mindspore 2.4.0__cp311-cp311-macosx_10_15_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -0
- mindspore/__init__.py +53 -0
- mindspore/_c_dataengine.cpython-311-darwin.so +0 -0
- mindspore/_c_expression.cpython-311-darwin.so +0 -0
- mindspore/_c_mindrecord.cpython-311-darwin.so +0 -0
- mindspore/_check_jit_forbidden_api.py +106 -0
- mindspore/_checkparam.py +1419 -0
- mindspore/_extends/__init__.py +23 -0
- mindspore/_extends/builtin_operations.py +224 -0
- mindspore/_extends/graph_kernel/__init__.py +17 -0
- mindspore/_extends/graph_kernel/model/__init__.py +19 -0
- mindspore/_extends/graph_kernel/model/graph_parallel.py +311 -0
- mindspore/_extends/graph_kernel/model/graph_split.py +1348 -0
- mindspore/_extends/graph_kernel/model/model.py +553 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +216 -0
- mindspore/_extends/graph_kernel/parallel_estimate.py +60 -0
- mindspore/_extends/graph_kernel/splitter.py +140 -0
- mindspore/_extends/graph_kernel/utils.py +28 -0
- mindspore/_extends/parallel_compile/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +269 -0
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +529 -0
- mindspore/_extends/parallel_compile/akg_compiler/compiler.py +56 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
- mindspore/_extends/parallel_compile/akg_compiler/get_file_path.py +36 -0
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +556 -0
- mindspore/_extends/parallel_compile/akg_compiler/util.py +159 -0
- mindspore/_extends/parse/__init__.py +49 -0
- mindspore/_extends/parse/compile_config.py +299 -0
- mindspore/_extends/parse/namespace.py +136 -0
- mindspore/_extends/parse/parser.py +1448 -0
- mindspore/_extends/parse/resources.py +213 -0
- mindspore/_extends/parse/standard_method.py +4475 -0
- mindspore/_extends/parse/trope.py +97 -0
- mindspore/_extends/pijit/__init__.py +23 -0
- mindspore/_extends/pijit/pijit_func_white_list.py +669 -0
- mindspore/_extends/remote/__init__.py +19 -0
- mindspore/_extends/remote/kernel_build_server.py +199 -0
- mindspore/_extends/remote/kernel_build_server_akg.py +55 -0
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
- mindspore/_extends/utils.py +68 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_profiler.py +30 -0
- mindspore/amp.py +433 -0
- mindspore/boost/__init__.py +42 -0
- mindspore/boost/adasum.py +319 -0
- mindspore/boost/base.py +535 -0
- mindspore/boost/boost.py +400 -0
- mindspore/boost/boost_cell_wrapper.py +790 -0
- mindspore/boost/dim_reduce.py +323 -0
- mindspore/boost/grad_accumulation.py +79 -0
- mindspore/boost/grad_freeze.py +382 -0
- mindspore/boost/group_loss_scale_manager.py +166 -0
- mindspore/boost/less_batch_normalization.py +174 -0
- mindspore/common/__init__.py +86 -0
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_decorator.py +50 -0
- mindspore/common/_jit_fallback_utils.py +110 -0
- mindspore/common/_monad.py +25 -0
- mindspore/common/_pijit_context.py +190 -0
- mindspore/common/_register_for_adapter.py +74 -0
- mindspore/common/_register_for_recompute.py +48 -0
- mindspore/common/_register_for_tensor.py +46 -0
- mindspore/common/_stub_tensor.py +210 -0
- mindspore/common/_tensor_overload.py +139 -0
- mindspore/common/_utils.py +122 -0
- mindspore/common/api.py +2064 -0
- mindspore/common/auto_dynamic_shape.py +507 -0
- mindspore/common/dtype.py +422 -0
- mindspore/common/dump.py +130 -0
- mindspore/common/file_system.py +48 -0
- mindspore/common/generator.py +254 -0
- mindspore/common/hook_handle.py +143 -0
- mindspore/common/initializer.py +880 -0
- mindspore/common/jit_config.py +98 -0
- mindspore/common/lazy_inline.py +240 -0
- mindspore/common/mindir_util.py +111 -0
- mindspore/common/mutable.py +234 -0
- mindspore/common/no_inline.py +54 -0
- mindspore/common/np_dtype.py +25 -0
- mindspore/common/parameter.py +1081 -0
- mindspore/common/recompute.py +292 -0
- mindspore/common/seed.py +260 -0
- mindspore/common/sparse_tensor.py +1175 -0
- mindspore/common/symbol.py +122 -0
- mindspore/common/tensor.py +5039 -0
- mindspore/communication/__init__.py +37 -0
- mindspore/communication/_comm_helper.py +501 -0
- mindspore/communication/_hccl_management.py +297 -0
- mindspore/communication/comm_func.py +1395 -0
- mindspore/communication/management.py +673 -0
- mindspore/config/op_info.config +533 -0
- mindspore/context.py +2077 -0
- mindspore/dataset/__init__.py +90 -0
- mindspore/dataset/audio/__init__.py +61 -0
- mindspore/dataset/audio/transforms.py +3690 -0
- mindspore/dataset/audio/utils.py +386 -0
- mindspore/dataset/audio/validators.py +1172 -0
- mindspore/dataset/callback/__init__.py +20 -0
- mindspore/dataset/callback/ds_callback.py +368 -0
- mindspore/dataset/callback/validators.py +32 -0
- mindspore/dataset/core/__init__.py +13 -0
- mindspore/dataset/core/config.py +1095 -0
- mindspore/dataset/core/datatypes.py +101 -0
- mindspore/dataset/core/py_util_helpers.py +65 -0
- mindspore/dataset/core/validator_helpers.py +781 -0
- mindspore/dataset/debug/__init__.py +21 -0
- mindspore/dataset/debug/debug_hook.py +97 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +124 -0
- mindspore/dataset/engine/cache_admin.py +47 -0
- mindspore/dataset/engine/cache_client.py +129 -0
- mindspore/dataset/engine/datasets.py +4582 -0
- mindspore/dataset/engine/datasets_audio.py +911 -0
- mindspore/dataset/engine/datasets_standard_format.py +543 -0
- mindspore/dataset/engine/datasets_text.py +2161 -0
- mindspore/dataset/engine/datasets_user_defined.py +1184 -0
- mindspore/dataset/engine/datasets_vision.py +4816 -0
- mindspore/dataset/engine/iterators.py +371 -0
- mindspore/dataset/engine/obs/__init__.py +23 -0
- mindspore/dataset/engine/obs/config_loader.py +68 -0
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +508 -0
- mindspore/dataset/engine/obs/util.py +482 -0
- mindspore/dataset/engine/offload.py +596 -0
- mindspore/dataset/engine/queue.py +304 -0
- mindspore/dataset/engine/samplers.py +895 -0
- mindspore/dataset/engine/serializer_deserializer.py +159 -0
- mindspore/dataset/engine/validators.py +2895 -0
- mindspore/dataset/text/__init__.py +51 -0
- mindspore/dataset/text/transforms.py +1703 -0
- mindspore/dataset/text/utils.py +715 -0
- mindspore/dataset/text/validators.py +642 -0
- mindspore/dataset/transforms/__init__.py +45 -0
- mindspore/dataset/transforms/c_transforms.py +638 -0
- mindspore/dataset/transforms/py_transforms.py +393 -0
- mindspore/dataset/transforms/py_transforms_util.py +255 -0
- mindspore/dataset/transforms/transforms.py +1260 -0
- mindspore/dataset/transforms/validators.py +410 -0
- mindspore/dataset/utils/__init__.py +19 -0
- mindspore/dataset/utils/browse_dataset.py +190 -0
- mindspore/dataset/utils/line_reader.py +126 -0
- mindspore/dataset/vision/__init__.py +65 -0
- mindspore/dataset/vision/c_transforms.py +2641 -0
- mindspore/dataset/vision/py_transforms.py +2120 -0
- mindspore/dataset/vision/py_transforms_util.py +1660 -0
- mindspore/dataset/vision/transforms.py +7295 -0
- mindspore/dataset/vision/utils.py +863 -0
- mindspore/dataset/vision/validators.py +1483 -0
- mindspore/default_config.py +2 -0
- mindspore/experimental/__init__.py +20 -0
- mindspore/experimental/es/__init__.py +22 -0
- mindspore/experimental/es/embedding_service.py +883 -0
- mindspore/experimental/es/embedding_service_layer.py +581 -0
- mindspore/experimental/llm_boost/__init__.py +21 -0
- mindspore/experimental/llm_boost/atb/__init__.py +23 -0
- mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
- mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
- mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
- mindspore/experimental/llm_boost/register.py +129 -0
- mindspore/experimental/llm_boost/utils.py +31 -0
- mindspore/experimental/map_parameter.py +309 -0
- mindspore/experimental/optim/__init__.py +40 -0
- mindspore/experimental/optim/adadelta.py +161 -0
- mindspore/experimental/optim/adagrad.py +168 -0
- mindspore/experimental/optim/adam.py +193 -0
- mindspore/experimental/optim/adamax.py +170 -0
- mindspore/experimental/optim/adamw.py +290 -0
- mindspore/experimental/optim/asgd.py +153 -0
- mindspore/experimental/optim/lr_scheduler.py +1371 -0
- mindspore/experimental/optim/nadam.py +157 -0
- mindspore/experimental/optim/optimizer.py +262 -0
- mindspore/experimental/optim/radam.py +194 -0
- mindspore/experimental/optim/rmsprop.py +154 -0
- mindspore/experimental/optim/rprop.py +164 -0
- mindspore/experimental/optim/sgd.py +156 -0
- mindspore/hal/__init__.py +40 -0
- mindspore/hal/_ascend.py +57 -0
- mindspore/hal/_base.py +57 -0
- mindspore/hal/_cpu.py +56 -0
- mindspore/hal/_gpu.py +57 -0
- mindspore/hal/contiguous_tensors_handle.py +175 -0
- mindspore/hal/device.py +356 -0
- mindspore/hal/event.py +179 -0
- mindspore/hal/memory.py +326 -0
- mindspore/hal/stream.py +357 -0
- mindspore/include/OWNERS +7 -0
- mindspore/include/api/allocator.h +97 -0
- mindspore/include/api/callback/callback.h +93 -0
- mindspore/include/api/callback/ckpt_saver.h +41 -0
- mindspore/include/api/callback/loss_monitor.h +33 -0
- mindspore/include/api/callback/lr_scheduler.h +51 -0
- mindspore/include/api/callback/time_monitor.h +34 -0
- mindspore/include/api/callback/train_accuracy.h +37 -0
- mindspore/include/api/cell.h +90 -0
- mindspore/include/api/cfg.h +82 -0
- mindspore/include/api/context.h +602 -0
- mindspore/include/api/data_type.h +47 -0
- mindspore/include/api/delegate.h +178 -0
- mindspore/include/api/delegate_api.h +75 -0
- mindspore/include/api/dual_abi_helper.h +208 -0
- mindspore/include/api/format.h +28 -0
- mindspore/include/api/graph.h +46 -0
- mindspore/include/api/kernel.h +58 -0
- mindspore/include/api/kernel_api.h +168 -0
- mindspore/include/api/metrics/accuracy.h +36 -0
- mindspore/include/api/metrics/metrics.h +41 -0
- mindspore/include/api/model.h +438 -0
- mindspore/include/api/model_group.h +91 -0
- mindspore/include/api/model_parallel_runner.h +168 -0
- mindspore/include/api/serialization.h +185 -0
- mindspore/include/api/status.h +192 -0
- mindspore/include/api/types.h +431 -0
- mindspore/include/api/visible.h +41 -0
- mindspore/include/c_api/context_c.h +179 -0
- mindspore/include/c_api/data_type_c.h +52 -0
- mindspore/include/c_api/format_c.h +46 -0
- mindspore/include/c_api/model_c.h +347 -0
- mindspore/include/c_api/status_c.h +79 -0
- mindspore/include/c_api/tensor_c.h +146 -0
- mindspore/include/c_api/types_c.h +67 -0
- mindspore/include/dataset/config.h +163 -0
- mindspore/include/dataset/constants.h +363 -0
- mindspore/include/dataset/execute.h +196 -0
- mindspore/include/dataset/text.h +1092 -0
- mindspore/include/dataset/transforms.h +638 -0
- mindspore/include/dataset/vision.h +2129 -0
- mindspore/include/dataset/vision_ascend.h +206 -0
- mindspore/include/dataset/vision_lite.h +625 -0
- mindspore/lib/libavcodec.59.dylib +0 -0
- mindspore/lib/libavdevice.59.dylib +0 -0
- mindspore/lib/libavfilter.8.dylib +0 -0
- mindspore/lib/libavformat.59.dylib +0 -0
- mindspore/lib/libavutil.57.dylib +0 -0
- mindspore/lib/libdnnl.2.dylib +0 -0
- mindspore/lib/libicudata.69.dylib +0 -0
- mindspore/lib/libicui18n.69.dylib +0 -0
- mindspore/lib/libicuuc.69.dylib +0 -0
- mindspore/lib/libmindspore_address_sorting.15.dylib +0 -0
- mindspore/lib/libmindspore_backend.dylib +0 -0
- mindspore/lib/libmindspore_common.dylib +0 -0
- mindspore/lib/libmindspore_core.dylib +0 -0
- mindspore/lib/libmindspore_glog.0.dylib +0 -0
- mindspore/lib/libmindspore_gpr.15.dylib +0 -0
- mindspore/lib/libmindspore_grpc++.1.dylib +0 -0
- mindspore/lib/libmindspore_grpc.15.dylib +0 -0
- mindspore/lib/libmindspore_np_dtype.dylib +0 -0
- mindspore/lib/libmindspore_ops.dylib +0 -0
- mindspore/lib/libmindspore_upb.15.dylib +0 -0
- mindspore/lib/libnnacl.dylib +0 -0
- mindspore/lib/libopencv_core.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgcodecs.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgproc.4.5.dylib +0 -0
- mindspore/lib/libps_cache.dylib +0 -0
- mindspore/lib/libswresample.4.dylib +0 -0
- mindspore/lib/libswscale.6.dylib +0 -0
- mindspore/lib/libtinyxml2.8.dylib +0 -0
- mindspore/log.py +633 -0
- mindspore/mindrecord/__init__.py +43 -0
- mindspore/mindrecord/common/__init__.py +17 -0
- mindspore/mindrecord/common/constant.py +20 -0
- mindspore/mindrecord/common/enums.py +44 -0
- mindspore/mindrecord/common/exceptions.py +311 -0
- mindspore/mindrecord/config.py +809 -0
- mindspore/mindrecord/filereader.py +174 -0
- mindspore/mindrecord/filewriter.py +722 -0
- mindspore/mindrecord/mindpage.py +210 -0
- mindspore/mindrecord/shardheader.py +141 -0
- mindspore/mindrecord/shardindexgenerator.py +74 -0
- mindspore/mindrecord/shardreader.py +117 -0
- mindspore/mindrecord/shardsegment.py +128 -0
- mindspore/mindrecord/shardutils.py +185 -0
- mindspore/mindrecord/shardwriter.py +237 -0
- mindspore/mindrecord/tools/__init__.py +17 -0
- mindspore/mindrecord/tools/cifar10.py +140 -0
- mindspore/mindrecord/tools/cifar100.py +153 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +185 -0
- mindspore/mindrecord/tools/cifar10_to_mr.py +177 -0
- mindspore/mindrecord/tools/csv_to_mr.py +200 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +206 -0
- mindspore/mindrecord/tools/mnist_to_mr.py +259 -0
- mindspore/mindrecord/tools/tfrecord_to_mr.py +360 -0
- mindspore/mint/__init__.py +1586 -0
- mindspore/mint/distributed/__init__.py +31 -0
- mindspore/mint/distributed/distributed.py +254 -0
- mindspore/mint/linalg/__init__.py +22 -0
- mindspore/mint/nn/__init__.py +757 -0
- mindspore/mint/nn/functional.py +679 -0
- mindspore/mint/nn/layer/__init__.py +39 -0
- mindspore/mint/nn/layer/activation.py +133 -0
- mindspore/mint/nn/layer/normalization.py +477 -0
- mindspore/mint/nn/layer/pooling.py +110 -0
- mindspore/mint/optim/__init__.py +24 -0
- mindspore/mint/optim/adamw.py +206 -0
- mindspore/mint/special/__init__.py +63 -0
- mindspore/multiprocessing/__init__.py +73 -0
- mindspore/nn/__init__.py +47 -0
- mindspore/nn/cell.py +2787 -0
- mindspore/nn/dynamic_lr.py +482 -0
- mindspore/nn/grad/__init__.py +21 -0
- mindspore/nn/grad/cell_grad.py +196 -0
- mindspore/nn/layer/__init__.py +63 -0
- mindspore/nn/layer/activation.py +1822 -0
- mindspore/nn/layer/basic.py +1629 -0
- mindspore/nn/layer/channel_shuffle.py +90 -0
- mindspore/nn/layer/combined.py +248 -0
- mindspore/nn/layer/container.py +734 -0
- mindspore/nn/layer/conv.py +1505 -0
- mindspore/nn/layer/dense.py +204 -0
- mindspore/nn/layer/embedding.py +869 -0
- mindspore/nn/layer/image.py +661 -0
- mindspore/nn/layer/math.py +1069 -0
- mindspore/nn/layer/normalization.py +1273 -0
- mindspore/nn/layer/padding.py +880 -0
- mindspore/nn/layer/pooling.py +2302 -0
- mindspore/nn/layer/rnn_cells.py +388 -0
- mindspore/nn/layer/rnns.py +849 -0
- mindspore/nn/layer/thor_layer.py +963 -0
- mindspore/nn/layer/timedistributed.py +155 -0
- mindspore/nn/layer/transformer.py +823 -0
- mindspore/nn/learning_rate_schedule.py +512 -0
- mindspore/nn/loss/__init__.py +36 -0
- mindspore/nn/loss/loss.py +2924 -0
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/__init__.py +45 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +111 -0
- mindspore/nn/optim/ada_grad.py +217 -0
- mindspore/nn/optim/adadelta.py +206 -0
- mindspore/nn/optim/adafactor.py +448 -0
- mindspore/nn/optim/adam.py +1297 -0
- mindspore/nn/optim/adamax.py +220 -0
- mindspore/nn/optim/adasum.py +548 -0
- mindspore/nn/optim/asgd.py +216 -0
- mindspore/nn/optim/ftrl.py +401 -0
- mindspore/nn/optim/lamb.py +296 -0
- mindspore/nn/optim/lars.py +202 -0
- mindspore/nn/optim/lazyadam.py +533 -0
- mindspore/nn/optim/momentum.py +239 -0
- mindspore/nn/optim/optimizer.py +1034 -0
- mindspore/nn/optim/proximal_ada_grad.py +242 -0
- mindspore/nn/optim/rmsprop.py +264 -0
- mindspore/nn/optim/rprop.py +251 -0
- mindspore/nn/optim/sgd.py +237 -0
- mindspore/nn/optim/tft_wrapper.py +127 -0
- mindspore/nn/optim/thor.py +1310 -0
- mindspore/nn/probability/__init__.py +22 -0
- mindspore/nn/probability/bijector/__init__.py +35 -0
- mindspore/nn/probability/bijector/bijector.py +337 -0
- mindspore/nn/probability/bijector/exp.py +65 -0
- mindspore/nn/probability/bijector/gumbel_cdf.py +144 -0
- mindspore/nn/probability/bijector/invert.py +126 -0
- mindspore/nn/probability/bijector/power_transform.py +196 -0
- mindspore/nn/probability/bijector/scalar_affine.py +167 -0
