mindspore 2.4.0__cp311-cp311-macosx_10_15_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -0
- mindspore/__init__.py +53 -0
- mindspore/_c_dataengine.cpython-311-darwin.so +0 -0
- mindspore/_c_expression.cpython-311-darwin.so +0 -0
- mindspore/_c_mindrecord.cpython-311-darwin.so +0 -0
- mindspore/_check_jit_forbidden_api.py +106 -0
- mindspore/_checkparam.py +1419 -0
- mindspore/_extends/__init__.py +23 -0
- mindspore/_extends/builtin_operations.py +224 -0
- mindspore/_extends/graph_kernel/__init__.py +17 -0
- mindspore/_extends/graph_kernel/model/__init__.py +19 -0
- mindspore/_extends/graph_kernel/model/graph_parallel.py +311 -0
- mindspore/_extends/graph_kernel/model/graph_split.py +1348 -0
- mindspore/_extends/graph_kernel/model/model.py +553 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +216 -0
- mindspore/_extends/graph_kernel/parallel_estimate.py +60 -0
- mindspore/_extends/graph_kernel/splitter.py +140 -0
- mindspore/_extends/graph_kernel/utils.py +28 -0
- mindspore/_extends/parallel_compile/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +269 -0
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +529 -0
- mindspore/_extends/parallel_compile/akg_compiler/compiler.py +56 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
- mindspore/_extends/parallel_compile/akg_compiler/get_file_path.py +36 -0
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +556 -0
- mindspore/_extends/parallel_compile/akg_compiler/util.py +159 -0
- mindspore/_extends/parse/__init__.py +49 -0
- mindspore/_extends/parse/compile_config.py +299 -0
- mindspore/_extends/parse/namespace.py +136 -0
- mindspore/_extends/parse/parser.py +1448 -0
- mindspore/_extends/parse/resources.py +213 -0
- mindspore/_extends/parse/standard_method.py +4475 -0
- mindspore/_extends/parse/trope.py +97 -0
- mindspore/_extends/pijit/__init__.py +23 -0
- mindspore/_extends/pijit/pijit_func_white_list.py +669 -0
- mindspore/_extends/remote/__init__.py +19 -0
- mindspore/_extends/remote/kernel_build_server.py +199 -0
- mindspore/_extends/remote/kernel_build_server_akg.py +55 -0
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
- mindspore/_extends/utils.py +68 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_profiler.py +30 -0
- mindspore/amp.py +433 -0
- mindspore/boost/__init__.py +42 -0
- mindspore/boost/adasum.py +319 -0
- mindspore/boost/base.py +535 -0
- mindspore/boost/boost.py +400 -0
- mindspore/boost/boost_cell_wrapper.py +790 -0
- mindspore/boost/dim_reduce.py +323 -0
- mindspore/boost/grad_accumulation.py +79 -0
- mindspore/boost/grad_freeze.py +382 -0
- mindspore/boost/group_loss_scale_manager.py +166 -0
- mindspore/boost/less_batch_normalization.py +174 -0
- mindspore/common/__init__.py +86 -0
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_decorator.py +50 -0
- mindspore/common/_jit_fallback_utils.py +110 -0
- mindspore/common/_monad.py +25 -0
- mindspore/common/_pijit_context.py +190 -0
- mindspore/common/_register_for_adapter.py +74 -0
- mindspore/common/_register_for_recompute.py +48 -0
- mindspore/common/_register_for_tensor.py +46 -0
- mindspore/common/_stub_tensor.py +210 -0
- mindspore/common/_tensor_overload.py +139 -0
- mindspore/common/_utils.py +122 -0
- mindspore/common/api.py +2064 -0
- mindspore/common/auto_dynamic_shape.py +507 -0
- mindspore/common/dtype.py +422 -0
- mindspore/common/dump.py +130 -0
- mindspore/common/file_system.py +48 -0
- mindspore/common/generator.py +254 -0
- mindspore/common/hook_handle.py +143 -0
- mindspore/common/initializer.py +880 -0
- mindspore/common/jit_config.py +98 -0
- mindspore/common/lazy_inline.py +240 -0
- mindspore/common/mindir_util.py +111 -0
- mindspore/common/mutable.py +234 -0
- mindspore/common/no_inline.py +54 -0
- mindspore/common/np_dtype.py +25 -0
- mindspore/common/parameter.py +1081 -0
- mindspore/common/recompute.py +292 -0
- mindspore/common/seed.py +260 -0
- mindspore/common/sparse_tensor.py +1175 -0
- mindspore/common/symbol.py +122 -0
- mindspore/common/tensor.py +5039 -0
- mindspore/communication/__init__.py +37 -0
- mindspore/communication/_comm_helper.py +501 -0
- mindspore/communication/_hccl_management.py +297 -0
- mindspore/communication/comm_func.py +1395 -0
- mindspore/communication/management.py +673 -0
- mindspore/config/op_info.config +533 -0
- mindspore/context.py +2077 -0
- mindspore/dataset/__init__.py +90 -0
- mindspore/dataset/audio/__init__.py +61 -0
- mindspore/dataset/audio/transforms.py +3690 -0
- mindspore/dataset/audio/utils.py +386 -0
- mindspore/dataset/audio/validators.py +1172 -0
- mindspore/dataset/callback/__init__.py +20 -0
- mindspore/dataset/callback/ds_callback.py +368 -0
- mindspore/dataset/callback/validators.py +32 -0
- mindspore/dataset/core/__init__.py +13 -0
- mindspore/dataset/core/config.py +1095 -0
- mindspore/dataset/core/datatypes.py +101 -0
- mindspore/dataset/core/py_util_helpers.py +65 -0
- mindspore/dataset/core/validator_helpers.py +781 -0
- mindspore/dataset/debug/__init__.py +21 -0
- mindspore/dataset/debug/debug_hook.py +97 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +124 -0
- mindspore/dataset/engine/cache_admin.py +47 -0
- mindspore/dataset/engine/cache_client.py +129 -0
- mindspore/dataset/engine/datasets.py +4582 -0
- mindspore/dataset/engine/datasets_audio.py +911 -0
- mindspore/dataset/engine/datasets_standard_format.py +543 -0
- mindspore/dataset/engine/datasets_text.py +2161 -0
- mindspore/dataset/engine/datasets_user_defined.py +1184 -0
- mindspore/dataset/engine/datasets_vision.py +4816 -0
- mindspore/dataset/engine/iterators.py +371 -0
- mindspore/dataset/engine/obs/__init__.py +23 -0
- mindspore/dataset/engine/obs/config_loader.py +68 -0
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +508 -0
- mindspore/dataset/engine/obs/util.py +482 -0
- mindspore/dataset/engine/offload.py +596 -0
- mindspore/dataset/engine/queue.py +304 -0
- mindspore/dataset/engine/samplers.py +895 -0
- mindspore/dataset/engine/serializer_deserializer.py +159 -0
- mindspore/dataset/engine/validators.py +2895 -0
- mindspore/dataset/text/__init__.py +51 -0
- mindspore/dataset/text/transforms.py +1703 -0
- mindspore/dataset/text/utils.py +715 -0
- mindspore/dataset/text/validators.py +642 -0
- mindspore/dataset/transforms/__init__.py +45 -0
- mindspore/dataset/transforms/c_transforms.py +638 -0
- mindspore/dataset/transforms/py_transforms.py +393 -0
- mindspore/dataset/transforms/py_transforms_util.py +255 -0
- mindspore/dataset/transforms/transforms.py +1260 -0
- mindspore/dataset/transforms/validators.py +410 -0
- mindspore/dataset/utils/__init__.py +19 -0
- mindspore/dataset/utils/browse_dataset.py +190 -0
- mindspore/dataset/utils/line_reader.py +126 -0
- mindspore/dataset/vision/__init__.py +65 -0
- mindspore/dataset/vision/c_transforms.py +2641 -0
- mindspore/dataset/vision/py_transforms.py +2120 -0
- mindspore/dataset/vision/py_transforms_util.py +1660 -0
- mindspore/dataset/vision/transforms.py +7295 -0
- mindspore/dataset/vision/utils.py +863 -0
- mindspore/dataset/vision/validators.py +1483 -0
- mindspore/default_config.py +2 -0
- mindspore/experimental/__init__.py +20 -0
- mindspore/experimental/es/__init__.py +22 -0
- mindspore/experimental/es/embedding_service.py +883 -0
- mindspore/experimental/es/embedding_service_layer.py +581 -0
- mindspore/experimental/llm_boost/__init__.py +21 -0
- mindspore/experimental/llm_boost/atb/__init__.py +23 -0
- mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
- mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
- mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
- mindspore/experimental/llm_boost/register.py +129 -0
- mindspore/experimental/llm_boost/utils.py +31 -0
- mindspore/experimental/map_parameter.py +309 -0
- mindspore/experimental/optim/__init__.py +40 -0
- mindspore/experimental/optim/adadelta.py +161 -0
- mindspore/experimental/optim/adagrad.py +168 -0
- mindspore/experimental/optim/adam.py +193 -0
- mindspore/experimental/optim/adamax.py +170 -0
- mindspore/experimental/optim/adamw.py +290 -0
- mindspore/experimental/optim/asgd.py +153 -0
- mindspore/experimental/optim/lr_scheduler.py +1371 -0
- mindspore/experimental/optim/nadam.py +157 -0
- mindspore/experimental/optim/optimizer.py +262 -0
- mindspore/experimental/optim/radam.py +194 -0
- mindspore/experimental/optim/rmsprop.py +154 -0
- mindspore/experimental/optim/rprop.py +164 -0
- mindspore/experimental/optim/sgd.py +156 -0
- mindspore/hal/__init__.py +40 -0
- mindspore/hal/_ascend.py +57 -0
- mindspore/hal/_base.py +57 -0
- mindspore/hal/_cpu.py +56 -0
- mindspore/hal/_gpu.py +57 -0
- mindspore/hal/contiguous_tensors_handle.py +175 -0
- mindspore/hal/device.py +356 -0
- mindspore/hal/event.py +179 -0
- mindspore/hal/memory.py +326 -0
- mindspore/hal/stream.py +357 -0
- mindspore/include/OWNERS +7 -0
- mindspore/include/api/allocator.h +97 -0
- mindspore/include/api/callback/callback.h +93 -0
- mindspore/include/api/callback/ckpt_saver.h +41 -0
- mindspore/include/api/callback/loss_monitor.h +33 -0
- mindspore/include/api/callback/lr_scheduler.h +51 -0
- mindspore/include/api/callback/time_monitor.h +34 -0
- mindspore/include/api/callback/train_accuracy.h +37 -0
- mindspore/include/api/cell.h +90 -0
- mindspore/include/api/cfg.h +82 -0
- mindspore/include/api/context.h +602 -0
- mindspore/include/api/data_type.h +47 -0
- mindspore/include/api/delegate.h +178 -0
- mindspore/include/api/delegate_api.h +75 -0
- mindspore/include/api/dual_abi_helper.h +208 -0
- mindspore/include/api/format.h +28 -0
- mindspore/include/api/graph.h +46 -0
- mindspore/include/api/kernel.h +58 -0
- mindspore/include/api/kernel_api.h +168 -0
- mindspore/include/api/metrics/accuracy.h +36 -0
- mindspore/include/api/metrics/metrics.h +41 -0
- mindspore/include/api/model.h +438 -0
- mindspore/include/api/model_group.h +91 -0
- mindspore/include/api/model_parallel_runner.h +168 -0
- mindspore/include/api/serialization.h +185 -0
- mindspore/include/api/status.h +192 -0
- mindspore/include/api/types.h +431 -0
- mindspore/include/api/visible.h +41 -0
- mindspore/include/c_api/context_c.h +179 -0
- mindspore/include/c_api/data_type_c.h +52 -0
- mindspore/include/c_api/format_c.h +46 -0
- mindspore/include/c_api/model_c.h +347 -0
- mindspore/include/c_api/status_c.h +79 -0
- mindspore/include/c_api/tensor_c.h +146 -0
- mindspore/include/c_api/types_c.h +67 -0
- mindspore/include/dataset/config.h +163 -0
- mindspore/include/dataset/constants.h +363 -0
- mindspore/include/dataset/execute.h +196 -0
- mindspore/include/dataset/text.h +1092 -0
- mindspore/include/dataset/transforms.h +638 -0
- mindspore/include/dataset/vision.h +2129 -0
- mindspore/include/dataset/vision_ascend.h +206 -0
- mindspore/include/dataset/vision_lite.h +625 -0
- mindspore/lib/libavcodec.59.dylib +0 -0
- mindspore/lib/libavdevice.59.dylib +0 -0
- mindspore/lib/libavfilter.8.dylib +0 -0
- mindspore/lib/libavformat.59.dylib +0 -0
- mindspore/lib/libavutil.57.dylib +0 -0
- mindspore/lib/libdnnl.2.dylib +0 -0
- mindspore/lib/libicudata.69.dylib +0 -0
- mindspore/lib/libicui18n.69.dylib +0 -0
- mindspore/lib/libicuuc.69.dylib +0 -0
- mindspore/lib/libmindspore_address_sorting.15.dylib +0 -0
- mindspore/lib/libmindspore_backend.dylib +0 -0
- mindspore/lib/libmindspore_common.dylib +0 -0
- mindspore/lib/libmindspore_core.dylib +0 -0
- mindspore/lib/libmindspore_glog.0.dylib +0 -0
- mindspore/lib/libmindspore_gpr.15.dylib +0 -0
- mindspore/lib/libmindspore_grpc++.1.dylib +0 -0
- mindspore/lib/libmindspore_grpc.15.dylib +0 -0
- mindspore/lib/libmindspore_np_dtype.dylib +0 -0
- mindspore/lib/libmindspore_ops.dylib +0 -0
- mindspore/lib/libmindspore_upb.15.dylib +0 -0
- mindspore/lib/libnnacl.dylib +0 -0
- mindspore/lib/libopencv_core.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgcodecs.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgproc.4.5.dylib +0 -0
- mindspore/lib/libps_cache.dylib +0 -0
- mindspore/lib/libswresample.4.dylib +0 -0
- mindspore/lib/libswscale.6.dylib +0 -0
- mindspore/lib/libtinyxml2.8.dylib +0 -0
- mindspore/log.py +633 -0
- mindspore/mindrecord/__init__.py +43 -0
- mindspore/mindrecord/common/__init__.py +17 -0
- mindspore/mindrecord/common/constant.py +20 -0
- mindspore/mindrecord/common/enums.py +44 -0
- mindspore/mindrecord/common/exceptions.py +311 -0
- mindspore/mindrecord/config.py +809 -0
- mindspore/mindrecord/filereader.py +174 -0
- mindspore/mindrecord/filewriter.py +722 -0
- mindspore/mindrecord/mindpage.py +210 -0
- mindspore/mindrecord/shardheader.py +141 -0
- mindspore/mindrecord/shardindexgenerator.py +74 -0
- mindspore/mindrecord/shardreader.py +117 -0
- mindspore/mindrecord/shardsegment.py +128 -0
- mindspore/mindrecord/shardutils.py +185 -0
- mindspore/mindrecord/shardwriter.py +237 -0
- mindspore/mindrecord/tools/__init__.py +17 -0
- mindspore/mindrecord/tools/cifar10.py +140 -0
- mindspore/mindrecord/tools/cifar100.py +153 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +185 -0
- mindspore/mindrecord/tools/cifar10_to_mr.py +177 -0
- mindspore/mindrecord/tools/csv_to_mr.py +200 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +206 -0
- mindspore/mindrecord/tools/mnist_to_mr.py +259 -0
- mindspore/mindrecord/tools/tfrecord_to_mr.py +360 -0
- mindspore/mint/__init__.py +1586 -0
- mindspore/mint/distributed/__init__.py +31 -0
- mindspore/mint/distributed/distributed.py +254 -0
- mindspore/mint/linalg/__init__.py +22 -0
- mindspore/mint/nn/__init__.py +757 -0
- mindspore/mint/nn/functional.py +679 -0
- mindspore/mint/nn/layer/__init__.py +39 -0
- mindspore/mint/nn/layer/activation.py +133 -0
- mindspore/mint/nn/layer/normalization.py +477 -0
- mindspore/mint/nn/layer/pooling.py +110 -0
- mindspore/mint/optim/__init__.py +24 -0
- mindspore/mint/optim/adamw.py +206 -0
- mindspore/mint/special/__init__.py +63 -0
- mindspore/multiprocessing/__init__.py +73 -0
- mindspore/nn/__init__.py +47 -0
- mindspore/nn/cell.py +2787 -0
- mindspore/nn/dynamic_lr.py +482 -0
- mindspore/nn/grad/__init__.py +21 -0
- mindspore/nn/grad/cell_grad.py +196 -0
- mindspore/nn/layer/__init__.py +63 -0
- mindspore/nn/layer/activation.py +1822 -0
- mindspore/nn/layer/basic.py +1629 -0
- mindspore/nn/layer/channel_shuffle.py +90 -0
- mindspore/nn/layer/combined.py +248 -0
- mindspore/nn/layer/container.py +734 -0
- mindspore/nn/layer/conv.py +1505 -0
- mindspore/nn/layer/dense.py +204 -0
- mindspore/nn/layer/embedding.py +869 -0
- mindspore/nn/layer/image.py +661 -0
- mindspore/nn/layer/math.py +1069 -0
- mindspore/nn/layer/normalization.py +1273 -0
- mindspore/nn/layer/padding.py +880 -0
- mindspore/nn/layer/pooling.py +2302 -0
- mindspore/nn/layer/rnn_cells.py +388 -0
- mindspore/nn/layer/rnns.py +849 -0
- mindspore/nn/layer/thor_layer.py +963 -0
- mindspore/nn/layer/timedistributed.py +155 -0
- mindspore/nn/layer/transformer.py +823 -0
- mindspore/nn/learning_rate_schedule.py +512 -0
- mindspore/nn/loss/__init__.py +36 -0
- mindspore/nn/loss/loss.py +2924 -0
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/__init__.py +45 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +111 -0
- mindspore/nn/optim/ada_grad.py +217 -0
- mindspore/nn/optim/adadelta.py +206 -0
- mindspore/nn/optim/adafactor.py +448 -0
- mindspore/nn/optim/adam.py +1297 -0
- mindspore/nn/optim/adamax.py +220 -0
- mindspore/nn/optim/adasum.py +548 -0
- mindspore/nn/optim/asgd.py +216 -0
- mindspore/nn/optim/ftrl.py +401 -0
- mindspore/nn/optim/lamb.py +296 -0
- mindspore/nn/optim/lars.py +202 -0
- mindspore/nn/optim/lazyadam.py +533 -0
- mindspore/nn/optim/momentum.py +239 -0
- mindspore/nn/optim/optimizer.py +1034 -0
- mindspore/nn/optim/proximal_ada_grad.py +242 -0
- mindspore/nn/optim/rmsprop.py +264 -0
- mindspore/nn/optim/rprop.py +251 -0
- mindspore/nn/optim/sgd.py +237 -0
- mindspore/nn/optim/tft_wrapper.py +127 -0
- mindspore/nn/optim/thor.py +1310 -0
- mindspore/nn/probability/__init__.py +22 -0
- mindspore/nn/probability/bijector/__init__.py +35 -0
- mindspore/nn/probability/bijector/bijector.py +337 -0
- mindspore/nn/probability/bijector/exp.py +65 -0
- mindspore/nn/probability/bijector/gumbel_cdf.py +144 -0
- mindspore/nn/probability/bijector/invert.py +126 -0
- mindspore/nn/probability/bijector/power_transform.py +196 -0
