+
>>> import mindspore
|
|
2364
|
+
>>> import numpy as np
|
|
2365
|
+
>>> from mindspore import Tensor, ops
|
|
2366
|
+
>>> input = Tensor(np.array([[1, 2, 3], [4, 5, 6]]), mindspore.float32)
|
|
2367
|
+
>>> output = ops.t_ext(input)
|
|
2368
|
+
>>> print(output)
|
|
2369
|
+
[[ 1. 4.]
|
|
2370
|
+
[ 2. 5.]
|
|
2371
|
+
[ 3. 6.]]
|
|
2372
|
+
"""
|
|
2373
|
+
return t_impl(input)
|
|
2374
|
+
|