- mindspore/nn/probability/bijector/softplus.py +189 -0
- mindspore/nn/probability/bnn_layers/__init__.py +29 -0
- mindspore/nn/probability/bnn_layers/_util.py +46 -0
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +112 -0
- mindspore/nn/probability/bnn_layers/conv_variational.py +267 -0
- mindspore/nn/probability/bnn_layers/dense_variational.py +302 -0
- mindspore/nn/probability/bnn_layers/layer_distribution.py +123 -0
- mindspore/nn/probability/distribution/__init__.py +56 -0
- mindspore/nn/probability/distribution/_utils/__init__.py +34 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +96 -0
- mindspore/nn/probability/distribution/_utils/utils.py +362 -0
- mindspore/nn/probability/distribution/bernoulli.py +334 -0
- mindspore/nn/probability/distribution/beta.py +391 -0
- mindspore/nn/probability/distribution/categorical.py +435 -0
- mindspore/nn/probability/distribution/cauchy.py +383 -0
- mindspore/nn/probability/distribution/distribution.py +827 -0
- mindspore/nn/probability/distribution/exponential.py +350 -0
- mindspore/nn/probability/distribution/gamma.py +391 -0
- mindspore/nn/probability/distribution/geometric.py +335 -0
- mindspore/nn/probability/distribution/gumbel.py +257 -0
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +272 -0
- mindspore/nn/probability/distribution/logistic.py +379 -0
- mindspore/nn/probability/distribution/normal.py +336 -0
- mindspore/nn/probability/distribution/poisson.py +288 -0
- mindspore/nn/probability/distribution/student_t.py +149 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +235 -0
- mindspore/nn/probability/distribution/uniform.py +375 -0
- mindspore/nn/reinforcement/__init__.py +24 -0
- mindspore/nn/reinforcement/_batch_read_write.py +142 -0
- mindspore/nn/reinforcement/_tensors_queue.py +152 -0
- mindspore/nn/reinforcement/tensor_array.py +145 -0
- mindspore/nn/sparse/__init__.py +23 -0
- mindspore/nn/sparse/sparse.py +147 -0
- mindspore/nn/wrap/__init__.py +49 -0
- mindspore/nn/wrap/cell_wrapper.py +968 -0
- mindspore/nn/wrap/grad_reducer.py +608 -0
- mindspore/nn/wrap/loss_scale.py +694 -0
- mindspore/numpy/__init__.py +121 -0
- mindspore/numpy/array_creations.py +2731 -0
- mindspore/numpy/array_ops.py +2629 -0
- mindspore/numpy/dtypes.py +185 -0
- mindspore/numpy/fft.py +966 -0
- mindspore/numpy/logic_ops.py +936 -0
- mindspore/numpy/math_ops.py +5911 -0
- mindspore/numpy/utils.py +214 -0
- mindspore/numpy/utils_const.py +565 -0
- mindspore/ops/__init__.py +56 -0
- mindspore/ops/_constants.py +30 -0
- mindspore/ops/_grad_experimental/__init__.py +31 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +830 -0
- mindspore/ops/_grad_experimental/grad_base.py +143 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +714 -0
- mindspore/ops/_grad_experimental/grad_debug_ops.py +31 -0
- mindspore/ops/_grad_experimental/grad_implementations.py +203 -0
- mindspore/ops/_grad_experimental/grad_inner_ops.py +79 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +802 -0
- mindspore/ops/_grad_experimental/grad_nn_ops.py +231 -0
- mindspore/ops/_grad_experimental/grad_quant_ops.py +238 -0
- mindspore/ops/_grad_experimental/grad_sparse.py +342 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +399 -0
- mindspore/ops/_grad_experimental/taylor_rule.py +220 -0
- mindspore/ops/_op_impl/__init__.py +23 -0
- mindspore/ops/_op_impl/_custom_op/__init__.py +39 -0
- mindspore/ops/_op_impl/_custom_op/_basic.py +158 -0
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +279 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +156 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +109 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +125 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +105 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +124 -0
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +116 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +89 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +196 -0
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +366 -0
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +162 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +136 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +206 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +128 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +199 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +156 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +184 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +143 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +169 -0
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +548 -0
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +881 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +278 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +200 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +334 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +255 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +222 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +644 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +488 -0
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +87 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +129 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +121 -0
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +352 -0
- mindspore/ops/_op_impl/aicpu/__init__.py +441 -0
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/acos.py +32 -0
- mindspore/ops/_op_impl/aicpu/acos_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/acosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/acosh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/add_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/add_v2.py +40 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +41 -0
- mindspore/ops/_op_impl/aicpu/addcmul.py +47 -0
- mindspore/ops/_op_impl/aicpu/adjust_contrastv2.py +32 -0
- mindspore/ops/_op_impl/aicpu/adjust_hue.py +31 -0
- mindspore/ops/_op_impl/aicpu/adjust_saturation.py +32 -0
- mindspore/ops/_op_impl/aicpu/affine_grid.py +33 -0
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/angle.py +31 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmax_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/asin.py +32 -0
- mindspore/ops/_op_impl/aicpu/asin_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/asinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/asinh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/atanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/avgpool_grad_v1.py +37 -0
- mindspore/ops/_op_impl/aicpu/avgpool_v1.py +36 -0
- mindspore/ops/_op_impl/aicpu/bartlett_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/betainc.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/ops/_op_impl/aicpu/blackman_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/broadcast_to.py +58 -0
- mindspore/ops/_op_impl/aicpu/bucketize.py +34 -0
- mindspore/ops/_op_impl/aicpu/cache_swap_table.py +102 -0
- mindspore/ops/_op_impl/aicpu/cast.py +225 -0
- mindspore/ops/_op_impl/aicpu/cauchy.py +33 -0
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/check_numerics.py +33 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +32 -0
- mindspore/ops/_op_impl/aicpu/cholesky_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/cholesky_solve.py +33 -0
- mindspore/ops/_op_impl/aicpu/choleskygrad.py +32 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +37 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +38 -0
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/compare_and_bitpack.py +37 -0
- mindspore/ops/_op_impl/aicpu/complex.py +32 -0
- mindspore/ops/_op_impl/aicpu/complex_abs.py +31 -0
- mindspore/ops/_op_impl/aicpu/compute_accidental_hits.py +44 -0
- mindspore/ops/_op_impl/aicpu/concat.py +57 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +42 -0
- mindspore/ops/_op_impl/aicpu/conjugate_transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/cos.py +34 -0
- mindspore/ops/_op_impl/aicpu/cosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize.py +69 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_boxes.py +68 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_dense.py +48 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_sparse_tensor.py +51 -0
- mindspore/ops/_op_impl/aicpu/ctc_greedy_decoder.py +35 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2.py +43 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/ctcloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/cummax.py +41 -0
- mindspore/ops/_op_impl/aicpu/cumprod.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumsum.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/data_format_vec_permute.py +32 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/dense_to_csr_sparse_matrix.py +49 -0
- mindspore/ops/_op_impl/aicpu/dense_to_dense_set_operation.py +45 -0
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/depth_to_space.py +44 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/aicpu/digamma.py +31 -0
- mindspore/ops/_op_impl/aicpu/div.py +41 -0
- mindspore/ops/_op_impl/aicpu/div_no_nan.py +35 -0
- mindspore/ops/_op_impl/aicpu/dropout2d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +41 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask_v3.py +32 -0
- mindspore/ops/_op_impl/aicpu/dynamic_stitch.py +42 -0
- mindspore/ops/_op_impl/aicpu/edit_distance.py +56 -0
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/embedding_lookup.py +102 -0
- mindspore/ops/_op_impl/aicpu/end_of_sequence.py +30 -0
- mindspore/ops/_op_impl/aicpu/environ_create.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_destroy_all.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_get.py +41 -0
- mindspore/ops/_op_impl/aicpu/environ_set.py +40 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/exp.py +37 -0
- mindspore/ops/_op_impl/aicpu/expand.py +45 -0
- mindspore/ops/_op_impl/aicpu/expand_dims.py +42 -0
- mindspore/ops/_op_impl/aicpu/expm1.py +34 -0
- mindspore/ops/_op_impl/aicpu/extract_glimpse.py +35 -0
- mindspore/ops/_op_impl/aicpu/eye.py +44 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +47 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +39 -0
- mindspore/ops/_op_impl/aicpu/fill_v2.py +58 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +43 -0
- mindspore/ops/_op_impl/aicpu/floor_div.py +38 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_grad_with_fixed_ksize.py +43 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +65 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad_with_fixed_ksize.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_with_fixed_ksize.py +49 -0
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_ftrl.py +41 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_lazy_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_proximal_adagrad.py +39 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/gather.py +46 -0
- mindspore/ops/_op_impl/aicpu/gather_d.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_d_grad_v2.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_grad.py +54 -0
- mindspore/ops/_op_impl/aicpu/gather_nd.py +56 -0
- mindspore/ops/_op_impl/aicpu/gcd.py +32 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
- mindspore/ops/_op_impl/aicpu/geqrf.py +32 -0
- mindspore/ops/_op_impl/aicpu/get_next.py +39 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d.py +35 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d.py +34 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/hamming_window.py +57 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid.py +32 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/heaviside.py +40 -0
- mindspore/ops/_op_impl/aicpu/histogram.py +35 -0
- mindspore/ops/_op_impl/aicpu/hsv_to_rgb.py +32 -0
- mindspore/ops/_op_impl/aicpu/hypot.py +32 -0
- mindspore/ops/_op_impl/aicpu/identity.py +42 -0
- mindspore/ops/_op_impl/aicpu/identity_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/igamma.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammac.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammagrada.py +30 -0
- mindspore/ops/_op_impl/aicpu/im2col.py +43 -0
- mindspore/ops/_op_impl/aicpu/imag.py +31 -0
- mindspore/ops/_op_impl/aicpu/index_fill.py +54 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/aicpu/init_data_set_queue.py +27 -0
- mindspore/ops/_op_impl/aicpu/inplace_index_add.py +39 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/is_finite.py +40 -0
- mindspore/ops/_op_impl/aicpu/is_inf.py +31 -0
- mindspore/ops/_op_impl/aicpu/is_nan.py +31 -0
- mindspore/ops/_op_impl/aicpu/kldivloss.py +34 -0
- mindspore/ops/_op_impl/aicpu/kldivlossgrad.py +35 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/lcm.py +32 -0
- mindspore/ops/_op_impl/aicpu/left_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +33 -0
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +57 -0
- mindspore/ops/_op_impl/aicpu/linspace.py +33 -0
- mindspore/ops/_op_impl/aicpu/list_diff.py +50 -0
- mindspore/ops/_op_impl/aicpu/log.py +37 -0
- mindspore/ops/_op_impl/aicpu/log1p.py +34 -0
- mindspore/ops/_op_impl/aicpu/log_matrix_determinant.py +31 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +37 -0
- mindspore/ops/_op_impl/aicpu/logical_xor.py +30 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/logspace.py +36 -0
- mindspore/ops/_op_impl/aicpu/lower_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/lstsq.py +34 -0
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_solve.py +32 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack.py +114 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +40 -0
- mindspore/ops/_op_impl/aicpu/masked_select.py +31 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_determinant.py +30 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_part_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_v3.py +56 -0
- mindspore/ops/_op_impl/aicpu/matrix_exp.py +34 -0
- mindspore/ops/_op_impl/aicpu/matrix_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +37 -0
- mindspore/ops/_op_impl/aicpu/matrix_set_diag_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_grad_with_argmax.py +60 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_with_argmax.py +59 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/maximum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/maxpool_grad_v1.py +46 -0
- mindspore/ops/_op_impl/aicpu/maxpool_v1.py +42 -0
- mindspore/ops/_op_impl/aicpu/median.py +39 -0
- mindspore/ops/_op_impl/aicpu/median_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/meshgrid.py +41 -0
- mindspore/ops/_op_impl/aicpu/minimum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +50 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +48 -0
- mindspore/ops/_op_impl/aicpu/mul.py +43 -0
- mindspore/ops/_op_impl/aicpu/mul_no_nan.py +42 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss.py +37 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/multilabel_margin_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +47 -0
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/neg.py +36 -0
- mindspore/ops/_op_impl/aicpu/nextafter.py +32 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/no_repeat_ngram.py +34 -0
- mindspore/ops/_op_impl/aicpu/non_deterministic_ints.py +33 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression.py +36 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression_with_overlaps.py +35 -0
- mindspore/ops/_op_impl/aicpu/non_zero.py +43 -0
- mindspore/ops/_op_impl/aicpu/not_equal.py +39 -0
- mindspore/ops/_op_impl/aicpu/nth_element.py +39 -0
- mindspore/ops/_op_impl/aicpu/nuclear_norm.py +33 -0
- mindspore/ops/_op_impl/aicpu/one_hot.py +116 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +39 -0
- mindspore/ops/_op_impl/aicpu/orgqr.py +34 -0
- mindspore/ops/_op_impl/aicpu/pad_and_shift.py +33 -0
- mindspore/ops/_op_impl/aicpu/pad_v3.py +61 -0
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +59 -0
- mindspore/ops/_op_impl/aicpu/padding.py +41 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +54 -0
- mindspore/ops/_op_impl/aicpu/pdist_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/poisson.py +37 -0
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/pow.py +39 -0
- mindspore/ops/_op_impl/aicpu/print_tensor.py +39 -0
- mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +113 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_range.py +49 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_categorical.py +68 -0
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +36 -0
- mindspore/ops/_op_impl/aicpu/random_gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/random_poisson.py +134 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +47 -0
- mindspore/ops/_op_impl/aicpu/randperm.py +38 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/range_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/real.py +31 -0
- mindspore/ops/_op_impl/aicpu/real_div.py +40 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_mean.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_prod.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/relu_grad_v3.py +41 -0
- mindspore/ops/_op_impl/aicpu/relu_v3.py +38 -0
- mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +96 -0
- mindspore/ops/_op_impl/aicpu/reshape.py +42 -0
- mindspore/ops/_op_impl/aicpu/resize_area.py +40 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +20 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +19 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +36 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/reverse_sequence.py +55 -0
- mindspore/ops/_op_impl/aicpu/reversev2.py +54 -0
- mindspore/ops/_op_impl/aicpu/rgb_to_hsv.py +32 -0
- mindspore/ops/_op_impl/aicpu/right_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/rnnt_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/round.py +34 -0
- mindspore/ops/_op_impl/aicpu/rsqrt.py +33 -0
- mindspore/ops/_op_impl/aicpu/rsqrt_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sample_distorted_bounding_box_v2.py +49 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate.py +52 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/scatter.py +79 -0
- mindspore/ops/_op_impl/aicpu/scatter_add_with_axis.py +53 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +39 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +59 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_max.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_min.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +44 -0
- mindspore/ops/_op_impl/aicpu/segment_max.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_mean.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_min.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_prod.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_sum.py +56 -0
- mindspore/ops/_op_impl/aicpu/select.py +45 -0
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/set_size.py +38 -0
- mindspore/ops/_op_impl/aicpu/sign.py +36 -0
- mindspore/ops/_op_impl/aicpu/sin.py +34 -0
- mindspore/ops/_op_impl/aicpu/sinc.py +43 -0
- mindspore/ops/_op_impl/aicpu/sinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/slice.py +59 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/space_to_depth.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_addmm.py +87 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_centered_rms_prop.py +105 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_momentum.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_proximal_gradient_descent.py +79 -0
- mindspore/ops/_op_impl/aicpu/sparse_concat.py +59 -0
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_add.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_div.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_mul.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_nnz.py +81 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_transpose.py +116 -0
- mindspore/ops/_op_impl/aicpu/sparse_reorder.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_reshape.py +34 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n.py +43 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum.py +49 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax.py +33 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax_cross_entropy_with_logits_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_maximum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_minimum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_add.py +84 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_mat_mul.py +190 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_to_csr_sparse_matrix.py +51 -0
- mindspore/ops/_op_impl/aicpu/sparse_to_dense_v2.py +73 -0
- mindspore/ops/_op_impl/aicpu/split.py +45 -0
- mindspore/ops/_op_impl/aicpu/sqrt.py +34 -0
- mindspore/ops/_op_impl/aicpu/sqrt_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/square.py +35 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +37 -0
- mindspore/ops/_op_impl/aicpu/squeeze.py +42 -0
- mindspore/ops/_op_impl/aicpu/sspaddmm.py +97 -0
- mindspore/ops/_op_impl/aicpu/stack.py +45 -0
- mindspore/ops/_op_impl/aicpu/stack_push_pop.py +87 -0
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +34 -0
- mindspore/ops/_op_impl/aicpu/standard_normal.py +34 -0
- mindspore/ops/_op_impl/aicpu/stateless_dropout_genmask.py +37 -0
- mindspore/ops/_op_impl/aicpu/stft.py +70 -0
- mindspore/ops/_op_impl/aicpu/strided_slice.py +43 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/sub.py +41 -0
- mindspore/ops/_op_impl/aicpu/sub_and_filter.py +36 -0
- mindspore/ops/_op_impl/aicpu/tan.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/tile.py +56 -0
- mindspore/ops/_op_impl/aicpu/topk.py +34 -0
- mindspore/ops/_op_impl/aicpu/trace.py +40 -0
- mindspore/ops/_op_impl/aicpu/tracegrad.py +41 -0
- mindspore/ops/_op_impl/aicpu/trans_data.py +35 -0
- mindspore/ops/_op_impl/aicpu/transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_matmul.py +42 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril.py +42 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triplet_margin_loss.py +62 -0
- mindspore/ops/_op_impl/aicpu/triu.py +43 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +39 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +41 -0
- mindspore/ops/_op_impl/aicpu/uniform_int.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_real.py +33 -0
- mindspore/ops/_op_impl/aicpu/unique.py +31 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +47 -0
- mindspore/ops/_op_impl/aicpu/unique_with_pad.py +32 -0
- mindspore/ops/_op_impl/aicpu/unravel_index.py +32 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_prod.py +53 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/unstack.py +45 -0
- mindspore/ops/_op_impl/aicpu/update_cache.py +44 -0
- mindspore/ops/_op_impl/aicpu/upper_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +40 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/xdivy.py +35 -0
- mindspore/ops/_op_impl/aicpu/xlogy.py +33 -0
- mindspore/ops/_op_impl/aicpu/zeros_like.py +42 -0
- mindspore/ops/_op_impl/aicpu/zeta.py +31 -0
- mindspore/ops/_op_impl/akg/__init__.py +19 -0
- mindspore/ops/_op_impl/akg/ascend/__init__.py +48 -0
- mindspore/ops/_op_impl/akg/ascend/abs.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/add.py +42 -0
- mindspore/ops/_op_impl/akg/ascend/add_n.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/batchmatmul.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/cast.py +46 -0
- mindspore/ops/_op_impl/akg/ascend/equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/exp.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/expand_dims.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/greater.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/greater_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/less.py +31 -0
- mindspore/ops/_op_impl/akg/ascend/less_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/load_im2col.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/log.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/maximum.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/minimum.py +39 -0
- mindspore/ops/_op_impl/akg/ascend/mul.py +41 -0
- mindspore/ops/_op_impl/akg/ascend/neg.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/pow.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/prod_force_se_a.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/real_div.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/reciprocal.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_max.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_min.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_sum.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/rsqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/select.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/sqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/square.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/sub.py +42 -0
- mindspore/ops/_op_impl/akg/cpu/__init__.py +23 -0
- mindspore/ops/_op_impl/akg/cpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mm.py +34 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mul.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mv.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_reduce_sum.py +31 -0
- mindspore/ops/_op_impl/akg/gpu/__init__.py +24 -0
- mindspore/ops/_op_impl/akg/gpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr_div.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mm.py +37 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mul.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mv.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_reduce_sum.py +33 -0
- mindspore/ops/_op_impl/cpu/__init__.py +78 -0
- mindspore/ops/_op_impl/cpu/adam.py +49 -0
- mindspore/ops/_op_impl/cpu/adam_weight_decay.py +47 -0
- mindspore/ops/_op_impl/cpu/arg_max.py +30 -0
- mindspore/ops/_op_impl/cpu/arg_max_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/arg_min_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/buffer_append.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_get.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_sample.py +28 -0
- mindspore/ops/_op_impl/cpu/cast.py +171 -0
- mindspore/ops/_op_impl/cpu/concat_offset.py +38 -0
- mindspore/ops/_op_impl/cpu/conv2d.py +30 -0
- mindspore/ops/_op_impl/cpu/conv3d.py +30 -0
- mindspore/ops/_op_impl/cpu/div.py +32 -0
- mindspore/ops/_op_impl/cpu/dropout.py +31 -0
- mindspore/ops/_op_impl/cpu/dropout_grad.py +30 -0
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +42 -0
- mindspore/ops/_op_impl/cpu/dynamic_stitch.py +41 -0
- mindspore/ops/_op_impl/cpu/equal_count.py +30 -0
- mindspore/ops/_op_impl/cpu/gather_d.py +49 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/gather_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/hsigmoid.py +33 -0
- mindspore/ops/_op_impl/cpu/hsigmoid_grad.py +34 -0
- mindspore/ops/_op_impl/cpu/hswish.py +32 -0
- mindspore/ops/_op_impl/cpu/hswish_grad.py +33 -0
- mindspore/ops/_op_impl/cpu/identity_n.py +40 -0
- mindspore/ops/_op_impl/cpu/is_finite.py +39 -0
- mindspore/ops/_op_impl/cpu/l2loss.py +30 -0
- mindspore/ops/_op_impl/cpu/layer_norm.py +36 -0
- mindspore/ops/_op_impl/cpu/layer_norm_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/maximum.py +35 -0
- mindspore/ops/_op_impl/cpu/maximum_grad.py +47 -0
- mindspore/ops/_op_impl/cpu/minimum.py +40 -0
- mindspore/ops/_op_impl/cpu/minimum_grad.py +51 -0
- mindspore/ops/_op_impl/cpu/mirror_pad.py +36 -0
- mindspore/ops/_op_impl/cpu/mirror_pad_grad.py +36 -0
- mindspore/ops/_op_impl/cpu/mul.py +32 -0
- mindspore/ops/_op_impl/cpu/one_hot.py +31 -0
- mindspore/ops/_op_impl/cpu/pad.py +32 -0
- mindspore/ops/_op_impl/cpu/pow.py +32 -0
- mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +42 -0
- mindspore/ops/_op_impl/cpu/pyexecute.py +29 -0
- mindspore/ops/_op_impl/cpu/pyfunc.py +29 -0
- mindspore/ops/_op_impl/cpu/range.py +34 -0
- mindspore/ops/_op_impl/cpu/real_div.py +33 -0
- mindspore/ops/_op_impl/cpu/reduce_all.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_any.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_max.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_mean.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_min.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_prod.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_std.py +31 -0
- mindspore/ops/_op_impl/cpu/reduce_sum.py +41 -0
- mindspore/ops/_op_impl/cpu/space_to_batch_nd.py +38 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/split.py +34 -0
- mindspore/ops/_op_impl/cpu/sspaddmm.py +95 -0
- mindspore/ops/_op_impl/cpu/stack.py +38 -0
- mindspore/ops/_op_impl/cpu/sub.py +32 -0
- mindspore/ops/_op_impl/cpu/tensor_copy_slices.py +41 -0
- mindspore/ops/_op_impl/cpu/tile.py +37 -0
- mindspore/ops/_op_impl/cpu/top_k.py +31 -0
- mindspore/ops/_op_impl/cpu/transpose.py +39 -0
- mindspore/ops/_primitive_cache.py +90 -0
- mindspore/ops/_register_for_op.py +73 -0
- mindspore/ops/_utils/__init__.py +20 -0
- mindspore/ops/_utils/utils.py +147 -0
- mindspore/ops/_vmap/__init__.py +25 -0
- mindspore/ops/_vmap/vmap_array_ops.py +2149 -0
- mindspore/ops/_vmap/vmap_base.py +533 -0
- mindspore/ops/_vmap/vmap_convolution_ops.py +441 -0
- mindspore/ops/_vmap/vmap_debug_ops.py +50 -0
- mindspore/ops/_vmap/vmap_grad_math_ops.py +274 -0
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +806 -0
- mindspore/ops/_vmap/vmap_image_ops.py +194 -0
- mindspore/ops/_vmap/vmap_math_ops.py +993 -0
- mindspore/ops/_vmap/vmap_nn_ops.py +2250 -0
- mindspore/ops/_vmap/vmap_other_ops.py +105 -0
- mindspore/ops/_vmap/vmap_random_ops.py +122 -0
- mindspore/ops/_vmap/vmap_sparse_ops.py +89 -0
- mindspore/ops/auto_generate/__init__.py +31 -0
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +309 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +252 -0
- mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
- mindspore/ops/auto_generate/gen_extend_func.py +1701 -0
- mindspore/ops/auto_generate/gen_ops_def.py +8482 -0
- mindspore/ops/auto_generate/gen_ops_prim.py +16704 -0
- mindspore/ops/auto_generate/pyboost_inner_prim.py +549 -0
- mindspore/ops/composite/__init__.py +71 -0
- mindspore/ops/composite/base.py +1318 -0
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +125 -0
- mindspore/ops/composite/multitype_ops/__init__.py +77 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +1459 -0
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +897 -0
- mindspore/ops/composite/multitype_ops/add_impl.py +606 -0
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +189 -0
- mindspore/ops/composite/multitype_ops/equal_impl.py +335 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +88 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +400 -0
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +109 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +110 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +111 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +112 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +113 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +60 -0
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +61 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +86 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +294 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +79 -0
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +290 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +96 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +87 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +884 -0
- mindspore/ops/composite/multitype_ops/sub_impl.py +116 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +29 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +228 -0
- mindspore/ops/deprecated.py +315 -0
- mindspore/ops/function/__init__.py +782 -0
- mindspore/ops/function/array_func.py +7226 -0
- mindspore/ops/function/clip_func.py +384 -0
- mindspore/ops/function/debug_func.py +181 -0
- mindspore/ops/function/fft_func.py +44 -0
- mindspore/ops/function/grad/__init__.py +34 -0
- mindspore/ops/function/grad/grad_func.py +1425 -0
- mindspore/ops/function/image_func.py +292 -0
- mindspore/ops/function/linalg_func.py +416 -0
- mindspore/ops/function/math_func.py +12228 -0
- mindspore/ops/function/nn_func.py +8609 -0
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +134 -0
- mindspore/ops/function/random_func.py +1715 -0
- mindspore/ops/function/reshard_func.py +104 -0
- mindspore/ops/function/sparse_func.py +884 -0
- mindspore/ops/function/sparse_unary_func.py +2422 -0
