mindspore 2.4.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (1406) hide show
  1. mindspore/.commit_id +1 -0
  2. mindspore/ConcurrencyCheck.dll +0 -0
  3. mindspore/CppBuildInsights.dll +0 -0
  4. mindspore/CppCoreCheck.dll +0 -0
  5. mindspore/EnumIndex.dll +0 -0
  6. mindspore/EspXEngine.dll +0 -0
  7. mindspore/HResultCheck.dll +0 -0
  8. mindspore/KernelTraceControl.dll +0 -0
  9. mindspore/LocalESPC.dll +0 -0
  10. mindspore/Microsoft.Diagnostics.Tracing.EventSource.dll +0 -0
  11. mindspore/Microsoft.VisualStudio.RemoteControl.dll +0 -0
  12. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  13. mindspore/Microsoft.VisualStudio.Utilities.Internal.dll +0 -0
  14. mindspore/Newtonsoft.Json.dll +0 -0
  15. mindspore/System.Runtime.CompilerServices.Unsafe.dll +0 -0
  16. mindspore/VariantClear.dll +0 -0
  17. mindspore/__init__.py +53 -0
  18. mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
  19. mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
  20. mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
  21. mindspore/_check_jit_forbidden_api.py +106 -0
  22. mindspore/_checkparam.py +1419 -0
  23. mindspore/_extends/__init__.py +23 -0
  24. mindspore/_extends/builtin_operations.py +224 -0
  25. mindspore/_extends/graph_kernel/__init__.py +17 -0
  26. mindspore/_extends/graph_kernel/model/__init__.py +19 -0
  27. mindspore/_extends/graph_kernel/model/graph_parallel.py +311 -0
  28. mindspore/_extends/graph_kernel/model/graph_split.py +1348 -0
  29. mindspore/_extends/graph_kernel/model/model.py +553 -0
  30. mindspore/_extends/graph_kernel/model/model_builder.py +216 -0
  31. mindspore/_extends/graph_kernel/parallel_estimate.py +60 -0
  32. mindspore/_extends/graph_kernel/splitter.py +140 -0
  33. mindspore/_extends/graph_kernel/utils.py +28 -0
  34. mindspore/_extends/parallel_compile/__init__.py +19 -0
  35. mindspore/_extends/parallel_compile/akg_compiler/__init__.py +19 -0
  36. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +269 -0
  37. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +529 -0
  38. mindspore/_extends/parallel_compile/akg_compiler/compiler.py +56 -0
  39. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
  40. mindspore/_extends/parallel_compile/akg_compiler/get_file_path.py +36 -0
  41. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +556 -0
  42. mindspore/_extends/parallel_compile/akg_compiler/util.py +159 -0
  43. mindspore/_extends/parse/__init__.py +49 -0
  44. mindspore/_extends/parse/compile_config.py +299 -0
  45. mindspore/_extends/parse/namespace.py +136 -0
  46. mindspore/_extends/parse/parser.py +1448 -0
  47. mindspore/_extends/parse/resources.py +213 -0
  48. mindspore/_extends/parse/standard_method.py +4475 -0
  49. mindspore/_extends/parse/trope.py +97 -0
  50. mindspore/_extends/pijit/__init__.py +23 -0
  51. mindspore/_extends/pijit/pijit_func_white_list.py +669 -0
  52. mindspore/_extends/remote/__init__.py +19 -0
  53. mindspore/_extends/remote/kernel_build_server.py +199 -0
  54. mindspore/_extends/remote/kernel_build_server_akg.py +55 -0
  55. mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
  56. mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
  57. mindspore/_extends/utils.py +68 -0
  58. mindspore/_install_custom.py +43 -0
  59. mindspore/_profiler.py +30 -0
  60. mindspore/amp.py +433 -0
  61. mindspore/atlprov.dll +0 -0
  62. mindspore/avcodec-59.dll +0 -0
  63. mindspore/avdevice-59.dll +0 -0
  64. mindspore/avfilter-8.dll +0 -0
  65. mindspore/avformat-59.dll +0 -0
  66. mindspore/avutil-57.dll +0 -0
  67. mindspore/boost/__init__.py +42 -0
  68. mindspore/boost/adasum.py +319 -0
  69. mindspore/boost/base.py +535 -0
  70. mindspore/boost/boost.py +400 -0
  71. mindspore/boost/boost_cell_wrapper.py +790 -0
  72. mindspore/boost/dim_reduce.py +323 -0
  73. mindspore/boost/grad_accumulation.py +79 -0
  74. mindspore/boost/grad_freeze.py +382 -0
  75. mindspore/boost/group_loss_scale_manager.py +166 -0
  76. mindspore/boost/less_batch_normalization.py +174 -0
  77. mindspore/c1.dll +0 -0
  78. mindspore/c1xx.dll +0 -0
  79. mindspore/c2.dll +0 -0
  80. mindspore/cfgpersist.dll +0 -0
  81. mindspore/clang_rt.asan_dbg_dynamic-x86_64.dll +0 -0
  82. mindspore/clang_rt.asan_dynamic-x86_64.dll +0 -0
  83. mindspore/common/__init__.py +86 -0
  84. mindspore/common/_auto_dynamic.py +68 -0
  85. mindspore/common/_decorator.py +50 -0
  86. mindspore/common/_jit_fallback_utils.py +110 -0
  87. mindspore/common/_monad.py +25 -0
  88. mindspore/common/_pijit_context.py +190 -0
  89. mindspore/common/_register_for_adapter.py +74 -0
  90. mindspore/common/_register_for_recompute.py +48 -0
  91. mindspore/common/_register_for_tensor.py +46 -0
  92. mindspore/common/_stub_tensor.py +210 -0
  93. mindspore/common/_tensor_overload.py +139 -0
  94. mindspore/common/_utils.py +122 -0
  95. mindspore/common/api.py +2064 -0
  96. mindspore/common/auto_dynamic_shape.py +507 -0
  97. mindspore/common/dtype.py +422 -0
  98. mindspore/common/dump.py +130 -0
  99. mindspore/common/file_system.py +48 -0
  100. mindspore/common/generator.py +254 -0
  101. mindspore/common/hook_handle.py +143 -0
  102. mindspore/common/initializer.py +880 -0
  103. mindspore/common/jit_config.py +98 -0
  104. mindspore/common/lazy_inline.py +240 -0
  105. mindspore/common/mindir_util.py +111 -0
  106. mindspore/common/mutable.py +234 -0
  107. mindspore/common/no_inline.py +54 -0
  108. mindspore/common/np_dtype.py +25 -0
  109. mindspore/common/parameter.py +1081 -0
  110. mindspore/common/recompute.py +292 -0
  111. mindspore/common/seed.py +260 -0
  112. mindspore/common/sparse_tensor.py +1175 -0
  113. mindspore/common/symbol.py +122 -0
  114. mindspore/common/tensor.py +5039 -0
  115. mindspore/communication/__init__.py +37 -0
  116. mindspore/communication/_comm_helper.py +501 -0
  117. mindspore/communication/_hccl_management.py +297 -0
  118. mindspore/communication/comm_func.py +1395 -0
  119. mindspore/communication/management.py +673 -0
  120. mindspore/config/op_info.config +533 -0
  121. mindspore/context.py +2077 -0
  122. mindspore/d3dcompiler_47.dll +0 -0
  123. mindspore/dataset/__init__.py +90 -0
  124. mindspore/dataset/audio/__init__.py +61 -0
  125. mindspore/dataset/audio/transforms.py +3690 -0
  126. mindspore/dataset/audio/utils.py +386 -0
  127. mindspore/dataset/audio/validators.py +1172 -0
  128. mindspore/dataset/callback/__init__.py +20 -0
  129. mindspore/dataset/callback/ds_callback.py +368 -0
  130. mindspore/dataset/callback/validators.py +32 -0
  131. mindspore/dataset/core/__init__.py +13 -0
  132. mindspore/dataset/core/config.py +1095 -0
  133. mindspore/dataset/core/datatypes.py +101 -0
  134. mindspore/dataset/core/py_util_helpers.py +65 -0
  135. mindspore/dataset/core/validator_helpers.py +781 -0
  136. mindspore/dataset/debug/__init__.py +21 -0
  137. mindspore/dataset/debug/debug_hook.py +97 -0
  138. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  139. mindspore/dataset/engine/__init__.py +124 -0
  140. mindspore/dataset/engine/cache_admin.py +47 -0
  141. mindspore/dataset/engine/cache_client.py +129 -0
  142. mindspore/dataset/engine/datasets.py +4582 -0
  143. mindspore/dataset/engine/datasets_audio.py +911 -0
  144. mindspore/dataset/engine/datasets_standard_format.py +543 -0
  145. mindspore/dataset/engine/datasets_text.py +2161 -0
  146. mindspore/dataset/engine/datasets_user_defined.py +1184 -0
  147. mindspore/dataset/engine/datasets_vision.py +4816 -0
  148. mindspore/dataset/engine/iterators.py +371 -0
  149. mindspore/dataset/engine/obs/__init__.py +23 -0
  150. mindspore/dataset/engine/obs/config_loader.py +68 -0
  151. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +508 -0
  152. mindspore/dataset/engine/obs/util.py +482 -0
  153. mindspore/dataset/engine/offload.py +596 -0
  154. mindspore/dataset/engine/queue.py +304 -0
  155. mindspore/dataset/engine/samplers.py +895 -0
  156. mindspore/dataset/engine/serializer_deserializer.py +159 -0
  157. mindspore/dataset/engine/validators.py +2895 -0
  158. mindspore/dataset/text/__init__.py +51 -0
  159. mindspore/dataset/text/transforms.py +1703 -0
  160. mindspore/dataset/text/utils.py +715 -0
  161. mindspore/dataset/text/validators.py +642 -0
  162. mindspore/dataset/transforms/__init__.py +45 -0
  163. mindspore/dataset/transforms/c_transforms.py +638 -0
  164. mindspore/dataset/transforms/py_transforms.py +393 -0
  165. mindspore/dataset/transforms/py_transforms_util.py +255 -0
  166. mindspore/dataset/transforms/transforms.py +1260 -0
  167. mindspore/dataset/transforms/validators.py +410 -0
  168. mindspore/dataset/utils/__init__.py +19 -0
  169. mindspore/dataset/utils/browse_dataset.py +190 -0
  170. mindspore/dataset/utils/line_reader.py +126 -0
  171. mindspore/dataset/vision/__init__.py +65 -0
  172. mindspore/dataset/vision/c_transforms.py +2641 -0
  173. mindspore/dataset/vision/py_transforms.py +2120 -0
  174. mindspore/dataset/vision/py_transforms_util.py +1660 -0
  175. mindspore/dataset/vision/transforms.py +7295 -0
  176. mindspore/dataset/vision/utils.py +863 -0
  177. mindspore/dataset/vision/validators.py +1483 -0
  178. mindspore/default_config.py +2 -0
  179. mindspore/dnnl.dll +0 -0
  180. mindspore/dpcmi.dll +0 -0
  181. mindspore/experimental/__init__.py +20 -0
  182. mindspore/experimental/es/__init__.py +22 -0
  183. mindspore/experimental/es/embedding_service.py +883 -0
  184. mindspore/experimental/es/embedding_service_layer.py +581 -0
  185. mindspore/experimental/llm_boost/__init__.py +21 -0
  186. mindspore/experimental/llm_boost/atb/__init__.py +23 -0
  187. mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
  188. mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
  189. mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
  190. mindspore/experimental/llm_boost/register.py +129 -0
  191. mindspore/experimental/llm_boost/utils.py +31 -0
  192. mindspore/experimental/map_parameter.py +309 -0
  193. mindspore/experimental/optim/__init__.py +40 -0
  194. mindspore/experimental/optim/adadelta.py +161 -0
  195. mindspore/experimental/optim/adagrad.py +168 -0
  196. mindspore/experimental/optim/adam.py +193 -0
  197. mindspore/experimental/optim/adamax.py +170 -0
  198. mindspore/experimental/optim/adamw.py +290 -0
  199. mindspore/experimental/optim/asgd.py +153 -0
  200. mindspore/experimental/optim/lr_scheduler.py +1371 -0
  201. mindspore/experimental/optim/nadam.py +157 -0
  202. mindspore/experimental/optim/optimizer.py +262 -0
  203. mindspore/experimental/optim/radam.py +194 -0
  204. mindspore/experimental/optim/rmsprop.py +154 -0
  205. mindspore/experimental/optim/rprop.py +164 -0
  206. mindspore/experimental/optim/sgd.py +156 -0
  207. mindspore/hal/__init__.py +40 -0
  208. mindspore/hal/_ascend.py +57 -0
  209. mindspore/hal/_base.py +57 -0
  210. mindspore/hal/_cpu.py +56 -0
  211. mindspore/hal/_gpu.py +57 -0
  212. mindspore/hal/contiguous_tensors_handle.py +175 -0
  213. mindspore/hal/device.py +356 -0
  214. mindspore/hal/event.py +179 -0
  215. mindspore/hal/memory.py +326 -0
  216. mindspore/hal/stream.py +357 -0
  217. mindspore/include/OWNERS +7 -0
  218. mindspore/include/api/allocator.h +97 -0
  219. mindspore/include/api/callback/callback.h +93 -0
  220. mindspore/include/api/callback/ckpt_saver.h +41 -0
  221. mindspore/include/api/callback/loss_monitor.h +33 -0
  222. mindspore/include/api/callback/lr_scheduler.h +51 -0
  223. mindspore/include/api/callback/time_monitor.h +34 -0
  224. mindspore/include/api/callback/train_accuracy.h +37 -0
  225. mindspore/include/api/cell.h +90 -0
  226. mindspore/include/api/cfg.h +82 -0
  227. mindspore/include/api/context.h +602 -0
  228. mindspore/include/api/data_type.h +47 -0
  229. mindspore/include/api/delegate.h +178 -0
  230. mindspore/include/api/delegate_api.h +75 -0
  231. mindspore/include/api/dual_abi_helper.h +208 -0
  232. mindspore/include/api/format.h +28 -0
  233. mindspore/include/api/graph.h +46 -0
  234. mindspore/include/api/kernel.h +58 -0
  235. mindspore/include/api/kernel_api.h +168 -0
  236. mindspore/include/api/metrics/accuracy.h +36 -0
  237. mindspore/include/api/metrics/metrics.h +41 -0
  238. mindspore/include/api/model.h +438 -0
  239. mindspore/include/api/model_group.h +91 -0
  240. mindspore/include/api/model_parallel_runner.h +168 -0
  241. mindspore/include/api/serialization.h +185 -0
  242. mindspore/include/api/status.h +192 -0
  243. mindspore/include/api/types.h +431 -0
  244. mindspore/include/api/visible.h +41 -0
  245. mindspore/include/c_api/context_c.h +179 -0
  246. mindspore/include/c_api/data_type_c.h +52 -0
  247. mindspore/include/c_api/format_c.h +46 -0
  248. mindspore/include/c_api/model_c.h +347 -0
  249. mindspore/include/c_api/status_c.h +79 -0
  250. mindspore/include/c_api/tensor_c.h +146 -0
  251. mindspore/include/c_api/types_c.h +67 -0
  252. mindspore/include/dataset/config.h +163 -0
  253. mindspore/include/dataset/constants.h +363 -0
  254. mindspore/include/dataset/execute.h +196 -0
  255. mindspore/include/dataset/text.h +1092 -0
  256. mindspore/include/dataset/transforms.h +638 -0
  257. mindspore/include/dataset/vision.h +2129 -0
  258. mindspore/include/dataset/vision_ascend.h +206 -0
  259. mindspore/include/dataset/vision_lite.h +625 -0
  260. mindspore/jpeg62.dll +0 -0
  261. mindspore/log.py +633 -0
  262. mindspore/mindrecord/__init__.py +43 -0
  263. mindspore/mindrecord/common/__init__.py +17 -0
  264. mindspore/mindrecord/common/constant.py +20 -0
  265. mindspore/mindrecord/common/enums.py +44 -0
  266. mindspore/mindrecord/common/exceptions.py +311 -0
  267. mindspore/mindrecord/config.py +809 -0
  268. mindspore/mindrecord/filereader.py +174 -0
  269. mindspore/mindrecord/filewriter.py +722 -0
  270. mindspore/mindrecord/mindpage.py +210 -0
  271. mindspore/mindrecord/shardheader.py +141 -0
  272. mindspore/mindrecord/shardindexgenerator.py +74 -0
  273. mindspore/mindrecord/shardreader.py +117 -0
  274. mindspore/mindrecord/shardsegment.py +128 -0
  275. mindspore/mindrecord/shardutils.py +185 -0
  276. mindspore/mindrecord/shardwriter.py +237 -0
  277. mindspore/mindrecord/tools/__init__.py +17 -0
  278. mindspore/mindrecord/tools/cifar10.py +140 -0
  279. mindspore/mindrecord/tools/cifar100.py +153 -0
  280. mindspore/mindrecord/tools/cifar100_to_mr.py +185 -0
  281. mindspore/mindrecord/tools/cifar10_to_mr.py +177 -0
  282. mindspore/mindrecord/tools/csv_to_mr.py +200 -0
  283. mindspore/mindrecord/tools/imagenet_to_mr.py +206 -0
  284. mindspore/mindrecord/tools/mnist_to_mr.py +259 -0
  285. mindspore/mindrecord/tools/tfrecord_to_mr.py +360 -0
  286. mindspore/mindspore_backend.dll +0 -0
  287. mindspore/mindspore_common.dll +0 -0
  288. mindspore/mindspore_core.dll +0 -0
  289. mindspore/mindspore_glog.dll +0 -0
  290. mindspore/mindspore_np_dtype.dll +0 -0
  291. mindspore/mindspore_ops.dll +0 -0
  292. mindspore/mint/__init__.py +1586 -0
  293. mindspore/mint/distributed/__init__.py +31 -0
  294. mindspore/mint/distributed/distributed.py +254 -0
  295. mindspore/mint/linalg/__init__.py +22 -0
  296. mindspore/mint/nn/__init__.py +757 -0
  297. mindspore/mint/nn/functional.py +679 -0
  298. mindspore/mint/nn/layer/__init__.py +39 -0
  299. mindspore/mint/nn/layer/activation.py +133 -0
  300. mindspore/mint/nn/layer/normalization.py +477 -0
  301. mindspore/mint/nn/layer/pooling.py +110 -0
  302. mindspore/mint/optim/__init__.py +24 -0
  303. mindspore/mint/optim/adamw.py +206 -0
  304. mindspore/mint/special/__init__.py +63 -0
  305. mindspore/msobj140.dll +0 -0
  306. mindspore/mspdb140.dll +0 -0
  307. mindspore/mspdbcore.dll +0 -0
  308. mindspore/mspdbst.dll +0 -0
  309. mindspore/mspft140.dll +0 -0
  310. mindspore/msvcdis140.dll +0 -0
  311. mindspore/msvcp140.dll +0 -0
  312. mindspore/msvcp140_1.dll +0 -0
  313. mindspore/msvcp140_2.dll +0 -0
  314. mindspore/msvcp140_atomic_wait.dll +0 -0
  315. mindspore/msvcp140_codecvt_ids.dll +0 -0
  316. mindspore/multiprocessing/__init__.py +73 -0
  317. mindspore/nn/__init__.py +47 -0
  318. mindspore/nn/cell.py +2787 -0
  319. mindspore/nn/dynamic_lr.py +482 -0
  320. mindspore/nn/grad/__init__.py +21 -0
  321. mindspore/nn/grad/cell_grad.py +196 -0
  322. mindspore/nn/layer/__init__.py +63 -0
  323. mindspore/nn/layer/activation.py +1822 -0
  324. mindspore/nn/layer/basic.py +1629 -0
  325. mindspore/nn/layer/channel_shuffle.py +90 -0
  326. mindspore/nn/layer/combined.py +248 -0
  327. mindspore/nn/layer/container.py +734 -0
  328. mindspore/nn/layer/conv.py +1505 -0
  329. mindspore/nn/layer/dense.py +204 -0
