mindspore 2.5.0__cp311-cp311-win_amd64.whl → 2.6.0rc1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (491) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +6 -4
  5. mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
  8. mindspore/_check_jit_forbidden_api.py +3 -0
  9. mindspore/_checkparam.py +3 -33
  10. mindspore/_deprecated/__init__.py +17 -0
  11. mindspore/_deprecated/jit.py +198 -0
  12. mindspore/_extends/builtin_operations.py +1 -1
  13. mindspore/_extends/parse/__init__.py +6 -7
  14. mindspore/_extends/parse/compile_config.py +19 -0
  15. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
  16. mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
  17. mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
  18. mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
  19. mindspore/_extends/parse/parser.py +24 -193
  20. mindspore/_extends/parse/resources.py +1 -5
  21. mindspore/_extends/parse/standard_method.py +97 -74
  22. mindspore/_extends/pijit/__init__.py +2 -2
  23. mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
  24. mindspore/_extends/pijit/tensor_func_list.py +27 -0
  25. mindspore/_extends/utils.py +1 -1
  26. mindspore/amp.py +4 -4
  27. mindspore/atlprov.dll +0 -0
  28. mindspore/avcodec-59.dll +0 -0
  29. mindspore/avdevice-59.dll +0 -0
  30. mindspore/avfilter-8.dll +0 -0
  31. mindspore/avformat-59.dll +0 -0
  32. mindspore/avutil-57.dll +0 -0
  33. mindspore/boost/__init__.py +2 -2
  34. mindspore/boost/base.py +3 -7
  35. mindspore/boost/boost_cell_wrapper.py +2 -2
  36. mindspore/c1.dll +0 -0
  37. mindspore/c1xx.dll +0 -0
  38. mindspore/c2.dll +0 -0
  39. mindspore/common/__init__.py +4 -3
  40. mindspore/common/_grad_function.py +56 -0
  41. mindspore/common/_pijit_context.py +14 -5
  42. mindspore/common/_register_for_tensor.py +1 -1
  43. mindspore/common/_stub_tensor.py +5 -10
  44. mindspore/common/_tensor_cpp_method.py +1 -1
  45. mindspore/common/_tensor_docs.py +1915 -3287
  46. mindspore/common/api.py +341 -354
  47. mindspore/common/auto_dynamic_shape.py +41 -44
  48. mindspore/common/dtype.py +5 -2
  49. mindspore/common/dump.py +7 -5
  50. mindspore/common/file_system.py +3 -0
  51. mindspore/common/hook_handle.py +5 -3
  52. mindspore/common/initializer.py +10 -6
  53. mindspore/common/jit_begin_end.py +94 -0
  54. mindspore/common/jit_config.py +6 -1
  55. mindspore/common/jit_context.py +76 -0
  56. mindspore/common/jit_trace.py +378 -0
  57. mindspore/common/lazy_inline.py +2 -2
  58. mindspore/common/mutable.py +5 -4
  59. mindspore/common/parameter.py +106 -39
  60. mindspore/common/seed.py +2 -2
  61. mindspore/common/sparse_tensor.py +23 -17
  62. mindspore/common/tensor.py +297 -714
  63. mindspore/communication/__init__.py +7 -5
  64. mindspore/communication/_comm_helper.py +47 -2
  65. mindspore/communication/comm_func.py +70 -53
  66. mindspore/communication/management.py +83 -17
  67. mindspore/context.py +214 -560
  68. mindspore/dataset/__init__.py +44 -20
  69. mindspore/dataset/audio/__init__.py +2 -8
  70. mindspore/dataset/audio/transforms.py +3 -17
  71. mindspore/dataset/core/config.py +3 -3
  72. mindspore/dataset/engine/cache_client.py +1 -1
  73. mindspore/dataset/engine/datasets.py +102 -120
  74. mindspore/dataset/engine/datasets_audio.py +22 -22
  75. mindspore/dataset/engine/datasets_standard_format.py +43 -24
  76. mindspore/dataset/engine/datasets_text.py +78 -85
  77. mindspore/dataset/engine/datasets_user_defined.py +108 -76
  78. mindspore/dataset/engine/datasets_vision.py +111 -108
  79. mindspore/dataset/engine/iterators.py +5 -3
  80. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
  81. mindspore/dataset/engine/samplers.py +279 -57
  82. mindspore/dataset/engine/serializer_deserializer.py +2 -1
  83. mindspore/dataset/engine/validators.py +10 -0
  84. mindspore/dataset/text/__init__.py +7 -6
  85. mindspore/dataset/text/transforms.py +6 -5
  86. mindspore/dataset/text/utils.py +3 -3
  87. mindspore/dataset/transforms/__init__.py +0 -9
  88. mindspore/dataset/transforms/transforms.py +3 -3
  89. mindspore/dataset/utils/browse_dataset.py +1 -1
  90. mindspore/dataset/vision/__init__.py +2 -9
  91. mindspore/dataset/vision/transforms.py +202 -158
  92. mindspore/dataset/vision/utils.py +7 -5
  93. mindspore/device_context/ascend/op_debug.py +60 -1
  94. mindspore/device_context/ascend/op_tuning.py +0 -4
  95. mindspore/device_manager.py +39 -3
  96. mindspore/dnnl.dll +0 -0
  97. mindspore/dpcmi.dll +0 -0
  98. mindspore/experimental/es/embedding_service.py +35 -27
  99. mindspore/experimental/map_parameter.py +4 -4
  100. mindspore/experimental/optim/adadelta.py +22 -26
  101. mindspore/experimental/optim/adagrad.py +4 -4
  102. mindspore/experimental/optim/adam.py +4 -0
  103. mindspore/experimental/optim/adamax.py +4 -4
  104. mindspore/experimental/optim/adamw.py +4 -0
  105. mindspore/experimental/optim/asgd.py +1 -1
  106. mindspore/experimental/optim/lr_scheduler.py +40 -22
  107. mindspore/experimental/optim/radam.py +5 -5
  108. mindspore/experimental/optim/rprop.py +1 -1
  109. mindspore/experimental/optim/sgd.py +1 -1
  110. mindspore/hal/contiguous_tensors_handle.py +6 -10
  111. mindspore/hal/device.py +55 -81
  112. mindspore/hal/event.py +38 -55
  113. mindspore/hal/memory.py +93 -144
  114. mindspore/hal/stream.py +81 -125
  115. mindspore/include/dataset/constants.h +7 -4
  116. mindspore/include/dataset/execute.h +2 -2
  117. mindspore/jpeg62.dll +0 -0
  118. mindspore/log.py +40 -2
  119. mindspore/mindrecord/__init__.py +20 -7
  120. mindspore/mindspore_backend_common.dll +0 -0
  121. mindspore/mindspore_backend_manager.dll +0 -0
  122. mindspore/mindspore_common.dll +0 -0
  123. mindspore/mindspore_core.dll +0 -0
  124. mindspore/mindspore_dump.dll +0 -0
  125. mindspore/mindspore_frontend.dll +0 -0
  126. mindspore/mindspore_glog.dll +0 -0
  127. mindspore/mindspore_memory_pool.dll +0 -0
  128. mindspore/mindspore_ms_backend.dll +0 -0
  129. mindspore/mindspore_ops.dll +0 -0
  130. mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
  131. mindspore/mindspore_ops_kernel_common.dll +0 -0
  132. mindspore/mindspore_profiler.dll +0 -0
  133. mindspore/mindspore_pyboost.dll +0 -0
  134. mindspore/mindspore_pynative.dll +0 -0
  135. mindspore/mindspore_res_manager.dll +0 -0
  136. mindspore/mindspore_runtime_pipeline.dll +0 -0
  137. mindspore/mint/__init__.py +131 -700
  138. mindspore/mint/distributed/__init__.py +5 -1
  139. mindspore/mint/distributed/distributed.py +194 -109
  140. mindspore/mint/linalg/__init__.py +2 -0
  141. mindspore/mint/nn/__init__.py +280 -18
  142. mindspore/mint/nn/functional.py +282 -64
  143. mindspore/mint/nn/layer/__init__.py +4 -0
  144. mindspore/mint/nn/layer/_functions.py +7 -3
  145. mindspore/mint/nn/layer/activation.py +120 -13
  146. mindspore/mint/nn/layer/conv.py +218 -24
  147. mindspore/mint/nn/layer/normalization.py +15 -16
  148. mindspore/mint/nn/layer/padding.py +1 -1
  149. mindspore/mint/nn/layer/pooling.py +66 -1
  150. mindspore/mint/optim/__init__.py +2 -1
  151. mindspore/mint/optim/sgd.py +171 -0
  152. mindspore/msobj140.dll +0 -0
  153. mindspore/mspdb140.dll +0 -0
  154. mindspore/mspdbcore.dll +0 -0
  155. mindspore/mspdbst.dll +0 -0
  156. mindspore/mspft140.dll +0 -0
  157. mindspore/msvcdis140.dll +0 -0
  158. mindspore/msvcp140_1.dll +0 -0
  159. mindspore/msvcp140_2.dll +0 -0
  160. mindspore/msvcp140_atomic_wait.dll +0 -0
  161. mindspore/msvcp140_codecvt_ids.dll +0 -0
  162. mindspore/nn/__init__.py +4 -1
  163. mindspore/nn/cell.py +1250 -176
  164. mindspore/nn/layer/activation.py +23 -21
  165. mindspore/nn/layer/basic.py +22 -16
  166. mindspore/nn/layer/container.py +1 -1
  167. mindspore/nn/layer/conv.py +22 -17
  168. mindspore/nn/layer/embedding.py +9 -8
  169. mindspore/nn/layer/normalization.py +48 -42
  170. mindspore/nn/layer/pooling.py +75 -31
  171. mindspore/nn/layer/transformer.py +11 -10
  172. mindspore/nn/learning_rate_schedule.py +4 -2
  173. mindspore/nn/loss/loss.py +27 -19
  174. mindspore/nn/optim/ada_grad.py +6 -5
  175. mindspore/nn/optim/adadelta.py +9 -7
  176. mindspore/nn/optim/adafactor.py +1 -1
  177. mindspore/nn/optim/adam.py +16 -12
  178. mindspore/nn/optim/adamax.py +8 -7
  179. mindspore/nn/optim/adasum.py +5 -5
  180. mindspore/nn/optim/asgd.py +1 -1
  181. mindspore/nn/optim/ftrl.py +11 -9
  182. mindspore/nn/optim/lamb.py +1 -1
  183. mindspore/nn/optim/lazyadam.py +12 -10
  184. mindspore/nn/optim/momentum.py +7 -6
  185. mindspore/nn/optim/optimizer.py +2 -2
  186. mindspore/nn/optim/proximal_ada_grad.py +12 -10