- mindspore/nn/probability/bijector/scalar_affine.py +167 -0
- mindspore/nn/probability/bijector/softplus.py +189 -0
- mindspore/nn/probability/bnn_layers/__init__.py +29 -0
- mindspore/nn/probability/bnn_layers/_util.py +46 -0
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +112 -0
- mindspore/nn/probability/bnn_layers/conv_variational.py +267 -0
- mindspore/nn/probability/bnn_layers/dense_variational.py +302 -0
- mindspore/nn/probability/bnn_layers/layer_distribution.py +123 -0
- mindspore/nn/probability/distribution/__init__.py +56 -0
- mindspore/nn/probability/distribution/_utils/__init__.py +34 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +96 -0
- mindspore/nn/probability/distribution/_utils/utils.py +362 -0
- mindspore/nn/probability/distribution/bernoulli.py +334 -0
- mindspore/nn/probability/distribution/beta.py +391 -0
- mindspore/nn/probability/distribution/categorical.py +435 -0
- mindspore/nn/probability/distribution/cauchy.py +383 -0
- mindspore/nn/probability/distribution/distribution.py +827 -0
- mindspore/nn/probability/distribution/exponential.py +350 -0
- mindspore/nn/probability/distribution/gamma.py +391 -0
- mindspore/nn/probability/distribution/geometric.py +335 -0
- mindspore/nn/probability/distribution/gumbel.py +257 -0
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +272 -0
- mindspore/nn/probability/distribution/logistic.py +379 -0
- mindspore/nn/probability/distribution/normal.py +336 -0
- mindspore/nn/probability/distribution/poisson.py +288 -0
- mindspore/nn/probability/distribution/student_t.py +149 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +235 -0
- mindspore/nn/probability/distribution/uniform.py +375 -0
- mindspore/nn/reinforcement/__init__.py +24 -0
- mindspore/nn/reinforcement/_batch_read_write.py +142 -0
- mindspore/nn/reinforcement/_tensors_queue.py +152 -0
- mindspore/nn/reinforcement/tensor_array.py +145 -0
- mindspore/nn/sparse/__init__.py +23 -0
- mindspore/nn/sparse/sparse.py +147 -0
- mindspore/nn/wrap/__init__.py +49 -0
- mindspore/nn/wrap/cell_wrapper.py +968 -0
- mindspore/nn/wrap/grad_reducer.py +608 -0
- mindspore/nn/wrap/loss_scale.py +694 -0
- mindspore/numpy/__init__.py +121 -0
- mindspore/numpy/array_creations.py +2731 -0
- mindspore/numpy/array_ops.py +2629 -0
- mindspore/numpy/dtypes.py +185 -0
- mindspore/numpy/fft.py +966 -0
- mindspore/numpy/logic_ops.py +936 -0
- mindspore/numpy/math_ops.py +5911 -0
- mindspore/numpy/utils.py +214 -0
- mindspore/numpy/utils_const.py +565 -0
- mindspore/ops/__init__.py +56 -0
- mindspore/ops/_constants.py +30 -0
- mindspore/ops/_grad_experimental/__init__.py +31 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +830 -0
- mindspore/ops/_grad_experimental/grad_base.py +143 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +714 -0
- mindspore/ops/_grad_experimental/grad_debug_ops.py +31 -0
- mindspore/ops/_grad_experimental/grad_implementations.py +203 -0
- mindspore/ops/_grad_experimental/grad_inner_ops.py +79 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +802 -0
- mindspore/ops/_grad_experimental/grad_nn_ops.py +231 -0
- mindspore/ops/_grad_experimental/grad_quant_ops.py +238 -0
- mindspore/ops/_grad_experimental/grad_sparse.py +342 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +399 -0
- mindspore/ops/_grad_experimental/taylor_rule.py +220 -0
- mindspore/ops/_op_impl/__init__.py +23 -0
- mindspore/ops/_op_impl/_custom_op/__init__.py +39 -0
- mindspore/ops/_op_impl/_custom_op/_basic.py +158 -0
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +279 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +156 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +109 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +125 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +105 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +124 -0
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +116 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +89 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +196 -0
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +366 -0
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +162 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +136 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +206 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +128 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +199 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +156 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +184 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +143 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +169 -0
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +548 -0
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +881 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +278 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +200 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +334 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +255 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +222 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +644 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +488 -0
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +87 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +129 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +121 -0
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +352 -0
- mindspore/ops/_op_impl/aicpu/__init__.py +441 -0
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/acos.py +32 -0
- mindspore/ops/_op_impl/aicpu/acos_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/acosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/acosh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/add_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/add_v2.py +40 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +41 -0
- mindspore/ops/_op_impl/aicpu/addcmul.py +47 -0
- mindspore/ops/_op_impl/aicpu/adjust_contrastv2.py +32 -0
- mindspore/ops/_op_impl/aicpu/adjust_hue.py +31 -0
- mindspore/ops/_op_impl/aicpu/adjust_saturation.py +32 -0
- mindspore/ops/_op_impl/aicpu/affine_grid.py +33 -0
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/angle.py +31 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmax_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/asin.py +32 -0
- mindspore/ops/_op_impl/aicpu/asin_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/asinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/asinh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/atanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/avgpool_grad_v1.py +37 -0
- mindspore/ops/_op_impl/aicpu/avgpool_v1.py +36 -0
- mindspore/ops/_op_impl/aicpu/bartlett_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/betainc.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/ops/_op_impl/aicpu/blackman_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/broadcast_to.py +58 -0
- mindspore/ops/_op_impl/aicpu/bucketize.py +34 -0
- mindspore/ops/_op_impl/aicpu/cache_swap_table.py +102 -0
- mindspore/ops/_op_impl/aicpu/cast.py +225 -0
- mindspore/ops/_op_impl/aicpu/cauchy.py +33 -0
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/check_numerics.py +33 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +32 -0
- mindspore/ops/_op_impl/aicpu/cholesky_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/cholesky_solve.py +33 -0
- mindspore/ops/_op_impl/aicpu/choleskygrad.py +32 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +37 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +38 -0
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/compare_and_bitpack.py +37 -0
- mindspore/ops/_op_impl/aicpu/complex.py +32 -0
- mindspore/ops/_op_impl/aicpu/complex_abs.py +31 -0
- mindspore/ops/_op_impl/aicpu/compute_accidental_hits.py +44 -0
- mindspore/ops/_op_impl/aicpu/concat.py +57 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +42 -0
- mindspore/ops/_op_impl/aicpu/conjugate_transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/cos.py +34 -0
- mindspore/ops/_op_impl/aicpu/cosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize.py +69 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_boxes.py +68 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_dense.py +48 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_sparse_tensor.py +51 -0
- mindspore/ops/_op_impl/aicpu/ctc_greedy_decoder.py +35 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2.py +43 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/ctcloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/cummax.py +41 -0
- mindspore/ops/_op_impl/aicpu/cumprod.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumsum.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/data_format_vec_permute.py +32 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/dense_to_csr_sparse_matrix.py +49 -0
- mindspore/ops/_op_impl/aicpu/dense_to_dense_set_operation.py +45 -0
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/depth_to_space.py +44 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/aicpu/digamma.py +31 -0
- mindspore/ops/_op_impl/aicpu/div.py +41 -0
- mindspore/ops/_op_impl/aicpu/div_no_nan.py +35 -0
- mindspore/ops/_op_impl/aicpu/dropout2d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +41 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask_v3.py +32 -0
- mindspore/ops/_op_impl/aicpu/dynamic_stitch.py +42 -0
- mindspore/ops/_op_impl/aicpu/edit_distance.py +56 -0
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/embedding_lookup.py +102 -0
- mindspore/ops/_op_impl/aicpu/end_of_sequence.py +30 -0
- mindspore/ops/_op_impl/aicpu/environ_create.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_destroy_all.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_get.py +41 -0
- mindspore/ops/_op_impl/aicpu/environ_set.py +40 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/exp.py +37 -0
- mindspore/ops/_op_impl/aicpu/expand.py +45 -0
- mindspore/ops/_op_impl/aicpu/expand_dims.py +42 -0
- mindspore/ops/_op_impl/aicpu/expm1.py +34 -0
- mindspore/ops/_op_impl/aicpu/extract_glimpse.py +35 -0
- mindspore/ops/_op_impl/aicpu/eye.py +44 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +47 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +39 -0
- mindspore/ops/_op_impl/aicpu/fill_v2.py +58 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +43 -0
- mindspore/ops/_op_impl/aicpu/floor_div.py +38 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_grad_with_fixed_ksize.py +43 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +65 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad_with_fixed_ksize.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_with_fixed_ksize.py +49 -0
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_ftrl.py +41 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_lazy_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_proximal_adagrad.py +39 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/gather.py +46 -0
- mindspore/ops/_op_impl/aicpu/gather_d.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_d_grad_v2.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_grad.py +54 -0
- mindspore/ops/_op_impl/aicpu/gather_nd.py +56 -0
- mindspore/ops/_op_impl/aicpu/gcd.py +32 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
- mindspore/ops/_op_impl/aicpu/geqrf.py +32 -0
- mindspore/ops/_op_impl/aicpu/get_next.py +39 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d.py +35 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d.py +34 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/hamming_window.py +57 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid.py +32 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/heaviside.py +40 -0
- mindspore/ops/_op_impl/aicpu/histogram.py +35 -0
- mindspore/ops/_op_impl/aicpu/hsv_to_rgb.py +32 -0
- mindspore/ops/_op_impl/aicpu/hypot.py +32 -0
- mindspore/ops/_op_impl/aicpu/identity.py +42 -0
- mindspore/ops/_op_impl/aicpu/identity_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/igamma.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammac.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammagrada.py +30 -0
- mindspore/ops/_op_impl/aicpu/im2col.py +43 -0
- mindspore/ops/_op_impl/aicpu/imag.py +31 -0
- mindspore/ops/_op_impl/aicpu/index_fill.py +54 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/aicpu/init_data_set_queue.py +27 -0
- mindspore/ops/_op_impl/aicpu/inplace_index_add.py +39 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/is_finite.py +40 -0
- mindspore/ops/_op_impl/aicpu/is_inf.py +31 -0
- mindspore/ops/_op_impl/aicpu/is_nan.py +31 -0
- mindspore/ops/_op_impl/aicpu/kldivloss.py +34 -0
- mindspore/ops/_op_impl/aicpu/kldivlossgrad.py +35 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/lcm.py +32 -0
- mindspore/ops/_op_impl/aicpu/left_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +33 -0
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +57 -0
- mindspore/ops/_op_impl/aicpu/linspace.py +33 -0
- mindspore/ops/_op_impl/aicpu/list_diff.py +50 -0
- mindspore/ops/_op_impl/aicpu/log.py +37 -0
- mindspore/ops/_op_impl/aicpu/log1p.py +34 -0
- mindspore/ops/_op_impl/aicpu/log_matrix_determinant.py +31 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +37 -0
- mindspore/ops/_op_impl/aicpu/logical_xor.py +30 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/logspace.py +36 -0
- mindspore/ops/_op_impl/aicpu/lower_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/lstsq.py +34 -0
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_solve.py +32 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack.py +114 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +40 -0
- mindspore/ops/_op_impl/aicpu/masked_select.py +31 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_determinant.py +30 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_part_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_v3.py +56 -0
- mindspore/ops/_op_impl/aicpu/matrix_exp.py +34 -0
- mindspore/ops/_op_impl/aicpu/matrix_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +37 -0
- mindspore/ops/_op_impl/aicpu/matrix_set_diag_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_grad_with_argmax.py +60 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_with_argmax.py +59 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/maximum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/maxpool_grad_v1.py +46 -0
- mindspore/ops/_op_impl/aicpu/maxpool_v1.py +42 -0
- mindspore/ops/_op_impl/aicpu/median.py +39 -0
- mindspore/ops/_op_impl/aicpu/median_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/meshgrid.py +41 -0
- mindspore/ops/_op_impl/aicpu/minimum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +50 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +48 -0
- mindspore/ops/_op_impl/aicpu/mul.py +43 -0
- mindspore/ops/_op_impl/aicpu/mul_no_nan.py +42 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss.py +37 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/multilabel_margin_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +47 -0
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/neg.py +36 -0
- mindspore/ops/_op_impl/aicpu/nextafter.py +32 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/no_repeat_ngram.py +34 -0
- mindspore/ops/_op_impl/aicpu/non_deterministic_ints.py +33 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression.py +36 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression_with_overlaps.py +35 -0
- mindspore/ops/_op_impl/aicpu/non_zero.py +43 -0
- mindspore/ops/_op_impl/aicpu/not_equal.py +39 -0
- mindspore/ops/_op_impl/aicpu/nth_element.py +39 -0
- mindspore/ops/_op_impl/aicpu/nuclear_norm.py +33 -0
- mindspore/ops/_op_impl/aicpu/one_hot.py +116 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +39 -0
- mindspore/ops/_op_impl/aicpu/orgqr.py +34 -0
- mindspore/ops/_op_impl/aicpu/pad_and_shift.py +33 -0
- mindspore/ops/_op_impl/aicpu/pad_v3.py +61 -0
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +59 -0
- mindspore/ops/_op_impl/aicpu/padding.py +41 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +54 -0
- mindspore/ops/_op_impl/aicpu/pdist_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/poisson.py +37 -0
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/pow.py +39 -0