  330. mindspore/nn/layer/embedding.py +869 -0
  331. mindspore/nn/layer/image.py +661 -0
  332. mindspore/nn/layer/math.py +1069 -0
  333. mindspore/nn/layer/normalization.py +1273 -0
  334. mindspore/nn/layer/padding.py +880 -0
  335. mindspore/nn/layer/pooling.py +2302 -0
  336. mindspore/nn/layer/rnn_cells.py +388 -0
  337. mindspore/nn/layer/rnns.py +849 -0
  338. mindspore/nn/layer/thor_layer.py +963 -0
  339. mindspore/nn/layer/timedistributed.py +155 -0
  340. mindspore/nn/layer/transformer.py +823 -0
  341. mindspore/nn/learning_rate_schedule.py +512 -0
  342. mindspore/nn/loss/__init__.py +36 -0
  343. mindspore/nn/loss/loss.py +2924 -0
  344. mindspore/nn/metrics.py +53 -0
  345. mindspore/nn/optim/__init__.py +45 -0
  346. mindspore/nn/optim/_dist_optimizer_registry.py +111 -0
  347. mindspore/nn/optim/ada_grad.py +217 -0
  348. mindspore/nn/optim/adadelta.py +206 -0
  349. mindspore/nn/optim/adafactor.py +448 -0
  350. mindspore/nn/optim/adam.py +1297 -0
  351. mindspore/nn/optim/adamax.py +220 -0
  352. mindspore/nn/optim/adasum.py +548 -0
  353. mindspore/nn/optim/asgd.py +216 -0
  354. mindspore/nn/optim/ftrl.py +401 -0
  355. mindspore/nn/optim/lamb.py +296 -0
  356. mindspore/nn/optim/lars.py +202 -0
  357. mindspore/nn/optim/lazyadam.py +533 -0
  358. mindspore/nn/optim/momentum.py +239 -0
  359. mindspore/nn/optim/optimizer.py +1034 -0
  360. mindspore/nn/optim/proximal_ada_grad.py +242 -0
  361. mindspore/nn/optim/rmsprop.py +264 -0
  362. mindspore/nn/optim/rprop.py +251 -0
  363. mindspore/nn/optim/sgd.py +237 -0
  364. mindspore/nn/optim/tft_wrapper.py +127 -0
  365. mindspore/nn/optim/thor.py +1310 -0
  366. mindspore/nn/probability/__init__.py +22 -0
  367. mindspore/nn/probability/bijector/__init__.py +35 -0
  368. mindspore/nn/probability/bijector/bijector.py +337 -0
  369. mindspore/nn/probability/bijector/exp.py +65 -0
  370. mindspore/nn/probability/bijector/gumbel_cdf.py +144 -0
  371. mindspore/nn/probability/bijector/invert.py +126 -0
  372. mindspore/nn/probability/bijector/power_transform.py +196 -0
  373. mindspore/nn/probability/bijector/scalar_affine.py +167 -0
  374. mindspore/nn/probability/bijector/softplus.py +189 -0
  375. mindspore/nn/probability/bnn_layers/__init__.py +29 -0
  376. mindspore/nn/probability/bnn_layers/_util.py +46 -0
  377. mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +112 -0
  378. mindspore/nn/probability/bnn_layers/conv_variational.py +267 -0
  379. mindspore/nn/probability/bnn_layers/dense_variational.py +302 -0
  380. mindspore/nn/probability/bnn_layers/layer_distribution.py +123 -0
  381. mindspore/nn/probability/distribution/__init__.py +56 -0
  382. mindspore/nn/probability/distribution/_utils/__init__.py +34 -0
  383. mindspore/nn/probability/distribution/_utils/custom_ops.py +96 -0
  384. mindspore/nn/probability/distribution/_utils/utils.py +362 -0
  385. mindspore/nn/probability/distribution/bernoulli.py +334 -0
  386. mindspore/nn/probability/distribution/beta.py +391 -0
  387. mindspore/nn/probability/distribution/categorical.py +435 -0
  388. mindspore/nn/probability/distribution/cauchy.py +383 -0
  389. mindspore/nn/probability/distribution/distribution.py +827 -0
  390. mindspore/nn/probability/distribution/exponential.py +350 -0
  391. mindspore/nn/probability/distribution/gamma.py +391 -0
  392. mindspore/nn/probability/distribution/geometric.py +335 -0
  393. mindspore/nn/probability/distribution/gumbel.py +257 -0
  394. mindspore/nn/probability/distribution/half_normal.py +133 -0
  395. mindspore/nn/probability/distribution/laplace.py +128 -0
  396. mindspore/nn/probability/distribution/log_normal.py +272 -0
  397. mindspore/nn/probability/distribution/logistic.py +379 -0
  398. mindspore/nn/probability/distribution/normal.py +336 -0
  399. mindspore/nn/probability/distribution/poisson.py +288 -0
  400. mindspore/nn/probability/distribution/student_t.py +149 -0
  401. mindspore/nn/probability/distribution/transformed_distribution.py +235 -0
  402. mindspore/nn/probability/distribution/uniform.py +375 -0
  403. mindspore/nn/reinforcement/__init__.py +24 -0
  404. mindspore/nn/reinforcement/_batch_read_write.py +142 -0
  405. mindspore/nn/reinforcement/_tensors_queue.py +152 -0
  406. mindspore/nn/reinforcement/tensor_array.py +145 -0
  407. mindspore/nn/sparse/__init__.py +23 -0
  408. mindspore/nn/sparse/sparse.py +147 -0
  409. mindspore/nn/wrap/__init__.py +49 -0
  410. mindspore/nn/wrap/cell_wrapper.py +968 -0
  411. mindspore/nn/wrap/grad_reducer.py +608 -0
  412. mindspore/nn/wrap/loss_scale.py +694 -0
  413. mindspore/numpy/__init__.py +121 -0
  414. mindspore/numpy/array_creations.py +2731 -0
  415. mindspore/numpy/array_ops.py +2629 -0
  416. mindspore/numpy/dtypes.py +185 -0
  417. mindspore/numpy/fft.py +966 -0
  418. mindspore/numpy/logic_ops.py +936 -0
  419. mindspore/numpy/math_ops.py +5911 -0
  420. mindspore/numpy/utils.py +214 -0
  421. mindspore/numpy/utils_const.py +565 -0
  422. mindspore/opencv_core452.dll +0 -0
  423. mindspore/opencv_imgcodecs452.dll +0 -0
  424. mindspore/opencv_imgproc452.dll +0 -0
  425. mindspore/ops/__init__.py +56 -0
  426. mindspore/ops/_constants.py +30 -0
  427. mindspore/ops/_grad_experimental/__init__.py +31 -0
  428. mindspore/ops/_grad_experimental/grad_array_ops.py +830 -0
  429. mindspore/ops/_grad_experimental/grad_base.py +143 -0
  430. mindspore/ops/_grad_experimental/grad_comm_ops.py +714 -0
  431. mindspore/ops/_grad_experimental/grad_debug_ops.py +31 -0
  432. mindspore/ops/_grad_experimental/grad_implementations.py +203 -0
  433. mindspore/ops/_grad_experimental/grad_inner_ops.py +79 -0
  434. mindspore/ops/_grad_experimental/grad_math_ops.py +802 -0
  435. mindspore/ops/_grad_experimental/grad_nn_ops.py +231 -0
  436. mindspore/ops/_grad_experimental/grad_quant_ops.py +238 -0
  437. mindspore/ops/_grad_experimental/grad_sparse.py +342 -0
  438. mindspore/ops/_grad_experimental/grad_sparse_ops.py +399 -0
  439. mindspore/ops/_grad_experimental/taylor_rule.py +220 -0
  440. mindspore/ops/_op_impl/__init__.py +23 -0
  441. mindspore/ops/_op_impl/_custom_op/__init__.py +39 -0
  442. mindspore/ops/_op_impl/_custom_op/_basic.py +158 -0
  443. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +279 -0
  444. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +156 -0
  445. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +109 -0
  446. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +125 -0
  447. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +105 -0
  448. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +124 -0
  449. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +116 -0
  450. mindspore/ops/_op_impl/_custom_op/correction_mul.py +89 -0
  451. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +196 -0
  452. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +366 -0
  453. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +162 -0
  454. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +136 -0
  455. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +206 -0
  456. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +88 -0
  457. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +128 -0
  458. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +199 -0
  459. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +88 -0
  460. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +156 -0
  461. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +184 -0
  462. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +143 -0
  463. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +169 -0
  464. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +548 -0
  465. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +881 -0
  466. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +278 -0
  467. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +200 -0
  468. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +334 -0
  469. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +255 -0
  470. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +222 -0
  471. mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +644 -0
  472. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +488 -0
  473. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +87 -0
  474. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +129 -0
  475. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +121 -0
  476. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +352 -0
  477. mindspore/ops/_op_impl/aicpu/__init__.py +441 -0
  478. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  479. mindspore/ops/_op_impl/aicpu/acos.py +32 -0
  480. mindspore/ops/_op_impl/aicpu/acos_grad.py +33 -0
  481. mindspore/ops/_op_impl/aicpu/acosh.py +34 -0
  482. mindspore/ops/_op_impl/aicpu/acosh_grad.py +35 -0
  483. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
  484. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  485. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
  486. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
  487. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
  488. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
  489. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
  490. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
  491. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  492. mindspore/ops/_op_impl/aicpu/add_n.py +41 -0
  493. mindspore/ops/_op_impl/aicpu/add_v2.py +40 -0
  494. mindspore/ops/_op_impl/aicpu/addcdiv.py +41 -0
  495. mindspore/ops/_op_impl/aicpu/addcmul.py +47 -0
  496. mindspore/ops/_op_impl/aicpu/adjust_contrastv2.py +32 -0
  497. mindspore/ops/_op_impl/aicpu/adjust_hue.py +31 -0
  498. mindspore/ops/_op_impl/aicpu/adjust_saturation.py +32 -0
  499. mindspore/ops/_op_impl/aicpu/affine_grid.py +33 -0
  500. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  501. mindspore/ops/_op_impl/aicpu/angle.py +31 -0
  502. mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
  503. mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
  504. mindspore/ops/_op_impl/aicpu/argmax_with_value.py +43 -0
  505. mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
  506. mindspore/ops/_op_impl/aicpu/asin.py +32 -0
  507. mindspore/ops/_op_impl/aicpu/asin_grad.py +33 -0
  508. mindspore/ops/_op_impl/aicpu/asinh.py +34 -0
  509. mindspore/ops/_op_impl/aicpu/asinh_grad.py +35 -0
  510. mindspore/ops/_op_impl/aicpu/atanh.py +34 -0
  511. mindspore/ops/_op_impl/aicpu/avgpool_grad_v1.py +37 -0
  512. mindspore/ops/_op_impl/aicpu/avgpool_v1.py +36 -0
  513. mindspore/ops/_op_impl/aicpu/bartlett_window.py +36 -0
  514. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
  515. mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
  516. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  517. mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
  518. mindspore/ops/_op_impl/aicpu/betainc.py +31 -0
  519. mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
  520. mindspore/ops/_op_impl/aicpu/bias_add_grad.py +42 -0
  521. mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
  522. mindspore/ops/_op_impl/aicpu/blackman_window.py +36 -0
  523. mindspore/ops/_op_impl/aicpu/broadcast_to.py +58 -0
  524. mindspore/ops/_op_impl/aicpu/bucketize.py +34 -0
  525. mindspore/ops/_op_impl/aicpu/cache_swap_table.py +102 -0
  526. mindspore/ops/_op_impl/aicpu/cast.py +225 -0
  527. mindspore/ops/_op_impl/aicpu/cauchy.py +33 -0
  528. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  529. mindspore/ops/_op_impl/aicpu/check_numerics.py +33 -0
  530. mindspore/ops/_op_impl/aicpu/cholesky.py +32 -0
  531. mindspore/ops/_op_impl/aicpu/cholesky_inverse.py +31 -0
  532. mindspore/ops/_op_impl/aicpu/cholesky_solve.py +33 -0
  533. mindspore/ops/_op_impl/aicpu/choleskygrad.py +32 -0
  534. mindspore/ops/_op_impl/aicpu/coalesce.py +37 -0
  535. mindspore/ops/_op_impl/aicpu/col2im.py +38 -0
  536. mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
  537. mindspore/ops/_op_impl/aicpu/compare_and_bitpack.py +37 -0
  538. mindspore/ops/_op_impl/aicpu/complex.py +32 -0
  539. mindspore/ops/_op_impl/aicpu/complex_abs.py +31 -0
  540. mindspore/ops/_op_impl/aicpu/compute_accidental_hits.py +44 -0
  541. mindspore/ops/_op_impl/aicpu/concat.py +57 -0
  542. mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
  543. mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
  544. mindspore/ops/_op_impl/aicpu/conj.py +42 -0
  545. mindspore/ops/_op_impl/aicpu/conjugate_transpose.py +58 -0
  546. mindspore/ops/_op_impl/aicpu/cos.py +34 -0
  547. mindspore/ops/_op_impl/aicpu/cosh.py +34 -0
  548. mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
  549. mindspore/ops/_op_impl/aicpu/crop_and_resize.py +69 -0
  550. mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_boxes.py +68 -0
  551. mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
  552. mindspore/ops/_op_impl/aicpu/cross.py +42 -0
  553. mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_dense.py +48 -0
  554. mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_sparse_tensor.py +51 -0
  555. mindspore/ops/_op_impl/aicpu/ctc_greedy_decoder.py +35 -0
  556. mindspore/ops/_op_impl/aicpu/ctc_loss_v2.py +43 -0
  557. mindspore/ops/_op_impl/aicpu/ctc_loss_v2_grad.py +45 -0
  558. mindspore/ops/_op_impl/aicpu/ctcloss.py +38 -0
  559. mindspore/ops/_op_impl/aicpu/cummax.py +41 -0
  560. mindspore/ops/_op_impl/aicpu/cumprod.py +58 -0
  561. mindspore/ops/_op_impl/aicpu/cumsum.py +58 -0
  562. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
  563. mindspore/ops/_op_impl/aicpu/data_format_vec_permute.py +32 -0
  564. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  565. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
  566. mindspore/ops/_op_impl/aicpu/dense_to_csr_sparse_matrix.py +49 -0
  567. mindspore/ops/_op_impl/aicpu/dense_to_dense_set_operation.py +45 -0
  568. mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
  569. mindspore/ops/_op_impl/aicpu/depth_to_space.py +44 -0
  570. mindspore/ops/_op_impl/aicpu/diag.py +36 -0
  571. mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
  572. mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
  573. mindspore/ops/_op_impl/aicpu/digamma.py +31 -0
  574. mindspore/ops/_op_impl/aicpu/div.py +41 -0
  575. mindspore/ops/_op_impl/aicpu/div_no_nan.py +35 -0
  576. mindspore/ops/_op_impl/aicpu/dropout2d.py +42 -0
  577. mindspore/ops/_op_impl/aicpu/dropout3d.py +42 -0
  578. mindspore/ops/_op_impl/aicpu/dropout_genmask.py +41 -0
  579. mindspore/ops/_op_impl/aicpu/dropout_genmask_v3.py +32 -0
  580. mindspore/ops/_op_impl/aicpu/dynamic_stitch.py +42 -0
  581. mindspore/ops/_op_impl/aicpu/edit_distance.py +56 -0
  582. mindspore/ops/_op_impl/aicpu/eig.py +35 -0
  583. mindspore/ops/_op_impl/aicpu/embedding_lookup.py +102 -0
  584. mindspore/ops/_op_impl/aicpu/end_of_sequence.py +30 -0
  585. mindspore/ops/_op_impl/aicpu/environ_create.py +28 -0
  586. mindspore/ops/_op_impl/aicpu/environ_destroy_all.py +28 -0
  587. mindspore/ops/_op_impl/aicpu/environ_get.py +41 -0
  588. mindspore/ops/_op_impl/aicpu/environ_set.py +40 -0
  589. mindspore/ops/_op_impl/aicpu/eps.py +32 -0
  590. mindspore/ops/_op_impl/aicpu/equal.py +41 -0
  591. mindspore/ops/_op_impl/aicpu/exp.py +37 -0
  592. mindspore/ops/_op_impl/aicpu/expand.py +45 -0
  593. mindspore/ops/_op_impl/aicpu/expand_dims.py +42 -0
  594. mindspore/ops/_op_impl/aicpu/expm1.py +34 -0
  595. mindspore/ops/_op_impl/aicpu/extract_glimpse.py +35 -0
  596. mindspore/ops/_op_impl/aicpu/eye.py +44 -0
  597. mindspore/ops/_op_impl/aicpu/fft_with_size.py +47 -0
  598. mindspore/ops/_op_impl/aicpu/fill_diagonal.py +39 -0
  599. mindspore/ops/_op_impl/aicpu/fill_v2.py +58 -0
  600. mindspore/ops/_op_impl/aicpu/flatten.py +43 -0
  601. mindspore/ops/_op_impl/aicpu/floor_div.py +38 -0
  602. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  603. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  604. mindspore/ops/_op_impl/aicpu/fractional_avg_pool.py +41 -0
  605. mindspore/ops/_op_impl/aicpu/fractional_avg_pool_grad.py +41 -0
  606. mindspore/ops/_op_impl/aicpu/fractional_max_pool.py +41 -0
  607. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_grad_with_fixed_ksize.py +43 -0
  608. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +65 -0
  609. mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad.py +42 -0
  610. mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad_with_fixed_ksize.py +42 -0
  611. mindspore/ops/_op_impl/aicpu/fractional_max_pool_with_fixed_ksize.py +49 -0
  612. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  613. mindspore/ops/_op_impl/aicpu/fused_sparse_adam.py +46 -0
