mindspore 2.4.0__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -0
- mindspore/ConcurrencyCheck.dll +0 -0
- mindspore/CppBuildInsights.dll +0 -0
- mindspore/CppCoreCheck.dll +0 -0
- mindspore/EnumIndex.dll +0 -0
- mindspore/EspXEngine.dll +0 -0
- mindspore/HResultCheck.dll +0 -0
- mindspore/KernelTraceControl.dll +0 -0
- mindspore/LocalESPC.dll +0 -0
- mindspore/Microsoft.Diagnostics.Tracing.EventSource.dll +0 -0
- mindspore/Microsoft.VisualStudio.RemoteControl.dll +0 -0
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Microsoft.VisualStudio.Utilities.Internal.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/System.Runtime.CompilerServices.Unsafe.dll +0 -0
- mindspore/VariantClear.dll +0 -0
- mindspore/__init__.py +53 -0
- mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +106 -0
- mindspore/_checkparam.py +1419 -0
- mindspore/_extends/__init__.py +23 -0
- mindspore/_extends/builtin_operations.py +224 -0
- mindspore/_extends/graph_kernel/__init__.py +17 -0
- mindspore/_extends/graph_kernel/model/__init__.py +19 -0
- mindspore/_extends/graph_kernel/model/graph_parallel.py +311 -0
- mindspore/_extends/graph_kernel/model/graph_split.py +1348 -0
- mindspore/_extends/graph_kernel/model/model.py +553 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +216 -0
- mindspore/_extends/graph_kernel/parallel_estimate.py +60 -0
- mindspore/_extends/graph_kernel/splitter.py +140 -0
- mindspore/_extends/graph_kernel/utils.py +28 -0
- mindspore/_extends/parallel_compile/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +269 -0
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +529 -0
- mindspore/_extends/parallel_compile/akg_compiler/compiler.py +56 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
- mindspore/_extends/parallel_compile/akg_compiler/get_file_path.py +36 -0
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +556 -0
- mindspore/_extends/parallel_compile/akg_compiler/util.py +159 -0
- mindspore/_extends/parse/__init__.py +49 -0
- mindspore/_extends/parse/compile_config.py +299 -0
- mindspore/_extends/parse/namespace.py +136 -0
- mindspore/_extends/parse/parser.py +1448 -0
- mindspore/_extends/parse/resources.py +213 -0
- mindspore/_extends/parse/standard_method.py +4475 -0
- mindspore/_extends/parse/trope.py +97 -0
- mindspore/_extends/pijit/__init__.py +23 -0
- mindspore/_extends/pijit/pijit_func_white_list.py +669 -0
- mindspore/_extends/remote/__init__.py +19 -0
- mindspore/_extends/remote/kernel_build_server.py +199 -0
- mindspore/_extends/remote/kernel_build_server_akg.py +55 -0
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
- mindspore/_extends/utils.py +68 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_profiler.py +30 -0
- mindspore/amp.py +433 -0
- mindspore/atlprov.dll +0 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/__init__.py +42 -0
- mindspore/boost/adasum.py +319 -0
- mindspore/boost/base.py +535 -0
- mindspore/boost/boost.py +400 -0
- mindspore/boost/boost_cell_wrapper.py +790 -0
- mindspore/boost/dim_reduce.py +323 -0
- mindspore/boost/grad_accumulation.py +79 -0
- mindspore/boost/grad_freeze.py +382 -0
- mindspore/boost/group_loss_scale_manager.py +166 -0
- mindspore/boost/less_batch_normalization.py +174 -0
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/cfgpersist.dll +0 -0
- mindspore/clang_rt.asan_dbg_dynamic-x86_64.dll +0 -0
- mindspore/clang_rt.asan_dynamic-x86_64.dll +0 -0
- mindspore/common/__init__.py +86 -0
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_decorator.py +50 -0
- mindspore/common/_jit_fallback_utils.py +110 -0
- mindspore/common/_monad.py +25 -0
- mindspore/common/_pijit_context.py +190 -0
- mindspore/common/_register_for_adapter.py +74 -0
- mindspore/common/_register_for_recompute.py +48 -0
- mindspore/common/_register_for_tensor.py +46 -0
- mindspore/common/_stub_tensor.py +210 -0
- mindspore/common/_tensor_overload.py +139 -0
- mindspore/common/_utils.py +122 -0
- mindspore/common/api.py +2064 -0
- mindspore/common/auto_dynamic_shape.py +507 -0
- mindspore/common/dtype.py +422 -0
- mindspore/common/dump.py +130 -0
- mindspore/common/file_system.py +48 -0
- mindspore/common/generator.py +254 -0
- mindspore/common/hook_handle.py +143 -0
- mindspore/common/initializer.py +880 -0
- mindspore/common/jit_config.py +98 -0
- mindspore/common/lazy_inline.py +240 -0
- mindspore/common/mindir_util.py +111 -0
- mindspore/common/mutable.py +234 -0
- mindspore/common/no_inline.py +54 -0
- mindspore/common/np_dtype.py +25 -0
- mindspore/common/parameter.py +1081 -0
- mindspore/common/recompute.py +292 -0
- mindspore/common/seed.py +260 -0
- mindspore/common/sparse_tensor.py +1175 -0
- mindspore/common/symbol.py +122 -0
- mindspore/common/tensor.py +5039 -0
- mindspore/communication/__init__.py +37 -0
- mindspore/communication/_comm_helper.py +501 -0
- mindspore/communication/_hccl_management.py +297 -0
- mindspore/communication/comm_func.py +1395 -0
- mindspore/communication/management.py +673 -0
- mindspore/config/op_info.config +533 -0
- mindspore/context.py +2077 -0
- mindspore/d3dcompiler_47.dll +0 -0
- mindspore/dataset/__init__.py +90 -0
- mindspore/dataset/audio/__init__.py +61 -0
- mindspore/dataset/audio/transforms.py +3690 -0
- mindspore/dataset/audio/utils.py +386 -0
- mindspore/dataset/audio/validators.py +1172 -0
- mindspore/dataset/callback/__init__.py +20 -0
- mindspore/dataset/callback/ds_callback.py +368 -0
- mindspore/dataset/callback/validators.py +32 -0
- mindspore/dataset/core/__init__.py +13 -0
- mindspore/dataset/core/config.py +1095 -0
- mindspore/dataset/core/datatypes.py +101 -0
- mindspore/dataset/core/py_util_helpers.py +65 -0
- mindspore/dataset/core/validator_helpers.py +781 -0
- mindspore/dataset/debug/__init__.py +21 -0
- mindspore/dataset/debug/debug_hook.py +97 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +124 -0
- mindspore/dataset/engine/cache_admin.py +47 -0
- mindspore/dataset/engine/cache_client.py +129 -0
- mindspore/dataset/engine/datasets.py +4582 -0
- mindspore/dataset/engine/datasets_audio.py +911 -0
- mindspore/dataset/engine/datasets_standard_format.py +543 -0
- mindspore/dataset/engine/datasets_text.py +2161 -0
- mindspore/dataset/engine/datasets_user_defined.py +1184 -0
- mindspore/dataset/engine/datasets_vision.py +4816 -0
- mindspore/dataset/engine/iterators.py +371 -0
- mindspore/dataset/engine/obs/__init__.py +23 -0
- mindspore/dataset/engine/obs/config_loader.py +68 -0
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +508 -0
- mindspore/dataset/engine/obs/util.py +482 -0
- mindspore/dataset/engine/offload.py +596 -0
- mindspore/dataset/engine/queue.py +304 -0
- mindspore/dataset/engine/samplers.py +895 -0
- mindspore/dataset/engine/serializer_deserializer.py +159 -0
- mindspore/dataset/engine/validators.py +2895 -0
- mindspore/dataset/text/__init__.py +51 -0
- mindspore/dataset/text/transforms.py +1703 -0
- mindspore/dataset/text/utils.py +715 -0
- mindspore/dataset/text/validators.py +642 -0
- mindspore/dataset/transforms/__init__.py +45 -0
- mindspore/dataset/transforms/c_transforms.py +638 -0
- mindspore/dataset/transforms/py_transforms.py +393 -0
- mindspore/dataset/transforms/py_transforms_util.py +255 -0
- mindspore/dataset/transforms/transforms.py +1260 -0
- mindspore/dataset/transforms/validators.py +410 -0
- mindspore/dataset/utils/__init__.py +19 -0
- mindspore/dataset/utils/browse_dataset.py +190 -0
- mindspore/dataset/utils/line_reader.py +126 -0
- mindspore/dataset/vision/__init__.py +65 -0
- mindspore/dataset/vision/c_transforms.py +2641 -0
- mindspore/dataset/vision/py_transforms.py +2120 -0
- mindspore/dataset/vision/py_transforms_util.py +1660 -0
- mindspore/dataset/vision/transforms.py +7295 -0
- mindspore/dataset/vision/utils.py +863 -0
- mindspore/dataset/vision/validators.py +1483 -0
- mindspore/default_config.py +2 -0
- mindspore/dnnl.dll +0 -0
- mindspore/dpcmi.dll +0 -0
- mindspore/experimental/__init__.py +20 -0
- mindspore/experimental/es/__init__.py +22 -0
- mindspore/experimental/es/embedding_service.py +883 -0
- mindspore/experimental/es/embedding_service_layer.py +581 -0
- mindspore/experimental/llm_boost/__init__.py +21 -0
- mindspore/experimental/llm_boost/atb/__init__.py +23 -0
- mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
- mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
- mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
- mindspore/experimental/llm_boost/register.py +129 -0
- mindspore/experimental/llm_boost/utils.py +31 -0
- mindspore/experimental/map_parameter.py +309 -0
- mindspore/experimental/optim/__init__.py +40 -0
- mindspore/experimental/optim/adadelta.py +161 -0
- mindspore/experimental/optim/adagrad.py +168 -0
- mindspore/experimental/optim/adam.py +193 -0
- mindspore/experimental/optim/adamax.py +170 -0
- mindspore/experimental/optim/adamw.py +290 -0
- mindspore/experimental/optim/asgd.py +153 -0
- mindspore/experimental/optim/lr_scheduler.py +1371 -0
- mindspore/experimental/optim/nadam.py +157 -0
- mindspore/experimental/optim/optimizer.py +262 -0
- mindspore/experimental/optim/radam.py +194 -0
- mindspore/experimental/optim/rmsprop.py +154 -0
- mindspore/experimental/optim/rprop.py +164 -0
- mindspore/experimental/optim/sgd.py +156 -0
- mindspore/hal/__init__.py +40 -0
- mindspore/hal/_ascend.py +57 -0
- mindspore/hal/_base.py +57 -0
- mindspore/hal/_cpu.py +56 -0
- mindspore/hal/_gpu.py +57 -0
- mindspore/hal/contiguous_tensors_handle.py +175 -0
- mindspore/hal/device.py +356 -0
- mindspore/hal/event.py +179 -0
- mindspore/hal/memory.py +326 -0
- mindspore/hal/stream.py +357 -0
- mindspore/include/OWNERS +7 -0
- mindspore/include/api/allocator.h +97 -0
- mindspore/include/api/callback/callback.h +93 -0
- mindspore/include/api/callback/ckpt_saver.h +41 -0
- mindspore/include/api/callback/loss_monitor.h +33 -0
- mindspore/include/api/callback/lr_scheduler.h +51 -0
- mindspore/include/api/callback/time_monitor.h +34 -0
- mindspore/include/api/callback/train_accuracy.h +37 -0
- mindspore/include/api/cell.h +90 -0
- mindspore/include/api/cfg.h +82 -0
- mindspore/include/api/context.h +602 -0
- mindspore/include/api/data_type.h +47 -0
- mindspore/include/api/delegate.h +178 -0
- mindspore/include/api/delegate_api.h +75 -0
- mindspore/include/api/dual_abi_helper.h +208 -0
- mindspore/include/api/format.h +28 -0
- mindspore/include/api/graph.h +46 -0
- mindspore/include/api/kernel.h +58 -0
- mindspore/include/api/kernel_api.h +168 -0
- mindspore/include/api/metrics/accuracy.h +36 -0
- mindspore/include/api/metrics/metrics.h +41 -0
- mindspore/include/api/model.h +438 -0
- mindspore/include/api/model_group.h +91 -0
- mindspore/include/api/model_parallel_runner.h +168 -0
- mindspore/include/api/serialization.h +185 -0
- mindspore/include/api/status.h +192 -0
- mindspore/include/api/types.h +431 -0
- mindspore/include/api/visible.h +41 -0
- mindspore/include/c_api/context_c.h +179 -0
- mindspore/include/c_api/data_type_c.h +52 -0
- mindspore/include/c_api/format_c.h +46 -0
- mindspore/include/c_api/model_c.h +347 -0
- mindspore/include/c_api/status_c.h +79 -0
- mindspore/include/c_api/tensor_c.h +146 -0
- mindspore/include/c_api/types_c.h +67 -0
- mindspore/include/dataset/config.h +163 -0
- mindspore/include/dataset/constants.h +363 -0
- mindspore/include/dataset/execute.h +196 -0
- mindspore/include/dataset/text.h +1092 -0
- mindspore/include/dataset/transforms.h +638 -0
- mindspore/include/dataset/vision.h +2129 -0
- mindspore/include/dataset/vision_ascend.h +206 -0
- mindspore/include/dataset/vision_lite.h +625 -0
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +633 -0
- mindspore/mindrecord/__init__.py +43 -0
- mindspore/mindrecord/common/__init__.py +17 -0
- mindspore/mindrecord/common/constant.py +20 -0
- mindspore/mindrecord/common/enums.py +44 -0
- mindspore/mindrecord/common/exceptions.py +311 -0
- mindspore/mindrecord/config.py +809 -0
- mindspore/mindrecord/filereader.py +174 -0
- mindspore/mindrecord/filewriter.py +722 -0
- mindspore/mindrecord/mindpage.py +210 -0
- mindspore/mindrecord/shardheader.py +141 -0
- mindspore/mindrecord/shardindexgenerator.py +74 -0
- mindspore/mindrecord/shardreader.py +117 -0
- mindspore/mindrecord/shardsegment.py +128 -0
- mindspore/mindrecord/shardutils.py +185 -0
- mindspore/mindrecord/shardwriter.py +237 -0
- mindspore/mindrecord/tools/__init__.py +17 -0
- mindspore/mindrecord/tools/cifar10.py +140 -0
- mindspore/mindrecord/tools/cifar100.py +153 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +185 -0
- mindspore/mindrecord/tools/cifar10_to_mr.py +177 -0
- mindspore/mindrecord/tools/csv_to_mr.py +200 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +206 -0
- mindspore/mindrecord/tools/mnist_to_mr.py +259 -0
- mindspore/mindrecord/tools/tfrecord_to_mr.py +360 -0
- mindspore/mindspore_backend.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_np_dtype.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/mint/__init__.py +1586 -0
- mindspore/mint/distributed/__init__.py +31 -0
- mindspore/mint/distributed/distributed.py +254 -0
- mindspore/mint/linalg/__init__.py +22 -0
- mindspore/mint/nn/__init__.py +757 -0
- mindspore/mint/nn/functional.py +679 -0
- mindspore/mint/nn/layer/__init__.py +39 -0
- mindspore/mint/nn/layer/activation.py +133 -0
- mindspore/mint/nn/layer/normalization.py +477 -0
- mindspore/mint/nn/layer/pooling.py +110 -0
- mindspore/mint/optim/__init__.py +24 -0
- mindspore/mint/optim/adamw.py +206 -0
- mindspore/mint/special/__init__.py +63 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/multiprocessing/__init__.py +73 -0
- mindspore/nn/__init__.py +47 -0
- mindspore/nn/cell.py +2787 -0
- mindspore/nn/dynamic_lr.py +482 -0
- mindspore/nn/grad/__init__.py +21 -0
- mindspore/nn/grad/cell_grad.py +196 -0