- mindspore/ops/_op_impl/aicpu/print_tensor.py +39 -0
- mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +113 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_range.py +49 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_categorical.py +68 -0
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +36 -0
- mindspore/ops/_op_impl/aicpu/random_gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/random_poisson.py +134 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +47 -0
- mindspore/ops/_op_impl/aicpu/randperm.py +38 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/range_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/real.py +31 -0
- mindspore/ops/_op_impl/aicpu/real_div.py +40 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_mean.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_prod.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/relu_grad_v3.py +41 -0
- mindspore/ops/_op_impl/aicpu/relu_v3.py +38 -0
- mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +96 -0
- mindspore/ops/_op_impl/aicpu/reshape.py +42 -0
- mindspore/ops/_op_impl/aicpu/resize_area.py +40 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +20 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +19 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +36 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/reverse_sequence.py +55 -0
- mindspore/ops/_op_impl/aicpu/reversev2.py +54 -0
- mindspore/ops/_op_impl/aicpu/rgb_to_hsv.py +32 -0
- mindspore/ops/_op_impl/aicpu/right_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/rnnt_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/round.py +34 -0
- mindspore/ops/_op_impl/aicpu/rsqrt.py +33 -0
- mindspore/ops/_op_impl/aicpu/rsqrt_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sample_distorted_bounding_box_v2.py +49 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate.py +52 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/scatter.py +79 -0
- mindspore/ops/_op_impl/aicpu/scatter_add_with_axis.py +53 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +39 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +59 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_max.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_min.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +44 -0
- mindspore/ops/_op_impl/aicpu/segment_max.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_mean.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_min.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_prod.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_sum.py +56 -0
- mindspore/ops/_op_impl/aicpu/select.py +45 -0
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/set_size.py +38 -0
- mindspore/ops/_op_impl/aicpu/sign.py +36 -0
- mindspore/ops/_op_impl/aicpu/sin.py +34 -0
- mindspore/ops/_op_impl/aicpu/sinc.py +43 -0
- mindspore/ops/_op_impl/aicpu/sinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/slice.py +59 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/space_to_depth.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_addmm.py +87 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_centered_rms_prop.py +105 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_momentum.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_proximal_gradient_descent.py +79 -0
- mindspore/ops/_op_impl/aicpu/sparse_concat.py +59 -0
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_add.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_div.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_mul.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_nnz.py +81 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_transpose.py +116 -0
- mindspore/ops/_op_impl/aicpu/sparse_reorder.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_reshape.py +34 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n.py +43 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum.py +49 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax.py +33 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax_cross_entropy_with_logits_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_maximum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_minimum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_add.py +84 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_mat_mul.py +190 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_to_csr_sparse_matrix.py +51 -0
- mindspore/ops/_op_impl/aicpu/sparse_to_dense_v2.py +73 -0
- mindspore/ops/_op_impl/aicpu/split.py +45 -0
- mindspore/ops/_op_impl/aicpu/sqrt.py +34 -0
- mindspore/ops/_op_impl/aicpu/sqrt_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/square.py +35 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +37 -0
- mindspore/ops/_op_impl/aicpu/squeeze.py +42 -0
- mindspore/ops/_op_impl/aicpu/sspaddmm.py +97 -0
- mindspore/ops/_op_impl/aicpu/stack.py +45 -0
- mindspore/ops/_op_impl/aicpu/stack_push_pop.py +87 -0
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +34 -0
- mindspore/ops/_op_impl/aicpu/standard_normal.py +34 -0
- mindspore/ops/_op_impl/aicpu/stateless_dropout_genmask.py +37 -0
- mindspore/ops/_op_impl/aicpu/stft.py +70 -0
- mindspore/ops/_op_impl/aicpu/strided_slice.py +43 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/sub.py +41 -0
- mindspore/ops/_op_impl/aicpu/sub_and_filter.py +36 -0
- mindspore/ops/_op_impl/aicpu/tan.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/tile.py +56 -0
- mindspore/ops/_op_impl/aicpu/topk.py +34 -0
- mindspore/ops/_op_impl/aicpu/trace.py +40 -0
- mindspore/ops/_op_impl/aicpu/tracegrad.py +41 -0
- mindspore/ops/_op_impl/aicpu/trans_data.py +35 -0
- mindspore/ops/_op_impl/aicpu/transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_matmul.py +42 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril.py +42 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triplet_margin_loss.py +62 -0
- mindspore/ops/_op_impl/aicpu/triu.py +43 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +39 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +41 -0
- mindspore/ops/_op_impl/aicpu/uniform_int.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_real.py +33 -0
- mindspore/ops/_op_impl/aicpu/unique.py +31 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +47 -0
- mindspore/ops/_op_impl/aicpu/unique_with_pad.py +32 -0
- mindspore/ops/_op_impl/aicpu/unravel_index.py +32 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_prod.py +53 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/unstack.py +45 -0
- mindspore/ops/_op_impl/aicpu/update_cache.py +44 -0
- mindspore/ops/_op_impl/aicpu/upper_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +40 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/xdivy.py +35 -0
- mindspore/ops/_op_impl/aicpu/xlogy.py +33 -0
- mindspore/ops/_op_impl/aicpu/zeros_like.py +42 -0
- mindspore/ops/_op_impl/aicpu/zeta.py +31 -0
- mindspore/ops/_op_impl/akg/__init__.py +19 -0
- mindspore/ops/_op_impl/akg/ascend/__init__.py +48 -0
- mindspore/ops/_op_impl/akg/ascend/abs.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/add.py +42 -0
- mindspore/ops/_op_impl/akg/ascend/add_n.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/batchmatmul.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/cast.py +46 -0
- mindspore/ops/_op_impl/akg/ascend/equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/exp.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/expand_dims.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/greater.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/greater_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/less.py +31 -0
- mindspore/ops/_op_impl/akg/ascend/less_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/load_im2col.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/log.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/maximum.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/minimum.py +39 -0
- mindspore/ops/_op_impl/akg/ascend/mul.py +41 -0
- mindspore/ops/_op_impl/akg/ascend/neg.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/pow.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/prod_force_se_a.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/real_div.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/reciprocal.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_max.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_min.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_sum.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/rsqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/select.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/sqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/square.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/sub.py +42 -0
- mindspore/ops/_op_impl/akg/cpu/__init__.py +23 -0
- mindspore/ops/_op_impl/akg/cpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mm.py +34 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mul.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mv.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_reduce_sum.py +31 -0
- mindspore/ops/_op_impl/akg/gpu/__init__.py +24 -0
- mindspore/ops/_op_impl/akg/gpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr_div.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mm.py +37 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mul.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mv.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_reduce_sum.py +33 -0
- mindspore/ops/_op_impl/cpu/__init__.py +78 -0
- mindspore/ops/_op_impl/cpu/adam.py +49 -0
- mindspore/ops/_op_impl/cpu/adam_weight_decay.py +47 -0
- mindspore/ops/_op_impl/cpu/arg_max.py +30 -0
- mindspore/ops/_op_impl/cpu/arg_max_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/arg_min_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/buffer_append.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_get.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_sample.py +28 -0
- mindspore/ops/_op_impl/cpu/cast.py +171 -0
- mindspore/ops/_op_impl/cpu/concat_offset.py +38 -0
- mindspore/ops/_op_impl/cpu/conv2d.py +30 -0
- mindspore/ops/_op_impl/cpu/conv3d.py +30 -0
- mindspore/ops/_op_impl/cpu/div.py +32 -0
- mindspore/ops/_op_impl/cpu/dropout.py +31 -0
- mindspore/ops/_op_impl/cpu/dropout_grad.py +30 -0
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +42 -0
- mindspore/ops/_op_impl/cpu/dynamic_stitch.py +41 -0
- mindspore/ops/_op_impl/cpu/equal_count.py +30 -0
- mindspore/ops/_op_impl/cpu/gather_d.py +49 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/gather_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/hsigmoid.py +33 -0
- mindspore/ops/_op_impl/cpu/hsigmoid_grad.py +34 -0
- mindspore/ops/_op_impl/cpu/hswish.py +32 -0
- mindspore/ops/_op_impl/cpu/hswish_grad.py +33 -0
- mindspore/ops/_op_impl/cpu/identity_n.py +40 -0
- mindspore/ops/_op_impl/cpu/is_finite.py +39 -0
- mindspore/ops/_op_impl/cpu/l2loss.py +30 -0
- mindspore/ops/_op_impl/cpu/layer_norm.py +36 -0
- mindspore/ops/_op_impl/cpu/layer_norm_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/maximum.py +35 -0
- mindspore/ops/_op_impl/cpu/maximum_grad.py +47 -0
- mindspore/ops/_op_impl/cpu/minimum.py +40 -0
- mindspore/ops/_op_impl/cpu/minimum_grad.py +51 -0
- mindspore/ops/_op_impl/cpu/mirror_pad.py +36 -0
- mindspore/ops/_op_impl/cpu/mirror_pad_grad.py +36 -0
- mindspore/ops/_op_impl/cpu/mul.py +32 -0
- mindspore/ops/_op_impl/cpu/one_hot.py +31 -0
- mindspore/ops/_op_impl/cpu/pad.py +32 -0
- mindspore/ops/_op_impl/cpu/pow.py +32 -0
- mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +42 -0
- mindspore/ops/_op_impl/cpu/pyexecute.py +29 -0
- mindspore/ops/_op_impl/cpu/pyfunc.py +29 -0
- mindspore/ops/_op_impl/cpu/range.py +34 -0
- mindspore/ops/_op_impl/cpu/real_div.py +33 -0
- mindspore/ops/_op_impl/cpu/reduce_all.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_any.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_max.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_mean.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_min.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_prod.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_std.py +31 -0
- mindspore/ops/_op_impl/cpu/reduce_sum.py +41 -0
- mindspore/ops/_op_impl/cpu/space_to_batch_nd.py +38 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/split.py +34 -0
- mindspore/ops/_op_impl/cpu/sspaddmm.py +95 -0
- mindspore/ops/_op_impl/cpu/stack.py +38 -0
- mindspore/ops/_op_impl/cpu/sub.py +32 -0
- mindspore/ops/_op_impl/cpu/tensor_copy_slices.py +41 -0
- mindspore/ops/_op_impl/cpu/tile.py +37 -0
- mindspore/ops/_op_impl/cpu/top_k.py +31 -0
- mindspore/ops/_op_impl/cpu/transpose.py +39 -0
- mindspore/ops/_primitive_cache.py +90 -0
- mindspore/ops/_register_for_op.py +73 -0
- mindspore/ops/_utils/__init__.py +20 -0
- mindspore/ops/_utils/utils.py +147 -0
- mindspore/ops/_vmap/__init__.py +25 -0
- mindspore/ops/_vmap/vmap_array_ops.py +2149 -0
- mindspore/ops/_vmap/vmap_base.py +533 -0
- mindspore/ops/_vmap/vmap_convolution_ops.py +441 -0
- mindspore/ops/_vmap/vmap_debug_ops.py +50 -0
- mindspore/ops/_vmap/vmap_grad_math_ops.py +274 -0
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +806 -0
- mindspore/ops/_vmap/vmap_image_ops.py +194 -0
- mindspore/ops/_vmap/vmap_math_ops.py +993 -0
- mindspore/ops/_vmap/vmap_nn_ops.py +2250 -0
- mindspore/ops/_vmap/vmap_other_ops.py +105 -0
- mindspore/ops/_vmap/vmap_random_ops.py +122 -0
- mindspore/ops/_vmap/vmap_sparse_ops.py +89 -0
- mindspore/ops/auto_generate/__init__.py +31 -0
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +309 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +252 -0
- mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
- mindspore/ops/auto_generate/gen_extend_func.py +1701 -0
- mindspore/ops/auto_generate/gen_ops_def.py +8482 -0
- mindspore/ops/auto_generate/gen_ops_prim.py +16704 -0
- mindspore/ops/auto_generate/pyboost_inner_prim.py +549 -0
- mindspore/ops/composite/__init__.py +71 -0
- mindspore/ops/composite/base.py +1318 -0
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +125 -0
- mindspore/ops/composite/multitype_ops/__init__.py +77 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +1459 -0
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +897 -0
- mindspore/ops/composite/multitype_ops/add_impl.py +606 -0
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +189 -0
- mindspore/ops/composite/multitype_ops/equal_impl.py +335 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +88 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +400 -0
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +109 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +110 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +111 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +112 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +113 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +60 -0
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +61 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +86 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +294 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +79 -0
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +290 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +96 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +87 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +884 -0
- mindspore/ops/composite/multitype_ops/sub_impl.py +116 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +29 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +228 -0
- mindspore/ops/deprecated.py +315 -0
- mindspore/ops/function/__init__.py +782 -0
- mindspore/ops/function/array_func.py +7226 -0
- mindspore/ops/function/clip_func.py +384 -0
- mindspore/ops/function/debug_func.py +181 -0
- mindspore/ops/function/fft_func.py +44 -0
- mindspore/ops/function/grad/__init__.py +34 -0
- mindspore/ops/function/grad/grad_func.py +1425 -0
- mindspore/ops/function/image_func.py +292 -0
- mindspore/ops/function/linalg_func.py +416 -0
- mindspore/ops/function/math_func.py +12228 -0
- mindspore/ops/function/nn_func.py +8609 -0
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +134 -0