  614. mindspore/ops/_op_impl/aicpu/fused_sparse_ftrl.py +41 -0
  615. mindspore/ops/_op_impl/aicpu/fused_sparse_lazy_adam.py +46 -0
  616. mindspore/ops/_op_impl/aicpu/fused_sparse_proximal_adagrad.py +39 -0
  617. mindspore/ops/_op_impl/aicpu/gamma.py +38 -0
  618. mindspore/ops/_op_impl/aicpu/gather.py +46 -0
  619. mindspore/ops/_op_impl/aicpu/gather_d.py +79 -0
  620. mindspore/ops/_op_impl/aicpu/gather_d_grad_v2.py +79 -0
  621. mindspore/ops/_op_impl/aicpu/gather_grad.py +54 -0
  622. mindspore/ops/_op_impl/aicpu/gather_nd.py +56 -0
  623. mindspore/ops/_op_impl/aicpu/gcd.py +32 -0
  624. mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
  625. mindspore/ops/_op_impl/aicpu/geqrf.py +32 -0
  626. mindspore/ops/_op_impl/aicpu/get_next.py +39 -0
  627. mindspore/ops/_op_impl/aicpu/glu.py +33 -0
  628. mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
  629. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  630. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  631. mindspore/ops/_op_impl/aicpu/grid_sampler_2d.py +35 -0
  632. mindspore/ops/_op_impl/aicpu/grid_sampler_2d_grad.py +38 -0
  633. mindspore/ops/_op_impl/aicpu/grid_sampler_3d.py +34 -0
  634. mindspore/ops/_op_impl/aicpu/grid_sampler_3d_grad.py +38 -0
  635. mindspore/ops/_op_impl/aicpu/hamming_window.py +57 -0
  636. mindspore/ops/_op_impl/aicpu/hard_sigmoid.py +32 -0
  637. mindspore/ops/_op_impl/aicpu/hard_sigmoid_grad.py +33 -0
  638. mindspore/ops/_op_impl/aicpu/heaviside.py +40 -0
  639. mindspore/ops/_op_impl/aicpu/histogram.py +35 -0
  640. mindspore/ops/_op_impl/aicpu/hsv_to_rgb.py +32 -0
  641. mindspore/ops/_op_impl/aicpu/hypot.py +32 -0
  642. mindspore/ops/_op_impl/aicpu/identity.py +42 -0
  643. mindspore/ops/_op_impl/aicpu/identity_n.py +41 -0
  644. mindspore/ops/_op_impl/aicpu/igamma.py +30 -0
  645. mindspore/ops/_op_impl/aicpu/igammac.py +30 -0
  646. mindspore/ops/_op_impl/aicpu/igammagrada.py +30 -0
  647. mindspore/ops/_op_impl/aicpu/im2col.py +43 -0
  648. mindspore/ops/_op_impl/aicpu/imag.py +31 -0
  649. mindspore/ops/_op_impl/aicpu/index_fill.py +54 -0
  650. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  651. mindspore/ops/_op_impl/aicpu/init_data_set_queue.py +27 -0
  652. mindspore/ops/_op_impl/aicpu/inplace_index_add.py +39 -0
  653. mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
  654. mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
  655. mindspore/ops/_op_impl/aicpu/is_finite.py +40 -0
  656. mindspore/ops/_op_impl/aicpu/is_inf.py +31 -0
  657. mindspore/ops/_op_impl/aicpu/is_nan.py +31 -0
  658. mindspore/ops/_op_impl/aicpu/kldivloss.py +34 -0
  659. mindspore/ops/_op_impl/aicpu/kldivlossgrad.py +35 -0
  660. mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
  661. mindspore/ops/_op_impl/aicpu/lcm.py +32 -0
  662. mindspore/ops/_op_impl/aicpu/left_shift.py +38 -0
  663. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  664. mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
  665. mindspore/ops/_op_impl/aicpu/lgamma.py +33 -0
  666. mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +57 -0
  667. mindspore/ops/_op_impl/aicpu/linspace.py +33 -0
  668. mindspore/ops/_op_impl/aicpu/list_diff.py +50 -0
  669. mindspore/ops/_op_impl/aicpu/log.py +37 -0
  670. mindspore/ops/_op_impl/aicpu/log1p.py +34 -0
  671. mindspore/ops/_op_impl/aicpu/log_matrix_determinant.py +31 -0
  672. mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
  673. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +37 -0
  674. mindspore/ops/_op_impl/aicpu/logical_xor.py +30 -0
  675. mindspore/ops/_op_impl/aicpu/logit.py +33 -0
  676. mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
  677. mindspore/ops/_op_impl/aicpu/logspace.py +36 -0
  678. mindspore/ops/_op_impl/aicpu/lower_bound.py +47 -0
  679. mindspore/ops/_op_impl/aicpu/lstsq.py +34 -0
  680. mindspore/ops/_op_impl/aicpu/lu.py +39 -0
  681. mindspore/ops/_op_impl/aicpu/lu_solve.py +32 -0
  682. mindspore/ops/_op_impl/aicpu/lu_unpack.py +114 -0
  683. mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +49 -0
  684. mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
  685. mindspore/ops/_op_impl/aicpu/masked_scatter.py +40 -0
  686. mindspore/ops/_op_impl/aicpu/masked_select.py +31 -0
  687. mindspore/ops/_op_impl/aicpu/masked_select_grad.py +35 -0
  688. mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
  689. mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
  690. mindspore/ops/_op_impl/aicpu/matrix_determinant.py +30 -0
  691. mindspore/ops/_op_impl/aicpu/matrix_diag_part_v3.py +54 -0
  692. mindspore/ops/_op_impl/aicpu/matrix_diag_v3.py +56 -0
  693. mindspore/ops/_op_impl/aicpu/matrix_exp.py +34 -0
  694. mindspore/ops/_op_impl/aicpu/matrix_inverse.py +31 -0
  695. mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
  696. mindspore/ops/_op_impl/aicpu/matrix_power.py +37 -0
  697. mindspore/ops/_op_impl/aicpu/matrix_set_diag_v3.py +54 -0
  698. mindspore/ops/_op_impl/aicpu/matrix_solve.py +35 -0
  699. mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
  700. mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
  701. mindspore/ops/_op_impl/aicpu/max_pool3d_grad_with_argmax.py +60 -0
  702. mindspore/ops/_op_impl/aicpu/max_pool3d_with_argmax.py +59 -0
  703. mindspore/ops/_op_impl/aicpu/max_unpool2d.py +57 -0
  704. mindspore/ops/_op_impl/aicpu/max_unpool2d_grad.py +58 -0
  705. mindspore/ops/_op_impl/aicpu/max_unpool3d.py +57 -0
  706. mindspore/ops/_op_impl/aicpu/max_unpool3d_grad.py +58 -0
  707. mindspore/ops/_op_impl/aicpu/maximum_grad_grad.py +40 -0
  708. mindspore/ops/_op_impl/aicpu/maxpool_grad_v1.py +46 -0
  709. mindspore/ops/_op_impl/aicpu/maxpool_v1.py +42 -0
  710. mindspore/ops/_op_impl/aicpu/median.py +39 -0
  711. mindspore/ops/_op_impl/aicpu/median_grad.py +45 -0
  712. mindspore/ops/_op_impl/aicpu/meshgrid.py +41 -0
  713. mindspore/ops/_op_impl/aicpu/minimum_grad_grad.py +40 -0
  714. mindspore/ops/_op_impl/aicpu/mirror_pad.py +50 -0
  715. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +48 -0
  716. mindspore/ops/_op_impl/aicpu/mul.py +43 -0
  717. mindspore/ops/_op_impl/aicpu/mul_no_nan.py +42 -0
  718. mindspore/ops/_op_impl/aicpu/multi_margin_loss.py +37 -0
  719. mindspore/ops/_op_impl/aicpu/multi_margin_loss_grad.py +41 -0
  720. mindspore/ops/_op_impl/aicpu/multilabel_margin_loss_grad.py +37 -0
  721. mindspore/ops/_op_impl/aicpu/multinomial.py +47 -0
  722. mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
  723. mindspore/ops/_op_impl/aicpu/mvlgamma.py +32 -0
  724. mindspore/ops/_op_impl/aicpu/mvlgamma_grad.py +33 -0
  725. mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
  726. mindspore/ops/_op_impl/aicpu/neg.py +36 -0
  727. mindspore/ops/_op_impl/aicpu/nextafter.py +32 -0
  728. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  729. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  730. mindspore/ops/_op_impl/aicpu/no_repeat_ngram.py +34 -0
  731. mindspore/ops/_op_impl/aicpu/non_deterministic_ints.py +33 -0
  732. mindspore/ops/_op_impl/aicpu/non_max_suppression.py +36 -0
  733. mindspore/ops/_op_impl/aicpu/non_max_suppression_with_overlaps.py +35 -0
  734. mindspore/ops/_op_impl/aicpu/non_zero.py +43 -0
  735. mindspore/ops/_op_impl/aicpu/not_equal.py +39 -0
  736. mindspore/ops/_op_impl/aicpu/nth_element.py +39 -0
  737. mindspore/ops/_op_impl/aicpu/nuclear_norm.py +33 -0
  738. mindspore/ops/_op_impl/aicpu/one_hot.py +116 -0
  739. mindspore/ops/_op_impl/aicpu/ones_like.py +39 -0
  740. mindspore/ops/_op_impl/aicpu/orgqr.py +34 -0
  741. mindspore/ops/_op_impl/aicpu/pad_and_shift.py +33 -0
  742. mindspore/ops/_op_impl/aicpu/pad_v3.py +61 -0
  743. mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +59 -0
  744. mindspore/ops/_op_impl/aicpu/padding.py +41 -0
  745. mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +54 -0
  746. mindspore/ops/_op_impl/aicpu/pdist_grad.py +33 -0
  747. mindspore/ops/_op_impl/aicpu/poisson.py +37 -0
  748. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  749. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  750. mindspore/ops/_op_impl/aicpu/pow.py +39 -0
  751. mindspore/ops/_op_impl/aicpu/print_tensor.py +39 -0
  752. mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +113 -0
  753. mindspore/ops/_op_impl/aicpu/qr.py +36 -0
  754. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  755. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  756. mindspore/ops/_op_impl/aicpu/ragged_range.py +49 -0
  757. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  758. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
  759. mindspore/ops/_op_impl/aicpu/random_categorical.py +68 -0
  760. mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +36 -0
  761. mindspore/ops/_op_impl/aicpu/random_gamma.py +38 -0
  762. mindspore/ops/_op_impl/aicpu/random_poisson.py +134 -0
  763. mindspore/ops/_op_impl/aicpu/random_shuffle.py +47 -0
  764. mindspore/ops/_op_impl/aicpu/randperm.py +38 -0
  765. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  766. mindspore/ops/_op_impl/aicpu/range.py +36 -0
  767. mindspore/ops/_op_impl/aicpu/range_v2.py +35 -0
  768. mindspore/ops/_op_impl/aicpu/real.py +31 -0
  769. mindspore/ops/_op_impl/aicpu/real_div.py +40 -0
  770. mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
  771. mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
  772. mindspore/ops/_op_impl/aicpu/reduce_mean.py +57 -0
  773. mindspore/ops/_op_impl/aicpu/reduce_prod.py +57 -0
  774. mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
  775. mindspore/ops/_op_impl/aicpu/relu_grad_v3.py +41 -0
  776. mindspore/ops/_op_impl/aicpu/relu_v3.py +38 -0
  777. mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +96 -0
  778. mindspore/ops/_op_impl/aicpu/reshape.py +42 -0
  779. mindspore/ops/_op_impl/aicpu/resize_area.py +40 -0
  780. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +20 -0
  781. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +19 -0
  782. mindspore/ops/_op_impl/aicpu/resize_bilinear.py +32 -0
  783. mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +32 -0
  784. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +36 -0
  785. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +35 -0
  786. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  787. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  788. mindspore/ops/_op_impl/aicpu/reverse_sequence.py +55 -0
  789. mindspore/ops/_op_impl/aicpu/reversev2.py +54 -0
  790. mindspore/ops/_op_impl/aicpu/rgb_to_hsv.py +32 -0
  791. mindspore/ops/_op_impl/aicpu/right_shift.py +38 -0
  792. mindspore/ops/_op_impl/aicpu/rnnt_loss.py +35 -0
  793. mindspore/ops/_op_impl/aicpu/round.py +34 -0
  794. mindspore/ops/_op_impl/aicpu/rsqrt.py +33 -0
  795. mindspore/ops/_op_impl/aicpu/rsqrt_grad.py +36 -0
  796. mindspore/ops/_op_impl/aicpu/sample_distorted_bounding_box_v2.py +49 -0
  797. mindspore/ops/_op_impl/aicpu/scale_and_translate.py +52 -0
  798. mindspore/ops/_op_impl/aicpu/scale_and_translate_grad.py +36 -0
  799. mindspore/ops/_op_impl/aicpu/scatter.py +79 -0
  800. mindspore/ops/_op_impl/aicpu/scatter_add_with_axis.py +53 -0
  801. mindspore/ops/_op_impl/aicpu/scatter_elements.py +39 -0
  802. mindspore/ops/_op_impl/aicpu/scatter_nd.py +59 -0
  803. mindspore/ops/_op_impl/aicpu/scatter_nd_max.py +54 -0
  804. mindspore/ops/_op_impl/aicpu/scatter_nd_min.py +54 -0
  805. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +59 -0
  806. mindspore/ops/_op_impl/aicpu/search_sorted.py +44 -0
  807. mindspore/ops/_op_impl/aicpu/segment_max.py +52 -0
  808. mindspore/ops/_op_impl/aicpu/segment_mean.py +56 -0
  809. mindspore/ops/_op_impl/aicpu/segment_min.py +52 -0
  810. mindspore/ops/_op_impl/aicpu/segment_prod.py +56 -0
  811. mindspore/ops/_op_impl/aicpu/segment_sum.py +56 -0
  812. mindspore/ops/_op_impl/aicpu/select.py +45 -0
  813. mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
  814. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  815. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  816. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  817. mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
  818. mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
  819. mindspore/ops/_op_impl/aicpu/set_size.py +38 -0
  820. mindspore/ops/_op_impl/aicpu/sign.py +36 -0
  821. mindspore/ops/_op_impl/aicpu/sin.py +34 -0
  822. mindspore/ops/_op_impl/aicpu/sinc.py +43 -0
  823. mindspore/ops/_op_impl/aicpu/sinh.py +34 -0
  824. mindspore/ops/_op_impl/aicpu/slice.py +59 -0
  825. mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
  826. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  827. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  828. mindspore/ops/_op_impl/aicpu/sort.py +39 -0
  829. mindspore/ops/_op_impl/aicpu/space_to_depth.py +44 -0
  830. mindspore/ops/_op_impl/aicpu/sparse_addmm.py +87 -0
  831. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +80 -0
  832. mindspore/ops/_op_impl/aicpu/sparse_apply_centered_rms_prop.py +105 -0
  833. mindspore/ops/_op_impl/aicpu/sparse_apply_momentum.py +80 -0
  834. mindspore/ops/_op_impl/aicpu/sparse_apply_proximal_gradient_descent.py +79 -0
  835. mindspore/ops/_op_impl/aicpu/sparse_concat.py +59 -0
  836. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  837. mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_add.py +58 -0
  838. mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_div.py +58 -0
  839. mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_mul.py +58 -0
  840. mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
  841. mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
  842. mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
  843. mindspore/ops/_op_impl/aicpu/sparse_matrix_nnz.py +81 -0
  844. mindspore/ops/_op_impl/aicpu/sparse_matrix_transpose.py +116 -0
  845. mindspore/ops/_op_impl/aicpu/sparse_reorder.py +56 -0
  846. mindspore/ops/_op_impl/aicpu/sparse_reshape.py +34 -0
  847. mindspore/ops/_op_impl/aicpu/sparse_segment_mean_grad.py +36 -0
  848. mindspore/ops/_op_impl/aicpu/sparse_segment_mean_with_num_segments.py +44 -0
  849. mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n.py +43 -0
  850. mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_grad.py +38 -0
  851. mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_with_num_segments.py +44 -0
  852. mindspore/ops/_op_impl/aicpu/sparse_segment_sum.py +49 -0
  853. mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
  854. mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
  855. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
  856. mindspore/ops/_op_impl/aicpu/sparse_softmax.py +33 -0
  857. mindspore/ops/_op_impl/aicpu/sparse_softmax_cross_entropy_with_logits_v2.py +35 -0
  858. mindspore/ops/_op_impl/aicpu/sparse_sparse_maximum.py +53 -0
  859. mindspore/ops/_op_impl/aicpu/sparse_sparse_minimum.py +53 -0
  860. mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_add.py +84 -0
  861. mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_mat_mul.py +190 -0
  862. mindspore/ops/_op_impl/aicpu/sparse_tensor_to_csr_sparse_matrix.py +51 -0
  863. mindspore/ops/_op_impl/aicpu/sparse_to_dense_v2.py +73 -0
  864. mindspore/ops/_op_impl/aicpu/split.py +45 -0
  865. mindspore/ops/_op_impl/aicpu/sqrt.py +34 -0
  866. mindspore/ops/_op_impl/aicpu/sqrt_grad.py +35 -0
  867. mindspore/ops/_op_impl/aicpu/square.py +35 -0
  868. mindspore/ops/_op_impl/aicpu/squared_difference.py +37 -0
  869. mindspore/ops/_op_impl/aicpu/squeeze.py +42 -0
  870. mindspore/ops/_op_impl/aicpu/sspaddmm.py +97 -0
  871. mindspore/ops/_op_impl/aicpu/stack.py +45 -0
  872. mindspore/ops/_op_impl/aicpu/stack_push_pop.py +87 -0
  873. mindspore/ops/_op_impl/aicpu/standard_laplace.py +34 -0
  874. mindspore/ops/_op_impl/aicpu/standard_normal.py +34 -0
  875. mindspore/ops/_op_impl/aicpu/stateless_dropout_genmask.py +37 -0
  876. mindspore/ops/_op_impl/aicpu/stft.py +70 -0
  877. mindspore/ops/_op_impl/aicpu/strided_slice.py +43 -0
  878. mindspore/ops/_op_impl/aicpu/strided_slice_grad.py +50 -0
  879. mindspore/ops/_op_impl/aicpu/sub.py +41 -0
  880. mindspore/ops/_op_impl/aicpu/sub_and_filter.py +36 -0
  881. mindspore/ops/_op_impl/aicpu/tan.py +34 -0
  882. mindspore/ops/_op_impl/aicpu/tanh.py +34 -0
  883. mindspore/ops/_op_impl/aicpu/tanh_grad.py +35 -0
  884. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  885. mindspore/ops/_op_impl/aicpu/tile.py +56 -0
  886. mindspore/ops/_op_impl/aicpu/topk.py +34 -0
  887. mindspore/ops/_op_impl/aicpu/trace.py +40 -0
  888. mindspore/ops/_op_impl/aicpu/tracegrad.py +41 -0
  889. mindspore/ops/_op_impl/aicpu/trans_data.py +35 -0