  187. mindspore/nn/optim/rmsprop.py +13 -12
  188. mindspore/nn/optim/rprop.py +9 -7
  189. mindspore/nn/optim/sgd.py +9 -6
  190. mindspore/nn/optim/tft_wrapper.py +5 -2
  191. mindspore/nn/probability/bijector/bijector.py +17 -11
  192. mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
  193. mindspore/nn/probability/bijector/invert.py +2 -2
  194. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  195. mindspore/nn/probability/bijector/softplus.py +3 -2
  196. mindspore/nn/probability/distribution/beta.py +3 -3
  197. mindspore/nn/probability/distribution/categorical.py +1 -1
  198. mindspore/nn/probability/distribution/cauchy.py +4 -2
  199. mindspore/nn/probability/distribution/exponential.py +6 -7
  200. mindspore/nn/probability/distribution/gamma.py +2 -2
  201. mindspore/nn/probability/distribution/gumbel.py +2 -2
  202. mindspore/nn/probability/distribution/half_normal.py +5 -3
  203. mindspore/nn/probability/distribution/logistic.py +5 -3
  204. mindspore/nn/probability/distribution/poisson.py +1 -1
  205. mindspore/nn/probability/distribution/uniform.py +5 -3
  206. mindspore/nn/reinforcement/_tensors_queue.py +1 -1
  207. mindspore/nn/reinforcement/tensor_array.py +1 -1
  208. mindspore/nn/wrap/__init__.py +6 -6
  209. mindspore/nn/wrap/cell_wrapper.py +178 -117
  210. mindspore/nn/wrap/grad_reducer.py +45 -36
  211. mindspore/nn/wrap/loss_scale.py +3 -3
  212. mindspore/numpy/array_creations.py +3 -3
  213. mindspore/numpy/array_ops.py +1 -1
  214. mindspore/numpy/math_ops.py +4 -4
  215. mindspore/numpy/utils.py +1 -2
  216. mindspore/numpy/utils_const.py +1 -2
  217. mindspore/opencv_core452.dll +0 -0
  218. mindspore/opencv_imgcodecs452.dll +0 -0
  219. mindspore/opencv_imgproc452.dll +0 -0
  220. mindspore/ops/__init__.py +3 -2
  221. mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
  222. mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
  223. mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
  224. mindspore/ops/_register_for_op.py +0 -11
  225. mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
  226. mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
  227. mindspore/ops/_vmap/vmap_array_ops.py +7 -6
  228. mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
  229. mindspore/ops/_vmap/vmap_math_ops.py +4 -7
  230. mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
  231. mindspore/ops/auto_generate/__init__.py +4 -3
  232. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +102 -49
  233. mindspore/ops/auto_generate/gen_extend_func.py +281 -135
  234. mindspore/ops/auto_generate/gen_ops_def.py +2574 -2326
  235. mindspore/ops/auto_generate/gen_ops_prim.py +8566 -2755
  236. mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
  237. mindspore/ops/composite/__init__.py +2 -1
  238. mindspore/ops/composite/base.py +19 -24
  239. mindspore/ops/composite/math_ops.py +6 -16
  240. mindspore/ops/composite/multitype_ops/__init__.py +5 -2
  241. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -3
  242. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
  243. mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
  244. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  245. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  246. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
  247. mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
  248. mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
  249. mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
  250. mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
  251. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
  252. mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
  253. mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
  254. mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
  255. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
  256. mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
  257. mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
  258. mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
  259. mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
  260. mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
  261. mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
  262. mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
  263. mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
  264. mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
  265. mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
  266. mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
  267. mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
  268. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
  269. mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
  270. mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
  271. mindspore/ops/function/__init__.py +28 -2
  272. mindspore/ops/function/_add_attr_func.py +58 -0
  273. mindspore/ops/function/array_func.py +1629 -2345
  274. mindspore/ops/function/clip_func.py +38 -45
  275. mindspore/ops/function/debug_func.py +36 -44
  276. mindspore/ops/function/grad/__init__.py +1 -0
  277. mindspore/ops/function/grad/grad_func.py +104 -71
  278. mindspore/ops/function/image_func.py +1 -1
  279. mindspore/ops/function/linalg_func.py +46 -78
  280. mindspore/ops/function/math_func.py +3035 -3705
  281. mindspore/ops/function/nn_func.py +676 -241
  282. mindspore/ops/function/other_func.py +159 -1
  283. mindspore/ops/function/parameter_func.py +17 -30
  284. mindspore/ops/function/random_func.py +204 -361
  285. mindspore/ops/function/reshard_func.py +4 -70
  286. mindspore/ops/function/sparse_func.py +3 -3
  287. mindspore/ops/function/sparse_unary_func.py +5 -5
  288. mindspore/ops/function/spectral_func.py +25 -58
  289. mindspore/ops/function/vmap_func.py +24 -17
  290. mindspore/ops/functional.py +6 -4
  291. mindspore/ops/functional_overload.py +547 -4
  292. mindspore/ops/op_info_register.py +32 -244
  293. mindspore/ops/operations/__init__.py +10 -5
  294. mindspore/ops/operations/_custom_ops_utils.py +247 -0
  295. mindspore/ops/operations/_grad_ops.py +1 -10
  296. mindspore/ops/operations/_inner_ops.py +5 -76
  297. mindspore/ops/operations/_ms_kernel.py +4 -10
  298. mindspore/ops/operations/_rl_inner_ops.py +1 -1
  299. mindspore/ops/operations/_scalar_ops.py +3 -2
  300. mindspore/ops/operations/_sequence_ops.py +1 -1
  301. mindspore/ops/operations/_tensor_array.py +1 -1
  302. mindspore/ops/operations/array_ops.py +37 -22
  303. mindspore/ops/operations/comm_ops.py +150 -107
  304. mindspore/ops/operations/custom_ops.py +221 -23
  305. mindspore/ops/operations/debug_ops.py +115 -16
  306. mindspore/ops/operations/inner_ops.py +1 -1
  307. mindspore/ops/operations/linalg_ops.py +1 -58
  308. mindspore/ops/operations/manually_defined/_inner.py +1 -1
  309. mindspore/ops/operations/manually_defined/ops_def.py +746 -79
  310. mindspore/ops/operations/math_ops.py +21 -18
  311. mindspore/ops/operations/nn_ops.py +65 -191
  312. mindspore/ops/operations/other_ops.py +62 -9
  313. mindspore/ops/operations/random_ops.py +13 -7
  314. mindspore/ops/operations/reshard_ops.py +1 -1
  315. mindspore/ops/operations/sparse_ops.py +2 -2
  316. mindspore/ops/primitive.py +43 -32
  317. mindspore/ops/tensor_method.py +232 -13
  318. mindspore/ops_generate/__init__.py +0 -5
  319. mindspore/ops_generate/aclnn/__init__.py +0 -0
  320. mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
  321. mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
  322. mindspore/ops_generate/api/__init__.py +0 -0
  323. mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
  324. mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
  325. mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
  326. mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
  327. mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
  328. mindspore/ops_generate/api/gen_api.py +103 -0
  329. mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
  330. mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
  331. mindspore/ops_generate/common/__init__.py +0 -0
  332. mindspore/ops_generate/common/gen_constants.py +91 -0
  333. mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
  334. mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
  335. mindspore/ops_generate/{template.py → common/template.py} +96 -84
  336. mindspore/ops_generate/gen_ops.py +23 -325
  337. mindspore/ops_generate/op_def/__init__.py +0 -0
  338. mindspore/ops_generate/op_def/gen_op_def.py +90 -0
  339. mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