- mindspore/ops/function/random_func.py +1715 -0
- mindspore/ops/function/reshard_func.py +104 -0
- mindspore/ops/function/sparse_func.py +884 -0
- mindspore/ops/function/sparse_unary_func.py +2422 -0
- mindspore/ops/function/spectral_func.py +150 -0
- mindspore/ops/function/vmap_func.py +117 -0
- mindspore/ops/functional.py +464 -0
- mindspore/ops/op_info_register.py +1572 -0
- mindspore/ops/operations/__init__.py +722 -0
- mindspore/ops/operations/_csr_ops.py +403 -0
- mindspore/ops/operations/_custom_grad.py +181 -0
- mindspore/ops/operations/_embedding_cache_ops.py +307 -0
- mindspore/ops/operations/_grad_ops.py +2978 -0
- mindspore/ops/operations/_infer_ops.py +19 -0
- mindspore/ops/operations/_inner_ops.py +2544 -0
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +601 -0
- mindspore/ops/operations/_ocr_ops.py +379 -0
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_pyfunc_registry.py +58 -0
- mindspore/ops/operations/_quant_ops.py +1844 -0
- mindspore/ops/operations/_rl_inner_ops.py +1231 -0
- mindspore/ops/operations/_scalar_ops.py +106 -0
- mindspore/ops/operations/_sequence_ops.py +1155 -0
- mindspore/ops/operations/_sparse_grad_ops.py +56 -0
- mindspore/ops/operations/_tensor_array.py +359 -0
- mindspore/ops/operations/_thor_ops.py +807 -0
- mindspore/ops/operations/array_ops.py +6124 -0
- mindspore/ops/operations/comm_ops.py +1985 -0
- mindspore/ops/operations/control_ops.py +127 -0
- mindspore/ops/operations/custom_ops.py +1129 -0
- mindspore/ops/operations/debug_ops.py +678 -0
- mindspore/ops/operations/image_ops.py +1041 -0
- mindspore/ops/operations/inner_ops.py +697 -0
- mindspore/ops/operations/linalg_ops.py +95 -0
- mindspore/ops/operations/manually_defined/__init__.py +24 -0
- mindspore/ops/operations/manually_defined/_inner.py +73 -0
- mindspore/ops/operations/manually_defined/ops_def.py +2271 -0
- mindspore/ops/operations/math_ops.py +5095 -0
- mindspore/ops/operations/nn_ops.py +9575 -0
- mindspore/ops/operations/other_ops.py +874 -0
- mindspore/ops/operations/random_ops.py +1288 -0
- mindspore/ops/operations/reshard_ops.py +53 -0
- mindspore/ops/operations/rl_ops.py +288 -0
- mindspore/ops/operations/sparse_ops.py +2753 -0
- mindspore/ops/operations/spectral_ops.py +111 -0
- mindspore/ops/primitive.py +1046 -0
- mindspore/ops/signature.py +54 -0
- mindspore/ops/vm_impl_registry.py +91 -0
- mindspore/ops_generate/__init__.py +27 -0
- mindspore/ops_generate/arg_dtype_cast.py +252 -0
- mindspore/ops_generate/arg_handler.py +197 -0
- mindspore/ops_generate/gen_aclnn_implement.py +263 -0
- mindspore/ops_generate/gen_constants.py +36 -0
- mindspore/ops_generate/gen_ops.py +1099 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
- mindspore/ops_generate/gen_pyboost_func.py +1052 -0
- mindspore/ops_generate/gen_utils.py +209 -0
- mindspore/ops_generate/op_proto.py +145 -0
- mindspore/ops_generate/pyboost_utils.py +367 -0
- mindspore/ops_generate/template.py +261 -0
- mindspore/parallel/__init__.py +30 -0
- mindspore/parallel/_auto_parallel_context.py +1486 -0
- mindspore/parallel/_cell_wrapper.py +174 -0
- mindspore/parallel/_cost_model_context.py +700 -0
- mindspore/parallel/_dp_allreduce_fusion.py +159 -0
- mindspore/parallel/_offload_context.py +275 -0
- mindspore/parallel/_parallel_serialization.py +561 -0
- mindspore/parallel/_ps_context.py +242 -0
- mindspore/parallel/_recovery_context.py +110 -0
- mindspore/parallel/_tensor.py +730 -0
- mindspore/parallel/_transformer/__init__.py +35 -0
- mindspore/parallel/_transformer/layers.py +765 -0
- mindspore/parallel/_transformer/loss.py +251 -0
- mindspore/parallel/_transformer/moe.py +693 -0
- mindspore/parallel/_transformer/op_parallel_config.py +222 -0
- mindspore/parallel/_transformer/transformer.py +3119 -0
- mindspore/parallel/_utils.py +612 -0
- mindspore/parallel/algo_parameter_config.py +400 -0
- mindspore/parallel/checkpoint_transform.py +650 -0
- mindspore/parallel/cluster/__init__.py +15 -0
- mindspore/parallel/cluster/process_entity/__init__.py +18 -0
- mindspore/parallel/cluster/process_entity/_api.py +352 -0
- mindspore/parallel/cluster/process_entity/_utils.py +101 -0
- mindspore/parallel/cluster/run.py +136 -0
- mindspore/parallel/mpi/__init__.py +14 -0
- mindspore/parallel/mpi/_mpi_config.py +116 -0
- mindspore/parallel/parameter_broadcast.py +151 -0
- mindspore/parallel/shard.py +481 -0
- mindspore/parallel/transform_safetensors.py +993 -0
- mindspore/profiler/__init__.py +28 -0
- mindspore/profiler/common/__init__.py +14 -0
- mindspore/profiler/common/constant.py +29 -0
- mindspore/profiler/common/exceptions/__init__.py +14 -0
- mindspore/profiler/common/exceptions/error_code.py +83 -0
- mindspore/profiler/common/exceptions/exceptions.py +286 -0
- mindspore/profiler/common/process_pool.py +41 -0
- mindspore/profiler/common/registry.py +47 -0
- mindspore/profiler/common/singleton.py +28 -0
- mindspore/profiler/common/struct_type.py +118 -0
- mindspore/profiler/common/util.py +472 -0
- mindspore/profiler/common/validator/__init__.py +14 -0
- mindspore/profiler/common/validator/validate_path.py +84 -0
- mindspore/profiler/dynamic_profiler.py +694 -0
- mindspore/profiler/envprofiling.py +254 -0
- mindspore/profiler/parser/__init__.py +14 -0
- mindspore/profiler/parser/aicpu_data_parser.py +272 -0
- mindspore/profiler/parser/ascend_analysis/__init__.py +14 -0
- mindspore/profiler/parser/ascend_analysis/constant.py +71 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +180 -0
- mindspore/profiler/parser/ascend_analysis/function_event.py +185 -0
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +136 -0
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +131 -0
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +104 -0
- mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +123 -0
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +75 -0
- mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
- mindspore/profiler/parser/ascend_flops_generator.py +116 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +82 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +271 -0
- mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
- mindspore/profiler/parser/ascend_memory_generator.py +185 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +282 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +187 -0
- mindspore/profiler/parser/ascend_op_generator.py +334 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +545 -0
- mindspore/profiler/parser/base_timeline_generator.py +483 -0
- mindspore/profiler/parser/container.py +229 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +697 -0
- mindspore/profiler/parser/flops_parser.py +531 -0
- mindspore/profiler/parser/framework_enum.py +111 -0
- mindspore/profiler/parser/framework_parser.py +464 -0
- mindspore/profiler/parser/framework_struct.py +61 -0
- mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
- mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
- mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
- mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
- mindspore/profiler/parser/hccl_parser.py +573 -0
- mindspore/profiler/parser/hwts_log_parser.py +122 -0
- mindspore/profiler/parser/integrator.py +526 -0
- mindspore/profiler/parser/memory_usage_parser.py +277 -0
- mindspore/profiler/parser/minddata_analyzer.py +800 -0
- mindspore/profiler/parser/minddata_parser.py +186 -0
- mindspore/profiler/parser/minddata_pipeline_parser.py +299 -0
- mindspore/profiler/parser/op_intermediate_parser.py +149 -0
- mindspore/profiler/parser/optime_parser.py +250 -0
- mindspore/profiler/parser/profiler_info.py +213 -0
- mindspore/profiler/parser/step_trace_parser.py +666 -0
- mindspore/profiler/profiler.py +153 -0
- mindspore/profiler/profiling.py +1922 -0
- mindspore/rewrite/__init__.py +28 -0
- mindspore/rewrite/api/__init__.py +17 -0
- mindspore/rewrite/api/node.py +519 -0
- mindspore/rewrite/api/node_type.py +53 -0
- mindspore/rewrite/api/pattern_engine.py +490 -0
- mindspore/rewrite/api/scoped_value.py +181 -0
- mindspore/rewrite/api/symbol_tree.py +497 -0
- mindspore/rewrite/ast_helpers/__init__.py +25 -0
- mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +404 -0
- mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +605 -0
- mindspore/rewrite/ast_helpers/ast_replacer.py +79 -0
- mindspore/rewrite/common/__init__.py +19 -0
- mindspore/rewrite/common/config.py +24 -0
- mindspore/rewrite/common/error_log.py +39 -0
- mindspore/rewrite/common/event.py +28 -0
- mindspore/rewrite/common/namer.py +271 -0
- mindspore/rewrite/common/namespace.py +118 -0
- mindspore/rewrite/common/observable.py +44 -0
- mindspore/rewrite/common/observer.py +54 -0
- mindspore/rewrite/node/__init__.py +22 -0
- mindspore/rewrite/node/call_function.py +95 -0
- mindspore/rewrite/node/cell_container.py +139 -0
- mindspore/rewrite/node/control_flow.py +113 -0
- mindspore/rewrite/node/node.py +1428 -0
- mindspore/rewrite/node/node_manager.py +283 -0
- mindspore/rewrite/node/node_topological_manager.py +223 -0
- mindspore/rewrite/parsers/__init__.py +29 -0
- mindspore/rewrite/parsers/arguments_parser.py +63 -0
- mindspore/rewrite/parsers/assign_parser.py +852 -0
- mindspore/rewrite/parsers/attribute_parser.py +57 -0
- mindspore/rewrite/parsers/class_def_parser.py +289 -0
- mindspore/rewrite/parsers/constant_parser.py +104 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/expr_parser.py +55 -0
- mindspore/rewrite/parsers/for_parser.py +61 -0
- mindspore/rewrite/parsers/function_def_parser.py +84 -0
- mindspore/rewrite/parsers/if_parser.py +85 -0
- mindspore/rewrite/parsers/module_parser.py +117 -0
- mindspore/rewrite/parsers/parser.py +43 -0
- mindspore/rewrite/parsers/parser_register.py +86 -0
- mindspore/rewrite/parsers/return_parser.py +37 -0
- mindspore/rewrite/parsers/while_parser.py +59 -0
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +457 -0
- mindspore/rewrite/sparsify/sparsify.py +112 -0
- mindspore/rewrite/sparsify/utils.py +179 -0
- mindspore/rewrite/symbol_tree/__init__.py +20 -0
- mindspore/rewrite/symbol_tree/symbol_tree.py +1819 -0
- mindspore/rewrite/symbol_tree/symbol_tree_builder.py +76 -0
- mindspore/rewrite/symbol_tree/symbol_tree_dumper.py +142 -0
- mindspore/run_check/__init__.py +20 -0
- mindspore/run_check/_check_version.py +507 -0
- mindspore/run_check/run_check.py +66 -0
- mindspore/safeguard/__init__.py +18 -0
- mindspore/safeguard/rewrite_obfuscation.py +875 -0
- mindspore/scipy/__init__.py +18 -0
- mindspore/scipy/fft.py +264 -0
- mindspore/scipy/linalg.py +919 -0
- mindspore/scipy/ops.py +165 -0
- mindspore/scipy/ops_grad.py +115 -0
- mindspore/scipy/ops_wrapper.py +74 -0
- mindspore/scipy/optimize/__init__.py +20 -0
- mindspore/scipy/optimize/_bfgs.py +230 -0
- mindspore/scipy/optimize/_lagrange.py +201 -0
- mindspore/scipy/optimize/_lbfgs.py +146 -0
- mindspore/scipy/optimize/gradient_optimization_algorithm.py +168 -0
- mindspore/scipy/optimize/line_search.py +370 -0
- mindspore/scipy/optimize/linear_sum_assignment.py +78 -0
- mindspore/scipy/optimize/minimize.py +200 -0
- mindspore/scipy/utils.py +156 -0
- mindspore/scipy/utils_const.py +246 -0
- mindspore/train/__init__.py +48 -0
- mindspore/train/_utils.py +465 -0
- mindspore/train/amp.py +935 -0
- mindspore/train/anf_ir_pb2.py +1517 -0
- mindspore/train/callback/__init__.py +44 -0
- mindspore/train/callback/_backup_and_restore.py +117 -0
- mindspore/train/callback/_callback.py +613 -0
- mindspore/train/callback/_checkpoint.py +814 -0
- mindspore/train/callback/_cluster_monitor.py +201 -0
- mindspore/train/callback/_dataset_graph.py +150 -0
- mindspore/train/callback/_early_stop.py +239 -0
- mindspore/train/callback/_flops_collector.py +239 -0
- mindspore/train/callback/_history.py +92 -0
- mindspore/train/callback/_lambda_callback.py +80 -0
- mindspore/train/callback/_landscape.py +1049 -0
- mindspore/train/callback/_loss_monitor.py +107 -0
- mindspore/train/callback/_lr_scheduler_callback.py +76 -0
- mindspore/train/callback/_on_request_exit.py +298 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +226 -0
- mindspore/train/callback/_summary_collector.py +1184 -0
- mindspore/train/callback/_tft_register.py +352 -0
- mindspore/train/callback/_time_monitor.py +141 -0
- mindspore/train/checkpoint_pb2.py +233 -0
- mindspore/train/data_sink.py +219 -0
- mindspore/train/dataset_helper.py +692 -0
- mindspore/train/lineage_pb2.py +1260 -0
- mindspore/train/loss_scale_manager.py +213 -0
- mindspore/train/memory_profiling_pb2.py +298 -0
- mindspore/train/metrics/__init__.py +175 -0
- mindspore/train/metrics/accuracy.py +133 -0
- mindspore/train/metrics/auc.py +129 -0
- mindspore/train/metrics/bleu_score.py +170 -0
- mindspore/train/metrics/confusion_matrix.py +700 -0
- mindspore/train/metrics/cosine_similarity.py +109 -0
- mindspore/train/metrics/dice.py +116 -0
- mindspore/train/metrics/error.py +175 -0
- mindspore/train/metrics/fbeta.py +167 -0
- mindspore/train/metrics/hausdorff_distance.py +333 -0
- mindspore/train/metrics/loss.py +97 -0
- mindspore/train/metrics/mean_surface_distance.py +189 -0
- mindspore/train/metrics/metric.py +373 -0
- mindspore/train/metrics/occlusion_sensitivity.py +225 -0
- mindspore/train/metrics/perplexity.py +133 -0
- mindspore/train/metrics/precision.py +160 -0
- mindspore/train/metrics/recall.py +159 -0
- mindspore/train/metrics/roc.py +223 -0
- mindspore/train/metrics/root_mean_square_surface_distance.py +191 -0
- mindspore/train/metrics/topk.py +167 -0
- mindspore/train/mind_ir_pb2.py +1908 -0
- mindspore/train/model.py +2252 -0
- mindspore/train/node_strategy_pb2.py +653 -0
- mindspore/train/print_pb2.py +184 -0
- mindspore/train/profiling_parallel_pb2.py +151 -0
- mindspore/train/serialization.py +3325 -0
- mindspore/train/summary/__init__.py +23 -0
- mindspore/train/summary/_lineage_adapter.py +41 -0
- mindspore/train/summary/_summary_adapter.py +496 -0
- mindspore/train/summary/_writer_pool.py +207 -0
- mindspore/train/summary/enums.py +56 -0
- mindspore/train/summary/summary_record.py +581 -0
- mindspore/train/summary/writer.py +167 -0
- mindspore/train/summary_pb2.py +1165 -0
- mindspore/train/train_thor/__init__.py +20 -0
- mindspore/train/train_thor/convert_utils.py +268 -0
- mindspore/train/train_thor/dataset_helper.py +192 -0
- mindspore/train/train_thor/model_thor.py +257 -0
- mindspore/utils/__init__.py +21 -0
- mindspore/utils/utils.py +60 -0
- mindspore/version.py +1 -0
- mindspore-2.4.0.dist-info/METADATA +352 -0
- mindspore-2.4.0.dist-info/RECORD +1387 -0
- mindspore-2.4.0.dist-info/WHEEL +5 -0
- mindspore-2.4.0.dist-info/entry_points.txt +3 -0
- mindspore-2.4.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1049 @@
|
|
|
1
|
+
# Copyright 2021-2023 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""Process data and Calc loss landscape."""
|
|
16
|
+
from __future__ import absolute_import
|
|
17
|
+
|
|
18
|
+
import os
|
|
19
|
+
import time
|
|
20
|
+
import json
|
|
21
|
+
import stat
|
|
22
|
+
import shutil
|
|
23
|
+
import numbers
|
|
24
|
+
|
|
25
|
+
from collections import defaultdict, namedtuple
|
|
26
|
+
from concurrent.futures import wait, ALL_COMPLETED, ProcessPoolExecutor
|
|
27
|
+
|
|
28
|
+
import numpy as np
|
|
29
|
+
from scipy import linalg, sparse
|
|
30
|
+
|
|
31
|
+
from mindspore import log as logger
|
|
32
|
+
from mindspore.common.tensor import Tensor
|
|
33
|
+
from mindspore.common.parameter import Parameter
|
|
34
|
+
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
35
|
+
from mindspore.train.summary_pb2 import LossLandscape
|
|
36
|
+
from mindspore.train.summary import SummaryRecord
|
|
37
|
+
from mindspore.train.summary.enums import PluginEnum
|
|
38
|
+
from mindspore.train.anf_ir_pb2 import DataType
|
|
39
|
+
from mindspore.train._utils import check_value_type, _make_directory
|
|
40
|
+
from mindspore.train.dataset_helper import DatasetHelper
|
|
41
|
+
from mindspore.train.metrics import get_metrics
|
|
42
|
+
from mindspore import context
|
|
43
|
+
|
|
44
|
+
# if there is no path, you need to set to empty list
|
|
45
|
+
Points = namedtuple("Points", ["x", "y", "z"])
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def nptype_to_prototype(np_value):
|
|
49
|
+
"""
|
|
50
|
+
Transform the np type to proto type.