  890. mindspore/ops/_op_impl/aicpu/transpose.py +58 -0
  891. mindspore/ops/_op_impl/aicpu/tridiagonal_matmul.py +42 -0
  892. mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
  893. mindspore/ops/_op_impl/aicpu/tril.py +42 -0
  894. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  895. mindspore/ops/_op_impl/aicpu/triplet_margin_loss.py +62 -0
  896. mindspore/ops/_op_impl/aicpu/triu.py +43 -0
  897. mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
  898. mindspore/ops/_op_impl/aicpu/truncated_normal.py +39 -0
  899. mindspore/ops/_op_impl/aicpu/uniform.py +36 -0
  900. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +41 -0
  901. mindspore/ops/_op_impl/aicpu/uniform_int.py +36 -0
  902. mindspore/ops/_op_impl/aicpu/uniform_real.py +33 -0
  903. mindspore/ops/_op_impl/aicpu/unique.py +31 -0
  904. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +47 -0
  905. mindspore/ops/_op_impl/aicpu/unique_with_pad.py +32 -0
  906. mindspore/ops/_op_impl/aicpu/unravel_index.py +32 -0
  907. mindspore/ops/_op_impl/aicpu/unsorted_segment_prod.py +53 -0
  908. mindspore/ops/_op_impl/aicpu/unsorted_segment_sum.py +57 -0
  909. mindspore/ops/_op_impl/aicpu/unstack.py +45 -0
  910. mindspore/ops/_op_impl/aicpu/update_cache.py +44 -0
  911. mindspore/ops/_op_impl/aicpu/upper_bound.py +47 -0
  912. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +42 -0
  913. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +49 -0
  914. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +40 -0
  915. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +50 -0
  916. mindspore/ops/_op_impl/aicpu/xdivy.py +35 -0
  917. mindspore/ops/_op_impl/aicpu/xlogy.py +33 -0
  918. mindspore/ops/_op_impl/aicpu/zeros_like.py +42 -0
  919. mindspore/ops/_op_impl/aicpu/zeta.py +31 -0
  920. mindspore/ops/_op_impl/akg/__init__.py +19 -0
  921. mindspore/ops/_op_impl/akg/ascend/__init__.py +48 -0
  922. mindspore/ops/_op_impl/akg/ascend/abs.py +35 -0
  923. mindspore/ops/_op_impl/akg/ascend/add.py +42 -0
  924. mindspore/ops/_op_impl/akg/ascend/add_n.py +37 -0
  925. mindspore/ops/_op_impl/akg/ascend/batchmatmul.py +33 -0
  926. mindspore/ops/_op_impl/akg/ascend/cast.py +46 -0
  927. mindspore/ops/_op_impl/akg/ascend/equal.py +35 -0
  928. mindspore/ops/_op_impl/akg/ascend/exp.py +35 -0
  929. mindspore/ops/_op_impl/akg/ascend/expand_dims.py +33 -0
  930. mindspore/ops/_op_impl/akg/ascend/greater.py +34 -0
  931. mindspore/ops/_op_impl/akg/ascend/greater_equal.py +35 -0
  932. mindspore/ops/_op_impl/akg/ascend/less.py +31 -0
  933. mindspore/ops/_op_impl/akg/ascend/less_equal.py +35 -0
  934. mindspore/ops/_op_impl/akg/ascend/load_im2col.py +33 -0
  935. mindspore/ops/_op_impl/akg/ascend/log.py +34 -0
  936. mindspore/ops/_op_impl/akg/ascend/maximum.py +36 -0
  937. mindspore/ops/_op_impl/akg/ascend/minimum.py +39 -0
  938. mindspore/ops/_op_impl/akg/ascend/mul.py +41 -0
  939. mindspore/ops/_op_impl/akg/ascend/neg.py +37 -0
  940. mindspore/ops/_op_impl/akg/ascend/pow.py +35 -0
  941. mindspore/ops/_op_impl/akg/ascend/prod_force_se_a.py +33 -0
  942. mindspore/ops/_op_impl/akg/ascend/real_div.py +36 -0
  943. mindspore/ops/_op_impl/akg/ascend/reciprocal.py +32 -0
  944. mindspore/ops/_op_impl/akg/ascend/reduce_max.py +32 -0
  945. mindspore/ops/_op_impl/akg/ascend/reduce_min.py +32 -0
  946. mindspore/ops/_op_impl/akg/ascend/reduce_sum.py +37 -0
  947. mindspore/ops/_op_impl/akg/ascend/rsqrt.py +35 -0
  948. mindspore/ops/_op_impl/akg/ascend/select.py +37 -0
  949. mindspore/ops/_op_impl/akg/ascend/sqrt.py +35 -0
  950. mindspore/ops/_op_impl/akg/ascend/square.py +35 -0
  951. mindspore/ops/_op_impl/akg/ascend/sub.py +42 -0
  952. mindspore/ops/_op_impl/akg/cpu/__init__.py +23 -0
  953. mindspore/ops/_op_impl/akg/cpu/coo2csr.py +29 -0
  954. mindspore/ops/_op_impl/akg/cpu/csr2coo.py +29 -0
  955. mindspore/ops/_op_impl/akg/cpu/csr_gather.py +33 -0
  956. mindspore/ops/_op_impl/akg/cpu/csr_mm.py +34 -0
  957. mindspore/ops/_op_impl/akg/cpu/csr_mul.py +33 -0
  958. mindspore/ops/_op_impl/akg/cpu/csr_mv.py +33 -0
  959. mindspore/ops/_op_impl/akg/cpu/csr_reduce_sum.py +31 -0
  960. mindspore/ops/_op_impl/akg/gpu/__init__.py +24 -0
  961. mindspore/ops/_op_impl/akg/gpu/coo2csr.py +29 -0
  962. mindspore/ops/_op_impl/akg/gpu/csr2coo.py +29 -0
  963. mindspore/ops/_op_impl/akg/gpu/csr_div.py +36 -0
  964. mindspore/ops/_op_impl/akg/gpu/csr_gather.py +33 -0
  965. mindspore/ops/_op_impl/akg/gpu/csr_mm.py +37 -0
  966. mindspore/ops/_op_impl/akg/gpu/csr_mul.py +36 -0
  967. mindspore/ops/_op_impl/akg/gpu/csr_mv.py +36 -0
  968. mindspore/ops/_op_impl/akg/gpu/csr_reduce_sum.py +33 -0
  969. mindspore/ops/_op_impl/cpu/__init__.py +78 -0
  970. mindspore/ops/_op_impl/cpu/adam.py +49 -0
  971. mindspore/ops/_op_impl/cpu/adam_weight_decay.py +47 -0
  972. mindspore/ops/_op_impl/cpu/arg_max.py +30 -0
  973. mindspore/ops/_op_impl/cpu/arg_max_with_value.py +31 -0
  974. mindspore/ops/_op_impl/cpu/arg_min_with_value.py +31 -0
  975. mindspore/ops/_op_impl/cpu/buffer_append.py +28 -0
  976. mindspore/ops/_op_impl/cpu/buffer_get.py +28 -0
  977. mindspore/ops/_op_impl/cpu/buffer_sample.py +28 -0
  978. mindspore/ops/_op_impl/cpu/cast.py +171 -0
  979. mindspore/ops/_op_impl/cpu/concat_offset.py +38 -0
  980. mindspore/ops/_op_impl/cpu/conv2d.py +30 -0
  981. mindspore/ops/_op_impl/cpu/conv3d.py +30 -0
  982. mindspore/ops/_op_impl/cpu/div.py +32 -0
  983. mindspore/ops/_op_impl/cpu/dropout.py +31 -0
  984. mindspore/ops/_op_impl/cpu/dropout_grad.py +30 -0
  985. mindspore/ops/_op_impl/cpu/dynamic_shape.py +42 -0
  986. mindspore/ops/_op_impl/cpu/dynamic_stitch.py +41 -0
  987. mindspore/ops/_op_impl/cpu/equal_count.py +30 -0
  988. mindspore/ops/_op_impl/cpu/gather_d.py +49 -0
  989. mindspore/ops/_op_impl/cpu/gather_d_grad.py +38 -0
  990. mindspore/ops/_op_impl/cpu/gather_d_grad_v2.py +40 -0
  991. mindspore/ops/_op_impl/cpu/gather_v2.py +40 -0
  992. mindspore/ops/_op_impl/cpu/hsigmoid.py +33 -0
  993. mindspore/ops/_op_impl/cpu/hsigmoid_grad.py +34 -0
  994. mindspore/ops/_op_impl/cpu/hswish.py +32 -0
  995. mindspore/ops/_op_impl/cpu/hswish_grad.py +33 -0
  996. mindspore/ops/_op_impl/cpu/identity_n.py +40 -0
  997. mindspore/ops/_op_impl/cpu/is_finite.py +39 -0
  998. mindspore/ops/_op_impl/cpu/l2loss.py +30 -0
  999. mindspore/ops/_op_impl/cpu/layer_norm.py +36 -0
  1000. mindspore/ops/_op_impl/cpu/layer_norm_grad.py +38 -0
  1001. mindspore/ops/_op_impl/cpu/maximum.py +35 -0
  1002. mindspore/ops/_op_impl/cpu/maximum_grad.py +47 -0
  1003. mindspore/ops/_op_impl/cpu/minimum.py +40 -0
  1004. mindspore/ops/_op_impl/cpu/minimum_grad.py +51 -0
  1005. mindspore/ops/_op_impl/cpu/mirror_pad.py +36 -0
  1006. mindspore/ops/_op_impl/cpu/mirror_pad_grad.py +36 -0
  1007. mindspore/ops/_op_impl/cpu/mul.py +32 -0
  1008. mindspore/ops/_op_impl/cpu/one_hot.py +31 -0
  1009. mindspore/ops/_op_impl/cpu/pad.py +32 -0
  1010. mindspore/ops/_op_impl/cpu/pow.py +32 -0
  1011. mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +42 -0
  1012. mindspore/ops/_op_impl/cpu/pyexecute.py +29 -0
  1013. mindspore/ops/_op_impl/cpu/pyfunc.py +29 -0
  1014. mindspore/ops/_op_impl/cpu/range.py +34 -0
  1015. mindspore/ops/_op_impl/cpu/real_div.py +33 -0
  1016. mindspore/ops/_op_impl/cpu/reduce_all.py +29 -0
  1017. mindspore/ops/_op_impl/cpu/reduce_any.py +29 -0
  1018. mindspore/ops/_op_impl/cpu/reduce_max.py +32 -0
  1019. mindspore/ops/_op_impl/cpu/reduce_mean.py +40 -0
  1020. mindspore/ops/_op_impl/cpu/reduce_min.py +32 -0
  1021. mindspore/ops/_op_impl/cpu/reduce_prod.py +40 -0
  1022. mindspore/ops/_op_impl/cpu/reduce_std.py +31 -0
  1023. mindspore/ops/_op_impl/cpu/reduce_sum.py +41 -0
  1024. mindspore/ops/_op_impl/cpu/space_to_batch_nd.py +38 -0
  1025. mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
  1026. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
  1027. mindspore/ops/_op_impl/cpu/split.py +34 -0
  1028. mindspore/ops/_op_impl/cpu/sspaddmm.py +95 -0
  1029. mindspore/ops/_op_impl/cpu/stack.py +38 -0
  1030. mindspore/ops/_op_impl/cpu/sub.py +32 -0
  1031. mindspore/ops/_op_impl/cpu/tensor_copy_slices.py +41 -0
  1032. mindspore/ops/_op_impl/cpu/tile.py +37 -0
  1033. mindspore/ops/_op_impl/cpu/top_k.py +31 -0
  1034. mindspore/ops/_op_impl/cpu/transpose.py +39 -0
  1035. mindspore/ops/_primitive_cache.py +90 -0
  1036. mindspore/ops/_register_for_op.py +73 -0
  1037. mindspore/ops/_utils/__init__.py +20 -0
  1038. mindspore/ops/_utils/utils.py +147 -0
  1039. mindspore/ops/_vmap/__init__.py +25 -0
  1040. mindspore/ops/_vmap/vmap_array_ops.py +2149 -0
  1041. mindspore/ops/_vmap/vmap_base.py +533 -0
  1042. mindspore/ops/_vmap/vmap_convolution_ops.py +441 -0
  1043. mindspore/ops/_vmap/vmap_debug_ops.py +50 -0
  1044. mindspore/ops/_vmap/vmap_grad_math_ops.py +274 -0
  1045. mindspore/ops/_vmap/vmap_grad_nn_ops.py +806 -0
  1046. mindspore/ops/_vmap/vmap_image_ops.py +194 -0
  1047. mindspore/ops/_vmap/vmap_math_ops.py +993 -0
  1048. mindspore/ops/_vmap/vmap_nn_ops.py +2250 -0
  1049. mindspore/ops/_vmap/vmap_other_ops.py +105 -0
  1050. mindspore/ops/_vmap/vmap_random_ops.py +122 -0
  1051. mindspore/ops/_vmap/vmap_sparse_ops.py +89 -0
  1052. mindspore/ops/auto_generate/__init__.py +31 -0
  1053. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +309 -0
  1054. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +252 -0
  1055. mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
  1056. mindspore/ops/auto_generate/gen_extend_func.py +1701 -0
  1057. mindspore/ops/auto_generate/gen_ops_def.py +8482 -0
  1058. mindspore/ops/auto_generate/gen_ops_prim.py +16704 -0
  1059. mindspore/ops/auto_generate/pyboost_inner_prim.py +549 -0
  1060. mindspore/ops/composite/__init__.py +71 -0
  1061. mindspore/ops/composite/base.py +1318 -0
  1062. mindspore/ops/composite/env_ops.py +41 -0
  1063. mindspore/ops/composite/math_ops.py +125 -0
  1064. mindspore/ops/composite/multitype_ops/__init__.py +77 -0
  1065. mindspore/ops/composite/multitype_ops/_compile_utils.py +1459 -0
  1066. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +897 -0
  1067. mindspore/ops/composite/multitype_ops/add_impl.py +606 -0
  1068. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +56 -0
  1069. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +56 -0
  1070. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +56 -0
  1071. mindspore/ops/composite/multitype_ops/div_impl.py +189 -0
  1072. mindspore/ops/composite/multitype_ops/equal_impl.py +335 -0
  1073. mindspore/ops/composite/multitype_ops/floordiv_impl.py +88 -0
  1074. mindspore/ops/composite/multitype_ops/getitem_impl.py +400 -0
  1075. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +109 -0
  1076. mindspore/ops/composite/multitype_ops/greater_impl.py +110 -0
  1077. mindspore/ops/composite/multitype_ops/in_impl.py +196 -0
  1078. mindspore/ops/composite/multitype_ops/left_shift_impl.py +37 -0
  1079. mindspore/ops/composite/multitype_ops/less_equal_impl.py +111 -0
  1080. mindspore/ops/composite/multitype_ops/less_impl.py +112 -0
  1081. mindspore/ops/composite/multitype_ops/logic_not_impl.py +113 -0
  1082. mindspore/ops/composite/multitype_ops/logical_and_impl.py +60 -0
  1083. mindspore/ops/composite/multitype_ops/logical_or_impl.py +61 -0
  1084. mindspore/ops/composite/multitype_ops/mod_impl.py +86 -0
  1085. mindspore/ops/composite/multitype_ops/mul_impl.py +294 -0
  1086. mindspore/ops/composite/multitype_ops/negative_impl.py +79 -0
  1087. mindspore/ops/composite/multitype_ops/not_equal_impl.py +290 -0
  1088. mindspore/ops/composite/multitype_ops/not_in_impl.py +196 -0
  1089. mindspore/ops/composite/multitype_ops/ones_like_impl.py +96 -0
  1090. mindspore/ops/composite/multitype_ops/pow_impl.py +87 -0
  1091. mindspore/ops/composite/multitype_ops/right_shift_impl.py +37 -0
  1092. mindspore/ops/composite/multitype_ops/setitem_impl.py +884 -0
  1093. mindspore/ops/composite/multitype_ops/sub_impl.py +116 -0
  1094. mindspore/ops/composite/multitype_ops/uadd_impl.py +29 -0
  1095. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +228 -0
  1096. mindspore/ops/deprecated.py +315 -0
  1097. mindspore/ops/function/__init__.py +782 -0
  1098. mindspore/ops/function/array_func.py +7226 -0
  1099. mindspore/ops/function/clip_func.py +384 -0
  1100. mindspore/ops/function/debug_func.py +181 -0
  1101. mindspore/ops/function/fft_func.py +44 -0
  1102. mindspore/ops/function/grad/__init__.py +34 -0
  1103. mindspore/ops/function/grad/grad_func.py +1425 -0
  1104. mindspore/ops/function/image_func.py +292 -0
  1105. mindspore/ops/function/linalg_func.py +416 -0
  1106. mindspore/ops/function/math_func.py +12228 -0
  1107. mindspore/ops/function/nn_func.py +8609 -0
  1108. mindspore/ops/function/other_func.py +115 -0
  1109. mindspore/ops/function/parameter_func.py +134 -0
  1110. mindspore/ops/function/random_func.py +1715 -0
  1111. mindspore/ops/function/reshard_func.py +104 -0
  1112. mindspore/ops/function/sparse_func.py +884 -0
  1113. mindspore/ops/function/sparse_unary_func.py +2422 -0
  1114. mindspore/ops/function/spectral_func.py +150 -0
  1115. mindspore/ops/function/vmap_func.py +117 -0
  1116. mindspore/ops/functional.py +464 -0
  1117. mindspore/ops/op_info_register.py +1572 -0
  1118. mindspore/ops/operations/__init__.py +722 -0
  1119. mindspore/ops/operations/_csr_ops.py +403 -0
  1120. mindspore/ops/operations/_custom_grad.py +181 -0
  1121. mindspore/ops/operations/_embedding_cache_ops.py +307 -0
  1122. mindspore/ops/operations/_grad_ops.py +2978 -0
  1123. mindspore/ops/operations/_infer_ops.py +19 -0
  1124. mindspore/ops/operations/_inner_ops.py +2544 -0
  1125. mindspore/ops/operations/_map_tensor_ops.py +112 -0
  1126. mindspore/ops/operations/_ms_kernel.py +601 -0
  1127. mindspore/ops/operations/_ocr_ops.py +379 -0
  1128. mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
  1129. mindspore/ops/operations/_pyfunc_registry.py +58 -0
  1130. mindspore/ops/operations/_quant_ops.py +1844 -0
  1131. mindspore/ops/operations/_rl_inner_ops.py +1231 -0
  1132. mindspore/ops/operations/_scalar_ops.py +106 -0
  1133. mindspore/ops/operations/_sequence_ops.py +1155 -0
  1134. mindspore/ops/operations/_sparse_grad_ops.py +56 -0
  1135. mindspore/ops/operations/_tensor_array.py +359 -0
  1136. mindspore/ops/operations/_thor_ops.py +807 -0
  1137. mindspore/ops/operations/array_ops.py +6124 -0
  1138. mindspore/ops/operations/comm_ops.py +1985 -0
  1139. mindspore/ops/operations/control_ops.py +127 -0
  1140. mindspore/ops/operations/custom_ops.py +1129 -0
  1141. mindspore/ops/operations/debug_ops.py +678 -0
  1142. mindspore/ops/operations/image_ops.py +1041 -0
  1143. mindspore/ops/operations/inner_ops.py +697 -0
  1144. mindspore/ops/operations/linalg_ops.py +95 -0
  1145. mindspore/ops/operations/manually_defined/__init__.py +24 -0
  1146. mindspore/ops/operations/manually_defined/_inner.py +73 -0
  1147. mindspore/ops/operations/manually_defined/ops_def.py +2271 -0
  1148. mindspore/ops/operations/math_ops.py +5095 -0
  1149. mindspore/ops/operations/nn_ops.py +9575 -0
  1150. mindspore/ops/operations/other_ops.py +874 -0
  1151. mindspore/ops/operations/random_ops.py +1288 -0
  1152. mindspore/ops/operations/reshard_ops.py +53 -0
  1153. mindspore/ops/operations/rl_ops.py +288 -0
  1154. mindspore/ops/operations/sparse_ops.py +2753 -0
  1155. mindspore/ops/operations/spectral_ops.py +111 -0
  1156. mindspore/ops/primitive.py +1046 -0
  1157. mindspore/ops/signature.py +54 -0
  1158. mindspore/ops/vm_impl_registry.py +91 -0
  1159. mindspore/ops_generate/__init__.py +27 -0
  1160. mindspore/ops_generate/arg_dtype_cast.py +252 -0
  1161. mindspore/ops_generate/arg_handler.py +197 -0
  1162. mindspore/ops_generate/gen_aclnn_implement.py +263 -0
  1163. mindspore/ops_generate/gen_constants.py +36 -0
  1164. mindspore/ops_generate/gen_ops.py +1099 -0
  1165. mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
  1166. mindspore/ops_generate/gen_pyboost_func.py +1052 -0
  1167. mindspore/ops_generate/gen_utils.py +209 -0
  1168. mindspore/ops_generate/op_proto.py +145 -0
  1169. mindspore/ops_generate/pyboost_utils.py +367 -0
  1170. mindspore/ops_generate/template.py +261 -0
  1171. mindspore/parallel/__init__.py +30 -0
  1172. mindspore/parallel/_auto_parallel_context.py +1486 -0
  1173. mindspore/parallel/_cell_wrapper.py +174 -0
  1174. mindspore/parallel/_cost_model_context.py +700 -0
  1175. mindspore/parallel/_dp_allreduce_fusion.py +159 -0
  1176. mindspore/parallel/_offload_context.py +275 -0
  1177. mindspore/parallel/_parallel_serialization.py +561 -0
  1178. mindspore/parallel/_ps_context.py +242 -0