  340. mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -7
  341. mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
  342. mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
  343. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
  344. mindspore/ops_generate/op_def_py/__init__.py +0 -0
  345. mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
  346. mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
  347. mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
  348. mindspore/ops_generate/pyboost/__init__.py +0 -0
  349. mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
  350. mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
  351. mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
  352. mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
  353. mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
  354. mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
  355. mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
  356. mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
  357. mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
  358. mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
  359. mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
  360. mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
  361. mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
  362. mindspore/ops_generate/resources/__init__.py +0 -0
  363. mindspore/ops_generate/resources/resource_list.py +30 -0
  364. mindspore/ops_generate/resources/resource_loader.py +36 -0
  365. mindspore/ops_generate/resources/resource_manager.py +64 -0
  366. mindspore/ops_generate/resources/yaml_loader.py +88 -0
  367. mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
  368. mindspore/parallel/__init__.py +6 -2
  369. mindspore/parallel/_auto_parallel_context.py +133 -6
  370. mindspore/parallel/_cell_wrapper.py +130 -15
  371. mindspore/parallel/_parallel_serialization.py +95 -4
  372. mindspore/parallel/_ps_context.py +1 -1
  373. mindspore/parallel/_recovery_context.py +7 -2
  374. mindspore/parallel/_tensor.py +142 -18
  375. mindspore/parallel/_utils.py +198 -25
  376. mindspore/parallel/algo_parameter_config.py +3 -3
  377. mindspore/parallel/auto_parallel.py +732 -0
  378. mindspore/parallel/checkpoint_convert.py +159 -0
  379. mindspore/parallel/checkpoint_transform.py +656 -37
  380. mindspore/parallel/cluster/process_entity/_api.py +151 -19
  381. mindspore/parallel/cluster/run.py +1 -1
  382. mindspore/parallel/function/__init__.py +24 -0
  383. mindspore/parallel/function/reshard_func.py +259 -0
  384. mindspore/parallel/nn/__init__.py +25 -0
  385. mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
  386. mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
  387. mindspore/parallel/parameter_broadcast.py +24 -13
  388. mindspore/parallel/shard.py +137 -61
  389. mindspore/parallel/transform_safetensors.py +287 -95
  390. mindspore/pgodb140.dll +0 -0
  391. mindspore/pgort140.dll +0 -0
  392. mindspore/profiler/__init__.py +9 -5
  393. mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
  394. mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
  395. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
  396. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +22 -0
  397. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
  398. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
  399. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
  400. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
  401. mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
  402. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
  403. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
  404. mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
  405. mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
  406. mindspore/profiler/common/constant.py +12 -0
  407. mindspore/profiler/common/msprof_cmd_tool.py +42 -23
  408. mindspore/profiler/common/path_manager.py +24 -0
  409. mindspore/profiler/common/profiler_context.py +26 -2
  410. mindspore/profiler/common/profiler_meta_data.py +74 -0
  411. mindspore/profiler/common/profiler_parameters.py +59 -18
  412. mindspore/profiler/common/profiler_path_manager.py +66 -7
  413. mindspore/profiler/dynamic_profiler.py +112 -79
  414. mindspore/profiler/envprofiler.py +26 -1
  415. mindspore/profiler/experimental_config.py +197 -0
  416. mindspore/profiler/mstx.py +57 -14
  417. mindspore/profiler/platform/npu_profiler.py +33 -7
  418. mindspore/profiler/profiler.py +541 -45
  419. mindspore/profiler/profiler_action_controller.py +1 -1
  420. mindspore/profiler/profiler_interface.py +4 -0
  421. mindspore/profiler/schedule.py +57 -22
  422. mindspore/rewrite/api/node.py +15 -13
  423. mindspore/rewrite/api/symbol_tree.py +1 -1
  424. mindspore/run_check/_check_version.py +25 -14
  425. mindspore/run_check/run_check.py +1 -1
  426. mindspore/runtime/__init__.py +2 -2
  427. mindspore/runtime/executor.py +40 -11
  428. mindspore/runtime/memory.py +25 -8
  429. mindspore/safeguard/rewrite_obfuscation.py +12 -9
  430. mindspore/swresample-4.dll +0 -0
  431. mindspore/swscale-6.dll +0 -0
  432. mindspore/tbbmalloc.dll +0 -0
  433. mindspore/tinyxml2.dll +0 -0
  434. mindspore/train/__init__.py +8 -8
  435. mindspore/train/_utils.py +35 -7
  436. mindspore/train/amp.py +1 -1
  437. mindspore/train/callback/__init__.py +2 -2
  438. mindspore/train/callback/_callback.py +2 -16
  439. mindspore/train/callback/_checkpoint.py +24 -40
  440. mindspore/train/callback/_cluster_monitor.py +14 -18
  441. mindspore/train/callback/_flops_collector.py +2 -3
  442. mindspore/train/callback/_history.py +7 -4
  443. mindspore/train/callback/_lambda_callback.py +2 -2
  444. mindspore/train/callback/_landscape.py +0 -3
  445. mindspore/train/callback/_loss_monitor.py +2 -1
  446. mindspore/train/callback/_on_request_exit.py +6 -5
  447. mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
  448. mindspore/train/callback/_summary_collector.py +8 -13
  449. mindspore/train/callback/_time_monitor.py +2 -1
  450. mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +179 -103
  451. mindspore/train/data_sink.py +25 -2
  452. mindspore/train/dataset_helper.py +4 -5
  453. mindspore/train/loss_scale_manager.py +8 -7
  454. mindspore/train/metrics/accuracy.py +3 -3
  455. mindspore/train/metrics/confusion_matrix.py +9 -9
  456. mindspore/train/metrics/error.py +3 -3
  457. mindspore/train/metrics/hausdorff_distance.py +4 -4
  458. mindspore/train/metrics/mean_surface_distance.py +3 -3
  459. mindspore/train/metrics/metric.py +0 -12
  460. mindspore/train/metrics/occlusion_sensitivity.py +4 -2
  461. mindspore/train/metrics/precision.py +8 -6
  462. mindspore/train/metrics/recall.py +9 -9
  463. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  464. mindspore/train/mind_ir_pb2.py +19 -12
  465. mindspore/train/model.py +176 -103
  466. mindspore/train/serialization.py +246 -988
  467. mindspore/train/summary/_summary_adapter.py +2 -2
  468. mindspore/train/summary/summary_record.py +1 -1
  469. mindspore/turbojpeg.dll +0 -0
  470. mindspore/utils/__init__.py +3 -2
  471. mindspore/utils/dryrun.py +4 -2
  472. mindspore/utils/hooks.py +81 -0
  473. mindspore/utils/utils.py +138 -4
  474. mindspore/vcmeta.dll +0 -0
  475. mindspore/vcruntime140.dll +0 -0
  476. mindspore/vcruntime140_1.dll +0 -0
  477. mindspore/version.py +1 -1
  478. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +2 -1
  479. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +483 -438
  480. mindspore/_install_custom.py +0 -43
  481. mindspore/common/_register_for_adapter.py +0 -74
  482. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
  483. mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
  484. mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
  485. mindspore/ops_generate/gen_constants.py +0 -190
  486. mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
  487. mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
  488. /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
  489. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
  490. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +0 -0
  491. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Copyright 2024 Huawei Technologies Co., Ltd
1
+ # Copyright 2023 Huawei Technologies Co., Ltd
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -17,17 +17,20 @@ from mindspore.common import dtype as mstype
17
17
  from mindspore.ops.auto_generate.pyboost_inner_prim import *
18
18
 