- mindspore/nn/layer/__init__.py +63 -0
- mindspore/nn/layer/activation.py +1822 -0
- mindspore/nn/layer/basic.py +1629 -0
- mindspore/nn/layer/channel_shuffle.py +90 -0
- mindspore/nn/layer/combined.py +248 -0
- mindspore/nn/layer/container.py +734 -0
- mindspore/nn/layer/conv.py +1505 -0
- mindspore/nn/layer/dense.py +204 -0
- mindspore/nn/layer/embedding.py +869 -0
- mindspore/nn/layer/image.py +661 -0
- mindspore/nn/layer/math.py +1069 -0
- mindspore/nn/layer/normalization.py +1273 -0
- mindspore/nn/layer/padding.py +880 -0
- mindspore/nn/layer/pooling.py +2302 -0
- mindspore/nn/layer/rnn_cells.py +388 -0
- mindspore/nn/layer/rnns.py +849 -0
- mindspore/nn/layer/thor_layer.py +963 -0
- mindspore/nn/layer/timedistributed.py +155 -0
- mindspore/nn/layer/transformer.py +823 -0
- mindspore/nn/learning_rate_schedule.py +512 -0
- mindspore/nn/loss/__init__.py +36 -0
- mindspore/nn/loss/loss.py +2924 -0
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/__init__.py +45 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +111 -0
- mindspore/nn/optim/ada_grad.py +217 -0
- mindspore/nn/optim/adadelta.py +206 -0
- mindspore/nn/optim/adafactor.py +448 -0
- mindspore/nn/optim/adam.py +1297 -0
- mindspore/nn/optim/adamax.py +220 -0
- mindspore/nn/optim/adasum.py +548 -0
- mindspore/nn/optim/asgd.py +216 -0
- mindspore/nn/optim/ftrl.py +401 -0
- mindspore/nn/optim/lamb.py +296 -0
- mindspore/nn/optim/lars.py +202 -0
- mindspore/nn/optim/lazyadam.py +533 -0
- mindspore/nn/optim/momentum.py +239 -0
- mindspore/nn/optim/optimizer.py +1034 -0
- mindspore/nn/optim/proximal_ada_grad.py +242 -0
- mindspore/nn/optim/rmsprop.py +264 -0
- mindspore/nn/optim/rprop.py +251 -0
- mindspore/nn/optim/sgd.py +237 -0
- mindspore/nn/optim/tft_wrapper.py +127 -0
- mindspore/nn/optim/thor.py +1310 -0
- mindspore/nn/probability/__init__.py +22 -0
- mindspore/nn/probability/bijector/__init__.py +35 -0
- mindspore/nn/probability/bijector/bijector.py +337 -0
- mindspore/nn/probability/bijector/exp.py +65 -0
- mindspore/nn/probability/bijector/gumbel_cdf.py +144 -0
- mindspore/nn/probability/bijector/invert.py +126 -0
- mindspore/nn/probability/bijector/power_transform.py +196 -0
- mindspore/nn/probability/bijector/scalar_affine.py +167 -0
- mindspore/nn/probability/bijector/softplus.py +189 -0
- mindspore/nn/probability/bnn_layers/__init__.py +29 -0
- mindspore/nn/probability/bnn_layers/_util.py +46 -0
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +112 -0
- mindspore/nn/probability/bnn_layers/conv_variational.py +267 -0
- mindspore/nn/probability/bnn_layers/dense_variational.py +302 -0
- mindspore/nn/probability/bnn_layers/layer_distribution.py +123 -0
- mindspore/nn/probability/distribution/__init__.py +56 -0
- mindspore/nn/probability/distribution/_utils/__init__.py +34 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +96 -0
- mindspore/nn/probability/distribution/_utils/utils.py +362 -0
- mindspore/nn/probability/distribution/bernoulli.py +334 -0
- mindspore/nn/probability/distribution/beta.py +391 -0
- mindspore/nn/probability/distribution/categorical.py +435 -0
- mindspore/nn/probability/distribution/cauchy.py +383 -0
- mindspore/nn/probability/distribution/distribution.py +827 -0
- mindspore/nn/probability/distribution/exponential.py +350 -0
- mindspore/nn/probability/distribution/gamma.py +391 -0
- mindspore/nn/probability/distribution/geometric.py +335 -0
- mindspore/nn/probability/distribution/gumbel.py +257 -0
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +272 -0
- mindspore/nn/probability/distribution/logistic.py +379 -0
- mindspore/nn/probability/distribution/normal.py +336 -0
- mindspore/nn/probability/distribution/poisson.py +288 -0
- mindspore/nn/probability/distribution/student_t.py +149 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +235 -0
- mindspore/nn/probability/distribution/uniform.py +375 -0
- mindspore/nn/reinforcement/__init__.py +24 -0
- mindspore/nn/reinforcement/_batch_read_write.py +142 -0
- mindspore/nn/reinforcement/_tensors_queue.py +152 -0
- mindspore/nn/reinforcement/tensor_array.py +145 -0
- mindspore/nn/sparse/__init__.py +23 -0
- mindspore/nn/sparse/sparse.py +147 -0
- mindspore/nn/wrap/__init__.py +49 -0
- mindspore/nn/wrap/cell_wrapper.py +968 -0
- mindspore/nn/wrap/grad_reducer.py +608 -0
- mindspore/nn/wrap/loss_scale.py +694 -0
- mindspore/numpy/__init__.py +121 -0
- mindspore/numpy/array_creations.py +2731 -0
- mindspore/numpy/array_ops.py +2629 -0
- mindspore/numpy/dtypes.py +185 -0
- mindspore/numpy/fft.py +966 -0
- mindspore/numpy/logic_ops.py +936 -0
- mindspore/numpy/math_ops.py +5911 -0
- mindspore/numpy/utils.py +214 -0
- mindspore/numpy/utils_const.py +565 -0
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +56 -0
- mindspore/ops/_constants.py +30 -0
- mindspore/ops/_grad_experimental/__init__.py +31 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +830 -0
- mindspore/ops/_grad_experimental/grad_base.py +143 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +714 -0
- mindspore/ops/_grad_experimental/grad_debug_ops.py +31 -0
- mindspore/ops/_grad_experimental/grad_implementations.py +203 -0
- mindspore/ops/_grad_experimental/grad_inner_ops.py +79 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +802 -0
- mindspore/ops/_grad_experimental/grad_nn_ops.py +231 -0
- mindspore/ops/_grad_experimental/grad_quant_ops.py +238 -0
- mindspore/ops/_grad_experimental/grad_sparse.py +342 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +399 -0
- mindspore/ops/_grad_experimental/taylor_rule.py +220 -0
- mindspore/ops/_op_impl/__init__.py +23 -0
- mindspore/ops/_op_impl/_custom_op/__init__.py +39 -0
- mindspore/ops/_op_impl/_custom_op/_basic.py +158 -0
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +279 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +156 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +109 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +125 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +105 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +124 -0
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +116 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +89 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +196 -0
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +366 -0
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +162 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +136 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +206 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +128 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +199 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +156 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +184 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +143 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +169 -0
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +548 -0
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +881 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +278 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +200 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +334 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +255 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +222 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +644 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +488 -0
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +87 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +129 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +121 -0
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +352 -0
- mindspore/ops/_op_impl/aicpu/__init__.py +441 -0
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/acos.py +32 -0
- mindspore/ops/_op_impl/aicpu/acos_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/acosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/acosh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/add_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/add_v2.py +40 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +41 -0
- mindspore/ops/_op_impl/aicpu/addcmul.py +47 -0
- mindspore/ops/_op_impl/aicpu/adjust_contrastv2.py +32 -0
- mindspore/ops/_op_impl/aicpu/adjust_hue.py +31 -0
- mindspore/ops/_op_impl/aicpu/adjust_saturation.py +32 -0
- mindspore/ops/_op_impl/aicpu/affine_grid.py +33 -0
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/angle.py +31 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmax_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/asin.py +32 -0
- mindspore/ops/_op_impl/aicpu/asin_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/asinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/asinh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/atanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/avgpool_grad_v1.py +37 -0
- mindspore/ops/_op_impl/aicpu/avgpool_v1.py +36 -0
- mindspore/ops/_op_impl/aicpu/bartlett_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/betainc.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/ops/_op_impl/aicpu/blackman_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/broadcast_to.py +58 -0
- mindspore/ops/_op_impl/aicpu/bucketize.py +34 -0
- mindspore/ops/_op_impl/aicpu/cache_swap_table.py +102 -0
- mindspore/ops/_op_impl/aicpu/cast.py +225 -0
- mindspore/ops/_op_impl/aicpu/cauchy.py +33 -0
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/check_numerics.py +33 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +32 -0
- mindspore/ops/_op_impl/aicpu/cholesky_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/cholesky_solve.py +33 -0
- mindspore/ops/_op_impl/aicpu/choleskygrad.py +32 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +37 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +38 -0
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/compare_and_bitpack.py +37 -0
- mindspore/ops/_op_impl/aicpu/complex.py +32 -0
- mindspore/ops/_op_impl/aicpu/complex_abs.py +31 -0
- mindspore/ops/_op_impl/aicpu/compute_accidental_hits.py +44 -0
- mindspore/ops/_op_impl/aicpu/concat.py +57 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +42 -0
- mindspore/ops/_op_impl/aicpu/conjugate_transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/cos.py +34 -0
- mindspore/ops/_op_impl/aicpu/cosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize.py +69 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_boxes.py +68 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_dense.py +48 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_sparse_tensor.py +51 -0
- mindspore/ops/_op_impl/aicpu/ctc_greedy_decoder.py +35 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2.py +43 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/ctcloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/cummax.py +41 -0
- mindspore/ops/_op_impl/aicpu/cumprod.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumsum.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/data_format_vec_permute.py +32 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/dense_to_csr_sparse_matrix.py +49 -0
- mindspore/ops/_op_impl/aicpu/dense_to_dense_set_operation.py +45 -0
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/depth_to_space.py +44 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/aicpu/digamma.py +31 -0
- mindspore/ops/_op_impl/aicpu/div.py +41 -0
- mindspore/ops/_op_impl/aicpu/div_no_nan.py +35 -0
- mindspore/ops/_op_impl/aicpu/dropout2d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +41 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask_v3.py +32 -0
- mindspore/ops/_op_impl/aicpu/dynamic_stitch.py +42 -0
- mindspore/ops/_op_impl/aicpu/edit_distance.py +56 -0
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/embedding_lookup.py +102 -0
- mindspore/ops/_op_impl/aicpu/end_of_sequence.py +30 -0
- mindspore/ops/_op_impl/aicpu/environ_create.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_destroy_all.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_get.py +41 -0
- mindspore/ops/_op_impl/aicpu/environ_set.py +40 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/exp.py +37 -0
- mindspore/ops/_op_impl/aicpu/expand.py +45 -0
- mindspore/ops/_op_impl/aicpu/expand_dims.py +42 -0
- mindspore/ops/_op_impl/aicpu/expm1.py +34 -0
- mindspore/ops/_op_impl/aicpu/extract_glimpse.py +35 -0
- mindspore/ops/_op_impl/aicpu/eye.py +44 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +47 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +39 -0
- mindspore/ops/_op_impl/aicpu/fill_v2.py +58 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +43 -0
- mindspore/ops/_op_impl/aicpu/floor_div.py +38 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_grad_with_fixed_ksize.py +43 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +65 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad_with_fixed_ksize.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_with_fixed_ksize.py +49 -0
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_ftrl.py +41 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_lazy_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_proximal_adagrad.py +39 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/gather.py +46 -0
- mindspore/ops/_op_impl/aicpu/gather_d.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_d_grad_v2.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_grad.py +54 -0
- mindspore/ops/_op_impl/aicpu/gather_nd.py +56 -0
- mindspore/ops/_op_impl/aicpu/gcd.py +32 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
- mindspore/ops/_op_impl/aicpu/geqrf.py +32 -0
- mindspore/ops/_op_impl/aicpu/get_next.py +39 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d.py +35 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d.py +34 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/hamming_window.py +57 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid.py +32 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/heaviside.py +40 -0