  1179. mindspore/parallel/_recovery_context.py +110 -0
  1180. mindspore/parallel/_tensor.py +730 -0
  1181. mindspore/parallel/_transformer/__init__.py +35 -0
  1182. mindspore/parallel/_transformer/layers.py +765 -0
  1183. mindspore/parallel/_transformer/loss.py +251 -0
  1184. mindspore/parallel/_transformer/moe.py +693 -0
  1185. mindspore/parallel/_transformer/op_parallel_config.py +222 -0
  1186. mindspore/parallel/_transformer/transformer.py +3119 -0
  1187. mindspore/parallel/_utils.py +612 -0
  1188. mindspore/parallel/algo_parameter_config.py +400 -0
  1189. mindspore/parallel/checkpoint_transform.py +650 -0
  1190. mindspore/parallel/cluster/__init__.py +15 -0
  1191. mindspore/parallel/cluster/process_entity/__init__.py +18 -0
  1192. mindspore/parallel/cluster/process_entity/_api.py +352 -0
  1193. mindspore/parallel/cluster/process_entity/_utils.py +101 -0
  1194. mindspore/parallel/cluster/run.py +136 -0
  1195. mindspore/parallel/mpi/__init__.py +14 -0
  1196. mindspore/parallel/mpi/_mpi_config.py +116 -0
  1197. mindspore/parallel/parameter_broadcast.py +151 -0
  1198. mindspore/parallel/shard.py +481 -0
  1199. mindspore/parallel/transform_safetensors.py +993 -0
  1200. mindspore/perf_msvcbuildinsights.dll +0 -0
  1201. mindspore/pgodb140.dll +0 -0
  1202. mindspore/pgort140.dll +0 -0
  1203. mindspore/profiler/__init__.py +28 -0
  1204. mindspore/profiler/common/__init__.py +14 -0
  1205. mindspore/profiler/common/constant.py +29 -0
  1206. mindspore/profiler/common/exceptions/__init__.py +14 -0
  1207. mindspore/profiler/common/exceptions/error_code.py +83 -0
  1208. mindspore/profiler/common/exceptions/exceptions.py +286 -0
  1209. mindspore/profiler/common/process_pool.py +41 -0
  1210. mindspore/profiler/common/registry.py +47 -0
  1211. mindspore/profiler/common/singleton.py +28 -0
  1212. mindspore/profiler/common/struct_type.py +118 -0
  1213. mindspore/profiler/common/util.py +472 -0
  1214. mindspore/profiler/common/validator/__init__.py +14 -0
  1215. mindspore/profiler/common/validator/validate_path.py +84 -0
  1216. mindspore/profiler/dynamic_profiler.py +694 -0
  1217. mindspore/profiler/envprofiling.py +254 -0
  1218. mindspore/profiler/parser/__init__.py +14 -0
  1219. mindspore/profiler/parser/aicpu_data_parser.py +272 -0
  1220. mindspore/profiler/parser/ascend_analysis/__init__.py +14 -0
  1221. mindspore/profiler/parser/ascend_analysis/constant.py +71 -0
  1222. mindspore/profiler/parser/ascend_analysis/file_manager.py +180 -0
  1223. mindspore/profiler/parser/ascend_analysis/function_event.py +185 -0
  1224. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +136 -0
  1225. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +131 -0
  1226. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +104 -0
  1227. mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
  1228. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +123 -0
  1229. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
  1230. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +75 -0
  1231. mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
  1232. mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
  1233. mindspore/profiler/parser/ascend_flops_generator.py +116 -0
  1234. mindspore/profiler/parser/ascend_fpbp_generator.py +82 -0
  1235. mindspore/profiler/parser/ascend_hccl_generator.py +271 -0
  1236. mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
  1237. mindspore/profiler/parser/ascend_memory_generator.py +185 -0
  1238. mindspore/profiler/parser/ascend_msprof_exporter.py +282 -0
  1239. mindspore/profiler/parser/ascend_msprof_generator.py +187 -0
  1240. mindspore/profiler/parser/ascend_op_generator.py +334 -0
  1241. mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
  1242. mindspore/profiler/parser/ascend_timeline_generator.py +545 -0
  1243. mindspore/profiler/parser/base_timeline_generator.py +483 -0
  1244. mindspore/profiler/parser/container.py +229 -0
  1245. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +697 -0
  1246. mindspore/profiler/parser/flops_parser.py +531 -0
  1247. mindspore/profiler/parser/framework_enum.py +111 -0
  1248. mindspore/profiler/parser/framework_parser.py +464 -0
  1249. mindspore/profiler/parser/framework_struct.py +61 -0
  1250. mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
  1251. mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
  1252. mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
  1253. mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
  1254. mindspore/profiler/parser/hccl_parser.py +573 -0
  1255. mindspore/profiler/parser/hwts_log_parser.py +122 -0
  1256. mindspore/profiler/parser/integrator.py +526 -0
  1257. mindspore/profiler/parser/memory_usage_parser.py +277 -0
  1258. mindspore/profiler/parser/minddata_analyzer.py +800 -0
  1259. mindspore/profiler/parser/minddata_parser.py +186 -0
  1260. mindspore/profiler/parser/minddata_pipeline_parser.py +299 -0
  1261. mindspore/profiler/parser/op_intermediate_parser.py +149 -0
  1262. mindspore/profiler/parser/optime_parser.py +250 -0
  1263. mindspore/profiler/parser/profiler_info.py +213 -0
  1264. mindspore/profiler/parser/step_trace_parser.py +666 -0
  1265. mindspore/profiler/profiler.py +153 -0
  1266. mindspore/profiler/profiling.py +1922 -0
  1267. mindspore/rewrite/__init__.py +28 -0
  1268. mindspore/rewrite/api/__init__.py +17 -0
  1269. mindspore/rewrite/api/node.py +519 -0
  1270. mindspore/rewrite/api/node_type.py +53 -0
  1271. mindspore/rewrite/api/pattern_engine.py +490 -0
  1272. mindspore/rewrite/api/scoped_value.py +181 -0
  1273. mindspore/rewrite/api/symbol_tree.py +497 -0
  1274. mindspore/rewrite/ast_helpers/__init__.py +25 -0
  1275. mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
  1276. mindspore/rewrite/ast_helpers/ast_finder.py +404 -0
  1277. mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
  1278. mindspore/rewrite/ast_helpers/ast_modifier.py +605 -0
  1279. mindspore/rewrite/ast_helpers/ast_replacer.py +79 -0
  1280. mindspore/rewrite/common/__init__.py +19 -0
  1281. mindspore/rewrite/common/config.py +24 -0
  1282. mindspore/rewrite/common/error_log.py +39 -0
  1283. mindspore/rewrite/common/event.py +28 -0
  1284. mindspore/rewrite/common/namer.py +271 -0
  1285. mindspore/rewrite/common/namespace.py +118 -0
  1286. mindspore/rewrite/common/observable.py +44 -0
  1287. mindspore/rewrite/common/observer.py +54 -0
  1288. mindspore/rewrite/node/__init__.py +22 -0
  1289. mindspore/rewrite/node/call_function.py +95 -0
  1290. mindspore/rewrite/node/cell_container.py +139 -0
  1291. mindspore/rewrite/node/control_flow.py +113 -0
  1292. mindspore/rewrite/node/node.py +1428 -0
  1293. mindspore/rewrite/node/node_manager.py +283 -0
  1294. mindspore/rewrite/node/node_topological_manager.py +223 -0
  1295. mindspore/rewrite/parsers/__init__.py +29 -0
  1296. mindspore/rewrite/parsers/arguments_parser.py +63 -0
  1297. mindspore/rewrite/parsers/assign_parser.py +852 -0
  1298. mindspore/rewrite/parsers/attribute_parser.py +57 -0
  1299. mindspore/rewrite/parsers/class_def_parser.py +289 -0
  1300. mindspore/rewrite/parsers/constant_parser.py +104 -0
  1301. mindspore/rewrite/parsers/container_parser.py +88 -0
  1302. mindspore/rewrite/parsers/expr_parser.py +55 -0
  1303. mindspore/rewrite/parsers/for_parser.py +61 -0
  1304. mindspore/rewrite/parsers/function_def_parser.py +84 -0
  1305. mindspore/rewrite/parsers/if_parser.py +85 -0
  1306. mindspore/rewrite/parsers/module_parser.py +117 -0
  1307. mindspore/rewrite/parsers/parser.py +43 -0
  1308. mindspore/rewrite/parsers/parser_register.py +86 -0
  1309. mindspore/rewrite/parsers/return_parser.py +37 -0
  1310. mindspore/rewrite/parsers/while_parser.py +59 -0
  1311. mindspore/rewrite/sparsify/__init__.py +0 -0
  1312. mindspore/rewrite/sparsify/sparse_transformer.py +457 -0
  1313. mindspore/rewrite/sparsify/sparsify.py +112 -0
  1314. mindspore/rewrite/sparsify/utils.py +179 -0
  1315. mindspore/rewrite/symbol_tree/__init__.py +20 -0
  1316. mindspore/rewrite/symbol_tree/symbol_tree.py +1819 -0
  1317. mindspore/rewrite/symbol_tree/symbol_tree_builder.py +76 -0
  1318. mindspore/rewrite/symbol_tree/symbol_tree_dumper.py +142 -0
  1319. mindspore/run_check/__init__.py +20 -0
  1320. mindspore/run_check/_check_version.py +507 -0
  1321. mindspore/run_check/run_check.py +66 -0
  1322. mindspore/safeguard/__init__.py +18 -0
  1323. mindspore/safeguard/rewrite_obfuscation.py +875 -0
  1324. mindspore/swresample-4.dll +0 -0
  1325. mindspore/swscale-6.dll +0 -0
  1326. mindspore/tbbmalloc.dll +0 -0
  1327. mindspore/tinyxml2.dll +0 -0
  1328. mindspore/train/__init__.py +48 -0
  1329. mindspore/train/_utils.py +465 -0
  1330. mindspore/train/amp.py +935 -0
  1331. mindspore/train/anf_ir_pb2.py +1517 -0
  1332. mindspore/train/callback/__init__.py +44 -0
  1333. mindspore/train/callback/_backup_and_restore.py +117 -0
  1334. mindspore/train/callback/_callback.py +613 -0
  1335. mindspore/train/callback/_checkpoint.py +814 -0
  1336. mindspore/train/callback/_cluster_monitor.py +201 -0
  1337. mindspore/train/callback/_dataset_graph.py +150 -0
  1338. mindspore/train/callback/_early_stop.py +239 -0
  1339. mindspore/train/callback/_flops_collector.py +239 -0
  1340. mindspore/train/callback/_history.py +92 -0
  1341. mindspore/train/callback/_lambda_callback.py +80 -0
  1342. mindspore/train/callback/_landscape.py +1049 -0
  1343. mindspore/train/callback/_loss_monitor.py +107 -0
  1344. mindspore/train/callback/_lr_scheduler_callback.py +76 -0
  1345. mindspore/train/callback/_on_request_exit.py +298 -0
  1346. mindspore/train/callback/_reduce_lr_on_plateau.py +226 -0
  1347. mindspore/train/callback/_summary_collector.py +1184 -0
  1348. mindspore/train/callback/_tft_register.py +352 -0
  1349. mindspore/train/callback/_time_monitor.py +141 -0
  1350. mindspore/train/checkpoint_pb2.py +233 -0
  1351. mindspore/train/data_sink.py +219 -0
  1352. mindspore/train/dataset_helper.py +692 -0
  1353. mindspore/train/lineage_pb2.py +1260 -0
  1354. mindspore/train/loss_scale_manager.py +213 -0
  1355. mindspore/train/memory_profiling_pb2.py +298 -0
  1356. mindspore/train/metrics/__init__.py +175 -0
  1357. mindspore/train/metrics/accuracy.py +133 -0
  1358. mindspore/train/metrics/auc.py +129 -0
  1359. mindspore/train/metrics/bleu_score.py +170 -0
  1360. mindspore/train/metrics/confusion_matrix.py +700 -0
  1361. mindspore/train/metrics/cosine_similarity.py +109 -0
  1362. mindspore/train/metrics/dice.py +116 -0
  1363. mindspore/train/metrics/error.py +175 -0
  1364. mindspore/train/metrics/fbeta.py +167 -0
  1365. mindspore/train/metrics/hausdorff_distance.py +333 -0
  1366. mindspore/train/metrics/loss.py +97 -0
  1367. mindspore/train/metrics/mean_surface_distance.py +189 -0
  1368. mindspore/train/metrics/metric.py +373 -0
  1369. mindspore/train/metrics/occlusion_sensitivity.py +225 -0
  1370. mindspore/train/metrics/perplexity.py +133 -0
  1371. mindspore/train/metrics/precision.py +160 -0
  1372. mindspore/train/metrics/recall.py +159 -0
  1373. mindspore/train/metrics/roc.py +223 -0
  1374. mindspore/train/metrics/root_mean_square_surface_distance.py +191 -0
  1375. mindspore/train/metrics/topk.py +167 -0
  1376. mindspore/train/mind_ir_pb2.py +1908 -0
  1377. mindspore/train/model.py +2252 -0
  1378. mindspore/train/node_strategy_pb2.py +653 -0
  1379. mindspore/train/print_pb2.py +184 -0
  1380. mindspore/train/profiling_parallel_pb2.py +151 -0
  1381. mindspore/train/serialization.py +3325 -0
  1382. mindspore/train/summary/__init__.py +23 -0
  1383. mindspore/train/summary/_lineage_adapter.py +41 -0
  1384. mindspore/train/summary/_summary_adapter.py +496 -0
  1385. mindspore/train/summary/_writer_pool.py +207 -0
  1386. mindspore/train/summary/enums.py +56 -0
  1387. mindspore/train/summary/summary_record.py +581 -0
  1388. mindspore/train/summary/writer.py +167 -0
  1389. mindspore/train/summary_pb2.py +1165 -0
  1390. mindspore/train/train_thor/__init__.py +20 -0
  1391. mindspore/train/train_thor/convert_utils.py +268 -0
  1392. mindspore/train/train_thor/dataset_helper.py +192 -0
  1393. mindspore/train/train_thor/model_thor.py +257 -0
  1394. mindspore/turbojpeg.dll +0 -0
  1395. mindspore/utils/__init__.py +21 -0
  1396. mindspore/utils/utils.py +60 -0
  1397. mindspore/vcmeta.dll +0 -0
  1398. mindspore/vcomp140.dll +0 -0
  1399. mindspore/vcruntime140.dll +0 -0
  1400. mindspore/vcruntime140_1.dll +0 -0
  1401. mindspore/version.py +1 -0
  1402. mindspore-2.4.0.dist-info/METADATA +352 -0
  1403. mindspore-2.4.0.dist-info/RECORD +1406 -0
  1404. mindspore-2.4.0.dist-info/WHEEL +5 -0
  1405. mindspore-2.4.0.dist-info/entry_points.txt +3 -0
  1406. mindspore-2.4.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1297 @@
1
+ # Copyright 2020-2022 Huawei Technologies Co., Ltd
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ============================================================================
15
+ """adam"""
16
+ from __future__ import absolute_import, division
17
+
18
+ import numpy as np
19
+
20
+ from mindspore.common import dtype as mstype
21
+ from mindspore.common.initializer import initializer
22
+ from mindspore.common.api import jit
23
+ from mindspore.ops import operations as P
24
+ from mindspore.ops import composite as C
25
+ from mindspore.ops import functional as F
26
+ from mindspore.common.parameter import Parameter
27
+ from mindspore.common.tensor import Tensor
28
+ from mindspore import _checkparam as validator
29
+ from mindspore.nn.optim.optimizer import Optimizer
30
+ from mindspore.nn.optim.optimizer import opt_init_args_register
31
+ from mindspore.nn.optim._dist_optimizer_registry import _register_dist_optimizer
32
+ from mindspore.common._decorator import deprecated
33
+
34
+ _adam_opt = C.MultitypeFuncGraph("adam_opt")
35
+ _fused_adam_weight_decay = C.MultitypeFuncGraph("fused_adam_weight_decay")
36
+ _lazy_adam_opt = C.MultitypeFuncGraph("lazy_adam_opt")
37
+ _scaler_one = Tensor(1, mstype.int32)
38
+ _scaler_ten = Tensor(10, mstype.float32)
39
+
40
+
41
+ @_lazy_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
42
+ "Tensor", "Tensor", "Tensor", "Tensor",
43
+ "RowTensor", "Tensor", "Tensor", "Tensor", "Function", "Bool", "Function", "Bool")
44
+ def _run_lazy_opt_with_sparse_dist(opt, sparse_opt, use_locking, use_nesterov, target, beta1_power,
45
+ beta2_power, beta1, beta2, eps, lr, gradient, params, m, v,
46
+ distributed_opt, use_flag, distributed_sparse_opt, use_sparse_flag):
47
+ """Apply sparse lazy adam optimizer to the weight parameter when the gradient is sparse."""
48
+ success = True
49
+ indices = gradient.indices
50
+ values = gradient.values
51
+ if use_sparse_flag:
52
+ success = F.depend(success, distributed_sparse_opt(params, m, v, beta1_power, beta2_power, lr, beta1, beta2,
53
+ eps, values, indices))
54
+ return success
55
+
56
+ if not target:
57
+ success = F.depend(success, sparse_opt(params, m, v, beta1_power, beta2_power, lr, beta1, beta2,
58
+ eps, values, indices))
59
+ else:
60
+ op_gather = P.Gather()
61
+ op_sqrt = P.Sqrt()
62
+ scatter_add = P.ScatterAdd(use_locking)
63
+ scatter_update = P.ScatterUpdate(use_locking)
64
+
65
+ m_slice = op_gather(m, indices, 0)
66
+ v_slice = op_gather(v, indices, 0)
67
+
68
+ next_m = m_slice * beta1 + values * (1 - beta1)
69
+ next_v = v_slice * beta2 + values * values * (1 - beta2)
70
+
71
+ lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
72
+
73
+ if use_nesterov:
74
+ m_temp = beta1 * next_m + values * (1 - beta1)
75
+ param_update = m_temp / (op_sqrt(next_v) + eps)
76
+ else:
77
+ param_update = next_m / (op_sqrt(next_v) + eps)
78
+
79
+ success = F.depend(success, scatter_add(params, indices, - lr_t * param_update))
80
+ success = F.depend(success, scatter_update(m, indices, next_m))
81
+ success = F.depend(success, scatter_update(v, indices, next_v))
82
+
83
+ return success
84
+
85
+
86
+ @_lazy_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
87
+ "Tensor", "Tensor", "Tensor", "Tensor", "MapTensor", "MapTensor", "MapTensor", "MapTensor",
88
+ "Function", "Bool", "Function", "Bool")
89
+ def _run_map_tensor_lazy_opt_with_sparse_dist(opt, sparse_opt, use_locking, use_nesterov, target,
90
+ beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params, m, v,
91
+ distributed_opt, use_flag,
92
+ distributed_sparse_opt, use_sparse_flag):
93
+ """Apply sparse lazy adam optimizer to the weight parameter when the gradient is sparse."""
94
+ success = True
95
+ indices, values = gradient.get_data()
96
+ if use_sparse_flag:
97
+ # PS Mode.