19
19
 
20
- def acos(input):
20
+ def acosh(input):
21
21
  r"""
22
- Computes arccosine of input tensors element-wise.
22
+ Computes inverse hyperbolic cosine of the inputs element-wise.
23
23
 
24
24
  .. math::
25
25
 
26
- out_i = \cos^{-1}(input_i)
26
+ out_i = \cosh^{-1}(input_i)
27
+
28
+ .. note::
29
+ Given an input tensor input, the function computes inverse hyperbolic cosine of every element.
30
+ Input range is [1, inf].
27
31
 
28
32
  Args:
29
- input (Tensor): The shape of tensor is
30
- :math:`(N,*)`, where :math:`*` means any number of additional dimensions.
33
+ input (Tensor): The input tensor of inverse hyperbolic cosine function.
31
34
 
32
35
  Returns:
33
36
  Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
@@ -42,28 +45,25 @@ def acos(input):
42
45
  >>> import mindspore
43
46
  >>> import numpy as np
44
47
  >>> from mindspore import Tensor, ops
45
- >>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
46
- >>> output = ops.acos_ext(input)
48
+ >>> input = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
49
+ >>> output = ops.acosh_ext(input)
47
50
  >>> print(output)
48
- [0.7377037 1.5307857 1.2661037 0.9764114]
51
+ [0. 0.9624236 1.7627472 5.298292 ]
49
52
  """
50
- return acos_impl(input)
53
+ return acosh_impl(input)
51
54
 