- mindspore/ops/_op_impl/aicpu/histogram.py +35 -0
- mindspore/ops/_op_impl/aicpu/hsv_to_rgb.py +32 -0
- mindspore/ops/_op_impl/aicpu/hypot.py +32 -0
- mindspore/ops/_op_impl/aicpu/identity.py +42 -0
- mindspore/ops/_op_impl/aicpu/identity_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/igamma.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammac.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammagrada.py +30 -0
- mindspore/ops/_op_impl/aicpu/im2col.py +43 -0
- mindspore/ops/_op_impl/aicpu/imag.py +31 -0
- mindspore/ops/_op_impl/aicpu/index_fill.py +54 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/aicpu/init_data_set_queue.py +27 -0
- mindspore/ops/_op_impl/aicpu/inplace_index_add.py +39 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/is_finite.py +40 -0
- mindspore/ops/_op_impl/aicpu/is_inf.py +31 -0
- mindspore/ops/_op_impl/aicpu/is_nan.py +31 -0
- mindspore/ops/_op_impl/aicpu/kldivloss.py +34 -0
- mindspore/ops/_op_impl/aicpu/kldivlossgrad.py +35 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/lcm.py +32 -0
- mindspore/ops/_op_impl/aicpu/left_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +33 -0
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +57 -0
- mindspore/ops/_op_impl/aicpu/linspace.py +33 -0
- mindspore/ops/_op_impl/aicpu/list_diff.py +50 -0
- mindspore/ops/_op_impl/aicpu/log.py +37 -0
- mindspore/ops/_op_impl/aicpu/log1p.py +34 -0
- mindspore/ops/_op_impl/aicpu/log_matrix_determinant.py +31 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +37 -0
- mindspore/ops/_op_impl/aicpu/logical_xor.py +30 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/logspace.py +36 -0
- mindspore/ops/_op_impl/aicpu/lower_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/lstsq.py +34 -0
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_solve.py +32 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack.py +114 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +40 -0
- mindspore/ops/_op_impl/aicpu/masked_select.py +31 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_determinant.py +30 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_part_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_v3.py +56 -0
- mindspore/ops/_op_impl/aicpu/matrix_exp.py +34 -0
- mindspore/ops/_op_impl/aicpu/matrix_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +37 -0
- mindspore/ops/_op_impl/aicpu/matrix_set_diag_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_grad_with_argmax.py +60 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_with_argmax.py +59 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/maximum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/maxpool_grad_v1.py +46 -0
- mindspore/ops/_op_impl/aicpu/maxpool_v1.py +42 -0
- mindspore/ops/_op_impl/aicpu/median.py +39 -0
- mindspore/ops/_op_impl/aicpu/median_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/meshgrid.py +41 -0
- mindspore/ops/_op_impl/aicpu/minimum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +50 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +48 -0
- mindspore/ops/_op_impl/aicpu/mul.py +43 -0
- mindspore/ops/_op_impl/aicpu/mul_no_nan.py +42 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss.py +37 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/multilabel_margin_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +47 -0
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/neg.py +36 -0
- mindspore/ops/_op_impl/aicpu/nextafter.py +32 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/no_repeat_ngram.py +34 -0
- mindspore/ops/_op_impl/aicpu/non_deterministic_ints.py +33 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression.py +36 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression_with_overlaps.py +35 -0
- mindspore/ops/_op_impl/aicpu/non_zero.py +43 -0
- mindspore/ops/_op_impl/aicpu/not_equal.py +39 -0
- mindspore/ops/_op_impl/aicpu/nth_element.py +39 -0
- mindspore/ops/_op_impl/aicpu/nuclear_norm.py +33 -0
- mindspore/ops/_op_impl/aicpu/one_hot.py +116 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +39 -0
- mindspore/ops/_op_impl/aicpu/orgqr.py +34 -0
- mindspore/ops/_op_impl/aicpu/pad_and_shift.py +33 -0
- mindspore/ops/_op_impl/aicpu/pad_v3.py +61 -0
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +59 -0
- mindspore/ops/_op_impl/aicpu/padding.py +41 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +54 -0
- mindspore/ops/_op_impl/aicpu/pdist_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/poisson.py +37 -0
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/pow.py +39 -0
- mindspore/ops/_op_impl/aicpu/print_tensor.py +39 -0
- mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +113 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_range.py +49 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_categorical.py +68 -0
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +36 -0
- mindspore/ops/_op_impl/aicpu/random_gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/random_poisson.py +134 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +47 -0
- mindspore/ops/_op_impl/aicpu/randperm.py +38 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/range_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/real.py +31 -0
- mindspore/ops/_op_impl/aicpu/real_div.py +40 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_mean.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_prod.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/relu_grad_v3.py +41 -0
- mindspore/ops/_op_impl/aicpu/relu_v3.py +38 -0
- mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +96 -0
- mindspore/ops/_op_impl/aicpu/reshape.py +42 -0
- mindspore/ops/_op_impl/aicpu/resize_area.py +40 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +20 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +19 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +36 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/reverse_sequence.py +55 -0
- mindspore/ops/_op_impl/aicpu/reversev2.py +54 -0
- mindspore/ops/_op_impl/aicpu/rgb_to_hsv.py +32 -0
- mindspore/ops/_op_impl/aicpu/right_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/rnnt_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/round.py +34 -0
- mindspore/ops/_op_impl/aicpu/rsqrt.py +33 -0
- mindspore/ops/_op_impl/aicpu/rsqrt_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sample_distorted_bounding_box_v2.py +49 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate.py +52 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/scatter.py +79 -0
- mindspore/ops/_op_impl/aicpu/scatter_add_with_axis.py +53 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +39 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +59 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_max.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_min.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +44 -0
- mindspore/ops/_op_impl/aicpu/segment_max.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_mean.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_min.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_prod.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_sum.py +56 -0
- mindspore/ops/_op_impl/aicpu/select.py +45 -0
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/set_size.py +38 -0
- mindspore/ops/_op_impl/aicpu/sign.py +36 -0
- mindspore/ops/_op_impl/aicpu/sin.py +34 -0
- mindspore/ops/_op_impl/aicpu/sinc.py +43 -0
- mindspore/ops/_op_impl/aicpu/sinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/slice.py +59 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/space_to_depth.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_addmm.py +87 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_centered_rms_prop.py +105 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_momentum.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_proximal_gradient_descent.py +79 -0
- mindspore/ops/_op_impl/aicpu/sparse_concat.py +59 -0
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_add.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_div.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_mul.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_nnz.py +81 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_transpose.py +116 -0
- mindspore/ops/_op_impl/aicpu/sparse_reorder.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_reshape.py +34 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n.py +43 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum.py +49 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax.py +33 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax_cross_entropy_with_logits_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_maximum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_minimum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_add.py +84 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_mat_mul.py +190 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_to_csr_sparse_matrix.py +51 -0
- mindspore/ops/_op_impl/aicpu/sparse_to_dense_v2.py +73 -0
- mindspore/ops/_op_impl/aicpu/split.py +45 -0
- mindspore/ops/_op_impl/aicpu/sqrt.py +34 -0
- mindspore/ops/_op_impl/aicpu/sqrt_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/square.py +35 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +37 -0
- mindspore/ops/_op_impl/aicpu/squeeze.py +42 -0
- mindspore/ops/_op_impl/aicpu/sspaddmm.py +97 -0
- mindspore/ops/_op_impl/aicpu/stack.py +45 -0
- mindspore/ops/_op_impl/aicpu/stack_push_pop.py +87 -0
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +34 -0
- mindspore/ops/_op_impl/aicpu/standard_normal.py +34 -0
- mindspore/ops/_op_impl/aicpu/stateless_dropout_genmask.py +37 -0
- mindspore/ops/_op_impl/aicpu/stft.py +70 -0
- mindspore/ops/_op_impl/aicpu/strided_slice.py +43 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/sub.py +41 -0
- mindspore/ops/_op_impl/aicpu/sub_and_filter.py +36 -0
- mindspore/ops/_op_impl/aicpu/tan.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/tile.py +56 -0
- mindspore/ops/_op_impl/aicpu/topk.py +34 -0
- mindspore/ops/_op_impl/aicpu/trace.py +40 -0
- mindspore/ops/_op_impl/aicpu/tracegrad.py +41 -0
- mindspore/ops/_op_impl/aicpu/trans_data.py +35 -0
- mindspore/ops/_op_impl/aicpu/transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_matmul.py +42 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril.py +42 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triplet_margin_loss.py +62 -0
- mindspore/ops/_op_impl/aicpu/triu.py +43 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +39 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +41 -0
- mindspore/ops/_op_impl/aicpu/uniform_int.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_real.py +33 -0
- mindspore/ops/_op_impl/aicpu/unique.py +31 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +47 -0
- mindspore/ops/_op_impl/aicpu/unique_with_pad.py +32 -0
- mindspore/ops/_op_impl/aicpu/unravel_index.py +32 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_prod.py +53 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/unstack.py +45 -0
- mindspore/ops/_op_impl/aicpu/update_cache.py +44 -0
- mindspore/ops/_op_impl/aicpu/upper_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +40 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/xdivy.py +35 -0
- mindspore/ops/_op_impl/aicpu/xlogy.py +33 -0
- mindspore/ops/_op_impl/aicpu/zeros_like.py +42 -0
- mindspore/ops/_op_impl/aicpu/zeta.py +31 -0
- mindspore/ops/_op_impl/akg/__init__.py +19 -0
- mindspore/ops/_op_impl/akg/ascend/__init__.py +48 -0
- mindspore/ops/_op_impl/akg/ascend/abs.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/add.py +42 -0
- mindspore/ops/_op_impl/akg/ascend/add_n.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/batchmatmul.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/cast.py +46 -0
- mindspore/ops/_op_impl/akg/ascend/equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/exp.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/expand_dims.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/greater.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/greater_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/less.py +31 -0
- mindspore/ops/_op_impl/akg/ascend/less_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/load_im2col.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/log.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/maximum.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/minimum.py +39 -0
- mindspore/ops/_op_impl/akg/ascend/mul.py +41 -0
- mindspore/ops/_op_impl/akg/ascend/neg.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/pow.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/prod_force_se_a.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/real_div.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/reciprocal.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_max.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_min.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_sum.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/rsqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/select.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/sqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/square.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/sub.py +42 -0
- mindspore/ops/_op_impl/akg/cpu/__init__.py +23 -0
- mindspore/ops/_op_impl/akg/cpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mm.py +34 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mul.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mv.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_reduce_sum.py +31 -0