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
np_value (Type): Numpy data type.
|
|
54
|
+
|
|
55
|
+
Returns:
|
|
56
|
+
Type, proto data type.
|
|
57
|
+
"""
|
|
58
|
+
np2pt_tbl = {
|
|
59
|
+
np.bool_: 'DT_BOOL',
|
|
60
|
+
np.int8: 'DT_INT8',
|
|
61
|
+
np.int16: 'DT_INT16',
|
|
62
|
+
np.int32: 'DT_INT32',
|
|
63
|
+
np.int64: 'DT_INT64',
|
|
64
|
+
np.uint8: 'DT_UINT8',
|
|
65
|
+
np.uint16: 'DT_UINT16',
|
|
66
|
+
np.uint32: 'DT_UINT32',
|
|
67
|
+
np.uint64: 'DT_UINT64',
|
|
68
|
+
np.float16: 'DT_FLOAT16',
|
|
69
|
+
np.float_: 'DT_FLOAT64',
|
|
70
|
+
np.float32: 'DT_FLOAT32',
|
|
71
|
+
np.float64: 'DT_FLOAT64',
|
|
72
|
+
None: 'DT_UNDEFINED'
|
|
73
|
+
}
|
|
74
|
+
if np_value is None:
|
|
75
|
+
return None
|
|
76
|
+
|
|
77
|
+
np_type = np_value.dtype.type
|
|
78
|
+
proto = np2pt_tbl.get(np_type, None)
|
|
79
|
+
if proto is None:
|
|
80
|
+
raise TypeError("No match for proto data type.")
|
|
81
|
+
return proto
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def fill_array_to_tensor(np_value, summary_tensor):
|
|
85
|
+
"""
|
|
86
|
+
Package the tensor summary.
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
np_value (Type): Summary data type.
|
|
90
|
+
summary_tensor (Tensor): The tensor of summary.
|
|
91
|
+
|
|
92
|
+
Returns:
|
|
93
|
+
Summary, return tensor summary content.
|
|
94
|
+
"""
|
|
95
|
+
# get tensor dtype
|
|
96
|
+
tensor_dtype = nptype_to_prototype(np_value)
|
|
97
|
+
summary_tensor.data_type = DataType.Value(tensor_dtype)
|
|
98
|
+
|
|
99
|
+
# get the value list
|
|
100
|
+
tensor_value_list = np_value.reshape(-1).tolist()
|
|
101
|
+
summary_tensor.float_data.extend(tensor_value_list)
|
|
102
|
+
|
|
103
|
+
# get the tensor dim
|
|
104
|
+
for vector in np_value.shape:
|
|
105
|
+
summary_tensor.dims.append(vector)
|
|
106
|
+
|
|
107
|
+
return summary_tensor
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def transfer_tensor_to_tuple(inputs):
|
|
111
|
+
"""
|
|
112
|
+
If the input is a tensor, convert it to a tuple. If not, the output is unchanged.
|
|
113
|
+
"""
|
|
114
|
+
if isinstance(inputs, Tensor):
|
|
115
|
+
return (inputs,)
|
|
116
|
+
|
|
117
|
+
return inputs
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
class Landscape:
|
|
121
|
+
"""Return loss landscape."""
|
|
122
|
+
def __init__(self,
|
|
123
|
+
intervals,
|
|
124
|
+
decomposition,
|
|
125
|
+
landscape_points: Points,
|
|
126
|
+
convergence_point=None,
|
|
127
|
+
path_points=None):
|
|
128
|
+
self.landscape_points = landscape_points
|
|
129
|
+
self.decomposition = decomposition
|
|
130
|
+
self.intervals = intervals
|
|
131
|
+
self.num_samples = 2048
|
|
132
|
+
self.convergence_point = convergence_point
|
|
133
|
+
self.path_points = path_points
|
|
134
|
+
self.unit = 'step'
|
|
135
|
+
self.step_per_epoch = 1
|
|
136
|
+
|
|
137
|
+
def set_convergence_point(self, convergence_point: Points):
|
|
138
|
+
"""Set the convergence point."""
|
|
139
|
+
self.convergence_point = convergence_point
|
|
140
|
+
|
|
141
|
+
def transform_to_loss_landscape_msg(self, landscape_data):
|
|
142
|
+
"""Transform to loss landscape_msg."""
|
|
143
|
+
landscape_msg = LossLandscape()
|
|
144
|
+
# only save one dim in x and y
|
|
145
|
+
fill_array_to_tensor(landscape_data.landscape_points.x[0], landscape_msg.landscape.x)
|
|
146
|
+
fill_array_to_tensor(landscape_data.landscape_points.y[:, 0], landscape_msg.landscape.y)
|
|
147
|
+
fill_array_to_tensor(landscape_data.landscape_points.z, landscape_msg.landscape.z)
|
|
148
|
+
|
|
149
|
+
if landscape_data.path_points:
|
|
150
|
+
landscape_msg.loss_path.intervals.extend(landscape_data.intervals)
|
|
151
|
+
fill_array_to_tensor(landscape_data.path_points.x, landscape_msg.loss_path.points.x)
|
|
152
|
+
fill_array_to_tensor(landscape_data.path_points.y, landscape_msg.loss_path.points.y)
|
|
153
|
+
fill_array_to_tensor(landscape_data.path_points.z, landscape_msg.loss_path.points.z)
|
|
154
|
+
|
|
155
|
+
if landscape_data.convergence_point:
|
|
156
|
+
fill_array_to_tensor(landscape_data.convergence_point.x, landscape_msg.convergence_point.x)
|
|
157
|
+
fill_array_to_tensor(landscape_data.convergence_point.y, landscape_msg.convergence_point.y)
|
|
158
|
+
fill_array_to_tensor(landscape_data.convergence_point.z, landscape_msg.convergence_point.z)
|
|
159
|
+
|
|
160
|
+
landscape_msg.metadata.decomposition = landscape_data.decomposition
|
|
161
|
+
landscape_msg.metadata.unit = self.unit
|
|
162
|
+
landscape_msg.metadata.step_per_epoch = self.step_per_epoch
|
|
163
|
+
|
|
164
|
+
return landscape_msg
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
class SummaryLandscape:
|
|
168
|
+
"""
|
|
169
|
+
SummaryLandscape can help you to collect loss landscape information.
|
|
170
|
+
It can create landscape in PCA direction or random direction by calculating loss.
|
|
171
|
+
|
|
172
|
+
Note:
|
|
173
|
+
SummaryLandscape only supports Linux systems.
|
|
174
|
+
|
|
175
|
+
Args:
|
|
176
|
+
summary_dir (str): The path of summary is used to save the model weight,
|
|
177
|
+
metadata and other data required to create landscape.
|
|
178
|
+
|
|
179
|
+
Examples:
|
|
180
|
+
>>> import mindspore as ms
|
|
181
|
+
>>> import mindspore.nn as nn
|
|
182
|
+
>>> from mindspore.train import Model, Accuracy, Loss
|
|
183
|
+
>>> from mindspore import SummaryCollector, SummaryLandscape
|
|
184
|
+
>>>
|
|
185
|
+
>>> if __name__ == '__main__':
|
|
186
|
+
... # If the device_target is Ascend, set the device_target to "Ascend"
|
|
187
|
+
... ms.set_context(mode=ms.GRAPH_MODE, device_target="GPU")
|
|
188
|
+
... # Create the dataset taking MNIST as an example. Refer to
|
|
189
|
+
... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
|
|
190
|
+
... ds_train = create_dataset()
|
|
191
|
+
... # Define the network structure of LeNet5. Refer to
|
|
192
|
+
... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
193
|
+
... network = LeNet5()
|
|
194
|
+
... net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
195
|
+
... net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
|
196
|
+
... model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
197
|
+
... # Simple usage for collect landscape information:
|
|
198
|
+
... interval_1 = [1, 2, 3, 4, 5]
|
|
199
|
+
... summary_collector = SummaryCollector(summary_dir='./summary/lenet_interval_1',
|
|
200
|
+
... collect_specified_data={'collect_landscape':{"landscape_size": 4,
|
|
201
|
+
... "unit": "step",
|
|
202
|
+
... "create_landscape":{"train":True,
|
|
203
|
+
... "result":False},
|
|
204
|
+
... "num_samples": 2048,
|
|
205
|
+
... "intervals": [interval_1]}
|
|
206
|
+
... })
|
|
207
|
+
... model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=False)
|
|
208
|
+
...
|
|
209
|
+
... # Simple usage for visualization landscape:
|
|
210
|
+
... def callback_fn():
|
|
211
|
+
... # Define the network structure of LeNet5. Refer to
|
|
212
|
+
... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
213
|
+
... network = LeNet5()
|
|
214
|
+
... net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
215
|
+
... metrics = {"Loss": Loss()}
|
|
216
|
+
... model = Model(network, net_loss, metrics=metrics)
|
|
217
|
+
... # Create the dataset taking MNIST as an example. Refer to
|
|
218
|
+
... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
|
|
219
|
+
... ds_eval = create_dataset()
|
|
220
|
+
... return model, network, ds_eval, metrics
|
|
221
|
+
...
|
|
222
|
+
... summary_landscape = SummaryLandscape('./summary/lenet_interval_1')
|
|
223
|
+
... # parameters of collect_landscape can be modified or unchanged
|
|
224
|
+
... summary_landscape.gen_landscapes_with_multi_process(callback_fn,
|
|
225
|
+
... collect_landscape={"landscape_size": 4,
|
|
226
|
+
... "create_landscape":{"train":False,
|
|
227
|
+
... "result":False},
|
|
228
|
+
... "num_samples": 2048,
|
|
229
|
+
... "intervals": [interval_1]},
|
|
230
|
+
... device_ids=[1])
|
|
231
|
+
"""
|
|
232
|
+
def __init__(self, summary_dir):
|
|
233
|
+
self._summary_dir = os.path.realpath(summary_dir)
|
|
234
|
+
self._ckpt_dir = os.path.join(self._summary_dir, 'ckpt_dir')
|
|
235
|
+
_make_directory(self._ckpt_dir)
|
|
236
|
+
|
|
237
|
+
# save the model params file, key is epoch, value is the ckpt file path
|
|
238
|
+
self._model_params_file_map = {}
|
|
239
|
+
self._epoch_group = defaultdict(list)
|
|
240
|
+
self._metric_fns = None
|
|
241
|
+
|
|
242
|
+
def _get_model_params(self, epochs):
|
|
243
|
+
"""Get the model params."""
|
|
244
|
+
parameters = []
|
|
245
|
+
for epoch in epochs:
|
|
246
|
+
file_path = self._model_params_file_map.get(str(epoch))
|
|
247
|
+
parameters.append(list(load_checkpoint(file_path).values()))
|
|
248
|
+
return parameters
|
|
249
|
+
|
|
250
|
+
def _create_epoch_group(self, intervals):
|
|
251
|
+
for i, interval in enumerate(intervals):
|
|
252
|
+
for j in interval:
|
|
253
|
+
self._epoch_group[i].append(j)
|
|
254
|
+
|
|
255
|
+
def clean_ckpt(self):
|
|
256
|
+
"""
|
|
257
|
+
Clean the checkpoint.
|
|
258
|
+
|
|
259
|
+
Tutorial Examples:
|
|
260
|
+
- `Training Optimization Process Visualization
|
|
261
|
+
<https://www.mindspore.cn/mindinsight/docs/en/master/landscape.html>`_
|
|
262
|
+
"""
|
|
263
|
+
shutil.rmtree(self._ckpt_dir, ignore_errors=True)
|
|
264
|
+
|
|
265
|
+
def gen_landscapes_with_multi_process(self, callback_fn, collect_landscape=None,
|
|
266
|
+
device_ids=None, output=None):
|
|
267
|
+
"""
|
|
268
|
+
Use the multi process to generate landscape.
|
|
269
|
+
|
|
270
|
+
Args:
|
|
271
|
+
callback_fn (python function): A python function object. User needs to write a function,
|
|
272
|
+
it has no input, and the return requirements are as follows.
|
|
273
|
+
|
|
274
|
+
- mindspore.train.Model: User's model object.
|
|
275
|
+
- mindspore.nn.Cell: User's network object.
|
|
276
|
+
- mindspore.dataset: User's dataset object for create loss landscape.
|
|
277
|
+
- mindspore.train.Metrics: User's metrics object.
|
|
278
|
+
collect_landscape (Union[dict, None]): The meaning of the parameters
|
|
279
|
+
when creating loss landscape is consistent with the fields
|
|
280
|
+
with the same name in SummaryCollector. The purpose of setting here
|
|
281
|
+
is to allow users to freely modify creating parameters. Default: ``None`` .
|
|
282
|
+
|
|
283
|
+
- landscape_size (int): Specify the image resolution of the generated loss landscape.
|
|
284
|
+
For example, if it is set to ``128`` , the resolution of the landscape is 128 * 128.
|
|
285
|
+
The calculation time increases with the increase of resolution.
|
|
286
|
+
Default: ``40`` . Optional values: between 3 and 256.
|
|
287
|
+
- create_landscape (dict): Select how to create loss landscape.
|
|
288
|
+
Training process loss landscape(train) and training result loss landscape(result).
|
|
289
|
+
Default: ``{"train": True, "result": True}``. Optional: ``True`` / ``False`` .
|
|
290
|
+
- num_samples (int): The size of the dataset used to create the loss landscape.
|
|
291
|
+
For example, in image dataset, You can set num_samples is 2048,
|
|
292
|
+
which means that 2048 images are used to create loss landscape.
|
|
293
|
+
Default: ``2048`` .
|
|
294
|
+
- intervals (List[List[int]]): Specifies the interval
|
|
295
|
+
in which the loss landscape. For example: If the user wants to
|
|
296
|
+
create loss landscape of two training processes, they are 1-5 epoch
|
|
297
|
+
and 6-10 epoch respectively. They can set [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]].
|
|
298
|
+
Note: Each interval have at least three epochs.
|
|
299
|
+
device_ids (List(int)): Specifies which devices are used to create loss landscape.
|
|
300
|
+
For example: [0, 1] refers to creating loss landscape with device 0 and device 1.
|
|
301
|
+
Default: ``None`` .
|
|
302
|
+
output (str): Specifies the path to save the loss landscape.
|
|
303
|
+
Default: ``None`` . The default save path is the same as the summary file.