52
55
 
53
- def acosh(input):
56
+ def acos(input):
54
57
  r"""
55
- Computes inverse hyperbolic cosine of the inputs element-wise.
58
+ Computes arccosine of input tensors element-wise.
56
59
 
57
60
  .. math::
58
61
 
59
- out_i = \cosh^{-1}(input_i)
60
-
61
- .. note::
62
- Given an input tensor input, the function computes inverse hyperbolic cosine of every element.
63
- Input range is [1, inf].
62
+ out_i = \cos^{-1}(input_i)
64
63
 
65
64
  Args:
66
- input (Tensor): The input tensor of inverse hyperbolic cosine function.
65
+ input (Tensor): The shape of tensor is
66
+ :math:`(N,*)`, where :math:`*` means any number of additional dimensions.
67
67
 
68
68
  Returns:
69
69
  Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
@@ -78,12 +78,12 @@ def acosh(input):
78
78
  >>> import mindspore
79
79
  >>> import numpy as np
80
80
  >>> from mindspore import Tensor, ops
81
- >>> input = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
82
- >>> output = ops.acosh_ext(input)
81
+ >>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
82
+ >>> output = ops.acos_ext(input)
83
83
  >>> print(output)
84
- [0. 0.9624236 1.7627472 5.298292 ]
84
+ [0.7377037 1.5307857 1.2661037 0.9764114]
85
85
  """
86
- return acosh_impl(input)
86
+ return acos_impl(input)
87
87
 
88
88
 
89
89
  def adaptive_avg_pool2d_grad(grad_output, x):
@@ -246,7 +246,7 @@ def argmin(input, dim=None, keepdim=False):
246
246
  return argmin_impl(input, dim, keepdim)
247
247
 
248
248
 
249
- def argsort(input, dim=-1, descending=False):
249
+ def argsort(input, dim=-1, descending=False, stable=False):
250
250
  r"""
251
251
  Sorts the input tensor along the given dimension in specified order and return the sorted indices.
252
252
 
@@ -259,10 +259,17 @@ def argsort(input, dim=-1, descending=False):
259
259
  The Ascend backend only supports sorting the last dimension.
260
260
  descending (bool, optional): The sort order. If `descending` is ``True`` then the elements
261
261
  are sorted in descending order by value. Otherwise sort in ascending order. Default: ``False`` .
262
+ stable (bool, optional): Whether to use stable sorting algorithm. Default: ``False``.
262
263
 
263
264
  Returns:
264
265
  Tensor, the indices of sorted input tensor. Data type is int64.
265
266
 
267
+ Raises:
268
+ ValueError: If `dim` is out of range.
269
+ TypeError: If dtype of `dim` is not int32.
270
+ TypeError: If dtype of `descending` is not bool.
271
+ TypeError: If dtype of `stable` is not bool.
272
+
266
273
  Supported Platforms:
267
274
  ``Ascend``
268
275
 
@@ -278,20 +285,19 @@ def argsort(input, dim=-1, descending=False):
278
285
  [2 0 1]
279
286
  [0 1 2]]
280
287
  """
281
- return argsort_impl(input, dim, descending)
288
+ return argsort_impl(input, dim, descending, stable)
282
289
 
283
290
 
284
- def asin(input):
291
+ def asinh(input):
285
292
  r"""
286
- Computes arcsine of input tensors element-wise.
293
+ Computes inverse hyperbolic sine of the input element-wise.
287
294
 
288
295
  .. math::
289
296
 
290
- out_i = \sin^{-1}(input_i)
297
+ out_i = \sinh^{-1}(input_i)
291
298
 
292
299
  Args:
293
- input (Tensor): The shape of tensor is
294
- :math:`(N,*)`, where :math:`*` means any number of additional dimensions.
300
+ input (Tensor): The input tensor of inverse hyperbolic sine function.
295
301
 
296
302
  Returns:
297
303
  Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
@@ -306,24 +312,25 @@ def asin(input):
306
312
  >>> import mindspore
307
313
  >>> import numpy as np
308
314
  >>> from mindspore import Tensor, ops
309
- >>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
310
- >>> output = ops.asin_ext(input)
315
+ >>> input = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32)
316
+ >>> output = ops.asinh_ext(input)
311
317
  >>> print(output)
312
- [0.8330927 0.04001068 0.30469266 0.59438497 ]
318
+ [-2.3124385 1.1947632 1.8184465 5.298342 ]
313
319
  """
314
- return asin_impl(input)
320
+ return asinh_impl(input)
315
321
 
316
322
 
317
- def asinh(input):
323
+ def asin(input):
318
324
  r"""
319
- Computes inverse hyperbolic sine of the input element-wise.
325
+ Computes arcsine of input tensors element-wise.
320
326
 
321
327
  .. math::
322
328
 
323
- out_i = \sinh^{-1}(input_i)
329
+ out_i = \sin^{-1}(input_i)
324
330
 
325
331
  Args:
326
- input (Tensor): The input tensor of inverse hyperbolic sine function.
332
+ input (Tensor): The shape of tensor is
333
+ :math:`(N,*)`, where :math:`*` means any number of additional dimensions.
327
334
 
328
335
  Returns:
329
336
  Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
@@ -338,12 +345,12 @@ def asinh(input):
338
345
  >>> import mindspore
339
346
  >>> import numpy as np
340
347
  >>> from mindspore import Tensor, ops
341
- >>> input = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32)
342
- >>> output = ops.asinh_ext(input)
348
+ >>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
349
+ >>> output = ops.asin_ext(input)
343
350
  >>> print(output)
344
- [-2.3124385 1.1947632 1.8184465 5.298342 ]
351
+ [0.8330927 0.04001068 0.30469266 0.59438497 ]
345
352
  """
346
- return asinh_impl(input)
353
+ return asin_impl(input)
347
354
 
348
355
 
349
356
  def atan2(input, other):
@@ -505,15 +512,15 @@ def bincount(input, weights=None, minlength=0):
505
512
  ``Ascend``
506
513
 
507
514
  Examples:
508
- >>> from mindspore import mint
509
- >>> print(mint.bincount(np.arange(5)))
510
- [1. 1. 1. 1. 1.]
511
- >>> print(mint.bincount(np.array([0, 1, 1, 3, 2, 1, 7])))
512
- [1. 3. 1. 1. 0. 0. 0. 1.]
513
- >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
514
- >>> x = np.array([0, 1, 1, 2, 2, 2])
515
+ >>> from mindspore import mint, Tensor
516
+ >>> print(mint.bincount(Tensor(np.arange(5))))
517
+ [1 1 1 1 1]
518
+ >>> print(mint.bincount(Tensor(np.array([0, 1, 1, 3, 2, 1, 7]))))
519
+ [1 3 1 1 0 0 0 1]
520
+ >>> w = Tensor(np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6])) # weights
521
+ >>> x = Tensor(np.array([0, 1, 1, 2, 2, 2]))
515
522
  >>> print(mint.bincount(x, weights=w, minlength=5))
516
- [0.3 0.7 1.1 0.0 0.0]
523
+ [0.3 0.7 1.1 0. 0. ]
517
524
  """
518
525
  return bincount_impl(input, weights, minlength)
519
526
 