- mindspore/ops/function/spectral_func.py +150 -0
- mindspore/ops/function/vmap_func.py +117 -0
- mindspore/ops/functional.py +464 -0
- mindspore/ops/op_info_register.py +1572 -0
- mindspore/ops/operations/__init__.py +722 -0
- mindspore/ops/operations/_csr_ops.py +403 -0
- mindspore/ops/operations/_custom_grad.py +181 -0
- mindspore/ops/operations/_embedding_cache_ops.py +307 -0
- mindspore/ops/operations/_grad_ops.py +2978 -0
- mindspore/ops/operations/_infer_ops.py +19 -0
- mindspore/ops/operations/_inner_ops.py +2544 -0
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +601 -0
- mindspore/ops/operations/_ocr_ops.py +379 -0
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_pyfunc_registry.py +58 -0
- mindspore/ops/operations/_quant_ops.py +1844 -0
- mindspore/ops/operations/_rl_inner_ops.py +1231 -0
- mindspore/ops/operations/_scalar_ops.py +106 -0
- mindspore/ops/operations/_sequence_ops.py +1155 -0
- mindspore/ops/operations/_sparse_grad_ops.py +56 -0
- mindspore/ops/operations/_tensor_array.py +359 -0
- mindspore/ops/operations/_thor_ops.py +807 -0
- mindspore/ops/operations/array_ops.py +6124 -0
- mindspore/ops/operations/comm_ops.py +1985 -0
- mindspore/ops/operations/control_ops.py +127 -0
- mindspore/ops/operations/custom_ops.py +1129 -0
- mindspore/ops/operations/debug_ops.py +678 -0
- mindspore/ops/operations/image_ops.py +1041 -0
- mindspore/ops/operations/inner_ops.py +697 -0
- mindspore/ops/operations/linalg_ops.py +95 -0
- mindspore/ops/operations/manually_defined/__init__.py +24 -0
- mindspore/ops/operations/manually_defined/_inner.py +73 -0
- mindspore/ops/operations/manually_defined/ops_def.py +2271 -0
- mindspore/ops/operations/math_ops.py +5095 -0
- mindspore/ops/operations/nn_ops.py +9575 -0
- mindspore/ops/operations/other_ops.py +874 -0
- mindspore/ops/operations/random_ops.py +1288 -0
- mindspore/ops/operations/reshard_ops.py +53 -0
- mindspore/ops/operations/rl_ops.py +288 -0
- mindspore/ops/operations/sparse_ops.py +2753 -0
- mindspore/ops/operations/spectral_ops.py +111 -0
- mindspore/ops/primitive.py +1046 -0
- mindspore/ops/signature.py +54 -0
- mindspore/ops/vm_impl_registry.py +91 -0
- mindspore/ops_generate/__init__.py +27 -0
- mindspore/ops_generate/arg_dtype_cast.py +252 -0
- mindspore/ops_generate/arg_handler.py +197 -0
- mindspore/ops_generate/gen_aclnn_implement.py +263 -0
- mindspore/ops_generate/gen_constants.py +36 -0
- mindspore/ops_generate/gen_ops.py +1099 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
- mindspore/ops_generate/gen_pyboost_func.py +1052 -0
- mindspore/ops_generate/gen_utils.py +209 -0
- mindspore/ops_generate/op_proto.py +145 -0
- mindspore/ops_generate/pyboost_utils.py +367 -0
- mindspore/ops_generate/template.py +261 -0
- mindspore/parallel/__init__.py +30 -0
- mindspore/parallel/_auto_parallel_context.py +1486 -0
- mindspore/parallel/_cell_wrapper.py +174 -0
- mindspore/parallel/_cost_model_context.py +700 -0
- mindspore/parallel/_dp_allreduce_fusion.py +159 -0
- mindspore/parallel/_offload_context.py +275 -0
- mindspore/parallel/_parallel_serialization.py +561 -0
- mindspore/parallel/_ps_context.py +242 -0
- mindspore/parallel/_recovery_context.py +110 -0
- mindspore/parallel/_tensor.py +730 -0
- mindspore/parallel/_transformer/__init__.py +35 -0
- mindspore/parallel/_transformer/layers.py +765 -0
- mindspore/parallel/_transformer/loss.py +251 -0
- mindspore/parallel/_transformer/moe.py +693 -0
- mindspore/parallel/_transformer/op_parallel_config.py +222 -0
- mindspore/parallel/_transformer/transformer.py +3119 -0
- mindspore/parallel/_utils.py +612 -0
- mindspore/parallel/algo_parameter_config.py +400 -0
- mindspore/parallel/checkpoint_transform.py +650 -0
- mindspore/parallel/cluster/__init__.py +15 -0
- mindspore/parallel/cluster/process_entity/__init__.py +18 -0
- mindspore/parallel/cluster/process_entity/_api.py +352 -0
- mindspore/parallel/cluster/process_entity/_utils.py +101 -0
- mindspore/parallel/cluster/run.py +136 -0
- mindspore/parallel/mpi/__init__.py +14 -0
- mindspore/parallel/mpi/_mpi_config.py +116 -0
- mindspore/parallel/parameter_broadcast.py +151 -0
- mindspore/parallel/shard.py +481 -0
- mindspore/parallel/transform_safetensors.py +993 -0
- mindspore/profiler/__init__.py +28 -0
- mindspore/profiler/common/__init__.py +14 -0
- mindspore/profiler/common/constant.py +29 -0
- mindspore/profiler/common/exceptions/__init__.py +14 -0
- mindspore/profiler/common/exceptions/error_code.py +83 -0
- mindspore/profiler/common/exceptions/exceptions.py +286 -0
- mindspore/profiler/common/process_pool.py +41 -0
- mindspore/profiler/common/registry.py +47 -0
- mindspore/profiler/common/singleton.py +28 -0
- mindspore/profiler/common/struct_type.py +118 -0
- mindspore/profiler/common/util.py +472 -0
- mindspore/profiler/common/validator/__init__.py +14 -0
- mindspore/profiler/common/validator/validate_path.py +84 -0
- mindspore/profiler/dynamic_profiler.py +694 -0
- mindspore/profiler/envprofiling.py +254 -0
- mindspore/profiler/parser/__init__.py +14 -0
- mindspore/profiler/parser/aicpu_data_parser.py +272 -0
- mindspore/profiler/parser/ascend_analysis/__init__.py +14 -0
- mindspore/profiler/parser/ascend_analysis/constant.py +71 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +180 -0
- mindspore/profiler/parser/ascend_analysis/function_event.py +185 -0
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +136 -0
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +131 -0
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +104 -0
- mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +123 -0
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +75 -0
- mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
- mindspore/profiler/parser/ascend_flops_generator.py +116 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +82 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +271 -0
- mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
- mindspore/profiler/parser/ascend_memory_generator.py +185 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +282 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +187 -0
- mindspore/profiler/parser/ascend_op_generator.py +334 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +545 -0
- mindspore/profiler/parser/base_timeline_generator.py +483 -0
- mindspore/profiler/parser/container.py +229 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +697 -0
- mindspore/profiler/parser/flops_parser.py +531 -0
- mindspore/profiler/parser/framework_enum.py +111 -0
- mindspore/profiler/parser/framework_parser.py +464 -0
- mindspore/profiler/parser/framework_struct.py +61 -0
- mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
- mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
- mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
- mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
- mindspore/profiler/parser/hccl_parser.py +573 -0
- mindspore/profiler/parser/hwts_log_parser.py +122 -0
- mindspore/profiler/parser/integrator.py +526 -0
- mindspore/profiler/parser/memory_usage_parser.py +277 -0
- mindspore/profiler/parser/minddata_analyzer.py +800 -0
- mindspore/profiler/parser/minddata_parser.py +186 -0
- mindspore/profiler/parser/minddata_pipeline_parser.py +299 -0
- mindspore/profiler/parser/op_intermediate_parser.py +149 -0
- mindspore/profiler/parser/optime_parser.py +250 -0
- mindspore/profiler/parser/profiler_info.py +213 -0
- mindspore/profiler/parser/step_trace_parser.py +666 -0
- mindspore/profiler/profiler.py +153 -0
- mindspore/profiler/profiling.py +1922 -0
- mindspore/rewrite/__init__.py +28 -0
- mindspore/rewrite/api/__init__.py +17 -0
- mindspore/rewrite/api/node.py +519 -0
- mindspore/rewrite/api/node_type.py +53 -0
- mindspore/rewrite/api/pattern_engine.py +490 -0
- mindspore/rewrite/api/scoped_value.py +181 -0
- mindspore/rewrite/api/symbol_tree.py +497 -0
- mindspore/rewrite/ast_helpers/__init__.py +25 -0
- mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +404 -0
- mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +605 -0
- mindspore/rewrite/ast_helpers/ast_replacer.py +79 -0
- mindspore/rewrite/common/__init__.py +19 -0
- mindspore/rewrite/common/config.py +24 -0
- mindspore/rewrite/common/error_log.py +39 -0
- mindspore/rewrite/common/event.py +28 -0
- mindspore/rewrite/common/namer.py +271 -0
- mindspore/rewrite/common/namespace.py +118 -0
- mindspore/rewrite/common/observable.py +44 -0
- mindspore/rewrite/common/observer.py +54 -0
- mindspore/rewrite/node/__init__.py +22 -0
- mindspore/rewrite/node/call_function.py +95 -0
- mindspore/rewrite/node/cell_container.py +139 -0
- mindspore/rewrite/node/control_flow.py +113 -0
- mindspore/rewrite/node/node.py +1428 -0
- mindspore/rewrite/node/node_manager.py +283 -0
- mindspore/rewrite/node/node_topological_manager.py +223 -0
- mindspore/rewrite/parsers/__init__.py +29 -0
- mindspore/rewrite/parsers/arguments_parser.py +63 -0
- mindspore/rewrite/parsers/assign_parser.py +852 -0
- mindspore/rewrite/parsers/attribute_parser.py +57 -0
- mindspore/rewrite/parsers/class_def_parser.py +289 -0
- mindspore/rewrite/parsers/constant_parser.py +104 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/expr_parser.py +55 -0
- mindspore/rewrite/parsers/for_parser.py +61 -0
- mindspore/rewrite/parsers/function_def_parser.py +84 -0
- mindspore/rewrite/parsers/if_parser.py +85 -0
- mindspore/rewrite/parsers/module_parser.py +117 -0
- mindspore/rewrite/parsers/parser.py +43 -0
- mindspore/rewrite/parsers/parser_register.py +86 -0
- mindspore/rewrite/parsers/return_parser.py +37 -0
- mindspore/rewrite/parsers/while_parser.py +59 -0
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +457 -0
- mindspore/rewrite/sparsify/sparsify.py +112 -0
- mindspore/rewrite/sparsify/utils.py +179 -0
- mindspore/rewrite/symbol_tree/__init__.py +20 -0
- mindspore/rewrite/symbol_tree/symbol_tree.py +1819 -0
- mindspore/rewrite/symbol_tree/symbol_tree_builder.py +76 -0
- mindspore/rewrite/symbol_tree/symbol_tree_dumper.py +142 -0
- mindspore/run_check/__init__.py +20 -0
- mindspore/run_check/_check_version.py +507 -0
- mindspore/run_check/run_check.py +66 -0
- mindspore/safeguard/__init__.py +18 -0
- mindspore/safeguard/rewrite_obfuscation.py +875 -0
- mindspore/scipy/__init__.py +18 -0
- mindspore/scipy/fft.py +264 -0
- mindspore/scipy/linalg.py +919 -0
- mindspore/scipy/ops.py +165 -0
- mindspore/scipy/ops_grad.py +115 -0
- mindspore/scipy/ops_wrapper.py +74 -0
- mindspore/scipy/optimize/__init__.py +20 -0
- mindspore/scipy/optimize/_bfgs.py +230 -0
- mindspore/scipy/optimize/_lagrange.py +201 -0
- mindspore/scipy/optimize/_lbfgs.py +146 -0
- mindspore/scipy/optimize/gradient_optimization_algorithm.py +168 -0
- mindspore/scipy/optimize/line_search.py +370 -0
- mindspore/scipy/optimize/linear_sum_assignment.py +78 -0
- mindspore/scipy/optimize/minimize.py +200 -0
- mindspore/scipy/utils.py +156 -0
- mindspore/scipy/utils_const.py +246 -0
- mindspore/train/__init__.py +48 -0
- mindspore/train/_utils.py +465 -0
- mindspore/train/amp.py +935 -0
- mindspore/train/anf_ir_pb2.py +1517 -0
- mindspore/train/callback/__init__.py +44 -0
- mindspore/train/callback/_backup_and_restore.py +117 -0
- mindspore/train/callback/_callback.py +613 -0
- mindspore/train/callback/_checkpoint.py +814 -0
- mindspore/train/callback/_cluster_monitor.py +201 -0
- mindspore/train/callback/_dataset_graph.py +150 -0
- mindspore/train/callback/_early_stop.py +239 -0
- mindspore/train/callback/_flops_collector.py +239 -0
- mindspore/train/callback/_history.py +92 -0
- mindspore/train/callback/_lambda_callback.py +80 -0
- mindspore/train/callback/_landscape.py +1049 -0
- mindspore/train/callback/_loss_monitor.py +107 -0
- mindspore/train/callback/_lr_scheduler_callback.py +76 -0
- mindspore/train/callback/_on_request_exit.py +298 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +226 -0
- mindspore/train/callback/_summary_collector.py +1184 -0
- mindspore/train/callback/_tft_register.py +352 -0
- mindspore/train/callback/_time_monitor.py +141 -0
- mindspore/train/checkpoint_pb2.py +233 -0
- mindspore/train/data_sink.py +219 -0
- mindspore/train/dataset_helper.py +692 -0
- mindspore/train/lineage_pb2.py +1260 -0
- mindspore/train/loss_scale_manager.py +213 -0
- mindspore/train/memory_profiling_pb2.py +298 -0
- mindspore/train/metrics/__init__.py +175 -0
- mindspore/train/metrics/accuracy.py +133 -0
- mindspore/train/metrics/auc.py +129 -0
- mindspore/train/metrics/bleu_score.py +170 -0
- mindspore/train/metrics/confusion_matrix.py +700 -0
- mindspore/train/metrics/cosine_similarity.py +109 -0
- mindspore/train/metrics/dice.py +116 -0
- mindspore/train/metrics/error.py +175 -0
- mindspore/train/metrics/fbeta.py +167 -0
- mindspore/train/metrics/hausdorff_distance.py +333 -0
- mindspore/train/metrics/loss.py +97 -0
- mindspore/train/metrics/mean_surface_distance.py +189 -0
- mindspore/train/metrics/metric.py +373 -0
- mindspore/train/metrics/occlusion_sensitivity.py +225 -0
- mindspore/train/metrics/perplexity.py +133 -0
- mindspore/train/metrics/precision.py +160 -0
- mindspore/train/metrics/recall.py +159 -0
- mindspore/train/metrics/roc.py +223 -0
- mindspore/train/metrics/root_mean_square_surface_distance.py +191 -0
- mindspore/train/metrics/topk.py +167 -0
- mindspore/train/mind_ir_pb2.py +1908 -0
- mindspore/train/model.py +2252 -0
- mindspore/train/node_strategy_pb2.py +653 -0
- mindspore/train/print_pb2.py +184 -0
- mindspore/train/profiling_parallel_pb2.py +151 -0
- mindspore/train/serialization.py +3325 -0
- mindspore/train/summary/__init__.py +23 -0
- mindspore/train/summary/_lineage_adapter.py +41 -0
- mindspore/train/summary/_summary_adapter.py +496 -0
- mindspore/train/summary/_writer_pool.py +207 -0
- mindspore/train/summary/enums.py +56 -0
- mindspore/train/summary/summary_record.py +581 -0
- mindspore/train/summary/writer.py +167 -0
- mindspore/train/summary_pb2.py +1165 -0
- mindspore/train/train_thor/__init__.py +20 -0
- mindspore/train/train_thor/convert_utils.py +268 -0
- mindspore/train/train_thor/dataset_helper.py +192 -0
- mindspore/train/train_thor/model_thor.py +257 -0
- mindspore/utils/__init__.py +21 -0
- mindspore/utils/utils.py +60 -0
- mindspore/version.py +1 -0
- mindspore-2.4.0.dist-info/METADATA +352 -0
- mindspore-2.4.0.dist-info/RECORD +1387 -0
- mindspore-2.4.0.dist-info/WHEEL +5 -0
- mindspore-2.4.0.dist-info/entry_points.txt +3 -0
- mindspore-2.4.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1310 @@
|
|
|
1
|
+
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""thor"""
|
|
16
|
+
from __future__ import absolute_import
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
from mindspore.ops import functional as F, composite as C, operations as P
|
|
21
|
+
from mindspore.common.initializer import initializer
|
|
22
|
+
from mindspore.common.parameter import Parameter, ParameterTuple
|
|
23
|
+
from mindspore.common.tensor import Tensor
|
|
24
|
+
import mindspore.ops as ops
|
|
25
|
+
import mindspore.nn as nn
|
|
26
|
+
import mindspore.common.dtype as mstype
|
|
27
|
+
import mindspore.log as logger
|
|
28
|
+
from mindspore import _checkparam as Validator
|
|
29
|
+
from mindspore.nn.optim.optimizer import Optimizer
|
|
30
|
+
from mindspore.parallel._utils import _get_device_num, _get_gradients_mean
|
|
31
|
+
from mindspore import context
|
|
32
|
+
from mindspore.context import ParallelMode
|
|
33
|
+
from mindspore.nn.layer import DenseThor, Conv2dThor, EmbeddingThor, EmbeddingLookupThor
|
|
34
|
+
from mindspore.nn.wrap import DistributedGradReducer
|
|
35
|
+
from mindspore.train.train_thor.convert_utils import ConvertNetUtils
|
|
36
|
+
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|
37
|
+
|
|
38
|
+
# Enumerates types of Layer
|
|
39
|
+
Other = -1
|
|
40
|
+
Conv = 1
|
|
41
|
+
FC = 2
|
|
42
|
+
Embedding = 3
|
|
43
|
+
LayerNorm = 4
|
|
44
|
+
BatchNorm = 5
|
|
45
|
+
|
|
46
|
+
op_add = P.AddN()
|
|
47
|
+
apply_decay = C.MultitypeFuncGraph("apply_decay")
|
|
48
|
+
_momentum_opt = C.MultitypeFuncGraph("momentum_opt")
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@apply_decay.register("Number", "Bool", "Tensor", "Tensor")
|
|
52
|
+
def _tensor_apply_decay(weight_decay, if_apply, weight, gradient):
|
|
53
|
+
"""Get grad with weight_decay."""