- mindspore/ops/_op_impl/akg/gpu/__init__.py +24 -0
- mindspore/ops/_op_impl/akg/gpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr_div.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mm.py +37 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mul.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mv.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_reduce_sum.py +33 -0
- mindspore/ops/_op_impl/cpu/__init__.py +78 -0
- mindspore/ops/_op_impl/cpu/adam.py +49 -0
- mindspore/ops/_op_impl/cpu/adam_weight_decay.py +47 -0
- mindspore/ops/_op_impl/cpu/arg_max.py +30 -0
- mindspore/ops/_op_impl/cpu/arg_max_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/arg_min_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/buffer_append.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_get.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_sample.py +28 -0
- mindspore/ops/_op_impl/cpu/cast.py +171 -0
- mindspore/ops/_op_impl/cpu/concat_offset.py +38 -0
- mindspore/ops/_op_impl/cpu/conv2d.py +30 -0
- mindspore/ops/_op_impl/cpu/conv3d.py +30 -0
- mindspore/ops/_op_impl/cpu/div.py +32 -0
- mindspore/ops/_op_impl/cpu/dropout.py +31 -0
- mindspore/ops/_op_impl/cpu/dropout_grad.py +30 -0
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +42 -0
- mindspore/ops/_op_impl/cpu/dynamic_stitch.py +41 -0
- mindspore/ops/_op_impl/cpu/equal_count.py +30 -0
- mindspore/ops/_op_impl/cpu/gather_d.py +49 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/gather_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/hsigmoid.py +33 -0
- mindspore/ops/_op_impl/cpu/hsigmoid_grad.py +34 -0
- mindspore/ops/_op_impl/cpu/hswish.py +32 -0
- mindspore/ops/_op_impl/cpu/hswish_grad.py +33 -0
- mindspore/ops/_op_impl/cpu/identity_n.py +40 -0
- mindspore/ops/_op_impl/cpu/is_finite.py +39 -0
- mindspore/ops/_op_impl/cpu/l2loss.py +30 -0
- mindspore/ops/_op_impl/cpu/layer_norm.py +36 -0
- mindspore/ops/_op_impl/cpu/layer_norm_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/maximum.py +35 -0
- mindspore/ops/_op_impl/cpu/maximum_grad.py +47 -0
- mindspore/ops/_op_impl/cpu/minimum.py +40 -0
- mindspore/ops/_op_impl/cpu/minimum_grad.py +51 -0
- mindspore/ops/_op_impl/cpu/mirror_pad.py +36 -0
- mindspore/ops/_op_impl/cpu/mirror_pad_grad.py +36 -0
- mindspore/ops/_op_impl/cpu/mul.py +32 -0
- mindspore/ops/_op_impl/cpu/one_hot.py +31 -0
- mindspore/ops/_op_impl/cpu/pad.py +32 -0
- mindspore/ops/_op_impl/cpu/pow.py +32 -0
- mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +42 -0
- mindspore/ops/_op_impl/cpu/pyexecute.py +29 -0
- mindspore/ops/_op_impl/cpu/pyfunc.py +29 -0
- mindspore/ops/_op_impl/cpu/range.py +34 -0
- mindspore/ops/_op_impl/cpu/real_div.py +33 -0
- mindspore/ops/_op_impl/cpu/reduce_all.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_any.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_max.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_mean.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_min.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_prod.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_std.py +31 -0
- mindspore/ops/_op_impl/cpu/reduce_sum.py +41 -0
- mindspore/ops/_op_impl/cpu/space_to_batch_nd.py +38 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/split.py +34 -0
- mindspore/ops/_op_impl/cpu/sspaddmm.py +95 -0
- mindspore/ops/_op_impl/cpu/stack.py +38 -0
- mindspore/ops/_op_impl/cpu/sub.py +32 -0
- mindspore/ops/_op_impl/cpu/tensor_copy_slices.py +41 -0
- mindspore/ops/_op_impl/cpu/tile.py +37 -0
- mindspore/ops/_op_impl/cpu/top_k.py +31 -0
- mindspore/ops/_op_impl/cpu/transpose.py +39 -0
- mindspore/ops/_primitive_cache.py +90 -0
- mindspore/ops/_register_for_op.py +73 -0
- mindspore/ops/_utils/__init__.py +20 -0
- mindspore/ops/_utils/utils.py +147 -0
- mindspore/ops/_vmap/__init__.py +25 -0
- mindspore/ops/_vmap/vmap_array_ops.py +2149 -0
- mindspore/ops/_vmap/vmap_base.py +533 -0
- mindspore/ops/_vmap/vmap_convolution_ops.py +441 -0
- mindspore/ops/_vmap/vmap_debug_ops.py +50 -0
- mindspore/ops/_vmap/vmap_grad_math_ops.py +274 -0
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +806 -0
- mindspore/ops/_vmap/vmap_image_ops.py +194 -0
- mindspore/ops/_vmap/vmap_math_ops.py +993 -0
- mindspore/ops/_vmap/vmap_nn_ops.py +2250 -0
- mindspore/ops/_vmap/vmap_other_ops.py +105 -0
- mindspore/ops/_vmap/vmap_random_ops.py +122 -0
- mindspore/ops/_vmap/vmap_sparse_ops.py +89 -0
- mindspore/ops/auto_generate/__init__.py +31 -0
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +309 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +252 -0
- mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
- mindspore/ops/auto_generate/gen_extend_func.py +1701 -0
- mindspore/ops/auto_generate/gen_ops_def.py +8482 -0
- mindspore/ops/auto_generate/gen_ops_prim.py +16704 -0
- mindspore/ops/auto_generate/pyboost_inner_prim.py +549 -0
- mindspore/ops/composite/__init__.py +71 -0
- mindspore/ops/composite/base.py +1318 -0
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +125 -0
- mindspore/ops/composite/multitype_ops/__init__.py +77 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +1459 -0
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +897 -0
- mindspore/ops/composite/multitype_ops/add_impl.py +606 -0
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +189 -0
- mindspore/ops/composite/multitype_ops/equal_impl.py +335 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +88 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +400 -0
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +109 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +110 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +111 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +112 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +113 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +60 -0
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +61 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +86 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +294 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +79 -0
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +290 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +96 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +87 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +884 -0
- mindspore/ops/composite/multitype_ops/sub_impl.py +116 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +29 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +228 -0
- mindspore/ops/deprecated.py +315 -0
- mindspore/ops/function/__init__.py +782 -0
- mindspore/ops/function/array_func.py +7226 -0
- mindspore/ops/function/clip_func.py +384 -0
- mindspore/ops/function/debug_func.py +181 -0
- mindspore/ops/function/fft_func.py +44 -0
- mindspore/ops/function/grad/__init__.py +34 -0
- mindspore/ops/function/grad/grad_func.py +1425 -0
- mindspore/ops/function/image_func.py +292 -0
- mindspore/ops/function/linalg_func.py +416 -0
- mindspore/ops/function/math_func.py +12228 -0
- mindspore/ops/function/nn_func.py +8609 -0
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +134 -0
- mindspore/ops/function/random_func.py +1715 -0
- mindspore/ops/function/reshard_func.py +104 -0
- mindspore/ops/function/sparse_func.py +884 -0
- mindspore/ops/function/sparse_unary_func.py +2422 -0
- mindspore/ops/function/spectral_func.py +150 -0
- mindspore/ops/function/vmap_func.py +117 -0
- mindspore/ops/functional.py +464 -0
- mindspore/ops/op_info_register.py +1572 -0
- mindspore/ops/operations/__init__.py +722 -0
- mindspore/ops/operations/_csr_ops.py +403 -0
- mindspore/ops/operations/_custom_grad.py +181 -0
- mindspore/ops/operations/_embedding_cache_ops.py +307 -0
- mindspore/ops/operations/_grad_ops.py +2978 -0
- mindspore/ops/operations/_infer_ops.py +19 -0
- mindspore/ops/operations/_inner_ops.py +2544 -0
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +601 -0
- mindspore/ops/operations/_ocr_ops.py +379 -0
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_pyfunc_registry.py +58 -0
- mindspore/ops/operations/_quant_ops.py +1844 -0
- mindspore/ops/operations/_rl_inner_ops.py +1231 -0
- mindspore/ops/operations/_scalar_ops.py +106 -0
- mindspore/ops/operations/_sequence_ops.py +1155 -0
- mindspore/ops/operations/_sparse_grad_ops.py +56 -0
- mindspore/ops/operations/_tensor_array.py +359 -0
- mindspore/ops/operations/_thor_ops.py +807 -0
- mindspore/ops/operations/array_ops.py +6124 -0
- mindspore/ops/operations/comm_ops.py +1985 -0
- mindspore/ops/operations/control_ops.py +127 -0
- mindspore/ops/operations/custom_ops.py +1129 -0
- mindspore/ops/operations/debug_ops.py +678 -0
- mindspore/ops/operations/image_ops.py +1041 -0
- mindspore/ops/operations/inner_ops.py +697 -0
- mindspore/ops/operations/linalg_ops.py +95 -0
- mindspore/ops/operations/manually_defined/__init__.py +24 -0
- mindspore/ops/operations/manually_defined/_inner.py +73 -0
- mindspore/ops/operations/manually_defined/ops_def.py +2271 -0
- mindspore/ops/operations/math_ops.py +5095 -0
- mindspore/ops/operations/nn_ops.py +9575 -0
- mindspore/ops/operations/other_ops.py +874 -0
- mindspore/ops/operations/random_ops.py +1288 -0
- mindspore/ops/operations/reshard_ops.py +53 -0
- mindspore/ops/operations/rl_ops.py +288 -0
- mindspore/ops/operations/sparse_ops.py +2753 -0
- mindspore/ops/operations/spectral_ops.py +111 -0
- mindspore/ops/primitive.py +1046 -0
- mindspore/ops/signature.py +54 -0
- mindspore/ops/vm_impl_registry.py +91 -0
- mindspore/ops_generate/__init__.py +27 -0
- mindspore/ops_generate/arg_dtype_cast.py +252 -0
- mindspore/ops_generate/arg_handler.py +197 -0
- mindspore/ops_generate/gen_aclnn_implement.py +263 -0
- mindspore/ops_generate/gen_constants.py +36 -0
- mindspore/ops_generate/gen_ops.py +1099 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
- mindspore/ops_generate/gen_pyboost_func.py +1052 -0
- mindspore/ops_generate/gen_utils.py +209 -0
- mindspore/ops_generate/op_proto.py +145 -0
- mindspore/ops_generate/pyboost_utils.py +367 -0
- mindspore/ops_generate/template.py +261 -0
- mindspore/parallel/__init__.py +30 -0
- mindspore/parallel/_auto_parallel_context.py +1486 -0
- mindspore/parallel/_cell_wrapper.py +174 -0
- mindspore/parallel/_cost_model_context.py +700 -0
- mindspore/parallel/_dp_allreduce_fusion.py +159 -0
- mindspore/parallel/_offload_context.py +275 -0
- mindspore/parallel/_parallel_serialization.py +561 -0
- mindspore/parallel/_ps_context.py +242 -0
- mindspore/parallel/_recovery_context.py +110 -0
- mindspore/parallel/_tensor.py +730 -0
- mindspore/parallel/_transformer/__init__.py +35 -0
- mindspore/parallel/_transformer/layers.py +765 -0
- mindspore/parallel/_transformer/loss.py +251 -0
- mindspore/parallel/_transformer/moe.py +693 -0
- mindspore/parallel/_transformer/op_parallel_config.py +222 -0
- mindspore/parallel/_transformer/transformer.py +3119 -0
- mindspore/parallel/_utils.py +612 -0
- mindspore/parallel/algo_parameter_config.py +400 -0
- mindspore/parallel/checkpoint_transform.py +650 -0
- mindspore/parallel/cluster/__init__.py +15 -0
- mindspore/parallel/cluster/process_entity/__init__.py +18 -0
- mindspore/parallel/cluster/process_entity/_api.py +352 -0
- mindspore/parallel/cluster/process_entity/_utils.py +101 -0
- mindspore/parallel/cluster/run.py +136 -0
- mindspore/parallel/mpi/__init__.py +14 -0
- mindspore/parallel/mpi/_mpi_config.py +116 -0
- mindspore/parallel/parameter_broadcast.py +151 -0
- mindspore/parallel/shard.py +481 -0
- mindspore/parallel/transform_safetensors.py +993 -0
- mindspore/perf_msvcbuildinsights.dll +0 -0
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +28 -0
- mindspore/profiler/common/__init__.py +14 -0
- mindspore/profiler/common/constant.py +29 -0
- mindspore/profiler/common/exceptions/__init__.py +14 -0
- mindspore/profiler/common/exceptions/error_code.py +83 -0
- mindspore/profiler/common/exceptions/exceptions.py +286 -0
- mindspore/profiler/common/process_pool.py +41 -0
- mindspore/profiler/common/registry.py +47 -0
- mindspore/profiler/common/singleton.py +28 -0
- mindspore/profiler/common/struct_type.py +118 -0
- mindspore/profiler/common/util.py +472 -0
- mindspore/profiler/common/validator/__init__.py +14 -0
- mindspore/profiler/common/validator/validate_path.py +84 -0
- mindspore/profiler/dynamic_profiler.py +694 -0
- mindspore/profiler/envprofiling.py +254 -0
- mindspore/profiler/parser/__init__.py +14 -0
- mindspore/profiler/parser/aicpu_data_parser.py +272 -0
- mindspore/profiler/parser/ascend_analysis/__init__.py +14 -0
- mindspore/profiler/parser/ascend_analysis/constant.py +71 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +180 -0
- mindspore/profiler/parser/ascend_analysis/function_event.py +185 -0
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +136 -0
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +131 -0
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +104 -0
- mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +123 -0
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +75 -0
- mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
- mindspore/profiler/parser/ascend_flops_generator.py +116 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +82 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +271 -0
- mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
- mindspore/profiler/parser/ascend_memory_generator.py +185 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +282 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +187 -0
- mindspore/profiler/parser/ascend_op_generator.py +334 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +545 -0
- mindspore/profiler/parser/base_timeline_generator.py +483 -0