@@ -716,6 +723,54 @@ def cumsum(input, dim, dtype=None):
716
723
  return cumsum_impl(input, dim, dtype)
717
724
 
718
725
 
726
+ def diag(input, diagonal=0):
727
+ r"""
728
+ If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.
729
+
730
+ If input is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements of input.
731
+
732
+ The argument diagonal controls which diagonal to consider:
733
+
734
+ - If `diagonal` = 0, it is the main diagonal.
735
+
736
+ - If `diagonal` > 0, it is above the main diagonal.
737
+
738
+ - If `diagonal` < 0, it is below the main diagonal.
739
+
740
+ .. warning::
741
+ This is an experimental API that is subject to change or deletion.
742
+
743
+ Args:
744
+ input (Tensor): The input tensor.
745
+ diagonal (int, optional): the diagonal to consider. Defaults: ``0``.
746
+
747
+ Returns:
748
+ Tensor, has the same dtype as the `input`, its shape is up to `diagonal`.
749
+
750
+ - If `input` shape is :math:`(x_0)` : then output shape is :math:`(x_0 + \left | diagonal \right | , x_0 + \left | diagonal \right | )` 2-D Tensor.
751
+
752
+ - If `input` shape is :math:`(x_0, x_1)` : then output shape is main diagonal to move :math:`(\left | diagonal \right |)` elements remains elements' length 1-D Tensor.
753
+
754
+ Raises:
755
+ TypeError: If `input` is not a Tensor.
756
+ ValueError: If shape of `input` is not 1-D and 2-D.
757
+
758
+ Supported Platforms:
759
+ ``Ascend``
760
+
761
+ Examples:
762
+ >>> from mindspore import Tensor, mint
763
+ >>> input = Tensor([1, 2, 3, 4]).astype('int32')
764
+ >>> output = mint.diag(input)
765
+ >>> print(output)
766
+ [[1 0 0 0]
767
+ [0 2 0 0]
768
+ [0 0 3 0]
769
+ [0 0 0 4]]
770
+ """
771
+ return diag_impl(input, diagonal)
772
+
773
+
719
774
  def elu(input, alpha=1.0):
720
775
  r"""
721
776
  Exponential Linear Unit activation function.
@@ -956,6 +1011,56 @@ def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
956
1011
  return unfold_impl(input, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
957
1012
 
958
1013
 
1014
+ def index_add(input, dim, index, source, alpha=1):
1015
+ r"""
1016
+ Accumulate the elements of `alpha` times `source` into the `input` by adding to the index in the order given in `index`. For example, if ``dim == 0`` , ``index[i] == j`` , and ``alpha = -1`` , then the `i` th row of `source` is subtracted from the `j` th row of `input` . The `dim` th dimension of `source` must have the same size as the length of `index` , and all other dimensions must match `input`, or an error will be raised. For a 3-D tensor, the output is defined as follows:
1017
+
1018
+ .. math::
1019
+ \begin{array}{ll}
1020
+ input[index[i],\ :,\ :]\ +=\ alpha * source[i,\ :,\ :] \qquad \#if\ dim == 0 \\
1021
+ input[:,\ \ index[i],\ :]\ +=\ alpha * source[:,\ \ i,\ :] \qquad \#if\ dim == 1 \\
1022
+ input[:,\ :,\ \ index[i]]\ +=\ alpha * source[:,\ :,\ \ i] \qquad\#if\ dim == 2 \\
1023
+ \end{array}
1024
+
1025
+ .. warning::
1026
+ This is an experimental API that is subject to change or deletion.
1027
+
1028
+ Args:
1029
+ input (Tensor): The input Tensor.
1030
+ dim (int): The dimension along which to index.
1031
+ index (Tensor): Add the value of "input Tensor" and `source` along the dimension of the `dim` according to the specified index value, with data type int32. The `index` must be 1D with the same size as the size of `source` in the `dim` dimension. The values of `index` should be in [0, b), where the b is the size of "input Tensor" in the `dim` dimension.
1032
+ source (Tensor): The input tensor with the value to add. Must have same data type as "input Tensor". The shape must be the same as "input Tensor" except the `dim` th dimension.
1033
+ alpha (number, optional): The scalar multiplier for source. Default: ``1``.
1034
+
1035
+ Returns:
1036
+ Tensor, has the same shape and dtype as `input`.
1037
+
1038
+ Raises:
1039
+ TypeError: If neither `index` nor `source` is a Tensor.
1040
+ ValueError: If the value of `dim` is out of the dimension range of `source` shape.
1041
+ ValueError: If `index` rank is not the same as `source` rank.
1042
+ ValueError: If shape of `index` is not 1D or size of `index` is not equal to dimension of source[dim].
1043
+ ValueError: If the shape of `source` is not the same as that of `input` except the `dim` axis.
1044
+
1045
+ Supported Platforms:
1046
+ ``Ascend``
1047
+
1048
+ Examples:
1049
+ >>> import numpy as np
1050
+ >>> import mindspore
1051
+ >>> from mindspore import Tensor, ops
1052
+ >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
1053
+ >>> index = Tensor(np.array([0, 2]), mindspore.int32)
1054
+ >>> y = Tensor(np.array([[0.5, 1.0], [1.0, 1.5], [2.0, 2.5]]), mindspore.float32)
1055
+ >>> output = ops.auto_generate.index_add_ext(x, 1, index, y, alpha=1)
1056
+ >>> print(output)
1057
+ [[ 1.5 2. 4. ]
1058
+ [ 5. 5. 7.5]
1059
+ [ 9. 8. 11.5]]
1060
+ """
1061
+ return index_add_impl(input, dim, index, source, alpha)
1062
+
1063
+
959
1064
  def index_select(input, dim, index):
960
1065
  r"""
961
1066
  Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
@@ -1002,18 +1107,18 @@ def index_select(input, dim, index):
1002
1107
  return index_select_impl(input, dim, index)
1003
1108
 
1004
1109
 
1005
- def inplace_add(input, other, alpha=1):
1110
+ def inplace_adds(input, other, alpha=1):
1006
1111
  r"""
1007
1112
  None
1008
1113
  """
1009
- return inplace_add_impl(input, other, alpha)
1114
+ return inplace_adds_impl(input, other, alpha)
1010
1115
 