98
+ success = F.depend(success, distributed_sparse_opt(params, m, v, beta1_power, beta2_power, lr, beta1, beta2,
99
+ eps, values, indices))
100
+ else:
101
+ # PS Cache mode.
102
+ op_sqrt = P.Sqrt()
103
+
104
+ m_slice = m.get(indices)
105
+ v_slice = v.get(indices)
106
+
107
+ next_m = m_slice * beta1 + values * (1 - beta1)
108
+ next_v = v_slice * beta2 + values * values * (1 - beta2)
109
+
110
+ lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
111
+
112
+ if use_nesterov:
113
+ m_temp = beta1 * next_m + values * (1 - beta1)
114
+ param_update = m_temp / (op_sqrt(next_v) + eps)
115
+ else:
116
+ param_update = next_m / (op_sqrt(next_v) + eps)
117
+
118
+ params_need_update = params.get(indices)
119
+ params.put(indices, params_need_update - lr_t * param_update)
120
+ m.put(indices, next_m)
121
+ v.put(indices, next_v)
122
+
123
+ return success
124
+
125
+
126
+ @_lazy_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
127
+ "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
128
+ "Function", "Bool", "Function", "Bool")
129
+ def _run_lazy_opt_with_one_number_dist(opt, sparse_opt, use_locking, use_nesterov, target,
130
+ beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params, moment1,
131
+ moment2, distributed_opt, use_flag,
132
+ distributed_sparse_opt, use_sparse_flag):
133
+ """Apply lazy adam optimizer to the weight parameter using Tensor."""
134
+ success = True
135
+ if use_flag:
136
+ success = F.depend(success, distributed_opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1,
137
+ beta2, eps, gradient))
138
+ else:
139
+ success = F.depend(success, opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
140
+ eps, gradient))
141
+ return success
142
+
143
+
144
+ @_lazy_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
145
+ "Tensor", "Tensor", "Tensor", "Tensor", "RowTensor", "Tensor", "Tensor", "Tensor")
146
+ def _run_lazy_opt_with_sparse(opt, sparse_opt, use_locking, use_nesterov, target, beta1_power, beta2_power,
147
+ beta1, beta2, eps, lr, gradient, params, m, v):
148
+ """Apply sparse lazy adam optimizer to the weight parameter when the gradient is sparse."""
149
+ success = True
150
+ indices = gradient.indices
151
+ values = gradient.values
152
+ if not target:
153
+ success = F.depend(success, sparse_opt(params, m, v, beta1_power, beta2_power, lr, beta1, beta2,
154
+ eps, values, indices))
155
+ else:
156
+ op_gather = P.Gather()
157
+ op_sqrt = P.Sqrt()
158
+ scatter_add = P.ScatterAdd(use_locking)
159
+ scatter_update = P.ScatterUpdate(use_locking)
160
+
161
+ m_slice = op_gather(m, indices, 0)
162
+ v_slice = op_gather(v, indices, 0)
163
+
164
+ next_m = m_slice * beta1 + values * (1 - beta1)
165
+ next_v = v_slice * beta2 + values * values * (1 - beta2)
166
+
167
+ lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
168
+
169
+ if use_nesterov:
170
+ m_temp = beta1 * next_m + values * (1 - beta1)
171
+ param_update = m_temp / (op_sqrt(next_v) + eps)
172
+ else:
173
+ param_update = next_m / (op_sqrt(next_v) + eps)
174
+
175
+ success = F.depend(success, scatter_add(params, indices, - lr_t * param_update))
176
+ success = F.depend(success, scatter_update(m, indices, next_m))
177
+ success = F.depend(success, scatter_update(v, indices, next_v))
178
+
179
+ return success
180
+
181
+
182
+ @_lazy_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
183
+ "Tensor", "Tensor", "Tensor", "Tensor", "MapTensor", "MapTensor", "MapTensor", "MapTensor")
184
+ def _run_map_tensor_lazy_opt_with_sparse(opt, sparse_opt, use_locking, use_nesterov, target, beta1_power,
185
+ beta2_power, beta1, beta2, eps, lr, gradient, params, m, v):
186
+ """Apply sparse lazy adam optimizer to the weight parameter when the gradient is sparse(MapTensor)."""
187
+ success = True
188
+ indices, values = gradient.get_data()
189
+
190
+ op_sqrt = P.Sqrt()
191
+
192
+ m_slice = m.get(indices)
193
+ v_slice = v.get(indices)
194
+
195
+ next_m = m_slice * beta1 + values * (1 - beta1)
196
+ next_v = v_slice * beta2 + values * values * (1 - beta2)
197
+
198
+ lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
199
+
200
+ if use_nesterov:
201
+ m_temp = beta1 * next_m + values * (1 - beta1)
202
+ param_update = m_temp / (op_sqrt(next_v) + eps)
203
+ else:
204
+ param_update = next_m / (op_sqrt(next_v) + eps)
205
+
206
+ params_need_update = params.get(indices)
207
+ params.put(indices, params_need_update - lr_t * param_update)
208
+ m.put(indices, next_m)
209
+ v.put(indices, next_v)
210
+
211
+ return success
212
+
213
+
214
+ @_lazy_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
215
+ "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
216
+ def _run_lazy_opt_with_one_number(opt, sparse_opt, use_locking, use_nesterov, target, beta1_power,
217
+ beta2_power, beta1, beta2, eps, lr, gradient, params, moment1, moment2):
218
+ """Apply lazy adam optimizer to the weight parameter using Tensor."""
219
+ success = True
220
+ success = F.depend(success, opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
221
+ eps, gradient))
222
+ return success
223
+
224
+
225
+ @_adam_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
226
+ "Tensor", "Bool", "Bool")
227
+ def _update_run_op(beta1, beta2, eps, lr, weight_decay, param, m, v, gradient, decay_flag, optim_filter):
228
+ """
229
+ Update parameters.
230
+
231
+ Args:
232
+ beta1 (Tensor): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
233
+ beta2 (Tensor): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
234
+ eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
235
+ lr (Tensor): Learning rate.
236
+ weight_decay (numbers.Number): Weight decay. Should be equal to or greater than 0.
237
+ param (Tensor): Parameters.
238
+ m (Tensor): m value of parameters.
239
+ v (Tensor): v value of parameters.
240
+ gradient (Tensor): Gradient of parameters.
241
+ decay_flag (bool): Applies weight decay or not.
242
+ optim_filter (bool): Applies parameter update or not.
243
+
244
+ Returns:
245
+ Tensor, the new value of v after updating.
246
+ """
247
+ op_cast = P.Cast()
248
+ if optim_filter:
249
+ op_mul = P.Mul()
250
+ op_square = P.Square()
251
+ op_sqrt = P.Sqrt()
252
+ op_cast = P.Cast()
253
+ op_reshape = P.Reshape()
254
+ op_shape = P.Shape()
255
+ param_fp32 = op_cast(param, mstype.float32)
256
+ m_fp32 = op_cast(m, mstype.float32)
257
+ v_fp32 = op_cast(v, mstype.float32)
258
+ gradient_fp32 = op_cast(gradient, mstype.float32)
259
+
260
+ next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32)
261
+ - beta1, gradient_fp32)
262
+
263
+ next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32)
264
+ - beta2, op_square(gradient_fp32))
265
+
266
+ update = next_m / (eps + op_sqrt(next_v))
267
+ if decay_flag:
268
+ update = op_mul(weight_decay, param_fp32) + update
269
+
270
+ update_with_lr = op_mul(lr, update)
271
+ next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
272
+
273
+ next_param = F.depend(next_param, F.assign(param, op_cast(next_param, F.dtype(param))))
274
+ next_param = F.depend(next_param, F.assign(m, op_cast(next_m, F.dtype(m))))
275
+ next_param = F.depend(next_param, F.assign(v, op_cast(next_v, F.dtype(v))))
276
+
277
+ return op_cast(next_param, F.dtype(param))
278
+ return op_cast(gradient, F.dtype(param))
279
+
280
+
281
+ @_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
282
+ "Tensor", "Tensor", "Tensor", "Tensor", "RowTensor", "Tensor", "Tensor", "Tensor",
283
+ "Function", "Bool", "Function", "Bool")
284
+ def _run_opt_with_sparse_dist(opt, sparse_opt, use_locking, use_nesterov, target, beta1_power,
285
+ beta2_power, beta1, beta2, eps, lr, gradient, param, m, v,
286
+ distributed_opt, use_flag, distributed_sparse_opt, use_sparse_flag):
287
+ """Apply sparse adam optimizer to the weight parameter when the gradient is sparse."""
288
+ success = True
289
+ indices = gradient.indices
290
+ values = gradient.values
291
+ if use_sparse_flag:
292
+ success = F.depend(success, distributed_sparse_opt(param, m, v, beta1_power, beta2_power, lr, beta1, beta2,
293
+ eps, values, indices))
294
+ return success
295
+
296
+ if not target:
297
+ success = F.depend(success, sparse_opt(param, m, v, beta1_power, beta2_power, lr, beta1, beta2,
298
+ eps, values, indices))
299
+ else:
300
+ op_mul = P.Mul()
301
+ op_square = P.Square()
302
+ op_sqrt = P.Sqrt()
303
+ scatter_add = P.ScatterAdd(use_locking)
304
+
305
+ success = F.depend(success, F.assign(m, op_mul(beta1, m)))
306
+ success = F.depend(success, F.assign(v, op_mul(beta2, v)))
307
+
308
+ grad_indices = gradient.indices
309
+ grad_value = gradient.values
310
+
311
+ next_m = scatter_add(m,
312
+ grad_indices,
313
+ op_mul(F.tuple_to_array((1.0,)) - beta1, grad_value))
314
+
315
+ next_v = scatter_add(v,
316
+ grad_indices,
317
+ op_mul(F.tuple_to_array((1.0,)) - beta2, op_square(grad_value)))
318
+
319
+ if use_nesterov:
320
+ m_temp = next_m * _scaler_ten
321
+ F.assign(m, op_mul(beta1, next_m))
322
+ div_value = scatter_add(m,
323
+ op_mul(grad_indices, _scaler_one),
324
+ op_mul(F.tuple_to_array((1.0,)) - beta1, grad_value))
325
+ param_update = div_value / (op_sqrt(next_v) + eps)
326
+ F.assign(m, m_temp / _scaler_ten)
327
+ else:
328
+ param_update = next_m / (op_sqrt(next_v) + eps)
329
+
330
+ lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
331
+ next_param = param - lr_t * param_update
332
+
333
+ success = F.depend(success, F.assign(param, next_param))
334
+ success = F.depend(success, F.assign(m, next_m))
335
+ success = F.depend(success, F.assign(v, next_v))
336
+
337
+ return success
338
+
339
+
340
+ @_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
341
+ "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
342
+ "Function", "Bool", "Function", "Bool")
343
+ def _run_opt_with_one_number_dist(opt, sparse_opt, use_locking, use_nesterov, target,
344
+ beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, param, moment1, moment2,
345
+ distributed_opt, use_flag, distributed_sparse_opt, use_sparse_flag):
346
+ """Apply adam optimizer to the weight parameter using Tensor."""
347
+ success = True
348
+ if use_flag:
349
+ success = F.depend(success, distributed_opt(param, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
350
+ eps, gradient))
351
+ else:
352
+ success = F.depend(success, opt(param, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
353
+ eps, gradient))
354
+ return success
355
+
356
+
357
+ @_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool",
358
+ "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
359
+ "RowTensor", "Tensor", "Tensor", "Tensor")
360
+ def _run_opt_with_sparse(opt, sparse_opt, use_locking, use_nesterov, target,
361
+ beta1_power, beta2_power, beta1, beta2, eps, lr,
362
+ gradient, param, m, v):
363
+ """Apply sparse adam optimizer to the weight parameter when the gradient is sparse."""
364
+ success = True
365
+ indices = gradient.indices
366
+ values = gradient.values
367
+ if not target:
368
+ success = F.depend(success, sparse_opt(param, m, v, beta1_power, beta2_power, lr, beta1, beta2,
369
+ eps, values, indices))
370
+ else:
371
+ op_mul = P.Mul()
372
+ op_square = P.Square()
373
+ op_sqrt = P.Sqrt()
374
+ scatter_add = P.ScatterAdd(use_locking)
375
+
376
+ success = F.depend(success, F.assign(m, op_mul(beta1, m)))
377
+ success = F.depend(success, F.assign(v, op_mul(beta2, v)))
378
+
379
+ grad_indices = gradient.indices
380
+ grad_value = gradient.values
381
+
382
+ next_m = scatter_add(m,
383
+ grad_indices,
384
+ op_mul(F.tuple_to_array((1.0,)) - beta1, grad_value))
385
+
386
+ next_v = scatter_add(v,
387
+ grad_indices,
388
+ op_mul(F.tuple_to_array((1.0,)) - beta2, op_square(grad_value)))
389
+
390
+ if use_nesterov:
391
+ m_temp = next_m * _scaler_ten
392
+ F.assign(m, op_mul(beta1, next_m))
393
+ div_value = scatter_add(m,
394
+ op_mul(grad_indices, _scaler_one),
395
+ op_mul(F.tuple_to_array((1.0,)) - beta1, grad_value))
396
+ param_update = div_value / (op_sqrt(next_v) + eps)
397
+ F.assign(m, m_temp / _scaler_ten)
398
+ else:
399
+ param_update = next_m / (op_sqrt(next_v) + eps)
400
+
401
+ lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
402
+ next_param = param - lr_t * param_update
403
+
404
+ success = F.depend(success, F.assign(param, next_param))
405
+ success = F.depend(success, F.assign(m, next_m))
406
+ success = F.depend(success, F.assign(v, next_v))
407
+
408
+ return success
409
+
410
+
411
+ @_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool",
412
+ "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
413
+ "Tensor", "Tensor", "Tensor", "Tensor")
414
+ def _run_opt_with_one_number(opt, sparse_opt, use_locking, use_nesterov, target,
415
+ beta1_power, beta2_power, beta1, beta2, eps, lr,
416
+ gradient, param, moment1, moment2):
417
+ """Apply adam optimizer to the weight parameter using Tensor."""
418
+ success = True
419
+ success = F.depend(success, opt(param, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
420
+ eps, gradient))
421
+ return success
422
+
423
+
424
+ @_adam_opt.register("Function", "Function", "Bool", "Bool", "Bool",
425
+ "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
426
+ "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
427
+ def _run_opt_with_one_number_use_amsgrad(opt, sparse_opt,
428
+ use_locking, use_nesterov, target,
429
+ beta1_power, beta2_power, beta1, beta2, eps, lr,
430
+ gradient, param, moment1, moment2, vhat):
431
+ """Apply adam optimizer to the weight parameter using Tensor and use amsgrad."""
432
+ success = True
433
+ success = F.depend(success, opt(param, moment1, moment2, vhat, beta1_power, beta2_power,
434
+ lr, beta1, beta2, eps, gradient))
435
+ return success
436
+
437
+
438
+ @_adam_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
439
+ "Tensor", "Tensor")
440
+ def _run_off_load_opt(opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, param, moment1, moment2):
441
+ """Apply AdamOffload optimizer to the weight parameter using Tensor."""
442
+ success = True
443
+ delat_param = opt(moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2, eps, gradient)
444
+ success = F.depend(success, F.assign_add(param, delat_param))
445
+ return success
446
+
447
+
448
+ @_fused_adam_weight_decay.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
449
+ "Tensor", "Tensor", "Bool", "Bool")
450
+ def _run_fused_adam_weight_decay_opt(opt, beta1, beta2, eps, lr, weight_decay, param, moment1, moment2, gradient,
451
+ decay_flags, optim_filter):
452
+ """Apply FusedAdamWeightDecay optimizer to the weight parameter using Tensor."""
453
+ if optim_filter:
454
+ if decay_flags:
455
+ opt(param, moment1, moment2, lr, beta1, beta2, eps, weight_decay, P.Cast()(gradient, F.dtype(param)))
456
+ else:
457
+ opt(param, moment1, moment2, lr, beta1, beta2, eps, 0.0, P.Cast()(gradient, F.dtype(param)))
458
+ return True
459
+
460
+
461
+ def _check_param_value(beta1, beta2, eps, prim_name):
462
+ """Check the type of inputs."""
463
+ validator.check_value_type("beta1", beta1, [float], prim_name)
464
+ validator.check_value_type("beta2", beta2, [float], prim_name)
465
+ validator.check_value_type("eps", eps, [float], prim_name)
466
+ validator.check_float_range(beta1, 0.0, 1.0, validator.INC_NEITHER, "beta1", prim_name)
467
+ validator.check_float_range(beta2, 0.0, 1.0, validator.INC_NEITHER, "beta2", prim_name)
468
+ validator.check_positive_float(eps, "eps", prim_name)
469
+
470
+
471
+ class Adam(Optimizer):
472
+ r"""
473
+ Implements the Adaptive Moment Estimation (Adam) algorithm.
474
+
475
+ The Adam optimizer can dynamically adjust the learning rate of each parameter using the first-order
476
+ moment estimation and the second-order moment estimation of the gradient.
477
+ The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
478
+
479
+ The updating formulas are as follows:
480
+
481
+ .. math::
482
+ \begin{array}{l}
483
+ &\newline
484
+ &\hline \\
485
+ &\textbf{Parameters}: \: 1^{\text {st }}\text {moment vector} \: m , \: 2^{\text {nd}} \:
486
+ \text{moment vector} \: v , \\
487
+ &\:\text{gradients } g, \: \text{learning rate} \: \gamma, \text
488
+ { exponential decay rates for the moment estimates} \: \beta_{1} \: \beta_{2} , \\
489
+ &\:\text {parameter vector} \: w_{0}, \:\text{timestep} \: t , \text{ weight decay } \lambda \\
490
+ &\textbf{Init}: m_{0} \leftarrow 0, \: v_{0} \leftarrow 0, \: t \leftarrow 0, \:
491
+ \text{init parameter vector} \: w_{0} \\[-1.ex]
492
+ &\newline
493
+ &\hline \\
494
+ &\textbf{while} \: w_{t} \: \text{not converged} \: \textbf{do} \\
495
+ &\hspace{5mm}\boldsymbol{g}_{t} \leftarrow \nabla_{w} \boldsymbol{f}_{t}\left(\boldsymbol{w}_{t-1}\right) \\
496
+ &\hspace{5mm}\textbf {if } \lambda \neq 0 \\
497
+ &\hspace{10mm}\boldsymbol{g}_{t} \leftarrow \boldsymbol{g}_{t}+\lambda \boldsymbol{w}_{t-1} \\
498
+ &\hspace{5mm}\boldsymbol{m}_{t} \leftarrow \beta_{1} \boldsymbol{m}_{t-1}+\left(1-\beta_{1}\right)
499
+ \boldsymbol{g}_{t} \\
500
+ &\hspace{5mm}\boldsymbol{v}_{t} \leftarrow \beta_{2} \boldsymbol{v}_{t-1}+\left(1-\beta_{2}\right)
501
+ \boldsymbol{g}_{t}^{2} \\
502
+ &\hspace{5mm}\hat{\boldsymbol{m}}_{t} \leftarrow \boldsymbol{m}_{t} /\left(1-\beta_{1}^{t}\right) \\
503
+ &\hspace{5mm}\hat{\boldsymbol{v}}_{t} \leftarrow \boldsymbol{v}_{t} /\left(1-\beta_{2}^{t}\right) \\
504
+ &\hspace{5mm}\boldsymbol{w}_{t} \leftarrow \boldsymbol{w}_{t-1}-\gamma \hat{\boldsymbol{m}}_{t}
505
+ /(\sqrt{\hat{\boldsymbol{v}}_{t}}+\epsilon) \\
506
+ &\textbf{end while} \\[-1.ex]
507
+ &\newline
508
+ &\hline \\[-1.ex]
509
+ &\textbf{return} \: \boldsymbol{w}_{t} \\[-1.ex]
510
+ &\newline
511
+ &\hline \\[-1.ex]
512
+ \end{array}
513
+
514
+ :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector,
515
+ :math:`g` represents `gradients`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
516
+ :math:`t` represents the current step while :math:`beta_1^t` and :math:`beta_2^t` represent
517
+ `beta1_power` and `beta2_power`, :math:`\gamma` represents `learning_rate`, :math:`w` represents `params`,
518
+ :math:`\epsilon` represents `eps`.