- mindspore/profiler/parser/container.py +229 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +697 -0
- mindspore/profiler/parser/flops_parser.py +531 -0
- mindspore/profiler/parser/framework_enum.py +111 -0
- mindspore/profiler/parser/framework_parser.py +464 -0
- mindspore/profiler/parser/framework_struct.py +61 -0
- mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
- mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
- mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
- mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
- mindspore/profiler/parser/hccl_parser.py +573 -0
- mindspore/profiler/parser/hwts_log_parser.py +122 -0
- mindspore/profiler/parser/integrator.py +526 -0
- mindspore/profiler/parser/memory_usage_parser.py +277 -0
- mindspore/profiler/parser/minddata_analyzer.py +800 -0
- mindspore/profiler/parser/minddata_parser.py +186 -0
- mindspore/profiler/parser/minddata_pipeline_parser.py +299 -0
- mindspore/profiler/parser/op_intermediate_parser.py +149 -0
- mindspore/profiler/parser/optime_parser.py +250 -0
- mindspore/profiler/parser/profiler_info.py +213 -0
- mindspore/profiler/parser/step_trace_parser.py +666 -0
- mindspore/profiler/profiler.py +153 -0
- mindspore/profiler/profiling.py +1922 -0
- mindspore/rewrite/__init__.py +28 -0
- mindspore/rewrite/api/__init__.py +17 -0
- mindspore/rewrite/api/node.py +519 -0
- mindspore/rewrite/api/node_type.py +53 -0
- mindspore/rewrite/api/pattern_engine.py +490 -0
- mindspore/rewrite/api/scoped_value.py +181 -0
- mindspore/rewrite/api/symbol_tree.py +497 -0
- mindspore/rewrite/ast_helpers/__init__.py +25 -0
- mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +404 -0
- mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +605 -0
- mindspore/rewrite/ast_helpers/ast_replacer.py +79 -0
- mindspore/rewrite/common/__init__.py +19 -0
- mindspore/rewrite/common/config.py +24 -0
- mindspore/rewrite/common/error_log.py +39 -0
- mindspore/rewrite/common/event.py +28 -0
- mindspore/rewrite/common/namer.py +271 -0
- mindspore/rewrite/common/namespace.py +118 -0
- mindspore/rewrite/common/observable.py +44 -0
- mindspore/rewrite/common/observer.py +54 -0
- mindspore/rewrite/node/__init__.py +22 -0
- mindspore/rewrite/node/call_function.py +95 -0
- mindspore/rewrite/node/cell_container.py +139 -0
- mindspore/rewrite/node/control_flow.py +113 -0
- mindspore/rewrite/node/node.py +1428 -0
- mindspore/rewrite/node/node_manager.py +283 -0
- mindspore/rewrite/node/node_topological_manager.py +223 -0
- mindspore/rewrite/parsers/__init__.py +29 -0
- mindspore/rewrite/parsers/arguments_parser.py +63 -0
- mindspore/rewrite/parsers/assign_parser.py +852 -0
- mindspore/rewrite/parsers/attribute_parser.py +57 -0
- mindspore/rewrite/parsers/class_def_parser.py +289 -0
- mindspore/rewrite/parsers/constant_parser.py +104 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/expr_parser.py +55 -0
- mindspore/rewrite/parsers/for_parser.py +61 -0
- mindspore/rewrite/parsers/function_def_parser.py +84 -0
- mindspore/rewrite/parsers/if_parser.py +85 -0
- mindspore/rewrite/parsers/module_parser.py +117 -0
- mindspore/rewrite/parsers/parser.py +43 -0
- mindspore/rewrite/parsers/parser_register.py +86 -0
- mindspore/rewrite/parsers/return_parser.py +37 -0
- mindspore/rewrite/parsers/while_parser.py +59 -0
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +457 -0
- mindspore/rewrite/sparsify/sparsify.py +112 -0
- mindspore/rewrite/sparsify/utils.py +179 -0
- mindspore/rewrite/symbol_tree/__init__.py +20 -0
- mindspore/rewrite/symbol_tree/symbol_tree.py +1819 -0
- mindspore/rewrite/symbol_tree/symbol_tree_builder.py +76 -0
- mindspore/rewrite/symbol_tree/symbol_tree_dumper.py +142 -0
- mindspore/run_check/__init__.py +20 -0
- mindspore/run_check/_check_version.py +507 -0
- mindspore/run_check/run_check.py +66 -0
- mindspore/safeguard/__init__.py +18 -0
- mindspore/safeguard/rewrite_obfuscation.py +875 -0
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +48 -0
- mindspore/train/_utils.py +465 -0
- mindspore/train/amp.py +935 -0
- mindspore/train/anf_ir_pb2.py +1517 -0
- mindspore/train/callback/__init__.py +44 -0
- mindspore/train/callback/_backup_and_restore.py +117 -0
- mindspore/train/callback/_callback.py +613 -0
- mindspore/train/callback/_checkpoint.py +814 -0
- mindspore/train/callback/_cluster_monitor.py +201 -0
- mindspore/train/callback/_dataset_graph.py +150 -0
- mindspore/train/callback/_early_stop.py +239 -0
- mindspore/train/callback/_flops_collector.py +239 -0
- mindspore/train/callback/_history.py +92 -0
- mindspore/train/callback/_lambda_callback.py +80 -0
- mindspore/train/callback/_landscape.py +1049 -0
- mindspore/train/callback/_loss_monitor.py +107 -0
- mindspore/train/callback/_lr_scheduler_callback.py +76 -0
- mindspore/train/callback/_on_request_exit.py +298 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +226 -0
- mindspore/train/callback/_summary_collector.py +1184 -0
- mindspore/train/callback/_tft_register.py +352 -0
- mindspore/train/callback/_time_monitor.py +141 -0
- mindspore/train/checkpoint_pb2.py +233 -0
- mindspore/train/data_sink.py +219 -0
- mindspore/train/dataset_helper.py +692 -0
- mindspore/train/lineage_pb2.py +1260 -0
- mindspore/train/loss_scale_manager.py +213 -0
- mindspore/train/memory_profiling_pb2.py +298 -0
- mindspore/train/metrics/__init__.py +175 -0
- mindspore/train/metrics/accuracy.py +133 -0
- mindspore/train/metrics/auc.py +129 -0
- mindspore/train/metrics/bleu_score.py +170 -0
- mindspore/train/metrics/confusion_matrix.py +700 -0
- mindspore/train/metrics/cosine_similarity.py +109 -0
- mindspore/train/metrics/dice.py +116 -0
- mindspore/train/metrics/error.py +175 -0
- mindspore/train/metrics/fbeta.py +167 -0
- mindspore/train/metrics/hausdorff_distance.py +333 -0
- mindspore/train/metrics/loss.py +97 -0
- mindspore/train/metrics/mean_surface_distance.py +189 -0
- mindspore/train/metrics/metric.py +373 -0
- mindspore/train/metrics/occlusion_sensitivity.py +225 -0
- mindspore/train/metrics/perplexity.py +133 -0
- mindspore/train/metrics/precision.py +160 -0
- mindspore/train/metrics/recall.py +159 -0
- mindspore/train/metrics/roc.py +223 -0
- mindspore/train/metrics/root_mean_square_surface_distance.py +191 -0
- mindspore/train/metrics/topk.py +167 -0
- mindspore/train/mind_ir_pb2.py +1908 -0
- mindspore/train/model.py +2252 -0
- mindspore/train/node_strategy_pb2.py +653 -0
- mindspore/train/print_pb2.py +184 -0
- mindspore/train/profiling_parallel_pb2.py +151 -0
- mindspore/train/serialization.py +3325 -0
- mindspore/train/summary/__init__.py +23 -0
- mindspore/train/summary/_lineage_adapter.py +41 -0
- mindspore/train/summary/_summary_adapter.py +496 -0
- mindspore/train/summary/_writer_pool.py +207 -0
- mindspore/train/summary/enums.py +56 -0
- mindspore/train/summary/summary_record.py +581 -0
- mindspore/train/summary/writer.py +167 -0
- mindspore/train/summary_pb2.py +1165 -0
- mindspore/train/train_thor/__init__.py +20 -0
- mindspore/train/train_thor/convert_utils.py +268 -0
- mindspore/train/train_thor/dataset_helper.py +192 -0
- mindspore/train/train_thor/model_thor.py +257 -0
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +21 -0
- mindspore/utils/utils.py +60 -0
- mindspore/vcmeta.dll +0 -0
- mindspore/vcomp140.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -0
- mindspore-2.4.0.dist-info/METADATA +352 -0
- mindspore-2.4.0.dist-info/RECORD +1406 -0
- mindspore-2.4.0.dist-info/WHEEL +5 -0
- mindspore-2.4.0.dist-info/entry_points.txt +3 -0
- mindspore-2.4.0.dist-info/top_level.txt +1 -0
mindspore/numpy/fft.py
ADDED
|
@@ -0,0 +1,966 @@
|
|
|
1
|
+
# Copyright 2024 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""Fast Fourier Transform operations, the function docs are adapted from Numpy API."""
|
|
16
|
+
from __future__ import absolute_import
|
|
17
|
+
__all__ = ['fft', 'ifft', 'fft2', 'ifft2', 'fftn', 'ifftn',
|
|
18
|
+
'rfft', 'irfft', 'rfft2', 'irfft2', 'rfftn', 'irfftn',
|
|
19
|
+
'hfft', 'ihfft', 'hfft2', 'ihfft2', 'hfftn', 'ihfftn',
|
|
20
|
+
'fftshift', 'ifftshift', 'fftfreq', 'rfftfreq']
|
|
21
|
+
from mindspore import ops
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def fftshift(x, axes=None):
|
|
25
|
+
"""
|
|
26
|
+
Shift the zero-frequency component to the center of the spectrum.
|
|
27
|
+
|
|
28
|
+
Refer to :func:`mindspore.ops.fftshift` for more details.
|
|
29
|
+
The difference is that `x` corresponds to `input` and `axes` corresponds to `dim`.
|
|
30
|
+
|
|
31
|
+
Args:
|
|
32
|
+
x (Tensor): Input tensor.
|
|
33
|
+
axes (Union[int, list(int), tuple(int)], optional): Axes over which to shift.
|
|
34
|
+
Default is ``None`` , which shifts all axes.
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
output (Tensor), the shifted tensor with the same shape and dtype as `x`.
|
|
38
|
+
|
|
39
|
+
Supported Platforms:
|
|
40
|
+
``Ascend`` ``CPU``
|
|
41
|
+
|
|
42
|
+
Examples:
|
|
43
|
+
>>> import mindspore.numpy as np
|
|
44
|
+
>>> from mindspore import dtype as mstype
|
|
45
|
+
>>> x = np.array([0, 1, 2, 3, 4, -5, -4, -3, -2, -1], dtype=mstype.int32)
|
|
46
|
+
>>> out = np.fft.fftshift(x)
|
|
47
|
+
>>> print(out)
|
|
48
|
+
[-5 -4 -3 -2 -1 0 1 2 3 4]
|
|
49
|
+
"""
|
|
50
|
+
return ops.fftshift(x, axes)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def ifftshift(x, axes=None):
|
|
54
|
+
"""
|
|
55
|
+
The inverse of fftshift.
|
|
56
|
+
|
|
57
|
+
Refer to :func:`mindspore.ops.ifftshift` for more details.
|
|
58
|
+
The difference is that `x` corresponds to `input` and `axes` corresponds to `dim`.
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
x (Tensor): Input tensor.
|
|
62
|
+
axes (Union[int, list(int), tuple(int)], optional): Axes over which to shift.
|
|
63
|
+
Default is ``None`` , which shifts all axes.
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
output (Tensor), the shifted tensor with the same shape and dtype as `x`.
|
|
67
|
+
|
|
68
|
+
Supported Platforms:
|
|
69
|
+
``Ascend`` ``CPU``
|
|
70
|
+
|
|
71
|
+
Examples:
|
|
72
|
+
>>> import mindspore.numpy as np
|
|
73
|
+
>>> from mindspore import dtype as mstype
|
|
74
|
+
>>> x = np.array([0, 1, 2, 3, 4, -5, -4, -3, -2, -1], dtype=mstype.int32)
|
|
75
|
+
>>> out = np.fft.ifftshift(np.fft.fftshift(x))
|
|
76
|
+
>>> print(out)
|
|
77
|
+
[ 0 1 2 3 4 -5 -4 -3 -2 -1]
|
|
78
|
+
"""
|
|
79
|
+
return ops.ifftshift(x, axes)
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def fft(a, n=None, axis=-1, norm=None):
|
|
83
|
+
r"""
|
|
84
|
+
Calculates the one dimensional discrete Fourier transform of `a`.
|
|
85
|
+
|
|
86
|
+
Refer to :func:`mindspore.ops.fft` for more details.
|
|
87
|
+
The difference is that `a` corresponds to `input` and `axis` corresponds to `dim`.
|
|
88
|
+
|
|
89
|
+
Args:
|
|
90
|
+
a (Tensor): The input tensor.
|
|
91
|
+
Supported dtypes:
|
|
92
|
+
|
|
93
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
94
|
+
|
|
95
|
+
n (int, optional): Length of the transformed `axis` of the result.
|
|
96
|
+
If given, the size of the `axis` will be zero-padded or truncated to `n` before calculating `fft`.
|
|
97
|
+
Default: ``None`` , which does not need to process `a`.
|
|
98
|
+
axis (int, optional): The dimension along which to take the one dimensional `fft`.
|
|
99
|
+
Default: ``-1`` , which means transform the last dimension of `a`.
|
|
100
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
101
|
+
Three modes are defined as,
|
|
102
|
+
|
|
103
|
+
- ``"backward"`` (no normalization).
|
|
104
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
105
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
106
|
+
|
|
107
|
+
Returns:
|
|
108
|
+
Tensor, The result of `fft()` function. The default is the same shape as `a`.
|
|
109
|
+
If `n` is given, the size of the `axis` is changed to `n`.
|
|
110
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
111
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
112
|
+
|
|
113
|
+
Supported Platforms:
|
|
114
|
+
``Ascend`` ``CPU``
|
|
115
|
+
|
|
116
|
+
Examples:
|
|
117
|
+
>>> import mindspore
|
|
118
|
+
>>> import mindspore.numpy as np
|
|
119
|
+
>>> a = np.array([ 1.6243454, -0.6117564, -0.5281718, -1.0729686])
|
|
120
|
+
>>> out = np.fft.fft(a, n=4, axis=-1, norm="backward")
|
|
121
|
+
>>> print(out)
|
|
122
|
+
[-0.5885514+0.j 2.1525173-0.46121222j 2.7808986+0.j
|
|
123
|
+
2.1525173+0.46121222j]
|
|
124
|
+
"""
|
|
125
|
+
return ops.fft(a, n, axis, norm)
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def ifft(a, n=None, axis=-1, norm=None):
|
|
129
|
+
r"""
|
|
130
|
+
Calculates the inverse of `fft()`.
|
|
131
|
+
|
|
132
|
+
Refer to :func:`mindspore.ops.ifft` for more details.
|
|
133
|
+
The difference is that `a` corresponds to `input` and `axis` corresponds to `dim`.
|
|
134
|
+
|
|
135
|
+
Args:
|
|
136
|
+
a (Tensor): The input tensor.
|
|
137
|
+
Supported dtypes:
|
|
138
|
+
|
|
139
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
140
|
+
|
|
141
|
+
n (int, optional): Length of the transformed `axis` of the result.
|
|
142
|
+
If given, the size of the `axis` will be zero-padded or truncated to `n` before calculating `ifft`.
|
|
143
|
+
Default: ``None`` , which does not need to process `a`.
|
|
144
|
+
axis (int, optional): The dimension along which to take the one dimensional `ifft`.
|
|
145
|
+
Default: ``-1`` , which means transform the last dimension of `a`.
|
|
146
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
147
|
+
Three modes are defined as,
|
|
148
|
+
|
|
149
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
150
|
+
- ``"forward"`` (no normalization).
|
|
151
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
152
|
+
|
|
153
|
+
Returns:
|
|
154
|
+
Tensor, The result of `ifft()` function. The default is the same shape as `a`.