1011
1116
 
1012
- def inplace_adds(input, other, alpha=1):
1117
+ def inplace_add(input, other, alpha=1):
1013
1118
  r"""
1014
1119
  None
1015
1120
  """
1016
- return inplace_adds_impl(input, other, alpha)
1121
+ return inplace_add_impl(input, other, alpha)
1017
1122
 
1018
1123
 
1019
1124
  def sub_tensor_(input, other, alpha=1):
@@ -1028,7 +1133,6 @@ def isneginf(input):
1028
1133
  Determines which elements are -inf for each position.
1029
1134
 
1030
1135
  .. warning::
1031
- - This is an experimental API that is subject to change.
1032
1136
  - This API can be used only on the Atlas A2 training series.
1033
1137
 
1034
1138
  Args:
@@ -1207,7 +1311,6 @@ def log2(input):
1207
1311
  y_i = \log_2(x_i)
1208
1312
 
1209
1313
  .. warning::
1210
- - This is an experimental API that is subject to change or deletion.
1211
1314
  - If the input value of operator Log2 is within the range (0, 0.01] or [0.95, 1.05], the output accuracy
1212
1315
  may be affacted.
1213
1316
 
@@ -1215,10 +1318,8 @@ def log2(input):
1215
1318
  input (Tensor): Input Tensor of any dimension. The value must be greater than 0.
1216
1319
 
1217
1320
  Returns:
1218
- Tensor, has the same shape as the `input`, and the dtype changes according to the `input.dtype`.
1219
-
1220
- - if `input.dtype` is in [float16, float32, float64, bfloat16], the output dtype is the same as the `input.dtype`.
1221
- - if `input.dtype` is integer or boolean type, the output dtype is float32.
1321
+ Tensor, has the same shape as the `input`. If `input.dtype` is of integer or boolean type, the output dtype
1322
+ will be float32. Otherwise, the output dtype will be the same as `input.dtype`.
1222
1323
 
1223
1324
  Raises:
1224
1325
  TypeError: If `input` is not a Tensor.
@@ -1238,48 +1339,6 @@ def log2(input):
1238
1339
  return log2_impl(input)
1239
1340
 
1240
1341
 
1241
- def log_softmax(input, dim=None, dtype=None):
1242
- r"""
1243
- Applies the Log Softmax function to the input tensor on the specified axis.
1244
- Supposes a slice in the given axis, :math:`x` for each element :math:`x_i`,
1245
- the Log Softmax function is shown as follows:
1246
-
1247
- .. math::
1248
- \text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
1249
-
1250
- where :math:`N` is the length of the Tensor.
1251
-
1252
- Args:
1253
- input (Tensor): The input Tensor.
1254
- dim (int, optional): The axis to perform the Log softmax operation. Default: ``None`` .
1255
-
1256
- Keyword Args:
1257
- dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If not set to None, the input
1258
- Tensor will be cast to `dtype` before the operation is performed. This is useful for preventing overflows.
1259
- If set to None, stay the same as original Tensor. Default: ``None`` . Supported data type is {float16, float32, double, bfloat16}.
1260
-
1261
- Returns:
1262
- Tensor, with the same shape as the input.
1263
-
1264
- Raises:
1265
- TypeError: If `dim` is not an int.
1266
- ValueError: If `dim` is not in range [-len(input.shape), len(input.shape)).
1267
-
1268
- Supported Platforms:
1269
- ``Ascend``
1270
-
1271
- Examples:
1272
- >>> import mindspore
1273
- >>> import numpy as np
1274
- >>> from mindspore import Tensor, ops
1275
- >>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
1276
- >>> output = ops.auto_generate.log_softmax(logits, dim=-1)
1277
- >>> print(output)
1278
- [-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
1279
- """
1280
- return log_softmax_impl(input, dim, dtype)
1281
-
1282
-
1283
1342
  def logaddexp(input, other):
1284
1343
  r"""
1285
1344
  Computes the logarithm of the sum of exponentiations of the inputs.
@@ -1297,7 +1356,7 @@ def logaddexp(input, other):
1297
1356
  input (Tensor): Input Tensor. The dtype of `input` must be float.
1298
1357
  other (Tensor): Input Tensor. The dtype of `other` must be float.
1299
1358
  If the shape of `input` is not equal to the shape of `other`,
1300
- they must be broadcastable to a common shape (which becomes the shape of the output).
1359
+ they must be broadcastable to a common shape.
1301
1360
 
1302
1361
  Returns:
1303
1362
  Tensor, with the same dtype as `input` and `other`.
@@ -1368,6 +1427,48 @@ def logsumexp(input, dim, keepdim=False):
1368
1427
  return logsumexp_impl(input, dim, keepdim)
1369
1428
 
1370
1429
 
1430
+ def log_softmax(input, dim=None, dtype=None):
1431
+ r"""
1432
+ Applies the Log Softmax function to the input tensor on the specified axis.
1433
+ Supposes a slice in the given axis, :math:`x` for each element :math:`x_i`,
1434
+ the Log Softmax function is shown as follows:
1435
+
1436
+ .. math::
1437
+ \text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
1438
+
1439
+ where :math:`N` is the length of the Tensor.
1440
+
1441
+ Args:
1442
+ input (Tensor): The input Tensor.
1443
+ dim (int, optional): The axis to perform the Log softmax operation. Default: ``None`` .
1444
+
1445
+ Keyword Args:
1446
+ dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If not set to None, the input
1447
+ Tensor will be cast to `dtype` before the operation is performed. This is useful for preventing overflows.
1448
+ If set to None, stay the same as original Tensor. Default: ``None`` . Supported data type is {float16, float32, double, bfloat16}.
1449
+
1450
+ Returns:
1451
+ Tensor, with the same shape as the input.
1452
+
1453
+ Raises:
1454
+ TypeError: If `dim` is not an int.
1455
+ ValueError: If `dim` is not in range [-len(input.shape), len(input.shape)).
1456
+
1457
+ Supported Platforms:
1458
+ ``Ascend``
1459
+
1460
+ Examples:
1461
+ >>> import mindspore
1462
+ >>> import numpy as np
1463
+ >>> from mindspore import Tensor, ops
1464
+ >>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
1465
+ >>> output = ops.auto_generate.log_softmax(logits, dim=-1)
1466
+ >>> print(output)
1467
+ [-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
1468
+ """
1469
+ return log_softmax_impl(input, dim, dtype)
1470
+
1471
+
1371
1472
  def matmul(input, other):
1372
1473
  r"""
1373
1474
  None
@@ -2025,50 +2126,63 @@ def sub(input, other, alpha=1):
2025
2126
 