519
+
520
+ Note:
521
+ On Ascend, when `use_amsgrad` is set to True, it might have slightly larger accuracy error.
522
+
523
+ The sparse strategy is applied while the SparseGatherV2 operator is used for forward network. If the sparse
524
+ strategy wants to be executed on the host, set the target to the CPU.
525
+ The sparse feature is under continuous development.
526
+
527
+ If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
528
+ 'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
529
+ parameters are grouped, each group can set `weight_decay`. If not, the `weight_decay` in optimizer will be
530
+ applied.
531
+
532
+ When using Adam with use_lazy=True:
533
+
534
+ Please note, the optimizer only updates the current index position of the network parameters
535
+ when the gradient is sparse. The sparse behavior is not equivalent to the original Adam algorithm.
536
+ If you want to execute a sparse policy, target needs to be set to CPU.
537
+
538
+ When using Adam with use_offload=True:
539
+
540
+ This optimizer only supports `GRAPH_MODE`.
541
+
542
+ Args:
543
+ params (Union[list[Parameter], list[dict]]): Must be list of `Parameter` or list of `dict`. When the
544
+ `params` is a list of `dict`, the string "params", "lr", "weight_decay", "grad_centralization" and
545
+ "order_params" are the keys can be parsed.
546
+
547
+ - params: Required. Parameters in current group. The value must be a list of `Parameter`.
548
+
549
+ - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
550
+ If not, the `learning_rate` in optimizer will be used. Fixed and dynamic learning rate are supported.
551
+
552
+ - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
553
+ will be used. If not, the `weight_decay` in the optimizer will be used. It should be noted that weight
554
+ decay can be a constant value or a Cell. It is a Cell only when dynamic weight decay is applied. Dynamic
555
+ weight decay is similar to dynamic learning rate, users need to customize a weight decay schedule only
556
+ with global step as input, and during training, the optimizer calls the instance of WeightDecaySchedule
557
+ to get the weight decay value of current step.
558
+
559
+ - grad_centralization: Optional. Must be Boolean. If "grad_centralization" is in the keys, the set value
560
+ will be used. If not, the `grad_centralization` is False by default. This configuration only works on the
561
+ convolution layer.
562
+
563
+ - order_params: Optional. When parameters is grouped, this usually is used to maintain the order of
564
+ parameters that appeared in the network to improve performance. The value should be parameters whose
565
+ order will be followed in optimizer.
566
+ If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
567
+ one group of `params`.
568
+
569
+ learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``1e-3`` .
570
+
571
+ - float: The fixed learning rate value. Must be equal to or greater than 0.
572
+
573
+ - int: The fixed learning rate value. Must be equal to or greater than 0. It will be converted to float.
574
+
575
+ - Tensor: Its value should be a scalar or a 1-D vector. For scalar, fixed learning rate will be applied.
576
+ For vector, learning rate is dynamic, then the i-th step will take the i-th value as the learning rate.
577
+
578
+ - Iterable: Learning rate is dynamic. The i-th step will take the i-th value as the learning rate.
579
+
580
+ - LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
581
+ `LearningRateSchedule
582
+ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
583
+ with step as the input to get the learning rate of current step.
584
+
585
+ beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
586
+ Default: ``0.9`` .
587
+ beta2 (float): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
588
+ Default: ``0.999`` .
589
+ eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0.
590
+ Default: ``1e-8`` .
591
+ use_locking (bool): Whether to enable a lock to protect the updating process of variable tensors.
592
+ If ``true`` , updates of the `w`, `m`, and `v` tensors will be protected by a lock.
593
+ If ``false`` , the result is unpredictable. Default: ``False`` .
594
+ use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
595
+ If ``true`` , update the gradients using NAG.
596
+ If ``false`` , update the gradients without using NAG. Default: ``False`` .
597
+ use_amsgrad (bool): Whether to use Amsgrad algorithm to update the gradients.
598
+ If ``true`` , update the gradients using Amsgrad.
599
+ If ``false`` , update the gradients without using Amsgrad. Default: ``False`` .
600
+
601
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
602
+
603
+ - float: The fixed weight decay value. Must be equal to or greater than 0.
604
+
605
+ - int: The fixed weight decay value. Must be equal to or greater than 0. It will be converted to float.
606
+
607
+ - Cell: Weight decay is dynamic. During training, the optimizer calls the instance of
608
+ the Cell with step as the input to get the weight decay value of current step.
609
+
610
+ loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
611
+ default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
612
+ `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
613
+ `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
614
+ Default: 1.0.
615
+
616
+ kwargs:
617
+
618
+ - use_lazy (bool): Whether to use Lazy Adam algorithm. Default: ``False`` .
619
+ If ``true`` , apply lazy adam algorithm.
620
+ If ``false`` , apply normal adam algorithm.
621
+
622
+ - use_offload (bool): Whether to offload adam optimizer to host CPU and keep parameters being updated on
623
+ the device in order to minimize the memory cost. Default: ``False`` .
624
+ If ``true`` , apply offload adam.
625
+ If ``false`` , apply normal adam.
626
+
627
+ Inputs:
628
+ - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
629
+
630
+ Outputs:
631
+ Tensor[bool], the value is True.
632
+
633
+ Raises:
634
+ KeyError: If kwargs got keys other than 'use_lazy' or 'use_offload'.
635
+ TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
636
+ TypeError: If element of `parameters` is neither Parameter nor dict.
637
+ TypeError: If `beta1`, `beta2`, `eps` or `loss_scale` is not a float.
638
+ TypeError: If `weight_decay` is neither float nor int.
639
+ TypeError: If `use_locking`, `use_nesterov`, `use_amsgrad`, `use_lazy` or `use_offload` is not a bool.
640
+ ValueError: If `loss_scale` or `eps` is less than or equal to 0.
641
+ ValueError: If `beta1`, `beta2` is not in range (0.0, 1.0).
642
+ ValueError: If `weight_decay` is less than 0.
643
+ ValueError: If `use_lazy` and `use_offload` are both ``true`` .
644
+ ValueError: If `use_amsgrad` is ``true``, `use_lazy` or `use_offload` is ``true`` .
645
+ ValueError: If `use_amsgrad` is ``True`` while using distributed training.
646
+
647
+ Supported Platforms:
648
+ ``Ascend`` ``GPU`` ``CPU``
649
+
650
+ Examples:
651
+ >>> import mindspore as ms
652
+ >>> from mindspore import nn
653
+ >>>
654
+ >>> # Define the network structure of LeNet5. Refer to
655
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
656
+ >>> net = LeNet5()
657
+ >>> #1) All parameters use the same learning rate and weight decay
658
+ >>> optim = nn.Adam(params=net.trainable_params())
659
+ >>>
660
+ >>> #2) Use parameter groups and set different values
661
+ >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
662
+ >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
663
+ >>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'grad_centralization':True},
664
+ ... {'params': no_conv_params, 'lr': 0.01},
665
+ ... {'order_params': net.trainable_params()}]
666
+ >>> optim = nn.Adam(group_params, learning_rate=0.1, weight_decay=0.0, use_lazy=False, use_offload=False)
667
+ >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01 and grad
668
+ >>> # centralization of True.
669
+ >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0 and grad
670
+ >>> # centralization of False.
671
+ >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
672
+ >>>
673
+ >>> loss = nn.SoftmaxCrossEntropyWithLogits()
674
+ >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
675
+ """
676
+
677
+ @opt_init_args_register
678
+ def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
679
+ use_nesterov=False, weight_decay=0.0, loss_scale=1.0, use_amsgrad=False, **kwargs):
680
+ super(Adam, self).__init__(learning_rate, params, weight_decay, loss_scale)
681
+ valid_keys = {'use_lazy', 'use_offload'}
682
+ if set(kwargs.keys()) - valid_keys:
683
+ raise KeyError(f"For 'Adam', invalid keys are passed as kwargs, supported keys are 'use_lazy' and"
684
+ f"'use_offload', but got {kwargs.keys()}.")
685
+ use_lazy = kwargs.get('use_lazy', False)
686
+ use_offload = kwargs.get('use_offload', False)
687
+ _check_param_value(beta1, beta2, eps, self.cls_name)
688
+ validator.check_value_type("use_locking", use_locking, [bool], self.cls_name)
689
+ validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name)
690
+ validator.check_value_type("use_amsgrad", use_amsgrad, [bool], self.cls_name)
691
+ validator.check_value_type("use_lazy", use_lazy, [bool], self.cls_name)
692
+ validator.check_value_type("use_offload", use_offload, [bool], self.cls_name)
693
+
694
+ if use_lazy and use_offload:
695
+ raise ValueError(f"For 'Adam', 'use_lazy' and 'use_offload' can not both be True."
696
+ f"But got use_lazy={use_lazy}, use_offload={use_offload}.")
697
+
698
+ if use_amsgrad and (use_lazy or use_offload):
699
+ raise ValueError(f"For lazy Adam and Adam with offload, there is no parameter named 'use_amsgrad'."
700
+ f"but got 'use_amsgrad'={use_amsgrad}.")
701
+
702
+ self.beta1 = Tensor(beta1, mstype.float32)
703
+ self.beta2 = Tensor(beta2, mstype.float32)
704
+ self.beta1_power = Parameter(initializer(1, (), mstype.float32), name="beta1_power")
705
+ self.beta2_power = Parameter(initializer(1, (), mstype.float32), name="beta2_power")
706
+ self.eps = Tensor(eps, mstype.float32)
707
+ self.use_nesterov = use_nesterov
708
+ self.use_locking = use_locking
709
+ self.use_amsgrad = use_amsgrad
710
+ self.use_lazy = use_lazy
711
+ self.use_offload = use_offload
712
+ self.moment1 = self._parameters.clone(prefix="moment1", init='zeros')
713
+ self.moment2 = self._parameters.clone(prefix="moment2", init='zeros')
714
+ if use_amsgrad:
715
+ self.vhat = self._parameters.clone(prefix="vhat", init='zeros')
716
+
717
+ if use_offload:
718
+ self.opt = P.AdamNoUpdateParam(use_locking, use_nesterov)
719
+ self.opt.set_device("CPU")
720
+
721
+ elif use_lazy:
722
+ self._is_device = True
723
+ self.opt = P.Adam(use_locking, use_nesterov)
724
+ self.sparse_opt = P.FusedSparseLazyAdam(use_locking, use_nesterov)
725
+ self.sparse_opt.set_device("CPU")
726
+ self._init_distributed_opts(use_locking, use_nesterov)
727
+
728
+ else:
729
+ self._is_device = True
730
+ if use_amsgrad:
731
+ self.opt = P.ApplyAdamWithAmsgradV2(use_locking)
732
+ else:
733
+ self.opt = P.Adam(use_locking, use_nesterov)
734
+ self.sparse_opt = P.FusedSparseAdam(use_locking, use_nesterov)
735
+ self.sparse_opt.set_device("CPU")
736
+ self._init_distributed_opts(use_locking, use_nesterov)
737
+
738
+ def _apply_adam(self, params, beta1_power, beta2_power, moment1, moment2, lr, gradients):
739
+ """Execute Adam optimizer and its variants."""
740
+ if self.use_offload:
741
+ if self.is_group_lr:
742
+ success = self.map_reverse(F.partial(_adam_opt, self.opt, beta1_power, beta2_power, self.beta1,
743
+ self.beta2, self.eps), lr, gradients, params, moment1, moment2)
744
+ else:
745
+ success = self.map_reverse(F.partial(_adam_opt, self.opt, beta1_power, beta2_power, self.beta1,
746
+ self.beta2, self.eps, lr), gradients, params, moment1, moment2)
747
+ # Lazy adam or normal adam
748
+ else:
749
+ if self.use_dist_optimizer:
750
+ if self.use_dist_optimizer and self.use_amsgrad:
751
+ raise ValueError(f"Adam with amsgrad is currently not supporting distributed training!"
752
+ f"Please set use_amsgrad=False for distributed training.")
753
+ if self.is_group_lr:
754
+ if self.use_lazy:
755
+ success = self.map_reverse(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt,
756
+ self.use_locking, self.use_nesterov,
757
+ self._is_device, beta1_power, beta2_power,
758
+ self.beta1, self.beta2, self.eps),
759
+ lr, gradients, self._parameters, self.moment1, self.moment2,
760
+ self.dense_lazyadam_opts,
761
+ self.use_dense_opt_flags, self.sparse_lazyadam_opts,
762
+ self.use_sparse_opt_flags)
763
+ # Normal Adam
764
+ else:
765
+ success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt, self.use_locking,
766
+ self.use_nesterov, self._is_device, beta1_power, beta2_power,
767
+ self.beta1, self.beta2, self.eps),
768
+ lr, gradients, params, moment1, moment2,
769
+ self.dense_adam_opts, self.use_dense_opt_flags,
770
+ self.sparse_adam_opts, self.use_sparse_opt_flags)
771
+ else:
772
+ if self.use_lazy:
773
+ success = self.map_reverse(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt,
774
+ self.use_locking, self.use_nesterov,
775
+ self._is_device, beta1_power, beta2_power, self.beta1,
776
+ self.beta2, self.eps, lr), gradients, self._parameters,
777
+ self.moment1, self.moment2,
778
+ self.dense_lazyadam_opts, self.use_dense_opt_flags,
779
+ self.sparse_lazyadam_opts, self.use_sparse_opt_flags)
780
+ else:
781
+ success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt,
782
+ self.use_locking, self.use_nesterov,
783
+ self._is_device, beta1_power, beta2_power, self.beta1, self.beta2,
784
+ self.eps, lr), gradients, params, moment1, moment2,
785
+ self.dense_adam_opts,
786
+ self.use_dense_opt_flags, self.sparse_adam_opts, self.use_sparse_opt_flags)
787
+ else:
788
+ if self.is_group_lr:
789
+ if self.use_lazy:
790
+ success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt,
791
+ self.use_locking, self.use_nesterov,
792
+ self._is_device, beta1_power, beta2_power, self.beta1, self.beta2,
793
+ self.eps), lr, gradients, params, moment1, moment2)
794
+ else:
795
+ if self.use_amsgrad:
796
+ success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt,
797
+ self.use_locking, self.use_nesterov,
798
+ self._is_device, beta1_power, beta2_power,
799
+ self.beta1, self.beta2, self.eps), lr, gradients, params,
800
+ moment1, moment2, self.vhat)
801
+ else:
802
+ success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt,
803
+ self.use_locking, self.use_nesterov,
804
+ self._is_device, beta1_power, beta2_power,
805
+ self.beta1, self.beta2, self.eps), lr, gradients, params,
806
+ moment1, moment2)
807
+ else:
808
+ if self.use_lazy:
809
+ success = self.map_(F.partial(_lazy_adam_opt, self.opt, self.sparse_opt,
810
+ self.use_locking, self.use_nesterov,
811
+ self._is_device, beta1_power, beta2_power, self.beta1, self.beta2,
812
+ self.eps, lr), gradients, params, moment1, moment2)
813
+ else:
814
+ if self.use_amsgrad:
815
+ success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt,
816
+ self.use_locking, self.use_nesterov,
817
+ self._is_device, beta1_power, beta2_power,
818
+ self.beta1, self.beta2, self.eps, lr), gradients, params,
819
+ moment1, moment2, self.vhat)
820
+ else:
821
+ success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt,
822
+ self.use_locking, self.use_nesterov,
823
+ self._is_device, beta1_power, beta2_power,
824
+ self.beta1, self.beta2, self.eps, lr), gradients, params,
825
+ moment1, moment2)
826
+
827
+ return success
828
+
829
+ @jit
830
+ def construct(self, gradients):
831
+ params = self._parameters
832
+ moment1 = self.moment1
833
+ moment2 = self.moment2
834
+ gradients = self.flatten_gradients(gradients)
835
+ gradients = self.decay_weight(gradients)
836
+ if not self.use_offload:
837
+ gradients = self.gradients_centralization(gradients)
838
+ gradients = self.scale_grad(gradients)
839
+ gradients = self._grad_sparse_indices_deduplicate(gradients)
840
+ lr = self.get_lr()
841
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
842
+
843
+ beta1_power = self.beta1_power * self.beta1
844
+ self.beta1_power = beta1_power
845
+ beta2_power = self.beta2_power * self.beta2
846
+ self.beta2_power = beta2_power
847
+
848
+ return self._apply_adam(params, beta1_power, beta2_power, moment1, moment2, lr, gradients)
849
+
850
+ @Optimizer.target.setter
851
+ def target(self, value):
852
+ """
853
+ If the input value is set to "CPU", the parameters will be updated on the host using the Fused
854
+ optimizer operation.
855
+ """
856
+ self._set_base_target(value)
857
+
858
+ def _init_distributed_opts(self, use_locking, use_nesterov):
859
+ self.use_dist_optimizer = self._use_distibuted_optimizer()
860
+ self.dense_adam_opts, self.use_dense_opt_flags = \
861
+ self._get_distributed_optimizer_list("adam", use_locking, use_nesterov)
862
+ self.sparse_adam_opts, self.use_sparse_opt_flags = \
863
+ self._get_distributed_optimizer_list("fused_sparse_adam", use_locking, use_nesterov)
864
+
865
+
866
+ class AdamWeightDecay(Optimizer):
867
+ r"""
868
+ Implements the Adam algorithm with weight decay.
869
+
870
+ .. math::
871
+ \begin{array}{l}
872
+ &\newline
873
+ &\hline \\
874
+ &\textbf{Parameters}: \: 1^{\text {st }}\text {moment vector} \: m , \: 2^{\text {nd}} \:
875
+ \text{moment vector} \: v , \\
876
+ &\: gradients \: g, \: \text{learning rate} \: \gamma,
877
+ \text {exponential decay rates for the moment estimates} \: \beta_{1} \: \beta_{2} , \\
878
+ &\:\text {parameter vector} \: w_{0}, \:\text{timestep} \: t, \: \text{weight decay} \: \lambda \\
879
+ &\textbf{Init}: m_{0} \leftarrow 0, \: v_{0} \leftarrow 0, \: t \leftarrow 0, \:
880
+ \text{init parameter vector} \: w_{0} \\[-1.ex]
881
+ &\newline
882
+ &\hline \\
883
+ &\textbf{repeat} \\
884
+ &\hspace{5mm} t \leftarrow t+1 \\
885
+ &\hspace{5mm}\boldsymbol{g}_{t} \leftarrow \nabla f_{t}\left(\boldsymbol{w}_{t-1}\right) \\
886
+ &\hspace{5mm}\boldsymbol{m}_{t} \leftarrow \beta_{1} \boldsymbol{m}_{t-1}+\left(1-\beta_{1}\right)
887
+ \boldsymbol{g}_{t} \\
888
+ &\hspace{5mm}\boldsymbol{v}_{t} \leftarrow \beta_{2} \boldsymbol{v}_{t-1}+\left(1-\beta_{2}\right)
889
+ \boldsymbol{g}_{t}^{2} \\
890
+ &\hspace{5mm}\boldsymbol{w}_{t} \leftarrow \boldsymbol{w}_{t-1}-\gamma\left({\boldsymbol{m}}_{t}
891
+ /\left(\sqrt{{\boldsymbol{v}}_{t}}+\epsilon\right)+\lambda \boldsymbol{w}_{t-1}\right) \\
892
+ &\textbf{until}\text { stopping criterion is met } \\[-1.ex]
893
+ &\newline
894
+ &\hline \\[-1.ex]
895
+ &\textbf{return} \: \boldsymbol{w}_{t} \\[-1.ex]
896
+ &\newline
897
+ &\hline \\[-1.ex]
898
+ \end{array}
899
+
900
+ :math:`m` represents the 1st moment vector `moment1`, :math:`v` represents the 2nd moment vector `moment2`,
901
+ :math:`g` represents `gradients`, :math:`\gamma` represents `learning_rate`,
902
+ :math:`\beta_1, \beta_2` represent `beta1` and `beta2`, :math:`t` represents the current step,
903
+ :math:`w` represents `params`, :math:`\lambda` represents `weight_decay`.