|
|
54
|
+
if if_apply:
|
|
55
|
+
return op_add((weight * weight_decay, gradient))
|
|
56
|
+
return gradient
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
@_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
|
|
60
|
+
def _tensor_run_opt_ext(opt, momentum, learning_rate, gradient, weight, moment):
|
|
61
|
+
"""Apply momentum optimizer to the weight parameter using Tensor."""
|
|
62
|
+
success = True
|
|
63
|
+
success = F.depend(success, opt(weight, moment, learning_rate, gradient, momentum))
|
|
64
|
+
return success
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
IS_ENABLE_GLOBAL_NORM = False
|
|
68
|
+
GRADIENT_CLIP_TYPE = 1
|
|
69
|
+
GRADIENT_CLIP_VALUE = 1.0
|
|
70
|
+
clip_grad = C.MultitypeFuncGraph("clip_grad")
|
|
71
|
+
hyper_map_op = C.HyperMap()
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
@clip_grad.register("Number", "Number", "Tensor")
|
|
75
|
+
def _clip_grad(clip_type, clip_value, grad):
|
|
76
|
+
"""
|
|
77
|
+
Clip gradients.
|
|
78
|
+
|
|
79
|
+
Inputs:
|
|
80
|
+
clip_type (int): The way to clip, 0 for 'value', 1 for 'norm'.
|
|
81
|
+
clip_value (float): Specifies how much to clip.
|
|
82
|
+
grad (tuple[Tensor]): Gradients.
|
|
83
|
+
|
|
84
|
+
Outputs:
|
|
85
|
+
tuple[Tensor], clipped gradients.
|
|
86
|
+
"""
|
|
87
|
+
if clip_type not in [0, 1]:
|
|
88
|
+
return grad
|
|
89
|
+
dt = F.dtype(grad)
|
|
90
|
+
if clip_type == 0:
|
|
91
|
+
new_grad = ops.clip_by_value(grad, F.cast(F.tuple_to_array((-clip_value,)), dt),
|
|
92
|
+
F.cast(F.tuple_to_array((clip_value,)), dt))
|
|
93
|
+
else:
|
|
94
|
+
new_grad = nn.ClipByNorm()(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
|
|
95
|
+
return new_grad
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
def clip_gradient(enable_clip_grad, gradients):
|
|
99
|
+
"""clip gradients"""
|
|
100
|
+
if enable_clip_grad:
|
|
101
|
+
if IS_ENABLE_GLOBAL_NORM:
|
|
102
|
+
gradients = C.clip_by_global_norm(gradients, GRADIENT_CLIP_VALUE, None)
|
|
103
|
+
else:
|
|
104
|
+
gradients = hyper_map_op(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), gradients)
|
|
105
|
+
return gradients
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
C0 = 16
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def _check_param(momentum, frequency, lr, cls_name):
|
|
112
|
+
"""Check param."""
|
|
113
|
+
Validator.check_value_type("momentum", momentum, [float], cls_name)
|
|
114
|
+
if isinstance(momentum, float) and momentum < 0.0:
|
|
115
|
+
raise ValueError("For 'thor', the argument 'momentum' must be at least 0.0, "
|
|
116
|
+
"but got 'momentum' {}.".format(momentum))
|
|
117
|
+
Validator.check_value_type("frequency", frequency, [int], cls_name)
|
|
118
|
+
if isinstance(frequency, int) and frequency < 2:
|
|
119
|
+
raise ValueError("For 'thor', the argument 'frequency' must be at least 2, "
|
|
120
|
+
"but got 'frequency' {}.".format(frequency))
|
|
121
|
+
Validator.check_value_type("learning rate", lr, [Tensor], cls_name)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def caculate_device_shape(matrix_dim, channel, is_a):
|
|
125
|
+
if is_a:
|
|
126
|
+
if channel // C0 == 0:
|
|
127
|
+
matrix_dim = (matrix_dim / channel) * C0
|
|
128
|
+
ll = (int(matrix_dim // C0), int(matrix_dim // C0), C0, C0), int(matrix_dim)
|
|
129
|
+
return ll
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
def is_conv_matmul_support_shape(matrix_a_shape, matrix_g_shape):
|
|
133
|
+
"""is conv layer matmul support shape"""
|
|
134
|
+
temp = (matrix_g_shape, matrix_a_shape)
|
|
135
|
+
support_shape = [((4, 4, 16, 16), (49, 49, 16, 16)),
|
|
136
|
+
((4, 4, 16, 16), (4, 4, 16, 16)),
|
|
137
|
+
((4, 4, 16, 16), (36, 36, 16, 16)),
|
|
138
|
+
((16, 16, 16, 16), (4, 4, 16, 16)),
|
|
139
|
+
((4, 4, 16, 16), (16, 16, 16, 16)),
|
|
140
|
+
((8, 8, 16, 16), (16, 16, 16, 16)),
|
|
141
|
+
((8, 8, 16, 16), (72, 72, 16, 16)),
|
|
142
|
+
((32, 32, 16, 16), (8, 8, 16, 16)),
|
|
143
|
+
((32, 32, 16, 16), (16, 16, 16, 16)),
|
|
144
|
+
((8, 8, 16, 16), (32, 32, 16, 16)),
|
|
145
|
+
((16, 16, 16, 16), (32, 32, 16, 16)),
|
|
146
|
+
((16, 16, 16, 16), (144, 144, 16, 16)),
|
|
147
|
+
((64, 64, 16, 16), (16, 16, 16, 16)),
|
|
148
|
+
((64, 64, 16, 16), (32, 32, 16, 16)),
|
|
149
|
+
((16, 16, 16, 16), (64, 64, 16, 16)),
|
|
150
|
+
((32, 32, 16, 16), (64, 64, 16, 16)),
|
|
151
|
+
((32, 32, 16, 16), (288, 288, 16, 16)),
|
|
152
|
+
((128, 128, 16, 16), (32, 32, 16, 16)),
|
|
153
|
+
((128, 128, 16, 16), (64, 64, 16, 16)),
|
|
154
|
+
((32, 32, 16, 16), (128, 128, 16, 16))]
|
|
155
|
+
if temp in support_shape:
|
|
156
|
+
return True
|
|
157
|
+
return False
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def caculate_matmul_shape(matrix_a_dim, matrix_g_dim, split_dim):
|
|
161
|
+
"""get matmul shape"""
|
|
162
|
+
split_dima = split_dim
|
|
163
|
+
split_dimg = split_dim
|
|
164
|
+
if matrix_a_dim % split_dim == 0:
|
|
165
|
+
batch_w = matrix_a_dim // split_dim
|
|
166
|
+
else:
|
|
167
|
+
if matrix_a_dim < split_dim:
|
|
168
|
+
batch_w = 1
|
|
169
|
+
split_dima = matrix_a_dim
|
|
170
|
+
else:
|
|
171
|
+
batch_w = matrix_a_dim // split_dim + 1
|
|
172
|
+
|
|
173
|
+
if matrix_g_dim % split_dim == 0:
|
|
174
|
+
batch_h = matrix_g_dim // split_dim
|
|
175
|
+
else:
|
|
176
|
+
if matrix_g_dim < split_dim:
|
|
177
|
+
batch_h = 1
|
|
178
|
+
split_dimg = matrix_g_dim
|
|
179
|
+
else:
|
|
180
|
+
batch_h = matrix_g_dim // split_dim + 1
|
|
181
|
+
matrix_a_shape = (batch_h, batch_w, split_dima, split_dima)
|
|
182
|
+
matrix_g_shape = (batch_h, split_dimg, split_dimg)
|
|
183
|
+
return matrix_a_shape, matrix_g_shape
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
def get_layer_type_for_dense_and_conv(subcell, prefix, layertype_map):
|
|
187
|
+
"""get layer type for dense layer and conv layer"""
|
|
188
|
+
if subcell.weight.requires_grad:
|
|
189
|
+
if "rpn_with_loss.rpn_convs_list." not in prefix.lower() \
|
|
190
|
+
or "rpn_with_loss.rpn_convs_list.0." in prefix.lower():
|
|
191
|
+
layertype_map.append(Other)
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
def find_net_layertype_recur(net, layertype_map):
|
|
195
|
+
"""get net layer type recursively."""
|
|
196
|
+
cells = net.name_cells()
|
|
197
|
+
for name in cells:
|
|
198
|
+
subcell = cells[name]
|
|
199
|
+
prefix = subcell.param_prefix
|
|
200
|
+
if subcell == net:
|
|
201
|
+
continue
|
|
202
|
+
elif isinstance(subcell, Conv2dThor):
|
|
203
|
+
layertype_map.append(Conv)
|
|
204
|
+
elif isinstance(subcell, DenseThor):
|
|
205
|
+
layertype_map.append(FC)
|
|
206
|
+
elif isinstance(subcell, (EmbeddingThor, EmbeddingLookupThor)):
|
|
207
|
+
layertype_map.append(Embedding)
|
|
208
|
+
elif isinstance(subcell, nn.LayerNorm):
|
|
209
|
+
layertype_map.append(LayerNorm)
|
|
210
|
+
elif isinstance(subcell, nn.BatchNorm2d):
|
|
211
|
+
if subcell.gamma.requires_grad:
|
|
212
|
+
layertype_map.append(BatchNorm)
|
|
213
|
+
elif isinstance(subcell, (nn.Conv2d, nn.Dense, nn.Embedding, nn.Conv2dTranspose, nn.Conv1d, nn.Conv1dTranspose,
|
|
214
|
+
nn.BatchNorm1d, nn.GroupNorm)):
|
|
215
|
+
if isinstance(subcell, (nn.Dense, nn.Conv2d)):
|
|
216
|
+
get_layer_type_for_dense_and_conv(subcell, prefix, layertype_map)
|
|
217
|
+
else:
|
|
218
|
+
layertype_map.append(Other)
|
|
219
|
+
else:
|
|
220
|
+
find_net_layertype_recur(subcell, layertype_map)
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
def get_net_layertype_mask(net):
|
|
224
|
+
layertype_map = []
|
|
225
|
+
find_net_layertype_recur(net, layertype_map)
|
|
226
|
+
return layertype_map
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
def get_layer_counter(layer_type, layer_counter, params, idx):
|
|
230
|
+
"""get layer counter"""
|
|
231
|
+
if layer_type in [Conv, FC]:
|
|
232
|
+
if "bias" in params[idx].name.lower():
|
|
233
|
+
layer_counter = layer_counter + 1
|
|
234
|
+
else:
|
|
235
|
+
if idx < len(params) - 1 and "bias" not in params[idx + 1].name.lower():
|
|
236
|
+
layer_counter = layer_counter + 1
|
|
237
|
+
elif layer_type in [LayerNorm, BatchNorm]:
|
|
238
|
+
if "beta" in params[idx].name.lower():
|
|
239
|
+
layer_counter = layer_counter + 1
|
|
240
|
+
else:
|
|
241
|
+
if "bias" in params[idx].name.lower():
|
|
242
|
+
layer_counter = layer_counter + 1
|
|
243
|
+
elif "weight" in params[idx].name.lower():
|
|
244
|
+
if idx < len(params) - 1 and "bias" not in params[idx + 1].name.lower():
|
|
245
|
+
layer_counter = layer_counter + 1
|
|
246
|
+
else:
|
|
247
|
+
layer_counter = layer_counter + 1
|
|
248
|
+
return layer_counter
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def thor(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0, batch_size=32,
|
|
252
|
+
use_nesterov=False, decay_filter=lambda x: x.name not in [], split_indices=None, enable_clip_grad=False,
|
|
253
|
+
frequency=100):
|
|
254
|
+
r"""
|
|
255
|
+
Updates gradients by second-order algorithm--THOR.
|
|
256
|
+
|
|
257
|
+
The updating formulas are as follows,
|
|
258
|
+
|
|
259
|
+
.. math::
|
|
260
|
+
\begin{array}{ll}
|
|
261
|
+
& \textbf{Parameter:} \: \text{the learning rate } \gamma\text{, the damping parameter }\lambda \\
|
|
262
|
+
& \textbf{Init:} \: \lambda \leftarrow 0 \\
|
|
263
|
+
& A_{i-1}=\mathbb{E}\left[a_{i-1} a_{i-1}^{T}\right] \\
|
|
264
|
+
& G_{i}=\mathbb{E}\left[D_{s_i} D_{s_i}^{T}\right] \\
|
|
265
|
+
& w_{i}^{(k+1)} \leftarrow w_{i}^{(k)}-\gamma\left(\left(A_{i-1}^{(k)}+\lambda I\right)^{-1}
|
|
266
|
+
\otimes\left(G_{i}^{(k)}+\lambda I\right)^{-1}\right) \nabla_{w_{i}} J^{(k)}
|
|
267
|
+
\end{array}
|
|
268
|
+
|
|
269
|
+
:math:`a_{i-1}` represents the input of :math:`i`-th layer,and which is the activations of previous layer.
|
|
270
|
+
:math:`D_{s_i}` represents the derivative of the loss function of the output of the :math:`i`-th layer.
|
|
271
|
+
:math:`I` represents the identity matrix.
|
|
272
|
+
:math:`\lambda` represents :math:`damping`, :math:`g_i` represents gradients of the :math:`i`-th layer.
|
|
273
|
+
:math:`\otimes` represents Kronecker product, :math:`\gamma` represents 'learning rate'.
|
|
274
|
+
|
|
275
|
+
Note:
|
|
276
|
+
When a parameter group is separated, 'weight_decay' of each group is applied to the corresponding parameter.