|
|
155
|
+
If `n` is given, the size of the `axis` is changed to `n`.
|
|
156
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
157
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
158
|
+
|
|
159
|
+
Supported Platforms:
|
|
160
|
+
``Ascend`` ``CPU``
|
|
161
|
+
|
|
162
|
+
Examples:
|
|
163
|
+
>>> import mindspore
|
|
164
|
+
>>> import mindspore.numpy as np
|
|
165
|
+
>>> a = np.array([ 1.6243454, -0.6117564, -0.5281718, -1.0729686])
|
|
166
|
+
>>> out = np.fft.ifft(a, n=4, axis=-1, norm="backward")
|
|
167
|
+
>>> print(out)
|
|
168
|
+
[-0.14713785+0.j 0.5381293 +0.11530305j 0.69522464+0.j
|
|
169
|
+
0.5381293 -0.11530305j]
|
|
170
|
+
"""
|
|
171
|
+
return ops.ifft(a, n, axis, norm)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def rfft(a, n=None, axis=-1, norm=None):
|
|
175
|
+
r"""
|
|
176
|
+
Calculates the one dimensional discrete Fourier transform for real input `a`.
|
|
177
|
+
|
|
178
|
+
Refer to :func:`mindspore.ops.rfft` for more details.
|
|
179
|
+
The difference is that `a` corresponds to `input` and `axis` corresponds to `dim`.
|
|
180
|
+
|
|
181
|
+
Args:
|
|
182
|
+
a (Tensor): The input tensor.
|
|
183
|
+
n (int, optional): Number of points along `axis` in the input to use.
|
|
184
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `rfft`.
|
|
185
|
+
Default: ``None``.
|
|
186
|
+
axis (int, optional): Axis over which to compute the `rfft`.
|
|
187
|
+
Default: ``-1``, which means the last axis of `a` is used.
|
|
188
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"``.
|
|
189
|
+
Three modes are defined as,
|
|
190
|
+
|
|
191
|
+
- ``"backward"`` (no normalization).
|
|
192
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
193
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
194
|
+
|
|
195
|
+
Returns:
|
|
196
|
+
Tensor, the result of `rfft()` function.
|
|
197
|
+
|
|
198
|
+
Supported Platforms:
|
|
199
|
+
``Ascend`` ``CPU``
|
|
200
|
+
|
|
201
|
+
Examples:
|
|
202
|
+
>>> import mindspore
|
|
203
|
+
>>> import mindspore.numpy as np
|
|
204
|
+
>>> a = np.array([1, 2, 3, 4])
|
|
205
|
+
>>> out = np.fft.rfft(a, n=4, axis=-1, norm='backward')
|
|
206
|
+
>>> print(out)
|
|
207
|
+
[10.+0.j -2.+2.j -2.+0.j]
|
|
208
|
+
"""
|
|
209
|
+
return ops.rfft(a, n, axis, norm)
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
def irfft(a, n=None, axis=-1, norm=None):
|
|
213
|
+
r"""
|
|
214
|
+
Calculates the inverse of `rfft()`.
|
|
215
|
+
|
|
216
|
+
Refer to :func:`mindspore.ops.irfft` for more details.
|
|
217
|
+
The difference is that `a` corresponds to `a` and `axis` corresponds to `dim`.
|
|
218
|
+
|
|
219
|
+
Args:
|
|
220
|
+
a (Tensor): The input tensor.
|
|
221
|
+
n (int, optional): Length of the transformed `axis` of the result.
|
|
222
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `rfft`.
|
|
223
|
+
If n is not given, it is taken to be :math:`2*(a.shape[axis]-1)`.
|
|
224
|
+
Default: ``None``.
|
|
225
|
+
axis (int, optional): Axis over which to compute the `irfft`.
|
|
226
|
+
Default: ``-1``, which means the last axis of `a` is used.
|
|
227
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"``.
|
|
228
|
+
Three modes are defined as,
|
|
229
|
+
|
|
230
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
231
|
+
- ``"forward"`` (no normalization).
|
|
232
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
233
|
+
|
|
234
|
+
Returns:
|
|
235
|
+
Tensor, the result of `irfft()` function.
|
|
236
|
+
|
|
237
|
+
Supported Platforms:
|
|
238
|
+
``Ascend`` ``CPU``
|
|
239
|
+
|
|
240
|
+
Examples:
|
|
241
|
+
>>> import mindspore
|
|
242
|
+
>>> import mindspore.numpy as np
|
|
243
|
+
>>> a = np.array([1, 2, 3, 4])
|
|
244
|
+
>>> y = np.fft.irfft(a, n=6, axis=-1, norm='backward')
|
|
245
|
+
>>> print(y)
|
|
246
|
+
[ 2.5 -0.6666667 0. -0.16666667 0. -0.6666667 ]
|
|
247
|
+
"""
|
|
248
|
+
return ops.irfft(a, n, axis, norm)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def fft2(a, s=None, axes=(-2, -1), norm=None):
|
|
252
|
+
r"""
|
|
253
|
+
Calculates the two dimensional discrete Fourier transform of `a`.
|
|
254
|
+
|
|
255
|
+
Refer to :func:`mindspore.ops.fft2` for more details.
|
|
256
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
257
|
+
|
|
258
|
+
Args:
|
|
259
|
+
a (Tensor): The input tensor.
|
|
260
|
+
Supported dtypes:
|
|
261
|
+
|
|
262
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
263
|
+
|
|
264
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
265
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `fft2`.
|
|
266
|
+
Default: ``None`` , which does not need to process `a`.
|
|
267
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `fft2`.
|
|
268
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
269
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
270
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
271
|
+
|
|
272
|
+
- ``"backward"`` (no normalization).
|
|
273
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
274
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
275
|
+
|
|
276
|
+
Returns:
|
|
277
|
+
Tensor, The result of `fft2()` function. The default is the same shape as `a`.
|
|
278
|
+
If `s` is given, the size of the `axes[i]` axis is changed to `s[i]`.
|
|
279
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
280
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
281
|
+
|
|
282
|
+
Supported Platforms:
|
|
283
|
+
``Ascend`` ``CPU``
|
|
284
|
+
|
|
285
|
+
Examples:
|
|
286
|
+
>>> import mindspore.numpy as np
|
|
287
|
+
>>> a = np.ones((4, 4))
|
|
288
|
+
>>> out = np.fft.fft2(a, s=(4, 4), axes=(0, 1), norm="backward")
|
|
289
|
+
>>> print(out)
|
|
290
|
+
[[16.+0.j 0.+0.j 0.+0.j 0.+0.j]
|
|
291
|
+
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
|
|
292
|
+
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j]
|
|
293
|
+
[ 0.+0.j 0.+0.j 0.+0.j 0.+0.j]]
|
|
294
|
+
"""
|
|
295
|
+
return ops.fft2(a, s, axes, norm)
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def ifft2(a, s=None, axes=(-2, -1), norm=None):
|
|
299
|
+
r"""
|
|
300
|
+
Calculates the inverse of `fft2()`.
|
|
301
|
+
|
|
302
|
+
Refer to :func:`mindspore.ops.ifft2` for more details.
|
|
303
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
304
|
+
|
|
305
|
+
Args:
|
|
306
|
+
a (Tensor): The input tensor.
|
|
307
|
+
Supported dtypes:
|
|
308
|
+
|
|
309
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
310
|
+
|
|
311
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
312
|
+
If given, the `a.shape[axes[i]]` will be zero-padded or truncated to `s[i]` before calculating `ifft2`.
|
|
313
|
+
Default: ``None`` , which does not need to process `a`.
|
|
314
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `ifft2`.
|
|
315
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
316
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
317
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
318
|
+
|
|
319
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
320
|
+
- ``"forward"`` (no normalization).
|
|
321
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
322
|
+
|
|
323
|
+
Returns:
|
|
324
|
+
Tensor, The result of `ifft2()` function. The default is the same shape as `a`.
|
|
325
|
+
If `s` is given, the size of the `axes[i]` axis is changed to `s[i]`.
|
|
326
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
327
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
328
|
+
|
|
329
|
+
Supported Platforms:
|
|
330
|
+
``Ascend`` ``CPU``
|
|
331
|
+
|
|
332
|
+
Examples:
|
|
333
|
+
>>> import mindspore.numpy as np
|
|
334
|
+
>>> a = np.ones((4, 4))
|
|
335
|
+
>>> out = np.fft.ifft2(a, s=(4, 4), axes=(0, 1), norm="backward")
|
|
336
|
+
>>> print(out)
|
|
337
|
+
[[1.+0.j 0.+0.j 0.+0.j 0.+0.j]
|
|
338
|
+
[0.+0.j 0.+0.j 0.+0.j 0.+0.j]
|
|
339
|
+
[0.+0.j 0.+0.j 0.+0.j 0.+0.j]
|
|
340
|
+
[0.+0.j 0.+0.j 0.+0.j 0.+0.j]]
|
|
341
|
+
"""
|
|
342
|
+
return ops.ifft2(a, s, axes, norm)
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
def fftn(a, s=None, axes=None, norm=None):
|
|
346
|
+
r"""
|
|
347
|
+
Calculates the N dimensional discrete Fourier transform of `a`.
|
|
348
|
+
|
|
349
|
+
Refer to :func:`mindspore.ops.fftn` for more details.
|
|
350
|
+
The difference is that `a` corresponds to `input` and `axis` corresponds to `dim`.
|
|
351
|
+
|
|
352
|
+
Args:
|
|
353
|
+
a (Tensor): The input tensor.
|
|
354
|
+
Supported dtypes:
|
|
355
|
+
|
|
356
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
357
|
+
|
|
358
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
359
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `fftn`.
|
|
360
|
+
Default: ``None`` , which does not need to process `a`.
|
|
361
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `fftn`.
|
|
362
|
+
Default: ``None`` , which means transform the all dimension of `a`,
|
|
363
|
+
or the last `len(s)` dimensions if s is given.
|
|
364
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
365
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
366
|
+
|
|
367
|
+
- ``"backward"`` (no normalization).
|
|
368
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
369
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
370
|
+
|
|
371
|
+
Returns:
|
|
372
|
+
Tensor, The result of `fft()` function. The default is the same shape as `a`.
|
|
373
|
+
If `s` is given, the size of the `axes[i]` axis is changed to `s[i]`.
|
|
374
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
375
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
376
|
+
|
|
377
|
+
Supported Platforms:
|
|
378
|
+
``Ascend`` ``CPU``
|
|
379
|
+
|
|
380
|
+
Examples:
|
|
381
|
+
>>> import mindspore.numpy as np
|
|
382
|
+
>>> a = np.ones((2, 2, 2))
|
|
383
|
+
>>> out = np.fft.fftn(a, s=(2, 2, 2), axes=(0, 1, 2), norm="backward")
|
|
384
|
+
>>> print(out)
|
|
385
|
+
[[[8.+0.j 0.+0.j]
|
|
386
|
+
[0.+0.j 0.+0.j]]
|
|
387
|
+
[[0.+0.j 0.+0.j]
|
|
388
|
+
[0.+0.j 0.+0.j]]]
|
|
389
|
+
"""
|
|
390
|
+
return ops.fftn(a, s, axes, norm)
|
|
391
|
+
|
|
392
|
+
|
|
393
|
+
def ifftn(a, s=None, axes=None, norm=None):
|
|
394
|
+
r"""
|
|
395
|
+
Calculates the inverse of `fftn()`.
|
|
396
|
+
|
|
397
|
+
Refer to :func:`mindspore.ops.ifftn` for more details.
|
|
398
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
399
|
+
|
|
400
|
+
Args:
|
|
401
|
+
a (Tensor): The input tensor.
|
|
402
|
+
Supported dtypes:
|
|
403
|
+
|
|
404
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
405
|
+
|
|
406
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
407
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `ifftn`.
|
|
408
|
+
Default: ``None`` , which does not need to process `a`.
|
|
409
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `ifftn`.
|
|
410
|
+
Default: ``None`` , which means transform the all dimension of `a`,
|
|
411
|
+
or the last `len(s)` dimensions if s is given.
|
|
412
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
413
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
414
|
+
|
|
415
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
416
|
+
- ``"forward"`` (no normalization).
|
|
417
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
418
|
+
|
|
419
|
+
Returns:
|
|
420
|
+
Tensor, The result of `ifftn()` function. The default is the same shape as `a`.
|
|
421
|
+
If `s` is given, the size of the `axes[i]` axis is changed to `s[i]`.
|
|
422
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
423
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
424
|
+
|
|
425
|
+
Supported Platforms:
|
|
426
|
+
``Ascend`` ``CPU``
|
|
427
|
+
|
|
428
|
+
Examples:
|
|
429
|
+
>>> import mindspore.numpy as np
|
|
430
|
+
>>> a = np.ones((2, 2, 2))
|
|
431
|
+
>>> out = np.fft.ifftn(a, s=(2, 2, 2), axes=(0, 1, 2), norm="backward")
|
|
432
|
+
>>> print(out)
|
|
433
|
+
[[[1.+0.j 0.+0.j]
|
|
434
|
+
[0.+0.j 0.+0.j]]
|
|
435
|
+
[[0.+0.j 0.+0.j]
|
|
436
|
+
[0.+0.j 0.+0.j]]]
|
|
437
|
+
"""
|
|
438
|
+
return ops.ifftn(a, s, axes, norm)
|
|
439
|
+
|
|
440
|
+
|
|
441
|
+
def rfft2(a, s=None, axes=(-2, -1), norm=None):
|
|
442
|
+
r"""
|
|
443
|
+
Calculates the two dimensional discrete Fourier transform for real input `a`.
|
|
444
|
+
|
|
445
|
+
Refer to :func:`mindspore.ops.rfft2` for more details.