|
|
304
|
+
"""
|
|
305
|
+
|
|
306
|
+
executor = None
|
|
307
|
+
if len(device_ids) > 1:
|
|
308
|
+
executor = ProcessPoolExecutor(len(device_ids))
|
|
309
|
+
futures = [executor.submit(self._set_context, i) for i in device_ids]
|
|
310
|
+
wait(futures, return_when=ALL_COMPLETED)
|
|
311
|
+
|
|
312
|
+
output_path = os.path.realpath(output) if output is not None else self._summary_dir
|
|
313
|
+
summary_record = SummaryRecord(output_path)
|
|
314
|
+
self._check_device_ids(device_ids)
|
|
315
|
+
if collect_landscape is not None:
|
|
316
|
+
try:
|
|
317
|
+
self._check_collect_landscape_data(collect_landscape)
|
|
318
|
+
except (ValueError, TypeError) as err:
|
|
319
|
+
summary_record.close()
|
|
320
|
+
raise err
|
|
321
|
+
json_path = os.path.join(self._ckpt_dir, 'train_metadata.json')
|
|
322
|
+
if not os.path.exists(json_path):
|
|
323
|
+
summary_record.close()
|
|
324
|
+
raise FileNotFoundError(f'For "{self.__class__.__name__}", '
|
|
325
|
+
f'train_metadata.json file path of {json_path} not exists.')
|
|
326
|
+
with open(json_path, 'r') as file:
|
|
327
|
+
data = json.load(file)
|
|
328
|
+
for key, value in collect_landscape.items():
|
|
329
|
+
if key in data.keys():
|
|
330
|
+
data[key] = value
|
|
331
|
+
|
|
332
|
+
if "intervals" in collect_landscape.keys():
|
|
333
|
+
self._create_epoch_group(collect_landscape.get("intervals"))
|
|
334
|
+
data["epoch_group"] = self._epoch_group
|
|
335
|
+
with open(json_path, 'w') as file:
|
|
336
|
+
json.dump(data, file)
|
|
337
|
+
os.chmod(json_path, stat.S_IRUSR)
|
|
338
|
+
|
|
339
|
+
for interval, landscape in self._list_landscapes(callback_fn=callback_fn, executor=executor,
|
|
340
|
+
device_ids=device_ids):
|
|
341
|
+
summary_record.add_value(PluginEnum.LANDSCAPE.value, f'landscape_{str(interval)}', landscape)
|
|
342
|
+
summary_record.record(0)
|
|
343
|
+
summary_record.flush()
|
|
344
|
+
summary_record.close()
|
|
345
|
+
|
|
346
|
+
def _list_landscapes(self, callback_fn, executor=None, device_ids=None):
|
|
347
|
+
"""Create landscape with single device and list all landscape."""
|
|
348
|
+
|
|
349
|
+
if not os.path.exists(os.path.join(self._ckpt_dir, 'train_metadata.json')):
|
|
350
|
+
raise FileNotFoundError(f'For "{self.__class__.__name__}", train_metadata.json file does not exist '
|
|
351
|
+
f'under the path, please use summary_collector to collect information to '
|
|
352
|
+
f'create the json file')
|
|
353
|
+
with open(os.path.join(self._ckpt_dir, 'train_metadata.json'), 'r') as file:
|
|
354
|
+
data = json.load(file)
|
|
355
|
+
self._check_json_file_data(data)
|
|
356
|
+
|
|
357
|
+
self._epoch_group = data['epoch_group']
|
|
358
|
+
self._model_params_file_map = data['model_params_file_map']
|
|
359
|
+
kwargs = dict(proz=0.2, landscape_size=data['landscape_size'], device_ids=device_ids, callback_fn=callback_fn)
|
|
360
|
+
|
|
361
|
+
start = time.time()
|
|
362
|
+
kwargs['executor'] = executor
|
|
363
|
+
if data['create_landscape']['train']:
|
|
364
|
+
for i, epochs in enumerate(self._epoch_group.values()):
|
|
365
|
+
self._log_message(data['create_landscape'], index=i, interval=epochs)
|
|
366
|
+
kwargs['epochs'] = epochs
|
|
367
|
+
mid_time = time.time()
|
|
368
|
+
landscape_data = self._create_landscape_by_pca(**kwargs)
|
|
369
|
+
logger.info("Create landscape end, use time: %s s." % (round(time.time() - mid_time, 6)))
|
|
370
|
+
landscape_data.unit = data['unit']
|
|
371
|
+
landscape_data.step_per_epoch = data['step_per_epoch']
|
|
372
|
+
landscape_data.num_samples = data['num_samples']
|
|
373
|
+
yield [epochs[0], epochs[-1]], landscape_data.transform_to_loss_landscape_msg(landscape_data)
|
|
374
|
+
|
|
375
|
+
if data['create_landscape']['result']:
|
|
376
|
+
final_epochs = [list(self._epoch_group.values())[-1][-1]]
|
|
377
|
+
self._log_message(data['create_landscape'], final_epochs=final_epochs)
|
|
378
|
+
kwargs['epochs'] = final_epochs
|
|
379
|
+
mid_time = time.time()
|
|
380
|
+
landscape_data = self._create_landscape_by_random(**kwargs)
|
|
381
|
+
logger.info("Create landscape end, use time: %s s." % (round(time.time() - mid_time, 6)))
|
|
382
|
+
landscape_data.unit = data['unit']
|
|
383
|
+
landscape_data.step_per_epoch = data['step_per_epoch']
|
|
384
|
+
landscape_data.num_samples = data['num_samples']
|
|
385
|
+
yield final_epochs, landscape_data.transform_to_loss_landscape_msg(landscape_data)
|
|
386
|
+
logger.info("Total use time: %s s." % (round(time.time() - start, 6)))
|
|
387
|
+
|
|
388
|
+
def _log_message(self, create_landscape, index=None, interval=None, final_epochs=None):
|
|
389
|
+
"""Generate drawing information using log."""
|
|
390
|
+
if final_epochs is None:
|
|
391
|
+
if create_landscape['result']:
|
|
392
|
+
msg = f"Start to create the {index + 1}/{len(self._epoch_group) + 1} landscapes, " \
|
|
393
|
+
f"checkpoint is {interval}, decomposition is PCA."
|
|
394
|
+
else:
|
|
395
|
+
msg = f"Start to create the {index + 1}/{len(self._epoch_group)} landscapes, " \
|
|
396
|
+
f"checkpoint is {interval}, decomposition is PCA."
|
|
397
|
+
else:
|
|
398
|
+
if create_landscape['train']:
|
|
399
|
+
msg = f"Start to create the {len(self._epoch_group) + 1}/{len(self._epoch_group) + 1} landscapes, " \
|
|
400
|
+
f"checkpoint is {final_epochs}, decomposition is Random. "
|
|
401
|
+
else:
|
|
402
|
+
msg = f"Start to create the {1}/{1} landscapes, " \
|
|
403
|
+
f"checkpoint is {final_epochs}, decomposition is Random."
|
|
404
|
+
logger.info(msg)
|
|
405
|
+
|
|
406
|
+
@staticmethod
|
|
407
|
+
def _set_context(device_id):
|
|
408
|
+
"""Set context."""
|
|
409
|
+
context.set_context(device_id=device_id)
|
|
410
|
+
context.set_context(mode=context.GRAPH_MODE)
|
|
411
|
+
|
|
412
|
+
def _create_landscape_by_pca(self, epochs, proz, landscape_size, device_ids=None, callback_fn=None, executor=None):
|
|
413
|
+
"""Create landscape by PCA."""
|
|
414
|
+
multi_parameters = self._get_model_params(epochs)
|
|
415
|
+
param_matrixs = []
|
|
416
|
+
for parameters in multi_parameters:
|
|
417
|
+
parlis = []
|
|
418
|
+
for param in parameters:
|
|
419
|
+
if ("weight" in param.name or "bias" in param.name) and ("moment" not in param.name):
|
|
420
|
+
data = param.data.asnumpy()
|
|
421
|
+
parlis = np.concatenate((parlis, data), axis=None)
|
|
422
|
+
else:
|
|
423
|
+
continue
|
|
424
|
+
param_matrixs.append(parlis)
|
|
425
|
+
param_matrixs = np.vstack(param_matrixs)
|
|
426
|
+
param_matrixs = param_matrixs[:-1] - param_matrixs[-1]
|
|
427
|
+
# Only 2 are needed, as we have to reduce high dimensions into 2D.And we reserve one for loss value.
|
|
428
|
+
pca = _PCA(n_comps=2)
|
|
429
|
+
principal_components = pca.compute(param_matrixs.T)
|
|
430
|
+
v_ori, w_ori = np.array(principal_components[:, 0]), np.array(principal_components[:, -1])
|
|
431
|
+
final_params = list(multi_parameters[-1])
|
|
432
|
+
|
|
433
|
+
# Reshape PCA directions(include dimensions of all parameters) into original shape of Model parameters
|
|
434
|
+
v_ndarray = self._reshape_vector(v_ori, final_params)
|
|
435
|
+
w_ndarray = self._reshape_vector(w_ori, final_params)
|
|
436
|
+
|
|
437
|
+
# Reshape PCA directions(include dimensions of only weights) into original shape of Model parameters
|
|
438
|
+
final_params_filtered = self._filter_weight_and_bias(final_params)
|
|
439
|
+
v_ndarray_filtered = self._reshape_vector(v_ori, final_params_filtered)
|
|
440
|
+
w_ndarray_filtered = self._reshape_vector(w_ori, final_params_filtered)
|
|
441
|
+
|
|
442
|
+
v_ndarray, w_ndarray = self._normalize_vector(final_params, v_ndarray, w_ndarray)
|
|
443
|
+
v_ndarray_filtered, w_ndarray_filtered = self._normalize_vector(final_params_filtered, v_ndarray_filtered,
|
|
444
|
+
w_ndarray_filtered)
|
|
445
|
+
# Flat to a single vector and calc alpha, beta
|
|
446
|
+
v_param = self._flat_ndarray(v_ndarray_filtered)
|
|
447
|
+
w_param = self._flat_ndarray(w_ndarray_filtered)
|
|
448
|
+
final_params_numpy = [param.data.asnumpy() for param in final_params]
|
|
449
|
+
final_params_filtered_numpy = [param.data.asnumpy() for param in final_params_filtered]
|
|
450
|
+
coefs = self._calc_coefs(multi_parameters, final_params_filtered_numpy, v_param, w_param)
|
|
451
|
+
|
|
452
|
+
# generate coordinates of loss landscape
|
|
453
|
+
coefs_x = coefs[:, 0][np.newaxis]
|
|
454
|
+
coefs_y = coefs[:, 1][np.newaxis]
|
|
455
|
+
|
|
456
|
+
x_axis = np.linspace(min(coefs_x[0]) - proz * (max(coefs_x[0]) - min(coefs_x[0])),
|
|
457
|
+
max(coefs_x[0]) + proz * (max(coefs_x[0]) - min(coefs_x[0])), landscape_size)
|
|
458
|
+
y_axis = np.linspace(min(coefs_y[0]) - proz * (max(coefs_y[0]) - min(coefs_y[0])),
|
|
459
|
+
max(coefs_y[0]) + proz * (max(coefs_y[0]) - min(coefs_y[0])), landscape_size)
|
|
460
|
+
x_points, y_points = np.meshgrid(x_axis, y_axis)
|
|
461
|
+
|
|
462
|
+
test_final_params = dict()
|
|
463
|
+
for param in final_params:
|
|
464
|
+
test_final_params[param.name] = param.data.asnumpy()
|
|
465
|
+
|
|
466
|
+
if executor is not None:
|
|
467
|
+
coefs_parts, y_points_parts = [], []
|
|
468
|
+
count_per_parts = len(coefs) // len(device_ids)
|
|
469
|
+
start = 0
|
|
470
|
+
for i in range(len(device_ids)):
|
|
471
|
+
if i != len(device_ids) - 1:
|
|
472
|
+
coefs_parts.append(coefs[start:start + count_per_parts])
|
|
473
|
+
start = start + count_per_parts
|
|
474
|
+
else:
|
|
475
|
+
coefs_parts.append(coefs[start:])
|
|
476
|
+
count_per_parts = len(y_points) // len(device_ids)
|
|
477
|
+
start = 0
|
|
478
|
+
logger.info("Use multi process, device_id: %s." % (device_ids))
|
|
479
|
+
for i in range(len(device_ids)):
|
|
480
|
+
if i != len(device_ids) - 1:
|
|
481
|
+
y_points_parts.append(y_points[start:start + count_per_parts])
|
|
482
|
+
start = start + count_per_parts
|
|
483
|
+
else:
|
|
484
|
+
y_points_parts.append(y_points[start:])
|
|
485
|
+
|
|
486
|
+
futures = []
|
|
487
|
+
for i, _ in enumerate(device_ids):
|
|
488
|
+
future = executor.submit(self._cont_loss_wrapper, callback_fn, test_final_params, final_params_numpy,
|
|
489
|
+
v_ndarray, w_ndarray, x_points, y_points_parts[i], coefs=coefs_parts[i])
|
|
490
|
+
futures.append(future)
|
|
491
|
+
wait(futures, return_when=ALL_COMPLETED)
|
|
492
|
+
|
|
493
|
+
z_points, paths = [], []
|
|
494
|
+
for future in futures:
|
|
495
|
+
paths += future.result()[0]
|
|
496
|
+
z_points += future.result()[1]
|
|
497
|
+
else:
|
|
498
|
+
paths, z_points = self._cont_loss_wrapper(callback_fn, test_final_params, final_params_numpy,
|
|
499
|
+
v_ndarray, w_ndarray, x_points, y_points, coefs=coefs)
|
|
500
|
+
|
|
501
|
+
paths = np.array(paths)
|
|
502
|
+
landscape_points = Points(x_points, y_points, np.vstack(z_points))
|
|
503
|
+
path_points = Points(coefs_x[0], coefs_y[0], paths.T[0])
|
|
504
|
+
zero_index = int(np.argwhere(path_points.x == 0))
|
|
505
|
+
convergence_point = Points(np.array([0]), np.array([0]), np.array([path_points.z[zero_index]]))
|
|
506
|
+
landscape = Landscape(intervals=epochs, decomposition='PCA', landscape_points=landscape_points,
|
|
507
|
+
path_points=path_points, convergence_point=convergence_point)
|
|
508
|
+
return landscape
|
|
509
|
+
|
|
510
|
+
def _cont_loss_wrapper(self, callback_fn, test_final_params, final_params_numpy,
|
|
511
|
+
v_ndarray, w_ndarray, x_points, y_points, coefs=None):
|
|
512
|
+
"""Compute loss wrapper."""
|
|
513
|
+
model, network, valid_dataset, metrics = callback_fn()
|
|
514
|
+
with open(os.path.join(self._ckpt_dir, 'train_metadata.json'), 'r') as file:
|
|
515
|
+
data = json.load(file)
|
|
516
|
+
self._check_json_file_data(data)
|
|
517
|
+
num_samples = data['num_samples']
|
|
518
|
+
batch_size = valid_dataset.get_batch_size()
|
|
519
|
+
num_batches = num_samples // batch_size
|
|
520
|
+
valid_dataset = valid_dataset.take(num_batches)
|
|
521
|
+
|
|
522
|
+
paths, final_params = [], []
|
|
523
|
+
for (key, value) in test_final_params.items():
|
|
524
|
+
parameter = Parameter(Tensor(value), name=key, requires_grad=True)
|
|
525
|
+
final_params.append(parameter)
|
|
526
|
+
if coefs is not None:
|
|
527
|
+
for i, coef in enumerate(coefs):
|
|
528
|
+
loss_data = self._cont_loss(valid_dataset, network, model, metrics, final_params,
|
|
529
|
+
final_params_numpy, [coef[0]], coef[1], v_ndarray, w_ndarray, path=True)
|
|
530
|
+
paths.append(loss_data)
|
|
531
|
+
print("Drawing landscape path total progress is %s/%s, landscape path loss is %s."