|
|
277
|
+
'weight_decay' in the optimizer is applied to arguments that do not have 'beta' or 'gamma' in their name
|
|
278
|
+
when the argument group is not separated.
|
|
279
|
+
When separating parameter groups, set grad_centralization to True if you want to concentrate gradients,
|
|
280
|
+
but concentration gradients can only be applied to parameters of the convolution layer.
|
|
281
|
+
If the parameter for the unconvolutional layer is set to True, an error will be reported.
|
|
282
|
+
To improve the performance of parameter groups, you can customize the order of parameters.
|
|
283
|
+
|
|
284
|
+
Args:
|
|
285
|
+
net (Cell): The training network.
|
|
286
|
+
|
|
287
|
+
learning_rate (Tensor): A value for the learning rate.
|
|
288
|
+
|
|
289
|
+
damping (Tensor): A value for the damping.
|
|
290
|
+
|
|
291
|
+
momentum (float): Hyper-parameter of type float, means momentum for the moving average. It must be at least 0.0.
|
|
292
|
+
|
|
293
|
+
weight_decay (int, float): Weight decay (L2 penalty). It must be equal to or greater than 0.0.
|
|
294
|
+
Default: ``0.0`` .
|
|
295
|
+
|
|
296
|
+
loss_scale (float): A value for the loss scale. It must be greater than 0.0. In general, use the
|
|
297
|
+
default value. Default: ``1.0`` .
|
|
298
|
+
|
|
299
|
+
batch_size (int): The size of a batch. Default: ``32`` .
|
|
300
|
+
|
|
301
|
+
use_nesterov (bool): Enable Nesterov momentum. Default: ``False`` .
|
|
302
|
+
|
|
303
|
+
decay_filter (function): A function to determine which layers the weight decay applied to. And it
|
|
304
|
+
only works when the weight_decay > 0. Default: lambda x: x.name not in []
|
|
305
|
+
|
|
306
|
+
split_indices (list): Set allreduce fusion strategy by A/G layer indices . Only works when distributed
|
|
307
|
+
computing. ResNet50 as an example, there are 54 layers of A/G respectively, when split_indices is set
|
|
308
|
+
to [26, 53], it means A/G is divided into two groups to allreduce, one is 0~26 layer, and the other
|
|
309
|
+
is 27~53. Default: ``None`` .
|
|
310
|
+
|
|
311
|
+
enable_clip_grad (bool): Whether to clip the gradients. Default: ``False`` .
|
|
312
|
+
|
|
313
|
+
frequency(int): The update interval of A/G and :math:`A^{-1}/G^{-1}`. When frequency equals N
|
|
314
|
+
(N is greater than 1), A/G and :math:`A^{-1}/G^{-1}` will be updated every N steps,
|
|
315
|
+
and other steps will use the stale A/G and :math:`A^{-1}/G^{-1}` to update weights. Default: ``100`` .
|
|
316
|
+
|
|
317
|
+
Inputs:
|
|
318
|
+
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
|
319
|
+
|
|
320
|
+
Outputs:
|
|
321
|
+
tuple[bool], all elements are True.
|
|
322
|
+
|
|
323
|
+
Raises:
|
|
324
|
+
TypeError: If `learning_rate` is not Tensor.
|
|
325
|
+
TypeError: If `loss_scale`, `momentum` or `frequency` is not a float.
|
|
326
|
+
TypeError: If `weight_decay` is neither float nor int.
|
|
327
|
+
TypeError: If `use_nesterov` is not a bool.
|
|
328
|
+
TypeError: If `frequency` is not int.
|
|
329
|
+
ValueError: If `loss_scale` is less than or equal to 0.
|
|
330
|
+
ValueError: If `weight_decay` or `momentum` is less than 0.
|
|
331
|
+
ValueError: If `frequency` is less than 2.
|
|
332
|
+
|
|
333
|
+
Supported Platforms:
|
|
334
|
+
``Ascend`` ``GPU``
|
|
335
|
+
|
|
336
|
+
Examples:
|
|
337
|
+
>>> import mindspore as ms
|
|
338
|
+
>>> from mindspore import nn
|
|
339
|
+
>>> from mindspore import Tensor
|
|
340
|
+
>>>
|
|
341
|
+
>>> # Define the network structure of LeNet5. Refer to
|
|
342
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
343
|
+
>>> net = LeNet5()
|
|
344
|
+
>>> # Create the dataset taking MNIST as an example. Refer to
|
|
345
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
|
|
346
|
+
>>> dataset = create_dataset()
|
|
347
|
+
>>> temp = Tensor([4e-4, 1e-4, 1e-5, 1e-5], mstype.float32)
|
|
348
|
+
>>> optim = nn.thor(net, learning_rate=temp, damping=temp, momentum=0.9, loss_scale=128, frequency=4)
|
|
349
|
+
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
350
|
+
>>> loss_scale = ms.FixedLossScaleManager(128, drop_overflow_update=False)
|
|
351
|
+
>>> model = ms.Model(net, loss_fn=loss, optimizer=optim, loss_scale_manager=loss_scale, metrics={'acc'},
|
|
352
|
+
... amp_level="O2", keep_batchnorm_fp32=False)
|
|
353
|
+
>>> model = ms.ConvertModelUtils.convert_to_thor_model(model=model, network=net, loss_fn=loss, optimizer=optim,
|
|
354
|
+
... loss_scale_manager=loss_scale, metrics={'acc'},
|
|
355
|
+
... amp_level="O2", keep_batchnorm_fp32=False)
|
|
356
|
+
|
|
357
|
+
"""
|
|
358
|
+
context.set_context(max_call_depth=10000)
|
|
359
|
+
ConvertNetUtils().convert_to_thor_net(net)
|
|
360
|
+
if context.get_context("device_target") == "Ascend":
|
|
361
|
+
return ThorAscend(net, learning_rate, damping, momentum, weight_decay, loss_scale, batch_size, decay_filter,
|
|
362
|
+
split_indices=split_indices, enable_clip_grad=enable_clip_grad, frequency=frequency)
|
|
363
|
+
return ThorGpu(net, learning_rate, damping, momentum, weight_decay, loss_scale, batch_size,
|
|
364
|
+
use_nesterov, decay_filter, split_indices=split_indices, enable_clip_grad=enable_clip_grad,
|
|
365
|
+
frequency=frequency)
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
class ThorGpu(Optimizer):
|
|
369
|
+
"""
|
|
370
|
+
ThorGpu
|
|
371
|
+
"""
|
|
372
|
+
|
|
373
|
+
def __init__(self, net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0, batch_size=32,
|
|
374
|
+
use_nesterov=False, decay_filter=lambda x: x.name not in [], split_indices=None,
|
|
375
|
+
enable_clip_grad=False, frequency=100):
|
|
376
|
+
params = filter(lambda x: x.requires_grad, net.get_parameters())
|
|
377
|
+
super(ThorGpu, self).__init__(learning_rate, params, weight_decay, loss_scale)
|
|
378
|
+
_check_param(momentum, frequency, learning_rate, self.__class__.__name__)
|
|
379
|
+
self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
|
|
380
|
+
self.params = self._parameters
|
|
381
|
+
self.use_nesterov = Validator.check_bool(use_nesterov)
|
|
382
|
+
self.moments = self.params.clone(prefix="moments", init='zeros')
|
|
383
|
+
self.hyper_map = C.HyperMap()
|
|
384
|
+
self.opt = P.ApplyMomentum(use_nesterov=self.use_nesterov)
|
|
385
|
+
self.net = net
|
|
386
|
+
self.matrix_a_cov = ParameterTuple(filter(lambda x: 'matrix_a' in x.name, net.get_parameters()))
|
|
387
|
+
self.matrix_g_cov = ParameterTuple(filter(lambda x: 'matrix_g' in x.name, net.get_parameters()))
|
|
388
|
+
self.a_normalizer = ParameterTuple(filter(lambda x: 'a_normalizer' in x.name, net.get_parameters()))
|
|
389
|
+
self.g_normalizer = ParameterTuple(filter(lambda x: 'g_normalizer' in x.name, net.get_parameters()))
|
|
390
|
+
self.batch_size = Tensor(batch_size, mstype.float32)
|
|
391
|
+
self.loss_scale = Tensor(1 / (loss_scale * loss_scale), mstype.float32)
|
|
392
|
+
self.batch_size_scale = Tensor(batch_size * batch_size, mstype.float32)
|
|
393
|
+
self.damping = damping
|
|
394
|
+
self._define_gpu_operator()
|
|
395
|
+
logger.info("matrix_a_cov len is {}".format(len(self.matrix_a_cov)))
|
|
396
|
+
self.thor = True
|
|
397
|
+
self.matrix_a = ()
|
|
398
|
+
self.matrix_g = ()
|
|
399
|
+
self.matrix_a_shape = ()
|
|
400
|
+
self.thor_layer_count = 0
|
|
401
|
+
self.conv_layer_count = 0
|
|
402
|
+
self.weight_fim_idx_map = ()
|
|
403
|
+
self.weight_conv_idx_map = ()
|
|
404
|
+
self.weight_layertype_idx_map = ()
|
|
405
|
+
self._process_matrix_init_and_weight_idx_map(self.net)
|
|
406
|
+
self.matrix_a = ParameterTuple(self.matrix_a)
|
|
407
|
+
self.matrix_g = ParameterTuple(self.matrix_g)
|
|
408
|
+
self.weight_decay = weight_decay
|
|
409
|
+
self.decay_flags = tuple(decay_filter(x) for x in self._parameters)
|
|
410
|
+
self.update_gradient = P.UpdateThorGradient(split_dim=self.split_dim)
|
|
411
|
+
self.enable_clip_grad = enable_clip_grad
|
|
412
|
+
self.frequency = frequency
|
|
413
|
+
self._define_gpu_reducer(split_indices)
|
|
414
|
+
|
|
415
|
+
def get_frequency(self):
|
|
416
|
+
"""get thor frequency"""
|
|
417
|
+
return self.frequency
|
|
418
|
+
|
|
419
|
+
def _define_gpu_operator(self):
|
|
420
|
+
"""define gpu operator"""
|
|
421
|
+
self.transpose = P.Transpose()
|
|
422
|
+
self.shape = P.Shape()
|
|
423
|
+
self.reshape = P.Reshape()
|
|
424
|
+
self.matmul = P.MatMul()
|
|
425
|
+
self.assign = P.Assign()
|
|
426
|
+
self.mul = P.Mul()
|
|
427
|
+
self.gather = P.Gather()
|
|
428
|
+
self.one = Tensor(1, mstype.int32)
|
|
429
|
+
self.feature_map = Tensor(1.0, mstype.float32)
|
|
430
|
+
self.axis = 0
|
|
431
|
+
self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False)
|
|
432
|
+
self.cast = P.Cast()
|
|
433
|
+
self.sqrt = P.Sqrt()
|
|
434
|
+
self.eye = P.Eye()
|
|
435
|
+
self.split_dim = 128
|
|
436
|
+
self.embedding_cholesky = P.CholeskyTrsm()
|
|
437
|
+
self.cholesky = P.CholeskyTrsm(split_dim=self.split_dim)
|
|
438
|
+
self.vector_matmul = P.BatchMatMul(transpose_a=True)
|
|
439
|
+
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
|
440
|
+
self.inv = P.Reciprocal()
|
|
441
|
+
self.square = P.Square()
|
|
442
|
+
self.expand = P.ExpandDims()
|
|
443
|
+
|
|
444
|
+
def _define_gpu_reducer(self, split_indices):
|
|
445
|
+
"""define gpu reducer"""
|
|
446
|
+
self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
|
447
|
+
self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE)
|
|
448
|
+
if self.is_distributed:
|
|
449
|
+
mean = _get_gradients_mean()
|
|
450
|
+
degree = _get_device_num()
|
|
451
|
+
if not split_indices:
|
|
452
|
+
self.split_indices = [len(self.matrix_a_cov) - 1]
|
|
453
|
+
else:
|
|
454
|
+
self.split_indices = split_indices
|
|
455
|
+
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum6")
|
|
456
|
+
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum8")
|
|
457
|
+
self.grad_reducer_a = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=6)
|
|
458
|
+
self.grad_reducer_g = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=8)
|
|
459
|
+
|
|
460
|
+
def _process_matrix_init_and_weight_idx_map(self, net):
|
|
461
|
+
"""for GPU, process matrix init shape, and get weight idx map"""
|
|
462
|
+
layer_type_map = get_net_layertype_mask(net)
|
|
463
|
+
layer_counter = 0
|
|
464
|
+
for idx in range(len(self.params)):
|
|
465
|
+
layer_type = layer_type_map[layer_counter]
|
|
466
|
+
weight = self.params[idx]
|
|
467
|
+
weight_shape = self.shape(weight)
|
|
468
|
+
if layer_type in [Conv, FC] and "bias" not in self.params[idx].name.lower():
|
|
469
|
+
in_channels = weight_shape[1]
|
|
470
|
+
out_channels = weight_shape[0]
|
|
471
|
+
matrix_a_dim = in_channels
|
|
472
|
+
if layer_type == Conv:
|
|
473
|
+
matrix_a_dim = in_channels * weight_shape[2] * weight_shape[3]
|
|
474
|
+
matrix_g_dim = out_channels
|
|
475
|
+
matrix_a_shape, matrix_g_shape = caculate_matmul_shape(matrix_a_dim, matrix_g_dim, self.split_dim)
|
|
476
|
+
matrix_a_inv = Parameter(np.zeros(matrix_a_shape).astype(np.float32),
|
|
477
|
+
name='matrix_a_inv_' + str(self.thor_layer_count), requires_grad=False)
|
|
478
|
+
matrix_g_inv = Parameter(np.zeros(matrix_g_shape).astype(np.float32),
|
|
479
|
+
name="matrix_g_inv_" + str(self.thor_layer_count), requires_grad=False)
|
|
480
|
+
self.matrix_a = self.matrix_a + (matrix_a_inv,)
|
|
481
|
+
self.matrix_g = self.matrix_g + (matrix_g_inv,)
|
|
482
|
+
self.matrix_a_shape = self.matrix_a_shape + (matrix_a_shape,)
|
|
483
|
+
elif layer_type == Embedding:
|
|
484
|
+
vocab_size = weight_shape[0]
|
|
485
|
+
embedding_size = weight_shape[1]
|
|
486
|
+
matrix_a_inv = Parameter(Tensor(np.zeros([vocab_size]).astype(np.float32)),
|
|
487
|
+
name='matrix_a_inv_' + str(self.thor_layer_count), requires_grad=False)
|
|
488
|
+
matrix_g_inv = Parameter(Tensor(np.zeros([embedding_size, embedding_size]).astype(np.float32)),
|
|
489
|
+