|
|
446
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
447
|
+
|
|
448
|
+
Args:
|
|
449
|
+
a (Tensor): The input tensor.
|
|
450
|
+
Supported dtypes:
|
|
451
|
+
|
|
452
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64.
|
|
453
|
+
|
|
454
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
455
|
+
If given, the size of the `axes[i]` axis will be zero-padded or truncated to `s[i]`
|
|
456
|
+
before calculating `rfft2`.
|
|
457
|
+
Default: ``None`` , which does not need to process `a`.
|
|
458
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `rfft2`.
|
|
459
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
460
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
461
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
462
|
+
|
|
463
|
+
- ``"backward"`` (no normalization).
|
|
464
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
465
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
466
|
+
|
|
467
|
+
Returns:
|
|
468
|
+
Tensor, the result of `rfft2()` function, dtype of the result is complex64/128.
|
|
469
|
+
If `s` is given, result.shape[axes[i]] is :math:`s[i]`, while result.shape[axes[-1]] is :math:`s[-1] // 2 + 1`.
|
|
470
|
+
|
|
471
|
+
Supported Platforms:
|
|
472
|
+
``Ascend`` ``CPU``
|
|
473
|
+
|
|
474
|
+
Examples:
|
|
475
|
+
>>> import mindspore
|
|
476
|
+
>>> from mindspore import Tensor
|
|
477
|
+
>>> from mindspore import numpy as mnp
|
|
478
|
+
>>> a = mnp.ones((2, 2))
|
|
479
|
+
>>> mnp.fft.rfft2(a, s=(2, 2), axes=(0, 1), norm="backward")
|
|
480
|
+
Tensor(shape=[2, 2], dtype=Complex64, value=
|
|
481
|
+
[[4+0j, 0+0j],
|
|
482
|
+
[0+0j, 0+0j]])
|
|
483
|
+
"""
|
|
484
|
+
return ops.rfft2(a, s, axes, norm)
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
def irfft2(a, s=None, axes=(-2, -1), norm=None):
|
|
488
|
+
r"""
|
|
489
|
+
Calculates the inverse of `rfft2()`.
|
|
490
|
+
|
|
491
|
+
Refer to :func:`mindspore.ops.irfft2` for more details.
|
|
492
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
493
|
+
|
|
494
|
+
Args:
|
|
495
|
+
a (Tensor): The input tensor.
|
|
496
|
+
Supported dtypes:
|
|
497
|
+
|
|
498
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
499
|
+
|
|
500
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
501
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `irfft2`.
|
|
502
|
+
Default: ``None`` , the axes[-1] of the `a` will be zero-padded to :math:`2*(a.shape[axes[-1]]-1)`.
|
|
503
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `irfft2`.
|
|
504
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
505
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
506
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
507
|
+
|
|
508
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
509
|
+
- ``"forward"`` (no normalization).
|
|
510
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
511
|
+
|
|
512
|
+
Returns:
|
|
513
|
+
Tensor, The result of `irfft2()` function, result.shape[axes[i]] is s[i].
|
|
514
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is float32.
|
|
515
|
+
When the `a` is float64 or complex128, the return value type is float64.
|
|
516
|
+
|
|
517
|
+
Supported Platforms:
|
|
518
|
+
``Ascend`` ``CPU``
|
|
519
|
+
|
|
520
|
+
Examples:
|
|
521
|
+
>>> import mindspore
|
|
522
|
+
>>> from mindspore import Tensor
|
|
523
|
+
>>> from mindspore import numpy as mnp
|
|
524
|
+
>>> a = mnp.ones((4, 4))
|
|
525
|
+
>>> mnp.fft.irfft2(a, s=(4, 4), axes=(0, 1), norm="backward")
|
|
526
|
+
Tensor(shape=[4, 4], dtype=Float32, value=
|
|
527
|
+
[[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
|
528
|
+
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
|
529
|
+
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
|
530
|
+
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])
|
|
531
|
+
"""
|
|
532
|
+
return ops.irfft2(a, s, axes, norm)
|
|
533
|
+
|
|
534
|
+
|
|
535
|
+
def rfftn(a, s=None, axes=None, norm=None):
|
|
536
|
+
r"""
|
|
537
|
+
Calculates the N dimensional discrete Fourier transform for real input `a`.
|
|
538
|
+
|
|
539
|
+
Refer to :func:`mindspore.ops.rfftn` for more details.
|
|
540
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
541
|
+
|
|
542
|
+
Args:
|
|
543
|
+
a (Tensor): The input tensor.
|
|
544
|
+
Supported dtypes:
|
|
545
|
+
|
|
546
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64.
|
|
547
|
+
|
|
548
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
549
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `rfftn`.
|
|
550
|
+
Default: ``None`` , which does not need to process `a`.
|
|
551
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `rfftn`.
|
|
552
|
+
Default: ``None`` , which means transform the all dimension of `a`,
|
|
553
|
+
or the last `len(s)` dimensions if s is given.
|
|
554
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
555
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
556
|
+
|
|
557
|
+
- ``"backward"`` (no normalization).
|
|
558
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
559
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
560
|
+
|
|
561
|
+
Returns:
|
|
562
|
+
Tensor, the result of `rfftn()` function, dtype of the result is complex64/128.
|
|
563
|
+
If `s` is given, result.shape[axes[i]] is :math:`s[i]`, while result.shape[axes[-1]] is :math:`s[-1] // 2 + 1`.
|
|
564
|
+
|
|
565
|
+
Supported Platforms:
|
|
566
|
+
``Ascend`` ``CPU``
|
|
567
|
+
|
|
568
|
+
Examples:
|
|
569
|
+
>>> import mindspore
|
|
570
|
+
>>> from mindspore import Tensor
|
|
571
|
+
>>> from mindspore import numpy as mnp
|
|
572
|
+
>>> a = mnp.ones((2, 2, 2))
|
|
573
|
+
>>> mnp.fft.rfftn(a, s=(2, 2, 2), axes=(0, 1, 2), norm="backward")
|
|
574
|
+
Tensor(shape=[2, 2, 2], dtype=Complex64, value=
|
|
575
|
+
[[[8+0j, 0+0j],
|
|
576
|
+
[0+0j, 0+0j]],
|
|
577
|
+
[[0+0j, 0+0j],
|
|
578
|
+
[0+0j, 0+0j]]])
|
|
579
|
+
"""
|
|
580
|
+
return ops.rfftn(a, s, axes, norm)
|
|
581
|
+
|
|
582
|
+
|
|
583
|
+
def irfftn(a, s=None, axes=None, norm=None):
|
|
584
|
+
r"""
|
|
585
|
+
Calculates the inverse of `rfftn()`.
|
|
586
|
+
|
|
587
|
+
Refer to :func:`mindspore.ops.irfftn` for more details.
|
|
588
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
589
|
+
|
|
590
|
+
Args:
|
|
591
|
+
a (Tensor): The input tensor.
|
|
592
|
+
Supported dtypes:
|
|
593
|
+
|
|
594
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
595
|
+
|
|
596
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
597
|
+
If given, the input will either be zero-padded or trimmed to this length before computing `irfftn`.
|
|
598
|
+
Default: ``None`` , the axes[-1] of the `a` will be zero-padded to :math:`2*(a.shape[axes[-1]]-1)`.
|
|
599
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `irfftn`.
|
|
600
|
+
Default: ``None`` , which means transform the all dimension of `a`,
|
|
601
|
+
or the last `len(s)` dimensions if s is given.
|
|
602
|
+
norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
603
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
604
|
+
|
|
605
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
606
|
+
- ``"forward"`` (no normalization).
|
|
607
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
608
|
+
|
|
609
|
+
Returns:
|
|
610
|
+
Tensor, The result of `irfft2()` function, result.shape[axes[i]] is s[i].
|
|
611
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is float32.
|
|
612
|
+
When the `a` is float64 or complex128, the return value type is float64.
|
|
613
|
+
|
|
614
|
+
Supported Platforms:
|
|
615
|
+
``Ascend`` ``CPU``
|
|
616
|
+
|
|
617
|
+
Examples:
|
|
618
|
+
>>> import mindspore
|
|
619
|
+
>>> from mindspore import Tensor
|
|
620
|
+
>>> from mindspore import numpy as mnp
|
|
621
|
+
>>> a = mnp.ones((2, 2, 2))
|
|
622
|
+
>>> mnp.fft.irfftn(a, s=(2, 2, 2), axes=(0, 1, 2), norm="backward")
|
|
623
|
+
Tensor(shape=[2, 2, 2], dtype=Float32, value=
|
|
624
|
+
[[[ 1.00000000e+00, 0.00000000e+00],
|
|
625
|
+
[ 0.00000000e+00, 0.00000000e+00]],
|
|
626
|
+
[[ 0.00000000e+00, 0.00000000e+00],
|
|
627
|
+
[ 0.00000000e+00, 0.00000000e+00]]])
|
|
628
|
+
"""
|
|
629
|
+
return ops.irfftn(a, s, axes, norm)
|
|
630
|
+
|
|
631
|
+
|
|
632
|
+
def hfft(a, n=None, axis=-1, norm=None):
|
|
633
|
+
r"""
|
|
634
|
+
Calculates the one dimensional discrete Fourier transform of of a Hermitian symmetric `a` signal.
|
|
635
|
+
|
|
636
|
+
Refer to :func:`mindspore.ops.hfft` for more details.
|
|
637
|
+
The difference is that `a` corresponds to `input` and `axis` corresponds to `dim`.
|
|
638
|
+
|
|
639
|
+
Args:
|
|
640
|
+
a (Tensor): The input tensor.
|
|
641
|
+
Supported dtypes:
|
|
642
|
+
|
|
643
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
644
|
+
|
|
645
|
+
n (int, optional): Length of the transformed `axis` of the result.
|
|
646
|
+
If given, the size of the `axis` axis will be zero-padded or truncated to `n` before calculating `hfft`.
|
|
647
|
+
Default: ``None`` , which does not need to process `a`.
|
|
648
|
+
axis (int, optional): The dimension along which to take the one dimensional `hfft`.
|
|
649
|
+
Default: ``-1`` , which means transform the last dimension of `a`.
|
|
650
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
651
|
+
Three modes are defined as,
|
|
652
|
+
|
|
653
|
+
- ``"backward"`` (no normalization).
|
|
654
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
655
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
656
|
+
|
|
657
|
+
Returns:
|
|
658
|
+
Tensor, The result of `hfft()` function.
|
|
659
|
+
If `n` is given, result.shape[axis] is :math:`(n - 1) * 2`, otherwise math:`(a.shape[axis] - 1) * 2`.
|
|
660
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is float32.
|
|
661
|
+
When the `a` is float64 or complex128, the return value type is float64.
|
|
662
|
+
|
|
663
|
+
Supported Platforms:
|
|
664
|
+
``Ascend`` ``CPU``
|
|
665
|
+
|
|
666
|
+
Examples:
|
|
667
|
+
>>> import mindspore
|
|
668
|
+
>>> from mindspore import Tensor
|
|
669
|
+
>>> from mindspore import numpy as np
|
|
670
|
+
>>> a = np.array([ 1.6243454, -0.6117564, -0.5281718, -1.0729686])
|
|
671
|
+
>>> out = np.fft.hfft(a, n=4, axis=-1, norm="backward")
|
|
672
|
+
>>> print(out)
|
|
673
|
+
[-0.12733912 2.1525173 2.3196864 2.1525173 ]
|
|
674
|
+
"""
|
|
675
|
+
return ops.hfft(a, n, axis, norm)
|
|
676
|
+
|
|
677
|
+
|
|
678
|
+
def ihfft(a, n=None, axis=-1, norm=None):
|
|
679
|
+
r"""
|
|
680
|
+
Calculates the inverse of `hfft()`.
|
|
681
|
+
|
|
682
|
+
Refer to :func:`mindspore.ops.ihfft` for more details.
|
|
683
|
+
The difference is that `a` corresponds to `input` and `axis` corresponds to `dim`.
|
|
684
|
+
|
|
685
|
+
Note:
|
|
686
|
+
- `ihfft` is currently only used in `mindscience` scientific computing scenarios and
|
|
687
|
+
dose not support other usage scenarios.
|
|
688
|
+
- `ihfft` is not supported on Windows platform yet.
|
|
689
|
+
|
|
690
|
+
Args:
|
|
691
|
+
a (Tensor): The input tensor.
|
|
692
|
+
Supported dtypes:
|
|
693
|
+
|
|
694
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64.
|
|
695
|
+
|
|
696
|
+
n (int, optional): Length of the transformed `axis` of the result.
|
|
697
|
+
If given, the size of the `axis` will be zero-padded or truncated to `n` before calculating `ihfft`.
|
|
698
|
+
Default: ``None`` , which does not need to process `a`.
|
|
699
|
+
axis (int, optional): The dimension along which to take the one dimensional `ihfft`.
|
|
700
|
+
Default: ``-1`` , which means transform the last dimension of `a`.
|
|
701
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
702
|
+
Three modes are defined as,
|
|
703
|
+
|
|
704
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
705
|
+
- ``"forward"`` (no normalization).
|
|
706
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
707
|
+
|
|
708
|
+
Returns:
|
|
709
|
+
Tensor, The result of `ihfft()` function.
|
|
710
|
+
If `n` is given, result.shape[axis] is :math:`n // 2 + 1`, otherwise math:`a.shape[axis] // 2 + 1`.
|
|
711
|
+
When the `a` is int16, int32, int64, float16, float32, the return value type is complex64.
|
|
712
|
+
When the `a` is float64, the return value type is complex128.