2026
2127
  def sum(input, dim=None, keepdim=False, dtype=None):
2027
2128
  r"""
2028
- Alias for :func:`mindspore.mint.transpose` . The `input` corresponds to the `input` in the reference interface,
2029
- and the parameters `axis0` and `axis1` correspond to `dim0` and `dim1` in the reference interface respectively.
2030
-
2031
- .. warning::
2032
- This is an experimental API that is subject to change or deletion.
2033
-
2034
- Refer to :func:`mindspore.mint.transpose` for more details.
2035
- """
2036
- return sum_impl(input, dim, keepdim, dtype)
2037
-
2038
-
2039
- def t(input):
2040
- r"""
2041
- Transpose the input tensor.
2129
+ Calculate sum of Tensor elements over a given dim.
2042
2130
 
2043
- .. warning::
2044
- This is an experimental API that is subject to change or deletion.
2131
+ Note:
2132
+ The `dim` with tensor type is only used for compatibility with older versions and is not recommended.
2045
2133
 
2046
2134
  Args:
2047
2135
  input (Tensor): The input tensor.
2136
+ dim (Union[None, int, tuple(int), list(int), Tensor]): Dimensions along which a sum is performed.
2137
+ If ``None`` , sum all the elements of the input tensor.
2138
+ If the `dim` is a tuple or list of ints, a sum is performed on all the dimensions specified in the tuple.
2139
+ Must be in the range :math:`[-input.ndim, input.ndim)` . Default: ``None`` .
2140
+ keepdim (bool): Whether the output tensor has `dim` retained or not.
2141
+ If ``True`` , keep these reduced dimensions and the length is 1.
2142
+ If ``False`` , don't keep these dimensions. Default: ``False`` .
2143
+ dtype (:class:`mindspore.dtype`): The desired data type of returned Tensor. Default: ``None`` .
2048
2144
 
2049
2145
  Returns:
2050
- Tensor, transpose 2D tensor, return 1D tensor as it is.
2146
+ A Tensor, sum of elements over a given `dim` in `input`.
2051
2147
 
2052
2148
  Raises:
2053
- ValueError: If the dimension of `input` is greater than 2.
2054
- ValueError: If `input` is empty.
2055
- TypeError: If `input` is not a tensor.
2149
+ TypeError: If `input` is not a Tensor.
2150
+ TypeError: If `dim` is not an int, tulpe(int), list(int), Tensor or None.
2151
+ ValueError: If `dim` is not in the range :math:`[-input.ndim, input.ndim)` .
2152
+ TypeError: If `keepdim` is not a bool.
2056
2153
 
2057
2154
  Supported Platforms:
2058
- ``Ascend``
2155
+ ``Ascend`` ``GPU`` ``CPU``
2059
2156
 
2060
2157
  Examples:
2061
2158
  >>> import mindspore
2062
2159
  >>> import numpy as np
2063
2160
  >>> from mindspore import Tensor, ops
2064
- >>> input = Tensor(np.array([[1, 2, 3], [4, 5, 6]]), mindspore.float32)
2065
- >>> output = ops.t_ext(input)
2066
- >>> print(output)
2067
- [[ 1. 4.]
2068
- [ 2. 5.]
2069
- [ 3. 6.]]
2161
+ >>> from mindspore import dtype as mstype
2162
+ >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
2163
+ ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
2164
+ ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mstype.float32)
2165
+ >>> out = ops.sum_ext(x)
2166
+ >>> print(out)
2167
+ 270.0
2168
+ >>> out = ops.sum_ext(x, dim=2)
2169
+ >>> print(out)
2170
+ [[ 6. 12. 18.]
2171
+ [24. 30. 36.]
2172
+ [42. 48. 54.]]
2173
+ >>> out = ops.sum_ext(x, dim=2, keepdim=True)
2174
+ >>> print(out)
2175
+ [[[ 6.]
2176
+ [12.]
2177
+ [18.]]
2178
+ [[24.]
2179
+ [30.]
2180
+ [36.]]
2181
+ [[42.]
2182
+ [48.]
2183
+ [54.]]]
2070
2184
  """
2071
- return t_impl(input)
2185
+ return sum_impl(input, dim, keepdim, dtype)
2072
2186
 
2073
2187
 
2074
2188
  def topk(input, k, dim=-1, largest=True, sorted=True):
@@ -2127,7 +2241,7 @@ def topk(input, k, dim=-1, largest=True, sorted=True):
2127
2241
  (Tensor(shape=[3, 2], dtype=Float32, value=
2128
2242
  [[ 9.67299998e-01, 5.36800027e-01],
2129
2243
  [ 6.52499974e-01, 4.68499988e-01],
2130
- [ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
2244
+ [ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=Int64, value=
2131
2245
  [[3, 0],
2132
2246
  [1, 2],
2133
2247
  [2, 3]]))
@@ -2136,7 +2250,7 @@ def topk(input, k, dim=-1, largest=True, sorted=True):
2136
2250
  (Tensor(shape=[3, 2], dtype=Float32, value=
2137
2251
  [[ 2.44700000e-01, 4.30200011e-01],
2138
2252
  [ 1.86800003e-01, 4.38800007e-01],
2139
- [ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
2253
+ [ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=Int64, value=
2140
2254
  [[1, 2],
2141
2255
  [3, 0],
2142
2256
  [0, 1]]))
@@ -2148,9 +2262,6 @@ def trace(input):
2148
2262
  r"""
2149
2263
  Returns a new tensor that is the sum of the `input` main trace.
2150
2264
 
2151
- Note:
2152
- Input must be tensor.
2153
-
2154
2265
  Args:
2155
2266
  input (Tensor): 2-D Tensor.
2156
2267
 
@@ -2226,3 +2337,38 @@ def tril(input, diagonal=0):
2226
2337
  """
2227
2338
  return tril_impl(input, diagonal)
2228
2339
 
2340
+
2341
+ def t(input):
2342
+ r"""
2343
+ Transpose the input tensor.
2344
+
2345
+ .. warning::
2346
+ This is an experimental API that is subject to change or deletion.
2347
+
2348
+ Args:
2349
+ input (Tensor): The input tensor.
2350
+
2351
+ Returns:
2352
+ Tensor, transpose 2D tensor, return 1D tensor as it is.
2353
+
2354
+ Raises:
2355
+ ValueError: If the dimension of `input` is greater than 2.
2356
+ ValueError: If `input` is empty.
2357
+ TypeError: If `input` is not a tensor.
2358
+
2359
+ Supported Platforms:
2360
+ ``Ascend``
2361
+
2362
+ Examples:
2363
+ >>> import mindspore
2364
+ >>> import numpy as np
2365
+ >>> from mindspore import Tensor, ops
2366
+ >>> input = Tensor(np.array([[1, 2, 3], [4, 5, 6]]), mindspore.float32)
2367
+ >>> output = ops.t_ext(input)
2368
+ >>> print(output)
2369
+ [[ 1. 4.]
2370
+ [ 2. 5.]
2371
+ [ 3. 6.]]
2372
+ """
2373
+ return t_impl(input)
2374
+