name="matrix_g_inv_" + str(self.thor_layer_count), requires_grad=False)
|
|
490
|
+
self.matrix_a = self.matrix_a + (matrix_a_inv,)
|
|
491
|
+
self.matrix_g = self.matrix_g + (matrix_g_inv,)
|
|
492
|
+
self.matrix_a_shape = self.matrix_a_shape + ((vocab_size,),)
|
|
493
|
+
|
|
494
|
+
if layer_type in [Conv, FC, Embedding] and "bias" not in self.params[idx].name.lower():
|
|
495
|
+
self.weight_fim_idx_map = self.weight_fim_idx_map + (self.thor_layer_count,)
|
|
496
|
+
self.thor_layer_count = self.thor_layer_count + 1
|
|
497
|
+
self.weight_layertype_idx_map = self.weight_layertype_idx_map + (layer_type,)
|
|
498
|
+
if layer_type == Conv:
|
|
499
|
+
self.weight_conv_idx_map = self.weight_conv_idx_map + (self.conv_layer_count,)
|
|
500
|
+
self.conv_layer_count = self.conv_layer_count + 1
|
|
501
|
+
else:
|
|
502
|
+
self.weight_conv_idx_map = self.weight_conv_idx_map + (-1,)
|
|
503
|
+
else:
|
|
504
|
+
self.weight_conv_idx_map = self.weight_conv_idx_map + (-1,)
|
|
505
|
+
self.weight_fim_idx_map = self.weight_fim_idx_map + (-1,)
|
|
506
|
+
if layer_type == LayerNorm:
|
|
507
|
+
self.weight_layertype_idx_map = self.weight_layertype_idx_map + (LayerNorm,)
|
|
508
|
+
else:
|
|
509
|
+
self.weight_layertype_idx_map = self.weight_layertype_idx_map + (Other,)
|
|
510
|
+
# bert.cls1.output_bias: not a network layer, only a trainable param
|
|
511
|
+
if "output_bias" not in self.params[idx].name.lower():
|
|
512
|
+
layer_counter = get_layer_counter(layer_type, layer_counter, self.params, idx)
|
|
513
|
+
|
|
514
|
+
def _get_ainv_ginv_list(self, gradients, damping_step, matrix_a_allreduce, matrix_g_allreduce):
|
|
515
|
+
"""get matrixA inverse list and matrix G inverse list"""
|
|
516
|
+
for i in range(len(self.params)):
|
|
517
|
+
thor_layer_count = self.weight_fim_idx_map[i]
|
|
518
|
+
conv_layer_count = self.weight_conv_idx_map[i]
|
|
519
|
+
layer_type = self.weight_layertype_idx_map[i]
|
|
520
|
+
if layer_type in [Conv, FC, Embedding]:
|
|
521
|
+
g = gradients[i]
|
|
522
|
+
matrix_a = self.matrix_a_cov[thor_layer_count]
|
|
523
|
+
matrix_g = self.matrix_g_cov[thor_layer_count]
|
|
524
|
+
matrix_a = F.depend(matrix_a, g)
|
|
525
|
+
matrix_g = F.depend(matrix_g, g)
|
|
526
|
+
damping_a = damping_step
|
|
527
|
+
damping_g = damping_step
|
|
528
|
+
feature_map = self.feature_map
|
|
529
|
+
if layer_type == Conv:
|
|
530
|
+
a_normalizer = self.a_normalizer[conv_layer_count]
|
|
531
|
+
g_normalizer = self.g_normalizer[conv_layer_count]
|
|
532
|
+
a_normalizer = F.depend(a_normalizer, g)
|
|
533
|
+
g_normalizer = F.depend(g_normalizer, g)
|
|
534
|
+
damping_a = self.mul(damping_step, 1.0 / a_normalizer)
|
|
535
|
+
damping_g = self.mul(damping_step, 1.0 / g_normalizer)
|
|
536
|
+
feature_map = self.sqrt(1.0 / a_normalizer)
|
|
537
|
+
a_shape = self.shape(matrix_a)
|
|
538
|
+
a_eye = self.eye(a_shape[0], a_shape[0], mstype.float32)
|
|
539
|
+
damping_a = self.sqrt(damping_a)
|
|
540
|
+
damping_g = self.sqrt(damping_g)
|
|
541
|
+
g_shape = self.shape(matrix_g)
|
|
542
|
+
g_eye = self.eye(g_shape[0], g_shape[1], mstype.float32)
|
|
543
|
+
matrix_g = self.mul(matrix_g, self.loss_scale)
|
|
544
|
+
matrix_g = self.mul(matrix_g, self.batch_size_scale)
|
|
545
|
+
matrix_g = matrix_g + damping_g * g_eye
|
|
546
|
+
if layer_type == Embedding:
|
|
547
|
+
a_eye = P.OnesLike()(matrix_a)
|
|
548
|
+
matrix_a = self.mul(matrix_a, 1.0 / self.batch_size)
|
|
549
|
+
matrix_a = matrix_a + damping_a * a_eye
|
|
550
|
+
matrix_a = self.inv(matrix_a)
|
|
551
|
+
matrix_g = self.embedding_cholesky(matrix_g)
|
|
552
|
+
matrix_g = self.matmul(matrix_g, matrix_g)
|
|
553
|
+
else:
|
|
554
|
+
matrix_a = matrix_a + damping_a * a_eye
|
|
555
|
+
matrix_a = self.cholesky(matrix_a)
|
|
556
|
+
matrix_a = self.vector_matmul(matrix_a, matrix_a)
|
|
557
|
+
matrix_a = P.BroadcastTo(self.matrix_a_shape[thor_layer_count])(matrix_a)
|
|
558
|
+
matrix_g = self.cholesky(matrix_g)
|
|
559
|
+
matrix_g = self.vector_matmul(matrix_g, matrix_g)
|
|
560
|
+
matrix_a = self.mul(matrix_a, feature_map)
|
|
561
|
+
matrix_g = self.mul(matrix_g, feature_map)
|
|
562
|
+
matrix_a_allreduce = matrix_a_allreduce + (matrix_a,)
|
|
563
|
+
matrix_g_allreduce = matrix_g_allreduce + (matrix_g,)
|
|
564
|
+
return matrix_a_allreduce, matrix_g_allreduce
|
|
565
|
+
|
|
566
|
+
def _process_layernorm(self, damping_step, gradient):
|
|
567
|
+
"""process layernorm"""
|
|
568
|
+
damping = self.sqrt(damping_step)
|
|
569
|
+
normalizer = self.batch_size
|
|
570
|
+
normalizer = self.cast(normalizer, mstype.float32)
|
|
571
|
+
fim_cov = self.square(gradient)
|
|
572
|
+
fim_cov = self.mul(fim_cov, 1.0 / normalizer)
|
|
573
|
+
fim_cov = fim_cov + damping
|
|
574
|
+
fim_inv = self.inv(fim_cov)
|
|
575
|
+
gradient = self.mul(fim_inv, gradient)
|
|
576
|
+
return gradient
|
|
577
|
+
|
|
578
|
+
def _reshape_gradient(self, conv_layer_count, g, g_shape):
|
|
579
|
+
"""reshape gradient"""
|
|
580
|
+
if conv_layer_count != -1:
|
|
581
|
+
g = self.reshape(g, g_shape)
|
|
582
|
+
return g
|
|
583
|
+
|
|
584
|
+
def construct(self, gradients):
|
|
585
|
+
params = self.params
|
|
586
|
+
moments = self.moments
|
|
587
|
+
gradients = self.flatten_gradients(gradients)
|
|
588
|
+
gradients = self.scale_grad(gradients)
|
|
589
|
+
damping_step = self.gather(self.damping, self.cov_step, self.axis)
|
|
590
|
+
damping_step = self.cast(damping_step, mstype.float32)
|
|
591
|
+
new_grads = ()
|
|
592
|
+
if self.thor:
|
|
593
|
+
matrix_ainv_list = ()
|
|
594
|
+
matrix_ginv_list = ()
|
|
595
|
+
matrix_a_allreduce, matrix_g_allreduce = self._get_ainv_ginv_list(gradients, damping_step,
|
|
596
|
+
matrix_ainv_list, matrix_ginv_list)
|
|
597
|
+
if self.is_distributed:
|
|
598
|
+
matrix_a_allreduce = self.grad_reducer_a(matrix_a_allreduce)
|
|
599
|
+
matrix_g_allreduce = self.grad_reducer_g(matrix_g_allreduce)
|
|
600
|
+
|
|
601
|
+
for i in range(len(self.params)):
|
|
602
|
+
g = gradients[i]
|
|
603
|
+
thor_layer_count = self.weight_fim_idx_map[i]
|
|
604
|
+
conv_layer_count = self.weight_conv_idx_map[i]
|
|
605
|
+
layer_type = self.weight_layertype_idx_map[i]
|
|
606
|
+
if layer_type in [Conv, FC]:
|
|
607
|
+
g_shape = self.shape(g)
|
|
608
|
+
g = self.reshape(g, (g_shape[0], -1))
|
|
609
|
+
matrix_a = matrix_a_allreduce[thor_layer_count]
|
|
610
|
+
matrix_g = matrix_g_allreduce[thor_layer_count]
|
|
611
|
+
g = self.update_gradient(matrix_g, g, matrix_a)
|
|
612
|
+
self.assign(self.matrix_a[thor_layer_count], matrix_a)
|
|
613
|
+
self.assign(self.matrix_g[thor_layer_count], matrix_g)
|
|
614
|
+
g = self._reshape_gradient(conv_layer_count, g, g_shape)
|
|
615
|
+
elif layer_type == Embedding:
|
|
616
|
+
matrix_a = matrix_a_allreduce[thor_layer_count]
|
|
617
|
+
matrix_g = matrix_g_allreduce[thor_layer_count]
|
|
618
|
+
self.assign(self.matrix_a[thor_layer_count], matrix_a)
|
|
619
|
+
self.assign(self.matrix_g[thor_layer_count], matrix_g)
|
|
620
|
+
temp_a = self.expand(matrix_a, 1)
|
|
621
|
+
g = self.mul(temp_a, g)
|
|
622
|
+
g = self.matmul(g, matrix_g)
|
|
623
|
+
elif layer_type == LayerNorm:
|
|
624
|
+
g = self._process_layernorm(damping_step, g)
|
|
625
|
+
new_grads = new_grads + (g,)
|
|
626
|
+
else:
|
|
627
|
+
for j in range(len(self.params)):
|
|
628
|
+
g = gradients[j]
|
|
629
|
+
thor_layer_count = self.weight_fim_idx_map[j]
|
|
630
|
+
conv_layer_count = self.weight_conv_idx_map[j]
|
|
631
|
+
layer_type = self.weight_layertype_idx_map[j]
|
|
632
|
+
if layer_type in [Conv, FC]:
|
|
633
|
+
g_shape = self.shape(g)
|
|
634
|
+
g = self.reshape(g, (g_shape[0], -1))
|
|
635
|
+
matrix_a = self.matrix_a[thor_layer_count]
|
|
636
|
+
matrix_g = self.matrix_g[thor_layer_count]
|
|
637
|
+
g = self.update_gradient(matrix_g, g, matrix_a)
|
|
638
|
+
g = self._reshape_gradient(conv_layer_count, g, g_shape)
|
|
639
|
+
elif layer_type == Embedding:
|
|
640
|
+
matrix_a = self.matrix_a[thor_layer_count]
|
|
641
|
+
matrix_g = self.matrix_g[thor_layer_count]
|
|
642
|
+
g = gradients[j]
|
|
643
|
+
temp_a = self.expand(matrix_a, 1)
|
|
644
|
+
g = self.mul(temp_a, g)
|
|
645
|
+
g = self.matmul(g, matrix_g)
|
|
646
|
+
elif layer_type == LayerNorm:
|
|
647
|
+
g = self._process_layernorm(damping_step, g)
|
|
648
|
+
new_grads = new_grads + (g,)
|
|
649
|
+
gradients = new_grads
|
|
650
|
+
|
|
651
|
+
self.cov_step = self.cov_step + self.one
|
|
652
|
+
if self.weight_decay > 0:
|
|
653
|
+
gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags, params, gradients)
|
|
654
|
+
gradients = clip_gradient(self.enable_clip_grad, gradients)
|
|
655
|
+
lr = self.get_lr()
|
|
656
|
+
self.assignadd(self.global_step, self.global_step_increase_tensor)
|
|
657
|
+
success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum, lr), gradients, params, moments)
|
|
658
|
+
return success
|
|
659
|
+
|
|
660
|
+
|
|
661
|
+
class ThorAscend(Optimizer):
|
|
662
|
+
"""ThorAscend"""
|
|
663
|
+
|
|
664
|
+
def __init__(self, net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0, batch_size=32,
|
|
665
|
+
decay_filter=lambda x: x.name not in [], split_indices=None, enable_clip_grad=False, frequency=100):
|
|
666
|
+
params = filter(lambda x: x.requires_grad, net.get_parameters())
|
|
667
|
+
super(ThorAscend, self).__init__(learning_rate, params, weight_decay, loss_scale)
|
|
668
|
+
_check_param(momentum, frequency, learning_rate, self.__class__.__name__)
|
|
669
|
+
self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
|
|
670
|
+
self.params = self._parameters
|
|
671
|
+
self.moments = self.params.clone(prefix="moments", init='zeros')
|
|
672
|
+
self.hyper_map = C.HyperMap()
|
|
673
|
+
self.opt = P.ApplyMomentum()
|
|
674
|
+
self.net = net
|
|
675
|
+
self.matrix_a_cov = ParameterTuple(filter(lambda x: 'matrix_a' in x.name, net.get_parameters()))
|
|
676
|
+
self.matrix_g_cov = ParameterTuple(filter(lambda x: 'matrix_g' in x.name, net.get_parameters()))
|
|
677
|
+
self.a_normalizer = ParameterTuple(filter(lambda x: 'a_normalizer' in x.name, net.get_parameters()))
|
|
678
|
+
self.g_normalizer = ParameterTuple(filter(lambda x: 'g_normalizer' in x.name, net.get_parameters()))
|
|
679
|
+
logger.info("matrix_a_cov len is {}".format(len(self.matrix_a_cov)))
|
|
680
|
+
self._define_ascend_operator()
|
|
681
|
+
self.c0 = 16
|
|
682
|
+
self.device_shape_pad_flag = ()
|
|
683
|
+
self.diag_block_dim = 128
|
|
684
|
+
self.matrix_a = ()
|
|
685
|
+
self.matrix_g = ()
|
|
686
|
+
self.thor_layer_count = 0
|
|
687
|
+
self.conv_layer_count = 0
|
|
688
|
+
self.weight_conv_idx_map = ()
|
|
689
|
+
self.weight_fim_idx_map = ()
|
|
690
|
+
self.weight_layertype_idx_map = ()
|
|
691
|
+
self.a_split_pad_dim_map = ()
|
|
692
|
+
self.g_split_pad_dim_map = ()
|
|
693
|
+
self.conv_matmul_support_map = ()
|
|
694
|
+
self.batch_matmul_support_list = [1, 2, 4, 5, 6, 8, 9, 16, 18, 24, 32, 36]
|
|
695
|
+
self.abs_max_support_list = [1, 2, 4, 8, 16, 5, 9, 18, 36, 32]
|
|
696
|
+
self._process_matrix_init_and_weight_idx_map(self.net)
|
|
697
|
+
self.matrix_a = ParameterTuple(self.matrix_a)
|
|
698
|
+
self.matrix_g = ParameterTuple(self.matrix_g)
|
|
699
|
+
self.matrix_max_inv = ()
|
|
700
|
+
for i in range(len(self.matrix_a)):
|
|
701
|
+
self.matrix_max_inv = self.matrix_max_inv + (
|
|
702
|
+
Parameter(initializer(1, [1], mstype.float32), name='%s%s' % ("matrix_max", str(i)),
|
|
703
|
+
requires_grad=False),)
|
|
704
|
+
self.matrix_max_inv = ParameterTuple(self.matrix_max_inv)
|
|
705
|
+
self.thor = True
|
|
706
|
+
self.weight_decay = weight_decay
|
|
707
|
+
self.decay_flags = tuple(decay_filter(x) for x in self._parameters)
|
|
708
|
+
self.damping = damping
|
|
709
|
+
self.batch_size = Tensor(batch_size, mstype.float32)
|
|
710
|
+
self.loss_scale = Tensor(1 / (loss_scale * loss_scale), mstype.float32)