|
|
713
|
+
|
|
714
|
+
Supported Platforms:
|
|
715
|
+
``Ascend`` ``CPU``
|
|
716
|
+
|
|
717
|
+
Examples:
|
|
718
|
+
>>> import mindspore
|
|
719
|
+
>>> from mindspore import Tensor
|
|
720
|
+
>>> from mindspore import numpy as np
|
|
721
|
+
>>> a = np.array([ 1.6243454, -0.6117564, -0.5281718, -1.0729686])
|
|
722
|
+
>>> out = np.fft.ihfft(a, n=4, axis=-1, norm="backward")
|
|
723
|
+
>>> print(out)
|
|
724
|
+
[-0.14713785-0.j 0.5381293 +0.11530305j 0.69522464-0.j ]
|
|
725
|
+
"""
|
|
726
|
+
return ops.ihfft(a, n, axis, norm)
|
|
727
|
+
|
|
728
|
+
|
|
729
|
+
def hfft2(a, s=None, axes=(-2, -1), norm=None):
|
|
730
|
+
r"""
|
|
731
|
+
Calculates the two dimensional discrete Fourier transform of of a Hermitian symmetric `a` signal.
|
|
732
|
+
|
|
733
|
+
Refer to :func:`mindspore.ops.hfft2` for more details.
|
|
734
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
735
|
+
|
|
736
|
+
Args:
|
|
737
|
+
a (Tensor): The input tensor.
|
|
738
|
+
Supported dtypes:
|
|
739
|
+
|
|
740
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
741
|
+
|
|
742
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
743
|
+
If given, the `a.shape[axes[i]]` will be zero-padded or truncated to `s[i]` before calculating `hfft2`.
|
|
744
|
+
Default: ``None`` , which does not need to process `a`.
|
|
745
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `hfft2`.
|
|
746
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
747
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
748
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
749
|
+
|
|
750
|
+
- ``"backward"`` (no normalization).
|
|
751
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
752
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
753
|
+
|
|
754
|
+
Returns:
|
|
755
|
+
Tensor, The result of `hfft2()` function.
|
|
756
|
+
If `s` is given, result.shape[axes[i]] is s[i], and for the last transformed axes,
|
|
757
|
+
result.shape[axes[-1]] is :math:`(s[-1] - 1) * 2`, otherwise :math:`(a.shape[axes[-1]] - 1) * 2`.
|
|
758
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
759
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
760
|
+
|
|
761
|
+
Supported Platforms:
|
|
762
|
+
``Ascend`` ``CPU``
|
|
763
|
+
|
|
764
|
+
Examples:
|
|
765
|
+
>>> import mindspore.numpy as np
|
|
766
|
+
>>> a = np.ones((4, 4))
|
|
767
|
+
>>> out = np.fft.hfft2(a, s=(4, 4), axes=(0, 1), norm="backward")
|
|
768
|
+
>>> print(out)
|
|
769
|
+
[[16. 0. 0. 0.]
|
|
770
|
+
[ 0. 0. 0. 0.]
|
|
771
|
+
[ 0. 0. 0. 0.]
|
|
772
|
+
[ 0. 0. 0. 0.]]
|
|
773
|
+
"""
|
|
774
|
+
return ops.hfft2(a, s, axes, norm)
|
|
775
|
+
|
|
776
|
+
|
|
777
|
+
def ihfft2(a, s=None, axes=(-2, -1), norm=None):
|
|
778
|
+
r"""
|
|
779
|
+
Computes the two dimensional inverse discrete Fourier transform of real `a`.
|
|
780
|
+
|
|
781
|
+
Refer to :func:`mindspore.ops.ihfft2` for more details.
|
|
782
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
783
|
+
|
|
784
|
+
Args:
|
|
785
|
+
a (Tensor): The input tensor.
|
|
786
|
+
Supported dtypes:
|
|
787
|
+
|
|
788
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64.
|
|
789
|
+
|
|
790
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
791
|
+
If given, the `a.shape[axes[i]]` will be zero-padded or truncated to `s[i]` before calculating `ihfft2`.
|
|
792
|
+
Default: ``None`` , which does not need to process `a`.
|
|
793
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `ihfft2`.
|
|
794
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
795
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
796
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
797
|
+
|
|
798
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
799
|
+
- ``"forward"`` (no normalization).
|
|
800
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
801
|
+
|
|
802
|
+
Returns:
|
|
803
|
+
Tensor, The result of `ihfft2()` function.
|
|
804
|
+
If `s` is given, result.shape[axes[i]] is s[i], and for the last transformed `axes`,
|
|
805
|
+
result.shape[axes[-1]] is :math:`s[-1] // 2 + 1`, otherwise :math:`a.shape[axes[-1]] // 2 + 1`.
|
|
806
|
+
When the `a` is int16, int32, int64, float16, float32, the return value type is complex64.
|
|
807
|
+
When the `a` is float64, the return value type is complex128.
|
|
808
|
+
|
|
809
|
+
Supported Platforms:
|
|
810
|
+
``Ascend`` ``CPU``
|
|
811
|
+
|
|
812
|
+
Examples:
|
|
813
|
+
>>> import mindspore.numpy as np
|
|
814
|
+
>>> a = np.ones((4, 4))
|
|
815
|
+
>>> out = np.fft.ihfft2(a, s=(4, 4), axes=(0, 1), norm="backward")
|
|
816
|
+
>>> print(out)
|
|
817
|
+
[[1.-0.j 0.-0.j 0.-0.j]
|
|
818
|
+
[0.-0.j 0.-0.j 0.-0.j]
|
|
819
|
+
[0.-0.j 0.-0.j 0.-0.j]
|
|
820
|
+
[0.-0.j 0.-0.j 0.-0.j]]
|
|
821
|
+
"""
|
|
822
|
+
return ops.ihfft2(a, s, axes, norm)
|
|
823
|
+
|
|
824
|
+
|
|
825
|
+
def hfftn(a, s=None, axes=None, norm=None):
|
|
826
|
+
r"""
|
|
827
|
+
Calculates the N dimensional discrete Fourier transform of of a Hermitian symmetric `a`.
|
|
828
|
+
|
|
829
|
+
Refer to :func:`mindspore.ops.hfftn` for more details.
|
|
830
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
831
|
+
|
|
832
|
+
Args:
|
|
833
|
+
a (Tensor): The input tensor.
|
|
834
|
+
Supported dtypes:
|
|
835
|
+
|
|
836
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64, complex64, complex128.
|
|
837
|
+
|
|
838
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
839
|
+
If given, the `a.shape[axes[i]]` will be zero-padded or truncated to `s[i]` before calculating `hfftn`.
|
|
840
|
+
Default: ``None`` , which does not need to process `a`.
|
|
841
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `hfftn`.
|
|
842
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
843
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
844
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
845
|
+
|
|
846
|
+
- ``"backward"`` (no normalization).
|
|
847
|
+
- ``"forward"`` (normalize by :math:`1/n`).
|
|
848
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
849
|
+
|
|
850
|
+
Returns:
|
|
851
|
+
Tensor, The result of `hfftn()` function.
|
|
852
|
+
If `s` is given, result.shape[axes[i]] is s[i], and for the last transformed `axes`,
|
|
853
|
+
result.shape[axes[-1]] is :math:`(s[-1] - 1) * 2`, otherwise :math:`(a.shape[axes[-1]] - 1) * 2`.
|
|
854
|
+
When the `a` is int16, int32, int64, float16, float32, complex64, the return value type is complex64.
|
|
855
|
+
When the `a` is float64 or complex128, the return value type is complex128.
|
|
856
|
+
|
|
857
|
+
Supported Platforms:
|
|
858
|
+
``Ascend`` ``CPU``
|
|
859
|
+
|
|
860
|
+
Examples:
|
|
861
|
+
>>> import mindspore.numpy as np
|
|
862
|
+
>>> a = np.ones((4, 4))
|
|
863
|
+
>>> out = np.fft.hfftn(a, s=(4, 4), axes=(0, 1), norm="backward")
|
|
864
|
+
>>> print(out)
|
|
865
|
+
[[16. 0. 0. 0.]
|
|
866
|
+
[ 0. 0. 0. 0.]
|
|
867
|
+
[ 0. 0. 0. 0.]
|
|
868
|
+
[ 0. 0. 0. 0.]]
|
|
869
|
+
"""
|
|
870
|
+
return ops.hfftn(a, s, axes, norm)
|
|
871
|
+
|
|
872
|
+
|
|
873
|
+
def ihfftn(a, s=None, axes=None, norm=None):
|
|
874
|
+
r"""
|
|
875
|
+
Computes the N dimensional inverse discrete Fourier transform of real `a`.
|
|
876
|
+
|
|
877
|
+
Refer to :func:`mindspore.ops.ihfftn` for more details.
|
|
878
|
+
The difference is that `a` corresponds to `input` and `axes` corresponds to `dim`.
|
|
879
|
+
|
|
880
|
+
Args:
|
|
881
|
+
a (Tensor): The input tensor.
|
|
882
|
+
Supported dtypes:
|
|
883
|
+
|
|
884
|
+
- Ascend/CPU: int16, int32, int64, float16, float32, float64.
|
|
885
|
+
|
|
886
|
+
s (tuple[int], optional): Length of the transformed `axes` of the result.
|
|
887
|
+
If given, the `a.shape[axes[i]]` will be zero-padded or truncated to `s[i]` before calculating `ihfftn`.
|
|
888
|
+
Default: ``None`` , which does not need to process `a`.
|
|
889
|
+
axes (tuple[int], optional): The dimension along which to take the one dimensional `ihfftn`.
|
|
890
|
+
Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
|
|
891
|
+
norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
|
|
892
|
+
Three modes are defined as, where :math: `n = prod(s)`
|
|
893
|
+
|
|
894
|
+
- ``"backward"`` (normalize by :math:`1/n`).
|
|
895
|
+
- ``"forward"`` (no normalization).
|
|
896
|
+
- ``"ortho"`` (normalize by :math:`1/\sqrt{n}`).
|
|
897
|
+
|
|
898
|
+
Returns:
|
|
899
|
+
Tensor, The result of `ihfftn()` function.
|
|
900
|
+
If `s` is given, result.shape[axes[i]] is s[i], and for the last transformed `axes`,
|
|
901
|
+
result.shape[axes[-1]] is :math:`s[-1] // 2 + 1`, otherwise :math:`a.shape[axes[-1]] // 2 + 1`.
|
|
902
|
+
When the `a` is int16, int32, int64, float16, float32, the return value type is complex64.
|
|
903
|
+
When the `a` is float64, the return value type is complex128.
|
|
904
|
+
|
|
905
|
+
Supported Platforms:
|
|
906
|
+
``Ascend`` ``CPU``
|
|
907
|
+
|
|
908
|
+
Examples:
|
|
909
|
+
>>> import mindspore.numpy as np
|
|
910
|
+
>>> a = np.ones((4, 4))
|
|
911
|
+
>>> out = np.fft.ihfftn(a, s=(4, 4), axes=(0, 1), norm="backward")
|
|
912
|
+
>>> print(out)
|
|
913
|
+
[[16. 0. 0. 0.]
|
|
914
|
+
[ 0. 0. 0. 0.]
|
|
915
|
+
[ 0. 0. 0. 0.]
|
|
916
|
+
[ 0. 0. 0. 0.]]
|
|
917
|
+
"""
|
|
918
|
+
return ops.hfftn(a, s, axes, norm)
|
|
919
|
+
|
|
920
|
+
|
|
921
|
+
def fftfreq(n, d=1.0, dtype=None):
|
|
922
|
+
r"""
|
|
923
|
+
Return the Discrete Fourier Transform sample frequencies.
|
|
924
|
+
|
|
925
|
+
Args:
|
|
926
|
+
n (int): Window length.
|
|
927
|
+
d (float, optional): Sample spacing (inverse of the sampling rate). Default: ``1.0`` .
|
|
928
|
+
dtype (mindspore.dtype, optional): The dtype of the returned frequencies. Default: ``float32`` .
|
|
929
|
+
|
|
930
|
+
Returns:
|
|
931
|
+
Tensor, Array of length ``n`` containing the sample frequencies.
|
|
932
|
+
|
|
933
|
+
Supported Platforms:
|
|
934
|
+
``Ascend`` ``CPU``
|
|
935
|
+
|
|
936
|
+
Examples:
|
|
937
|
+
>>> import mindspore.numpy as np
|
|
938
|
+
>>> out = np.fft.fftfreq(n=4, d=1.0)
|
|
939
|
+
>>> print(out)
|
|
940
|
+
[ 0. 0.25 -0.5 -0.25]
|
|
941
|
+
"""
|
|
942
|
+
return ops.fftfreq(n, d, dtype)
|
|
943
|
+
|
|
944
|
+
|
|
945
|
+
def rfftfreq(n, d=1.0, dtype=None):
|
|
946
|
+
r"""
|
|
947
|
+
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).
|
|
948
|
+
|
|
949
|
+
Args:
|
|
950
|
+
n (int): Window length.
|
|
951
|
+
d (float, optional): Sample spacing (inverse of the sampling rate). Default: ``1.0`` .
|
|
952
|
+
dtype (mindspore.dtype, optional): The dtype of the returned frequencies. Default: ``float32`` .
|
|
953
|
+
|
|
954
|
+
Returns:
|
|
955
|
+
Tensor, Array of length math:`n // 2 + 1` containing the sample frequencies.
|
|
956
|
+
|
|
957
|
+
Supported Platforms:
|
|
958
|
+
``Ascend`` ``CPU``
|
|
959
|
+
|
|
960
|
+
Examples:
|
|
961
|
+
>>> import mindspore.numpy as np
|
|
962
|
+
>>> out = np.fft.rfftfreq(n=4, d=1.0)
|
|
963
|
+
>>> print(out)
|
|
964
|
+
[0. 0.25 0.5 ]
|
|
965
|
+
"""
|
|
966
|
+
return ops.rfftfreq(n, d, dtype)
|