|
|
532
|
+
% (i+1, len(coefs), loss_data[0]))
|
|
533
|
+
# Start to calc loss landscape
|
|
534
|
+
z_points = list()
|
|
535
|
+
|
|
536
|
+
# Compute loss landscape
|
|
537
|
+
for i, _ in enumerate(y_points):
|
|
538
|
+
print("Drawing landscape total progress: %s/%s." % (i+1, len(y_points)))
|
|
539
|
+
vals = self._cont_loss(valid_dataset, network, model, metrics, final_params,
|
|
540
|
+
final_params_numpy, x_points[i], y_points[i][0],
|
|
541
|
+
v_ndarray, w_ndarray)
|
|
542
|
+
z_points.append(vals)
|
|
543
|
+
|
|
544
|
+
return paths, z_points
|
|
545
|
+
|
|
546
|
+
def _create_landscape_by_random(self, epochs, proz, landscape_size, device_ids=None,
|
|
547
|
+
callback_fn=None, executor=None):
|
|
548
|
+
"""Create landscape by Random."""
|
|
549
|
+
multi_parameters = self._get_model_params(epochs)
|
|
550
|
+
final_params = list(multi_parameters[-1])
|
|
551
|
+
final_params_numpy = [param.data.asnumpy() for param in final_params]
|
|
552
|
+
total_params = sum(np.size(p) for p in final_params_numpy)
|
|
553
|
+
v_rand = np.random.normal(size=total_params)
|
|
554
|
+
w_rand = np.random.normal(size=total_params)
|
|
555
|
+
|
|
556
|
+
# Reshape Random directions(include dimensions of all parameters) into original shape of Model parameters
|
|
557
|
+
v_ndarray = self._reshape_random_vector(v_rand, final_params_numpy)
|
|
558
|
+
w_ndarray = self._reshape_random_vector(w_rand, final_params_numpy)
|
|
559
|
+
v_ndarray, w_ndarray = self._normalize_vector(final_params, v_ndarray, w_ndarray)
|
|
560
|
+
|
|
561
|
+
boundaries_x, boundaries_y = 5, 5
|
|
562
|
+
x_axis = np.linspace(-proz * boundaries_x, proz * boundaries_x, landscape_size)
|
|
563
|
+
y_axis = np.linspace(-proz * boundaries_y, proz * boundaries_y, landscape_size)
|
|
564
|
+
x_points, y_points = np.meshgrid(x_axis, y_axis)
|
|
565
|
+
test_final_params = dict()
|
|
566
|
+
for param in final_params:
|
|
567
|
+
test_final_params[param.name] = param.data.asnumpy()
|
|
568
|
+
if executor is not None:
|
|
569
|
+
logger.info("Use multi process, device_id: %s." % (device_ids))
|
|
570
|
+
y_points_parts = []
|
|
571
|
+
count_per_parts = len(y_points) // len(device_ids)
|
|
572
|
+
start = 0
|
|
573
|
+
for i in range(len(device_ids)):
|
|
574
|
+
if i != len(device_ids) - 1:
|
|
575
|
+
y_points_parts.append(y_points[start:start + count_per_parts])
|
|
576
|
+
start = start + count_per_parts
|
|
577
|
+
else:
|
|
578
|
+
y_points_parts.append(y_points[start:])
|
|
579
|
+
|
|
580
|
+
futures = []
|
|
581
|
+
for i in range(len(device_ids)):
|
|
582
|
+
future = executor.submit(self._cont_loss_wrapper, callback_fn, test_final_params, final_params_numpy,
|
|
583
|
+
v_ndarray, w_ndarray, x_points, y_points_parts[i])
|
|
584
|
+
futures.append(future)
|
|
585
|
+
wait(futures, return_when=ALL_COMPLETED)
|
|
586
|
+
z_points = []
|
|
587
|
+
for future in futures:
|
|
588
|
+
z_points += future.result()[1]
|
|
589
|
+
else:
|
|
590
|
+
_, z_points = self._cont_loss_wrapper(callback_fn, test_final_params, final_params_numpy,
|
|
591
|
+
v_ndarray, w_ndarray, x_points, y_points)
|
|
592
|
+
|
|
593
|
+
landscape_points = Points(x_points, y_points, np.vstack(z_points))
|
|
594
|
+
convergence_point = Points(np.array([x_axis[len(x_axis)//2]]), np.array([y_axis[len(y_axis)//2]]),
|
|
595
|
+
np.array([z_points[len(x_axis)//2][len(y_axis)//2]]))
|
|
596
|
+
landscape = Landscape(intervals=epochs, decomposition='Random', landscape_points=landscape_points,
|
|
597
|
+
convergence_point=convergence_point)
|
|
598
|
+
return landscape
|
|
599
|
+
|
|
600
|
+
@staticmethod
|
|
601
|
+
def _filter_weight_and_bias(parameters):
|
|
602
|
+
"""Filter the weight and bias of parameters."""
|
|
603
|
+
|
|
604
|
+
filter_params = []
|
|
605
|
+
for param in parameters:
|
|
606
|
+
if ('weight' not in param.name and 'bias' not in param.name) or ('moment' in param.name):
|
|
607
|
+
continue
|
|
608
|
+
filter_params.append(param)
|
|
609
|
+
return filter_params
|
|
610
|
+
|
|
611
|
+
@staticmethod
|
|
612
|
+
def _reshape_vector(vector, parameters):
|
|
613
|
+
"""Reshape vector into model shape."""
|
|
614
|
+
ndarray = list()
|
|
615
|
+
index = 0
|
|
616
|
+
for param in parameters:
|
|
617
|
+
data = param.data.asnumpy()
|
|
618
|
+
if ("weight" not in param.name and "bias" not in param.name) or ("moment" in param.name):
|
|
619
|
+
ndarray.append(np.array(data, dtype=np.float32))
|
|
620
|
+
continue
|
|
621
|
+
|
|
622
|
+
vec_it = vector[index:(index + data.size)].reshape(data.shape)
|
|
623
|
+
ndarray.append(np.array(vec_it, dtype=np.float32))
|
|
624
|
+
index += data.size
|
|
625
|
+
return ndarray
|
|
626
|
+
|
|
627
|
+
@staticmethod
|
|
628
|
+
def _reshape_random_vector(vector, params_numpy):
|
|
629
|
+
""" Reshape random vector into model shape."""
|
|
630
|
+
ndarray = list()
|
|
631
|
+
index = 0
|
|
632
|
+
for param in params_numpy:
|
|
633
|
+
len_p = np.size(param)
|
|
634
|
+
p_size = np.shape(param)
|
|
635
|
+
vec_it = vector[index:(index + len_p)].reshape(p_size)
|
|
636
|
+
ndarray.append(np.array(vec_it, dtype=np.float32))
|
|
637
|
+
index += len_p
|
|
638
|
+
return ndarray
|
|
639
|
+
|
|
640
|
+
@staticmethod
|
|
641
|
+
def _normalize_vector(parameters, get_v, get_w):
|
|
642
|
+
"""
|
|
643
|
+
Normalizes the vectors spanning the 2D space, to make trajectories comparable between each other.
|
|
644
|
+
"""
|
|
645
|
+
for i, param in enumerate(parameters):
|
|
646
|
+
# Here as MindSpore ckpt has hyperparameters, we should skip them to make sure
|
|
647
|
+
# PCA calculation is correct.
|
|
648
|
+
data = param.data.asnumpy()
|
|
649
|
+
if ("weight" in param.name or "bias" in param.name) and ("moment" not in param.name):
|
|
650
|
+
factor_v = np.linalg.norm(data) / np.linalg.norm(get_v[i])
|
|
651
|
+
factor_w = np.linalg.norm(data) / np.linalg.norm(get_w[i])
|
|
652
|
+
get_v[i] = get_v[i] * factor_v
|
|
653
|
+
get_w[i] = get_w[i] * factor_w
|
|
654
|
+
else:
|
|
655
|
+
get_v[i] = get_v[i] * 0
|
|
656
|
+
get_w[i] = get_w[i] * 0
|
|
657
|
+
|
|
658
|
+
return get_v, get_w
|
|
659
|
+
|
|
660
|
+
@staticmethod
|
|
661
|
+
def _flat_ndarray(ndarray_vector):
|
|
662
|
+
"""Concatenates a python array of numpy arrays into a single, flat numpy array."""
|
|
663
|
+
return np.concatenate([item.flatten() for item in ndarray_vector], axis=None)
|
|
664
|
+
|
|
665
|
+
def _calc_coefs(self, parameter_group, final_param_ndarray, v_vector, w_vector):
|
|
666
|
+
"""
|
|
667
|
+
Calculates the scale factors for plotting points
|
|
668
|
+
in the 2D space spanned by the vectors v and w.
|
|
669
|
+
"""
|
|
670
|
+
|
|
671
|
+
matris = [v_vector, w_vector]
|
|
672
|
+
matris = np.vstack(matris)
|
|
673
|
+
matris = matris.T
|
|
674
|
+
|
|
675
|
+
pas = self._flat_ndarray(final_param_ndarray)
|
|
676
|
+
coefs = list()
|
|
677
|
+
for parameters in parameter_group:
|
|
678
|
+
testi = list()
|
|
679
|
+
for param in parameters:
|
|
680
|
+
# Here as MindSpore ckpt has hyperparameters,
|
|
681
|
+
# we should skip them to make sure PCA calculation is correct
|
|
682
|
+
if ('weight' not in param.name and 'bias' not in param.name) or ('moment' in param.name):
|
|
683
|
+
continue
|
|
684
|
+
testi.append(param.data.asnumpy())
|
|
685
|
+
|
|
686
|
+
st_vec = self._flat_ndarray(testi)
|
|
687
|
+
b_vec = st_vec - pas
|
|
688
|
+
# Here using least square method to get solutions of a equation system to generate alpha and beta.
|
|
689
|
+
coefs.append(np.hstack(np.linalg.lstsq(matris, b_vec, rcond=None)[0]))
|
|
690
|
+
|
|
691
|
+
return np.array(coefs)
|
|
692
|
+
|
|
693
|
+
def _cont_loss(self, ds_eval, network, model, metrics, parameters,
|
|
694
|
+
final_params_numpy, alph, beta, get_v, get_w, path=False):
|
|
695
|
+
"""
|
|
696
|
+
Calculates the loss landscape based on vectors v and w (which can be principal components).
|
|
697
|
+
Changes the internal state of model. Executes model.
|
|
698
|
+
"""
|
|
699
|
+
logger.info("start to cont loss")
|
|
700
|
+
vals = list()
|
|
701
|
+
|
|
702
|
+
al_item = 0
|
|
703
|
+
for i, _ in enumerate(alph):
|
|
704
|
+
# calculate new parameters for model
|
|
705
|
+
|
|
706
|
+
parameters_dict = dict()
|
|
707
|
+
for j, param in enumerate(parameters):
|
|
708
|
+
parameters_dict[param.name] = self._change_parameter(j, param, final_params_numpy,
|
|
709
|
+
alph[al_item], beta,
|
|
710
|
+
get_v, get_w)
|
|
711
|
+
|
|
712
|
+
al_item += 1
|
|
713
|
+
# load parameters into model and calculate loss
|
|
714
|
+
|
|
715
|
+
load_param_into_net(network, parameters_dict)
|
|
716
|
+
del parameters_dict
|
|
717
|
+
loss = self._loss_compute(model, ds_eval, metrics)
|
|
718
|
+
if path is False:
|
|
719
|
+
print("Current local landscape progress is %s/%s, landscape loss is %s."
|
|
720
|
+
% (i+1, len(alph), loss.get('Loss')))
|
|
721
|
+
vals = np.append(vals, loss.get('Loss'))
|
|
722
|
+
|
|
723
|
+
return vals
|
|
724
|
+
|
|
725
|
+
@staticmethod
|
|
726
|
+
def _change_parameter(index, parameter, final_params_numpy, alpha, beta, get_v, get_w):
|
|
727
|
+
"""Function for changing parameter value with map and lambda."""
|
|
728
|
+
data = final_params_numpy[index]
|
|
729
|
+
data_target = data + alpha * get_v[index] + beta * get_w[index]
|
|
730
|
+
data_target = Tensor(data_target.astype(np.float32))
|
|
731
|
+
parameter.set_data(Tensor(data_target))
|
|
732
|
+
return parameter
|
|
733
|
+
|
|
734
|
+
def _loss_compute(self, model, data, metrics):
|
|
735
|
+
"""Compute loss."""
|
|
736
|
+
dataset_sink_mode = False
|
|
737
|
+
self._metric_fns = get_metrics(metrics)
|
|
738
|
+
for metric in self._metric_fns.values():
|
|
739
|
+
metric.clear()
|
|
740
|
+
|
|
741
|
+
network = model.train_network
|
|
742
|
+
dataset_helper = DatasetHelper(data, dataset_sink_mode)
|
|
743
|
+
|
|
744
|
+
network.set_train(True)
|
|
745
|
+
network.phase = 'train'
|
|
746
|
+
|
|
747
|
+
for inputs in dataset_helper:
|
|
748
|
+
inputs = transfer_tensor_to_tuple(inputs)
|
|
749
|
+
outputs = network(*inputs)
|
|
750
|
+
self._update_metrics(outputs)
|
|
751
|
+
|
|
752
|
+
metrics = self._get_metrics()
|
|
753
|
+
return metrics
|
|
754
|
+
|
|
755
|
+
def _update_metrics(self, outputs):
|
|
756
|
+
"""Update metrics local values."""
|
|
757
|
+
if isinstance(outputs, Tensor):
|
|
758
|
+
outputs = (outputs,)
|
|
759
|
+
if not isinstance(outputs, tuple):
|
|
760
|
+
raise ValueError(f"The argument 'outputs' should be tuple, but got {type(outputs)}. "
|
|
761
|
+
f"Modify 'output' to Tensor or tuple. ")
|
|
762
|
+
|
|
763
|
+
for metric in self._metric_fns.values():
|
|
764
|
+
metric.update(outputs[0])
|
|
765
|
+
|
|
766
|
+
def _get_metrics(self):
|
|
767
|
+
"""Get metrics local values."""
|
|
768
|
+
metrics = dict()
|
|
769
|
+
for key, value in self._metric_fns.items():
|
|
770
|
+
metrics[key] = value.eval()
|
|
771
|
+
return metrics
|
|
772
|
+
|
|
773
|
+
def _check_unit(self, unit):
|
|
774
|
+
"""Check unit type and value."""
|
|
775
|
+
check_value_type('unit', unit, str)
|
|
776
|
+
if unit not in ["step", "epoch"]:
|
|
777
|
+
raise ValueError(f'For "{self.__class__.__name__}", the "unit" in train_metadata.json should be '
|
|
778
|
+
f'step or epoch, but got the: {unit}')
|
|
779
|
+
|
|
780
|
+
def _check_landscape_size(self, landscape_size):
|
|
781
|
+
"""Check landscape size type and value."""
|
|
782
|
+
check_value_type('landscape_size', landscape_size, int)
|
|
783
|
+
# landscape size should be between 3 and 256.
|
|
784
|
+
if landscape_size < 3 or landscape_size > 256:
|
|
785
|
+
raise ValueError(f'For "{self.__class__.__name__}", "landscape_size" in train_metadata.json should be '
|
|
786
|
+
f'between 3 and 256, but got the: {landscape_size}')
|
|
787
|
+
|
|
788
|
+
def _check_create_landscape(self, create_landscape):
|
|
789
|
+
"""Check create landscape type and value."""
|
|
790
|
+
check_value_type('create_landscape', create_landscape, dict)
|
|
791
|
+
for param, value in create_landscape.items():
|
|
792
|
+
if param not in ["train", "result"]:
|
|
793
|
+
raise ValueError(f'For "{self.__class__.__name__}", the key of "create_landscape" should be in '
|
|
794
|
+
f'["train", "result"], but got the: {param}.')
|
|
795
|
+
if len(create_landscape) < 2:
|
|
796
|
+
raise ValueError(f'For "{self.__class__.__name__}", the key of "create_landscape" should be train '
|
|
797
|
+
f'and result, but only got the: {param}')
|
|
798
|
+
check_value_type(param, value, bool)
|
|
799
|
+
|
|
800
|
+
def _check_intervals(self, intervals):
|
|
801
|
+
"""Check intervals type and value."""