904
+
905
+ Note:
906
+ There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
907
+ and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
908
+ As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means, refer
909
+ document `LossScale <https://www.mindspore.cn/tutorials/en/master/beginner/mixed_precision.html>`_ to
910
+ process `loss_scale` correctly.
911
+
912
+ If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
913
+ 'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
914
+ parameters are grouped, each group can set `weight_decay`. If not, the `weight_decay` in optimizer will be
915
+ applied.
916
+
917
+ Args:
918
+ params (Union[list[Parameter], list[dict]]): Must be list of `Parameter` or list of `dict`. When the
919
+ `params` is a list of `dict`, the string "params", "lr", "weight_decay", and "order_params"
920
+ are the keys can be parsed.
921
+
922
+ - params: Required. Parameters in current group. The value must be a list of `Parameter`.
923
+
924
+ - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
925
+ If not, the `learning_rate` in optimizer will be used. Fixed and dynamic learning rate are supported.
926
+
927
+ - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
928
+ will be used. If not, the `weight_decay` in the optimizer will be used. It should be noted that weight
929
+ decay can be a constant value or a Cell. It is a Cell only when dynamic weight decay is applied. Dynamic
930
+ weight decay is similar to dynamic learning rate, users need to customize a weight decay schedule only
931
+ with global step as input, and during training, the optimizer calls the instance of WeightDecaySchedule
932
+ to get the weight decay value of current step.
933
+
934
+ - order_params: Optional. When parameters is grouped, this usually is used to maintain the order of
935
+ parameters that appeared in the network to improve performance. The value should be parameters whose
936
+ order will be followed in optimizer.
937
+ If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
938
+ one group of `params`.
939
+
940
+ learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``1e-3`` .
941
+
942
+ - float: The fixed learning rate value. Must be equal to or greater than 0.
943
+
944
+ - int: The fixed learning rate value. Must be equal to or greater than 0. It will be converted to float.
945
+
946
+ - Tensor: Its value should be a scalar or a 1-D vector. For scalar, fixed learning rate will be applied.
947
+ For vector, learning rate is dynamic, then the i-th step will take the i-th value as the learning rate.
948
+
949
+ - Iterable: Learning rate is dynamic. The i-th step will take the i-th value as the learning rate.
950
+
951
+ - LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
952
+ `LearningRateSchedule
953
+ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
954
+ with step as the input to get the learning rate of current step.
955
+
956
+ beta1 (float): The exponential decay rate for the 1st moment estimations. Default: ``0.9`` .
957
+ Should be in range (0.0, 1.0).
958
+ beta2 (float): The exponential decay rate for the 2nd moment estimations. Default: ``0.999`` .
959
+ Should be in range (0.0, 1.0).
960
+ eps (float): Term added to the denominator to improve numerical stability. Default: ``1e-6`` .
961
+ Should be greater than 0.
962
+
963
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
964
+
965
+ - float: The fixed weight decay value. Must be equal to or greater than 0.
966
+
967
+ - int: The fixed weight decay value. Must be equal to or greater than 0. It will be converted to float.
968
+
969
+ - Cell: Weight decay is dynamic. During training, the optimizer calls the instance of
970
+ the Cell with step as the input to get the weight decay value of current step.
971
+
972
+ Inputs:
973
+ - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
974
+
975
+ Outputs:
976
+ tuple[bool], all elements are True.
977
+
978
+ Raises:
979
+ TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
980
+ TypeError: If element of `parameters` is neither Parameter nor dict.
981
+ TypeError: If `beta1`, `beta2` or `eps` is not a float.
982
+ TypeError: If `weight_decay` is neither float nor int.
983
+ ValueError: If `eps` is less than or equal to 0.
984
+ ValueError: If `beta1`, `beta2` is not in range (0.0, 1.0).
985
+ ValueError: If `weight_decay` is less than 0.
986
+
987
+ Supported Platforms:
988
+ ``Ascend`` ``GPU`` ``CPU``
989
+
990
+ Examples:
991
+ >>> import mindspore as ms
992
+ >>> from mindspore import nn
993
+ >>>
994
+ >>> # Define the network structure of LeNet5. Refer to
995
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
996
+ >>> net = LeNet5()
997
+ >>> #1) All parameters use the same learning rate and weight decay
998
+ >>> optim = nn.AdamWeightDecay(params=net.trainable_params())
999
+ >>>
1000
+ >>> #2) Use parameter groups and set different values
1001
+ >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
1002
+ >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
1003
+ >>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
1004
+ ... {'params': no_conv_params, 'lr': 0.01},
1005
+ ... {'order_params': net.trainable_params()}]
1006
+ >>> optim = nn.AdamWeightDecay(group_params, learning_rate=0.1, weight_decay=0.0)
1007
+ >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
1008
+ >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
1009
+ >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
1010
+ >>>
1011
+ >>> loss = nn.SoftmaxCrossEntropyWithLogits()
1012
+ >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
1013
+ """
1014
+ _support_parallel_optimizer = True
1015
+
1016
+ def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
1017
+ super(AdamWeightDecay, self).__init__(learning_rate, params, weight_decay)
1018
+ _check_param_value(beta1, beta2, eps, self.cls_name)
1019
+ self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
1020
+ self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
1021
+ self.eps = Tensor(np.array([eps]).astype(np.float32))
1022
+ self.moments1 = self._parameters.clone(prefix="adam_m", init='zeros')
1023
+ self.moments2 = self._parameters.clone(prefix="adam_v", init='zeros')
1024
+ self.fused_opt = P.AdamWeightDecay()
1025
+ self.use_fused_opt = True
1026
+
1027
+ @jit
1028
+ def construct(self, gradients):
1029
+ gradients = self.flatten_gradients(gradients)
1030
+ weight_decay = self.get_weight_decay()
1031
+ lr = self.get_lr()
1032
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
1033
+
1034
+ if self.use_fused_opt:
1035
+ if self.is_group:
1036
+ if self.is_group_lr:
1037
+ optim_result = self.hyper_map(
1038
+ F.partial(_fused_adam_weight_decay, self.fused_opt, self.beta1, self.beta2, self.eps),
1039
+ lr, weight_decay, self._parameters, self.moments1,
1040
+ self.moments2, gradients, self.decay_flags, self.optim_filter)
1041
+ else:
1042
+ optim_result = self.hyper_map(
1043
+ F.partial(_fused_adam_weight_decay, self.fused_opt, self.beta1, self.beta2, self.eps, lr),
1044
+ weight_decay, self._parameters, self.moments1, self.moments2,
1045
+ gradients, self.decay_flags, self.optim_filter)
1046
+ else:
1047
+ optim_result = self.hyper_map(
1048
+ F.partial(_fused_adam_weight_decay, self.fused_opt, self.beta1, self.beta2, self.eps, lr,
1049
+ weight_decay),
1050
+ self._parameters, self.moments1, self.moments2,
1051
+ gradients, self.decay_flags, self.optim_filter)
1052
+ else:
1053
+ if self.is_group:
1054
+ if self.is_group_lr:
1055
+ optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps),
1056
+ lr, weight_decay, self._parameters, self.moments1,
1057
+ self.moments2, gradients, self.decay_flags, self.optim_filter)
1058
+ else:
1059
+ optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr),
1060
+ weight_decay, self._parameters, self.moments1, self.moments2,
1061
+ gradients, self.decay_flags, self.optim_filter)
1062
+ else:
1063
+ optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr, weight_decay),
1064
+ self._parameters, self.moments1, self.moments2,
1065
+ gradients, self.decay_flags, self.optim_filter)
1066
+ if self.use_parallel:
1067
+ self.broadcast_params(optim_result)
1068
+
1069
+ return optim_result
1070
+
1071
+ @Optimizer.target.setter
1072
+ def target(self, value):
1073
+ """
1074
+ If the input value is set to "CPU", the parameters will be updated on the host using the Fused
1075
+ optimizer operation.
1076
+ """
1077
+ self._set_base_target(value)
1078
+ if value == 'CPU':
1079
+ self.fused_opt.set_device("CPU")
1080
+ self.use_fused_opt = True
1081
+ else:
1082
+ self.use_fused_opt = False
1083
+
1084
+
1085
+ class AdamOffload(Optimizer):
1086
+ r"""
1087
+ This optimizer will offload Adam optimizer to host CPU and keep parameters being updated on the device,
1088
+ to minimize the memory cost. Although that would bring about an increase of performance overhead,
1089
+ the optimizer could be used to run a larger model.
1090
+
1091
+ The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
1092
+
1093
+ The updating formulas are as follows,
1094
+
1095
+ .. math::
1096
+ \begin{array}{ll} \\
1097
+ m_{t+1} = \beta_1 * m_{t} + (1 - \beta_1) * g \\
1098
+ v_{t+1} = \beta_2 * v_{t} + (1 - \beta_2) * g * g \\
1099
+ l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
1100
+ w_{t+1} = w_{t} - l * \frac{m_{t+1}}{\sqrt{v_{t+1}} + \epsilon}
1101
+ \end{array}
1102
+
1103
+ :math:`m` represents the 1st moment vector `moment1`, :math:`v` represents the 2nd moment vector `moment2`,
1104
+ :math:`g` represents `gradients`, :math:`l` represents scaling factor, :math:`\beta_1, \beta_2` represent
1105
+ `beta1` and `beta2`, :math:`t` represents the current step while :math:`beta_1^t` and :math:`beta_2^t` represent
1106
+ `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `params`,
1107
+ :math:`\epsilon` represents `eps`.
1108
+
1109
+ Note:
1110
+ This optimizer only supports `GRAPH_MODE` currently.
1111
+
1112
+ If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
1113
+ 'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight. When
1114
+ parameters are grouped, each group can set `weight_decay`. If not, the `weight_decay` in optimizer will be
1115
+ applied.
1116
+
1117
+ Args:
1118
+ params (Union[list[Parameter], list[dict]]): Must be list of `Parameter` or list of `dict`. When the
1119
+ `params` is a list of `dict`, the string "params", "lr", "weight_decay", and "order_params"
1120
+ are the keys can be parsed.
1121
+
1122
+ - params: Required. Parameters in current group. The value must be a list of `Parameter`.
1123
+
1124
+ - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
1125
+ If not, the `learning_rate` in optimizer will be used. Fixed and dynamic learning rate are supported.
1126
+
1127
+ - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
1128
+ will be used. If not, the `weight_decay` in the optimizer will be used. It should be noted that weight
1129
+ decay can be a constant value or a Cell. It is a Cell only when dynamic weight decay is applied. Dynamic
1130
+ weight decay is similar to dynamic learning rate, users need to customize a weight decay schedule only
1131
+ with global step as input, and during training, the optimizer calls the instance of WeightDecaySchedule
1132
+ to get the weight decay value of current step.
1133
+
1134
+ - order_params: Optional. When parameters is grouped, this usually is used to maintain the order of
1135
+ parameters that appeared in the network to improve performance. The value should be parameters whose
1136
+ order will be followed in optimizer.
1137
+ If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
1138
+ one group of `params`.
1139
+
1140
+ learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``1e-3`` .
1141
+
1142
+ - float: The fixed learning rate value. Must be equal to or greater than 0.
1143
+
1144
+ - int: The fixed learning rate value. Must be equal to or greater than 0. It will be converted to float.
1145
+
1146
+ - Tensor: Its value should be a scalar or a 1-D vector. For scalar, fixed learning rate will be applied.
1147
+ For vector, learning rate is dynamic, then the i-th step will take the i-th value as the learning rate.
1148
+
1149
+ - Iterable: Learning rate is dynamic. The i-th step will take the i-th value as the learning rate.
1150
+
1151
+ - LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
1152
+ `LearningRateSchedule
1153
+ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
1154
+ with step as the input to get the learning rate of current step.
1155
+
1156
+ beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
1157
+ Default: ``0.9`` .
1158
+ beta2 (float): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
1159
+ Default: ``0.999`` .
1160
+ eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0.
1161
+ Default: ``1e-8`` .
1162
+ use_locking (bool): Whether to enable a lock to protect the updating process of variable tensors.
1163
+ If ``true`` , updates of the `w`, `m`, and `v` tensors will be protected by a lock.
1164
+ If ``false`` , the result is unpredictable. Default: ``False`` .
1165
+ use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
1166
+ If ``true`` , update the gradients using NAG.
1167
+ If ``false`` , update the gradients without using NAG. Default: ``False`` .
1168
+
1169
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
1170
+
1171
+ - float: The fixed weight decay value. Must be equal to or greater than 0.
1172
+
1173
+ - int: The fixed weight decay value. Must be equal to or greater than 0. It will be converted to float.
1174
+
1175
+ - Cell: Weight decay is dynamic. During training, the optimizer calls the instance of
1176
+ the Cell with step as the input to get the weight decay value of current step.
1177
+
1178
+ loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
1179
+ default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
1180
+ `FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
1181
+ `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
1182
+ Default: ``1.0`` .
1183
+
1184
+ Inputs:
1185
+ - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
1186
+
1187
+ Outputs:
1188
+ Tensor[bool], the value is ``True`` .
1189
+
1190
+ Raises:
1191
+ TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
1192
+ TypeError: If element of `parameters` is neither Parameter nor dict.
1193
+ TypeError: If `beta1`, `beta2`, `eps` or `loss_scale` is not a float.
1194
+ TypeError: If `weight_decay` is neither float nor int.
1195
+ TypeError: If `use_locking` or `use_nesterov` is not a bool.
1196
+ ValueError: If `loss_scale` or `eps` is less than or equal to 0.
1197
+ ValueError: If `beta1`, `beta2` is not in range (0.0, 1.0).
1198
+ ValueError: If `weight_decay` is less than 0.
1199
+
1200
+ Supported Platforms:
1201
+ ``Ascend`` ``GPU`` ``CPU``
1202
+
1203
+ Examples:
1204
+ >>> import mindspore as ms
1205
+ >>> from mindspore import nn
1206
+ >>>
1207
+ >>> # Define the network structure of LeNet5. Refer to
1208
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
1209
+ >>> net = LeNet5()
1210
+ >>> #1) All parameters use the same learning rate and weight decay
1211
+ >>> optim = nn.AdamOffload(params=net.trainable_params())
1212
+ >>>
1213
+ >>> #2) Use parameter groups and set different values
1214
+ >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
1215
+ >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
1216
+ >>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
1217
+ ... {'params': no_conv_params, 'lr': 0.01},
1218
+ ... {'order_params': net.trainable_params()}]
1219
+ >>> optim = nn.AdamOffload(group_params, learning_rate=0.1, weight_decay=0.0)
1220
+ >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
1221
+ >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
1222
+ >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
1223
+ >>>
1224
+ >>> loss = nn.SoftmaxCrossEntropyWithLogits()
1225
+ >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
1226
+ """
1227
+
1228
+ @deprecated("2.0", "Adam", False)
1229
+ def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
1230
+ use_nesterov=False, weight_decay=0.0, loss_scale=1.0):
1231
+ super(AdamOffload, self).__init__(learning_rate, params, weight_decay, loss_scale)
1232
+ _check_param_value(beta1, beta2, eps, self.cls_name)
1233
+ validator.check_value_type("use_locking", use_locking, [bool], self.cls_name)
1234
+ validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name)
1235
+
1236
+ self.params = self.parameters
1237
+ self.beta1 = Tensor(beta1, mstype.float32)
1238
+ self.beta2 = Tensor(beta2, mstype.float32)
1239
+ self.beta1_power = Parameter(initializer(1, [1], mstype.float32), name="beta1_power")
1240
+ self.beta2_power = Parameter(initializer(1, [1], mstype.float32), name="beta2_power")
1241
+ self.eps = Tensor(eps, mstype.float32)
1242
+ self.moment1 = self._parameters.clone(prefix="moment1", init='zeros')
1243
+ self.moment2 = self._parameters.clone(prefix="moment2", init='zeros')
1244
+ self.opt = P.AdamNoUpdateParam(use_locking, use_nesterov)
1245
+ self.opt.set_device("CPU")
1246
+
1247
+ @jit
1248
+ def construct(self, gradients):
1249
+ params = self._parameters
1250
+ moment1 = self.moment1
1251
+ moment2 = self.moment2
1252
+ gradients = self.flatten_gradients(gradients)
1253
+ gradients = self.decay_weight(gradients)
1254
+ gradients = self.scale_grad(gradients)
1255
+ lr = self.get_lr()
1256
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
1257
+
1258
+ beta1_power = self.beta1_power * self.beta1
1259
+ self.beta1_power = beta1_power
1260
+ beta2_power = self.beta2_power * self.beta2
1261
+ self.beta2_power = beta2_power
1262
+ if self.is_group_lr:
1263
+ success = self.map_reverse(F.partial(_adam_opt, self.opt,
1264
+ beta1_power, beta2_power, self.beta1, self.beta2, self.eps),
1265
+ lr, gradients, params, moment1, moment2)
1266
+ else:
1267
+ success = self.map_reverse(F.partial(_adam_opt, self.opt,
1268
+ beta1_power, beta2_power, self.beta1, self.beta2, self.eps, lr),
1269
+ gradients, params, moment1, moment2)
1270
+ return success
1271
+
1272
+
1273
+ def create_distributed_adam(*args, **kwargs):
1274
+ """
1275
+ Create the distributed Adam op.
1276
+ """
1277
+ adam = P.Adam(*args, **kwargs)
1278
+ adam.add_prim_attr("gradient_type", "dense_gradient")
1279
+ adam.add_prim_attr("parameter_input_index", 0)
1280
+ adam.add_prim_attr("gradient_input_index", 9)
1281
+ return adam
1282
+
1283
+
1284
+ def create_distributed_fused_sparse_adam(*args, **kwargs):
1285
+ """
1286
+ Create the distributed FusedSparseAdam op.
1287
+ """
1288
+ sparse_adam = P.FusedSparseAdam(*args, **kwargs)
1289
+ sparse_adam.add_prim_attr("gradient_type", "sparse_gradient")
1290
+ sparse_adam.add_prim_attr("parameter_input_index", 0)
1291
+ sparse_adam.add_prim_attr("gradient_input_index", 9)
1292
+ sparse_adam.add_prim_attr("indices_input_index", 10)
1293
+ return sparse_adam
1294
+
1295
+
1296
+ _register_dist_optimizer("adam", create_distributed_adam)
1297
+ _register_dist_optimizer("fused_sparse_adam", create_distributed_fused_sparse_adam)