|
|
802
|
+
check_value_type('intervals', intervals, list)
|
|
803
|
+
for _, interval in enumerate(intervals):
|
|
804
|
+
check_value_type('each interval in intervals', interval, list)
|
|
805
|
+
#Each interval have at least three epochs.
|
|
806
|
+
if len(interval) < 3:
|
|
807
|
+
raise ValueError(f'For "{self.__class__.__name__}", the length of each list in "intervals" '
|
|
808
|
+
f'should not be less than three, but got the: {interval}.')
|
|
809
|
+
for j in interval:
|
|
810
|
+
if not isinstance(j, int):
|
|
811
|
+
raise TypeError(f'For "{self.__class__.__name__}", the type of each value in "intervals" '
|
|
812
|
+
f'should be int, but got the: {type(j)}.')
|
|
813
|
+
|
|
814
|
+
def _check_device_ids(self, device_ids):
|
|
815
|
+
"""Check device_ids type and value."""
|
|
816
|
+
check_value_type('device_ids', device_ids, list)
|
|
817
|
+
for i in device_ids:
|
|
818
|
+
if not isinstance(i, int):
|
|
819
|
+
raise TypeError(f'For "{self.__class__.__name__}.gen_landscapes_with_multi_process", the parameter '
|
|
820
|
+
f'"device_ids" type should be int, but got the: {type(i)}.')
|
|
821
|
+
#device_id should be between 0 and 7.
|
|
822
|
+
if i < 0 or i > 7:
|
|
823
|
+
raise ValueError(f'For "{self.__class__.__name__}.gen_landscapes_with_multi_process", the parameter '
|
|
824
|
+
f'"device_ids" should be between 0 and 7, but got {i}.')
|
|
825
|
+
|
|
826
|
+
def _check_collect_landscape_data(self, collect_landscape):
|
|
827
|
+
"""Check collect landscape data type and value."""
|
|
828
|
+
for param in collect_landscape.keys():
|
|
829
|
+
if param not in ["landscape_size", "unit", "num_samples", "create_landscape", "intervals"]:
|
|
830
|
+
raise ValueError(f'For "{self.__class__.__name__}", the key of collect landscape should be '
|
|
831
|
+
f'landscape_size, unit, num_samples create_landscape or intervals, '
|
|
832
|
+
f'but got the: {param}. ')
|
|
833
|
+
if "landscape_size" in collect_landscape:
|
|
834
|
+
landscape_size = collect_landscape.get("landscape_size")
|
|
835
|
+
self._check_landscape_size(landscape_size)
|
|
836
|
+
if "unit" in collect_landscape:
|
|
837
|
+
unit = collect_landscape.get("unit")
|
|
838
|
+
self._check_unit(unit)
|
|
839
|
+
if "num_samples" in collect_landscape:
|
|
840
|
+
num_samples = collect_landscape.get("num_samples")
|
|
841
|
+
check_value_type("num_samples", num_samples, int)
|
|
842
|
+
if "create_landscape" in collect_landscape:
|
|
843
|
+
create_landscape = collect_landscape.get("create_landscape")
|
|
844
|
+
self._check_create_landscape(create_landscape)
|
|
845
|
+
if "intervals" in collect_landscape:
|
|
846
|
+
intervals = collect_landscape.get("intervals")
|
|
847
|
+
self._check_intervals(intervals)
|
|
848
|
+
|
|
849
|
+
def _check_json_file_data(self, json_file_data):
|
|
850
|
+
"""Check json file data."""
|
|
851
|
+
file_key = ["epoch_group", "model_params_file_map", "step_per_epoch", "unit",
|
|
852
|
+
"num_samples", "landscape_size", "create_landscape"]
|
|
853
|
+
for key in json_file_data.keys():
|
|
854
|
+
if key not in file_key:
|
|
855
|
+
raise ValueError(f'"train_metadata" json file should be {file_key}, but got the: {key}')
|
|
856
|
+
epoch_group = json_file_data["epoch_group"]
|
|
857
|
+
model_params_file_map = json_file_data["model_params_file_map"]
|
|
858
|
+
step_per_epoch = json_file_data["step_per_epoch"]
|
|
859
|
+
unit = json_file_data["unit"]
|
|
860
|
+
num_samples = json_file_data["num_samples"]
|
|
861
|
+
landscape_size = json_file_data["landscape_size"]
|
|
862
|
+
create_landscape = json_file_data["create_landscape"]
|
|
863
|
+
|
|
864
|
+
for _, epochs in enumerate(epoch_group.values()):
|
|
865
|
+
# Each epoch_group have at least three epochs.
|
|
866
|
+
if len(epochs) < 3:
|
|
867
|
+
raise ValueError(f'For "{self.__class__.__name__}", the "epoch_group" in train_metadata.json, '
|
|
868
|
+
f'length of each list in "epoch_group" should not be less than 3, '
|
|
869
|
+
f'but got: {len(epochs)}. ')
|
|
870
|
+
for epoch in epochs:
|
|
871
|
+
if str(epoch) not in model_params_file_map.keys():
|
|
872
|
+
raise ValueError(f'For "{self.__class__.__name__}", the "model_params_file_map" in '
|
|
873
|
+
f'train_metadata.json does not exist {epoch}th checkpoint in intervals.')
|
|
874
|
+
|
|
875
|
+
check_value_type('step_per_epoch', step_per_epoch, int)
|
|
876
|
+
self._check_landscape_size(landscape_size)
|
|
877
|
+
self._check_unit(unit)
|
|
878
|
+
check_value_type("num_samples", num_samples, int)
|
|
879
|
+
self._check_create_landscape(create_landscape)
|
|
880
|
+
|
|
881
|
+
|
|
882
|
+
class _PCA:
|
|
883
|
+
r"""
|
|
884
|
+
The internal class for computing PCA vectors.
|
|
885
|
+
|
|
886
|
+
.. math::
|
|
887
|
+
|
|
888
|
+
u, s, vt = svd(x - mean(x)),
|
|
889
|
+
u_i = u_i * s_i,
|
|
890
|
+
|
|
891
|
+
where :math:`mean` is the mean operator, :math:`svd` is the singular value decomposition operator.
|
|
892
|
+
:math:`u_i` is line :math:`i` of the :math:`u`, :math:`s_i` is column :math:`i` of the :math:`s`,
|
|
893
|
+
:math:`i` ranges from :math:`0` to :math:`n\_comps`.
|
|
894
|
+
|
|
895
|
+
Args:
|
|
896
|
+
n_comps (int): Number of principal components needed.
|
|
897
|
+
"""
|
|
898
|
+
def __init__(self, n_comps):
|
|
899
|
+
self._n_comps = n_comps
|
|
900
|
+
self._random_status = None
|
|
901
|
+
self._iterated_power = "auto"
|
|
902
|
+
self._n_oversamples = 10
|
|
903
|
+
|
|
904
|
+
@staticmethod
|
|
905
|
+
def _safe_dot(a, b):
|
|
906
|
+
"""Dot product that handle the matrix case correctly."""
|
|
907
|
+
if a.ndim > 2 or b.ndim > 2:
|
|
908
|
+
if sparse.issparse(b):
|
|
909
|
+
# Sparse is always 2 dimensional. Implies a is above 3 dimensional.
|
|
910
|
+
# [n, ..., o, p] @ [l, m] -> [n, ..., o, m]
|
|
911
|
+
a_2d = a.reshape(-1, a.shape[-1])
|
|
912
|
+
ret = a_2d @ b
|
|
913
|
+
ret = ret.reshape(*a.shape[:-1], b.shape[1])
|
|
914
|
+
elif sparse.issparse(a):
|
|
915
|
+
# Sparse is always 2 dimensional. Implies b is above 3 dimensional.
|
|
916
|
+
# [l, m] @ [n, ..., o, p, q] -> [l, n, ..., o, q]
|
|
917
|
+
b_ = np.rollaxis(b, -2)
|
|
918
|
+
b_2d = b_.reshape((b.shape[-2], -1))
|
|
919
|
+
ret = a @ b_2d
|
|
920
|
+
ret = ret.reshape(a.shape[0], *b_.shape[1:])
|
|
921
|
+
else:
|
|
922
|
+
ret = np.dot(a, b)
|
|
923
|
+
|
|
924
|
+
else:
|
|
925
|
+
ret = a @ b
|
|
926
|
+
|
|
927
|
+
return ret
|
|
928
|
+
|
|
929
|
+
@staticmethod
|
|
930
|
+
def _svd_turn(u, v, u_decision=True):
|
|
931
|
+
"""Confirm correction to ensure deterministic output from SVD."""
|
|
932
|
+
if u_decision:
|
|
933
|
+
# rows of v, columns of u
|
|
934
|
+
max_cols = np.argmax(np.abs(u), axis=0)
|
|
935
|
+
signs = np.sign(u[max_cols, list(range(u.shape[1]))])
|
|
936
|
+
v *= signs[:, np.newaxis]
|
|
937
|
+
u *= signs
|
|
938
|
+
else:
|
|
939
|
+
# rows of u, columns of v
|
|
940
|
+
max_rows = np.argmax(np.abs(v), axis=1)
|
|
941
|
+
signs = np.sign(v[list(range(v.shape[0])), max_rows])
|
|
942
|
+
v *= signs[:, np.newaxis]
|
|
943
|
+
u *= signs
|
|
944
|
+
return u, v
|
|
945
|
+
|
|
946
|
+
@staticmethod
|
|
947
|
+
def _check_random_status(seed):
|
|
948
|
+
"""Transform seed into a np.random.RandomState instance."""
|
|
949
|
+
if isinstance(seed, np.random.RandomState):
|
|
950
|
+
return seed
|
|
951
|
+
if seed is None or seed is np.random:
|
|
952
|
+
return np.random.RandomState()
|
|
953
|
+
if isinstance(seed, numbers.Integral):
|
|
954
|
+
return np.random.RandomState(seed)
|
|
955
|
+
raise ValueError(
|
|
956
|
+
"%r cannot be used to seed a numpy.random.RandomState instance" % seed
|
|
957
|
+
)
|
|
958
|
+
|
|
959
|
+
def compute(self, x):
|
|
960
|
+
"""Main method for computing principal components."""
|
|
961
|
+
n_components = self._n_comps
|
|
962
|
+
# small dimension (the shape is less than 500), and the full amount is calculated.
|
|
963
|
+
if max(x.shape) <= 500:
|
|
964
|
+
u, s, _ = self._fit_few(x)
|
|
965
|
+
# When dimension of x is much, truncated SVD is used for calculation.
|
|
966
|
+
elif 1 <= n_components < 0.8 * min(x.shape):
|
|
967
|
+
u, s, _ = self._fit_much(x, n_components)
|
|
968
|
+
# A case of n_components in (0, 1)
|
|
969
|
+
else:
|
|
970
|
+
u, s, _ = self._fit_few(x)
|
|
971
|
+
|
|
972
|
+
for i, _ in enumerate(s):
|
|
973
|
+
# To prevent s from being equal to 0, a small fixed noise is added.
|
|
974
|
+
# Adjust 1e-19 was found a good compromise for s.
|
|
975
|
+
if s[i] == 0:
|
|
976
|
+
s[i] = 1e-19
|
|
977
|
+
u = u[:, :self._n_comps]
|
|
978
|
+
u *= s[:self._n_comps]
|
|
979
|
+
|
|
980
|
+
return u
|
|
981
|
+
|
|
982
|
+
def _fit_few(self, x):
|
|
983
|
+
"""Compute principal components with full SVD on x, when dimension of x is few."""
|
|
984
|
+
mean_ = np.mean(x, axis=0)
|
|
985
|
+
x -= mean_
|
|
986
|
+
u, s, vt = linalg.svd(x, full_matrices=False)
|
|
987
|
+
u, vt = self._svd_turn(u, vt)
|
|
988
|
+
|
|
989
|
+
return u, s, vt
|
|
990
|
+
|
|
991
|
+
def _fit_much(self, x, n_components):
|
|
992
|
+
"""Compute principal components with truncated SVD on x, when dimension of x is much."""
|
|
993
|
+
random_state = self._check_random_status(self._random_status)
|
|
994
|
+
mean_ = np.mean(x, axis=0)
|
|
995
|
+
x -= mean_
|
|
996
|
+
u, s, vt = self._random_svd(x, n_components, n_oversamples=self._n_oversamples, random_state=random_state)
|
|
997
|
+
return u, s, vt
|
|
998
|
+
|
|
999
|
+
def _random_svd(self, m, n_components, n_oversamples=10, random_state="warn"):
|
|
1000
|
+
"""Compute a truncated randomized SVD."""
|
|
1001
|
+
n_random = n_components + n_oversamples
|
|
1002
|
+
n_samples, n_features = m.shape
|
|
1003
|
+
# Adjust 7 or 4 was found a good compromise for randomized SVD.
|
|
1004
|
+
n_iter = 7 if n_components < 0.1 * min(m.shape) else 4
|
|
1005
|
+
if n_samples < n_features:
|
|
1006
|
+
m = m.T
|
|
1007
|
+
|
|
1008
|
+
q = self._random_range_finder(m, size=n_random, n_iter=n_iter, random_state=random_state)
|
|
1009
|
+
# Project m to the low dimensional space using the basis vectors (q vector).
|
|
1010
|
+
b = self._safe_dot(q.T, m)
|
|
1011
|
+
# Compute the svd on this matrix (b matrix)
|
|
1012
|
+
uhat, s, vt = linalg.svd(b, full_matrices=False)
|
|
1013
|
+
|
|
1014
|
+
del b
|
|
1015
|
+
u = np.dot(q, uhat)
|
|
1016
|
+
|
|
1017
|
+
if n_samples < n_features:
|
|
1018
|
+
u, vt = self._svd_turn(u, vt, u_decision=False)
|
|
1019
|
+
else:
|
|
1020
|
+
u, vt = self._svd_turn(u, vt)
|
|
1021
|
+
|
|
1022
|
+
if n_samples < n_features:
|
|
1023
|
+
return vt[:n_components, :].T, s[:n_components], u[:, :n_components].T
|
|
1024
|
+
|
|
1025
|
+
return u[:, :n_components], s[:n_components], vt[:n_components, :]
|
|
1026
|
+
|
|
1027
|
+
def _random_range_finder(self, a, size, n_iter, random_state=None):
|
|
1028
|
+
"""Computes an orthonormal matrix whose range approximates the range of A."""
|
|
1029
|
+
random_state = self._check_random_status(random_state)
|
|
1030
|
+
# Generate normal random vectors.
|
|
1031
|
+
q = random_state.normal(size=(a.shape[1], size))
|
|
1032
|
+
if a.dtype.kind == "f":
|
|
1033
|
+
# Ensure f32 is retained as f32
|
|
1034
|
+
q = q.astype(a.dtype, copy=False)
|
|
1035
|
+
if n_iter <= 2:
|
|
1036
|
+
power_iteration_normalizer = "none"
|
|
1037
|
+
else:
|
|
1038
|
+
power_iteration_normalizer = "LU"
|
|
1039
|
+
# use power iterations with q to further compute the top singular vectors of a in q
|
|
1040
|
+
for _ in range(n_iter):
|
|
1041
|
+
if power_iteration_normalizer == "none":
|
|
1042
|
+
q = self._safe_dot(a, q)
|
|
1043
|
+
q = self._safe_dot(a.T, q)
|
|
1044
|
+
elif power_iteration_normalizer == "LU":
|
|
1045
|
+
q, _ = linalg.lu(self._safe_dot(a, q), permute_l=True)
|
|
1046
|
+
q, _ = linalg.lu(self._safe_dot(a.T, q), permute_l=True)
|
|
1047
|
+
# The orthogonal basis is extracted by the linear projection of Q, and the range of a is sampled.
|
|
1048
|
+
q, _ = linalg.qr(self._safe_dot(a, q), mode="economic")
|
|
1049
|
+
return q
|