|
|
711
|
+
self.batch_size_scale = Tensor(batch_size * batch_size, mstype.float32)
|
|
712
|
+
self.enable_clip_grad = enable_clip_grad
|
|
713
|
+
self.frequency = frequency
|
|
714
|
+
self._define_ascend_reducer(split_indices)
|
|
715
|
+
|
|
716
|
+
def get_frequency(self):
|
|
717
|
+
"""get thor frequency"""
|
|
718
|
+
return self.frequency
|
|
719
|
+
|
|
720
|
+
def _get_pad_dim(self, matrix_dim):
|
|
721
|
+
"""get diag split pad dim """
|
|
722
|
+
split_pad_dim = 0
|
|
723
|
+
if matrix_dim == 64:
|
|
724
|
+
return split_pad_dim
|
|
725
|
+
res = matrix_dim % self.diag_block_dim
|
|
726
|
+
if res != 0:
|
|
727
|
+
split_pad_dim = self.diag_block_dim - res
|
|
728
|
+
return split_pad_dim
|
|
729
|
+
|
|
730
|
+
def _define_ascend_operator(self):
|
|
731
|
+
"""define ascend operator"""
|
|
732
|
+
self.cube_matmul_left = P.CusMatMulCubeFraczLeftCast()
|
|
733
|
+
self.cube_matmul_left_fc = P.CusMatMulCubeDenseLeft()
|
|
734
|
+
self.cube_matmul_right_fc = P.CusMatMulCubeDenseRight()
|
|
735
|
+
self.cube_matmul_right_mul = P.CusMatMulCubeFraczRightMul()
|
|
736
|
+
self.transpose = P.Transpose()
|
|
737
|
+
self.shape = P.Shape()
|
|
738
|
+
self.reshape = P.Reshape()
|
|
739
|
+
self.mul = P.Mul()
|
|
740
|
+
self.log = P.Log()
|
|
741
|
+
self.exp = P.Exp()
|
|
742
|
+
self.sqrt = P.Sqrt()
|
|
743
|
+
self.gather = P.Gather()
|
|
744
|
+
self.assign = P.Assign()
|
|
745
|
+
self.cast = P.Cast()
|
|
746
|
+
self.eye = P.Eye()
|
|
747
|
+
self.concat = P.Concat(0)
|
|
748
|
+
self.cholesky = P.CusCholeskyTrsm()
|
|
749
|
+
self.vector_matmul = P.CusBatchMatMul()
|
|
750
|
+
self.tbe_batch_matmul = P.BatchMatMul(transpose_a=True)
|
|
751
|
+
self.fused_abs_max2 = P.CusFusedAbsMax1()
|
|
752
|
+
self.matrix_combine = P.CusMatrixCombine()
|
|
753
|
+
self.slice = P.Slice()
|
|
754
|
+
self.expand = P.ExpandDims()
|
|
755
|
+
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
|
756
|
+
self.square = P.Square()
|
|
757
|
+
self.inv = P.Inv()
|
|
758
|
+
self.matmul = P.MatMul()
|
|
759
|
+
self.axis = 0
|
|
760
|
+
self.one = Tensor(1, mstype.int32)
|
|
761
|
+
self.cov_step = Parameter(initializer(0, [1], mstype.int32), name="cov_step", requires_grad=False)
|
|
762
|
+
|
|
763
|
+
def _define_ascend_reducer(self, split_indices):
|
|
764
|
+
"""define ascend reducer"""
|
|
765
|
+
self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
|
766
|
+
self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE)
|
|
767
|
+
if self.is_distributed:
|
|
768
|
+
mean = _get_gradients_mean()
|
|
769
|
+
degree = _get_device_num()
|
|
770
|
+
if not split_indices:
|
|
771
|
+
self.split_indices = [len(self.matrix_a_cov) - 1]
|
|
772
|
+
else:
|
|
773
|
+
self.split_indices = split_indices
|
|
774
|
+
if self.conv_layer_count > 0:
|
|
775
|
+
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum2")
|
|
776
|
+
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum4")
|
|
777
|
+
self.grad_reducer_amax = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=2)
|
|
778
|
+
self.grad_reducer_gmax = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=4)
|
|
779
|
+
|
|
780
|
+
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum6")
|
|
781
|
+
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum8")
|
|
782
|
+
self.grad_reducer_a = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=6)
|
|
783
|
+
self.grad_reducer_g = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=8)
|
|
784
|
+
|
|
785
|
+
def _get_weight_idx_map(self, layer_type, idx, weight_shape):
|
|
786
|
+
"""for Ascend, get weight idx map"""
|
|
787
|
+
if layer_type in [Conv, FC, Embedding] and "bias" not in self.params[idx].name.lower():
|
|
788
|
+
self.weight_fim_idx_map = self.weight_fim_idx_map + (self.thor_layer_count,)
|
|
789
|
+
self.weight_layertype_idx_map = self.weight_layertype_idx_map + (layer_type,)
|
|
790
|
+
if layer_type == Embedding:
|
|
791
|
+
a_pad_dim = 0
|
|
792
|
+
g_pad_dim = 0
|
|
793
|
+
self.a_split_pad_dim_map = self.a_split_pad_dim_map + (a_pad_dim,)
|
|
794
|
+
self.g_split_pad_dim_map = self.g_split_pad_dim_map + (g_pad_dim,)
|
|
795
|
+
else:
|
|
796
|
+
out_channels = weight_shape[0]
|
|
797
|
+
g_pad_dim = self._get_pad_dim(out_channels)
|
|
798
|
+
self.g_split_pad_dim_map = self.g_split_pad_dim_map + (g_pad_dim,)
|
|
799
|
+
matrix_a_dim = weight_shape[1]
|
|
800
|
+
if layer_type == Conv:
|
|
801
|
+
matrix_a_dim = weight_shape[1] * weight_shape[2] * weight_shape[3]
|
|
802
|
+
a_pad_dim = self._get_pad_dim(matrix_a_dim)
|
|
803
|
+
self.a_split_pad_dim_map = self.a_split_pad_dim_map + (a_pad_dim,)
|
|
804
|
+
|
|
805
|
+
self.thor_layer_count = self.thor_layer_count + 1
|
|
806
|
+
if layer_type == Conv:
|
|
807
|
+
self.weight_conv_idx_map = self.weight_conv_idx_map + (self.conv_layer_count,)
|
|
808
|
+
self.conv_layer_count = self.conv_layer_count + 1
|
|
809
|
+
else:
|
|
810
|
+
self.weight_conv_idx_map = self.weight_conv_idx_map + (-1,)
|
|
811
|
+
else:
|
|
812
|
+
self.weight_fim_idx_map = self.weight_fim_idx_map + (-1,)
|
|
813
|
+
self.weight_conv_idx_map = self.weight_conv_idx_map + (-1,)
|
|
814
|
+
if layer_type == LayerNorm:
|
|
815
|
+
self.weight_layertype_idx_map = self.weight_layertype_idx_map + (LayerNorm,)
|
|
816
|
+
else:
|
|
817
|
+
self.weight_layertype_idx_map = self.weight_layertype_idx_map + (Other,)
|
|
818
|
+
|
|
819
|
+
def _get_fc_matrix(self, weight_shape):
|
|
820
|
+
"""for Ascend, get fc matrix_a and matrix_g"""
|
|
821
|
+
out_channels = weight_shape[0]
|
|
822
|
+
in_channels = weight_shape[1]
|
|
823
|
+
if self.conv_layer_count > 0:
|
|
824
|
+
if out_channels == 1001:
|
|
825
|
+
fc_matrix_a = Parameter(Tensor(np.zeros([128, 128, 16, 16]).astype(np.float16)),
|
|
826
|
+
name='matrix_a_inv_' + str(self.thor_layer_count),
|
|
827
|
+
requires_grad=False)
|
|
828
|
+
fc_matrix_g = Parameter(Tensor(np.zeros([63, 63, 16, 16]).astype(np.float16)),
|
|
829
|
+
name="matrix_g_inv_" + str(self.thor_layer_count),
|
|
830
|
+
requires_grad=False)
|
|
831
|
+
else:
|
|
832
|
+
fc_matrix_a = Parameter(Tensor(np.eye(in_channels).astype(np.float16)),
|
|
833
|
+
name='matrix_a_inv_' + str(self.thor_layer_count),
|
|
834
|
+
requires_grad=False)
|
|
835
|
+
fc_matrix_g = Parameter(Tensor(np.eye(out_channels).astype(np.float16)),
|
|
836
|
+
name="matrix_g_inv_" + str(self.thor_layer_count),
|
|
837
|
+
requires_grad=False)
|
|
838
|
+
self.matrix_a = self.matrix_a + (fc_matrix_a,)
|
|
839
|
+
self.matrix_g = self.matrix_g + (fc_matrix_g,)
|
|
840
|
+
|
|
841
|
+
def _process_matrix_init_and_weight_idx_map(self, net):
|
|
842
|
+
"""for Ascend, process matrix init shape, and get weight idx map"""
|
|
843
|
+
layer_counter = 0
|
|
844
|
+
layer_type_map = get_net_layertype_mask(net)
|
|
845
|
+
for idx in range(len(self.params)):
|
|
846
|
+
layer_type = layer_type_map[layer_counter]
|
|
847
|
+
weight = self.params[idx]
|
|
848
|
+
weight_shape = self.shape(weight)
|
|
849
|
+
if layer_type == Conv and "bias" not in self.params[idx].name.lower():
|
|
850
|
+
in_channels = weight_shape[1]
|
|
851
|
+
out_channels = weight_shape[0]
|
|
852
|
+
matrix_a_dim = in_channels * weight_shape[2] * weight_shape[3]
|
|
853
|
+
matrix_g_dim = out_channels
|
|
854
|
+
matrix_a_device_shape, matrix_a_device_dim = caculate_device_shape(matrix_a_dim, in_channels, True)
|
|
855
|
+
matrix_g_device_shape, matrix_g_device_dim = caculate_device_shape(matrix_g_dim, in_channels, False)
|
|
856
|
+
ret = is_conv_matmul_support_shape(matrix_a_device_shape, matrix_g_device_shape)
|
|
857
|
+
if ret:
|
|
858
|
+
matrix_a_inv = Parameter(
|
|
859
|
+
Tensor(np.reshape(np.identity(matrix_a_device_dim).astype(np.float16), matrix_a_device_shape)),
|
|
860
|
+
name='matrix_a_inv_' + str(self.thor_layer_count), requires_grad=False)
|
|
861
|
+
matrix_g_inv = Parameter(
|
|
862
|
+
Tensor(np.reshape(np.identity(matrix_g_device_dim).astype(np.float16), matrix_g_device_shape)),
|
|
863
|
+
name="matrix_g_inv_" + str(self.thor_layer_count), requires_grad=False)
|
|
864
|
+
self.conv_matmul_support_map = self.conv_matmul_support_map + (1,)
|
|
865
|
+
else:
|
|
866
|
+
matrix_a_inv = Parameter(Tensor(np.eye(matrix_a_dim).astype(np.float16)),
|
|
867
|
+
name='matrix_a_inv_' + str(self.thor_layer_count), requires_grad=False)
|
|
868
|
+
matrix_g_inv = Parameter(Tensor(np.eye(matrix_g_dim).astype(np.float16)),
|
|
869
|
+
name="matrix_g_inv_" + str(self.thor_layer_count), requires_grad=False)
|
|
870
|
+
self.conv_matmul_support_map = self.conv_matmul_support_map + (0,)
|
|
871
|
+
self.matrix_a = self.matrix_a + (matrix_a_inv,)
|
|
872
|
+
self.matrix_g = self.matrix_g + (matrix_g_inv,)
|
|
873
|
+
device_shape_pad_flag = False
|
|
874
|
+
if matrix_a_dim != matrix_a_device_dim:
|
|
875
|
+
device_shape_pad_flag = True
|
|
876
|
+
self.device_shape_pad_flag = self.device_shape_pad_flag + (device_shape_pad_flag,)
|
|
877
|
+
elif layer_type == FC and "bias" not in self.params[idx].name.lower():
|
|
878
|
+
self._get_fc_matrix(weight_shape)
|
|
879
|
+
self._get_weight_idx_map(layer_type, idx, weight_shape)
|
|
880
|
+
# bert.cls1.output_bias: not a network layer, only a trainable param
|
|
881
|
+
if "output_bias" not in self.params[idx].name.lower():
|
|
882
|
+
layer_counter = get_layer_counter(layer_type, layer_counter, self.params, idx)
|
|
883
|
+
|
|
884
|
+
def _process_batch_matmul(self, input_matrix):
|
|
885
|
+
"""process batch matmul"""
|
|
886
|
+
input_matrix_shape = self.shape(input_matrix)
|
|
887
|
+
if input_matrix_shape[0] in self.batch_matmul_support_list:
|
|
888
|
+
input_matrix = self.vector_matmul(input_matrix, input_matrix)
|
|
889
|
+
else:
|
|
890
|
+
input_matrix = self.tbe_batch_matmul(input_matrix, input_matrix)
|
|
891
|
+
return input_matrix
|
|
892
|
+
|
|
893
|
+
def _process_cholesky_pad(self, pad_dim, input_matrix, matrix_shape0):
|
|
894
|
+
"""process cholesky pad"""
|
|
895
|
+
if pad_dim > 0:
|
|
896
|
+
matrix_sup = self.eye(pad_dim, pad_dim, mstype.float32)
|
|
897
|
+
matrix_sup = P.Pad(((0, 0), (matrix_shape0, 0)))(matrix_sup)
|
|
898
|
+
input_matrix = P.Pad(((0, 0), (0, pad_dim)))(input_matrix)
|
|
899
|
+
input_matrix = self.concat((input_matrix, matrix_sup))
|
|
900
|
+
return input_matrix
|
|
901
|
+
|
|
902
|
+
def _get_abs_max(self, matrix_inv, origin_dim):
|
|
903
|
+
"""get matrix abs max"""
|
|
904
|
+
cholesky_shape = self.shape(matrix_inv)
|
|
905
|
+
if cholesky_shape[0] in self.abs_max_support_list:
|
|
906
|
+
matrix_inv_max = P.CusFusedAbsMax1([origin_dim, origin_dim])(matrix_inv)
|
|
907
|
+
matrix_max = self.fused_abs_max2(matrix_inv_max)
|
|
908
|
+
matrix_inv = self.matrix_combine(matrix_inv)
|
|
909
|
+
else:
|
|
910
|
+
matrix_inv = self.matrix_combine(matrix_inv)
|
|
911
|
+
matrix_abs = P.Abs()(matrix_inv)
|
|
912
|
+
matrix_max = P.ReduceMax(keep_dims=False)(matrix_abs)
|
|
913
|
+
return matrix_max, matrix_inv
|
|
914
|
+
|
|
915
|
+
def _get_fc_ainv_ginv(self, index, damping_step, gradients, matrix_a_allreduce, matrix_g_allreduce,
|
|
916
|
+
matrix_a_max_allreduce, matrix_g_max_allreduce):
|
|
917
|
+
"""get fc layer ainv and ginv"""
|
|
918
|
+
thor_layer_count = self.weight_fim_idx_map[index]
|
|
919
|
+
g = gradients[index]
|
|
920
|
+
matrix_a = self.matrix_a_cov[thor_layer_count]
|
|
921
|
+
matrix_g = self.matrix_g_cov[thor_layer_count]
|
|
922
|
+
matrix_a = F.depend(matrix_a, g)
|
|
923
|
+
matrix_g = F.depend(matrix_g, g)
|
|
924
|
+
a_shape = self.shape(matrix_a)
|
|
925
|
+
a_eye = self.eye(a_shape[0], a_shape[0], mstype.float32)
|
|
926
|
+
g_shape = self.shape(matrix_g)
|
|
927
|
+
g_eye = self.eye(g_shape[0], g_shape[0], mstype.float32)
|
|
928
|
+
damping = self.sqrt(damping_step)
|
|
929
|
+
matrix_a = matrix_a + damping * a_eye
|
|
930
|
+
a_pad_dim = self.a_split_pad_dim_map[thor_layer_count]
|
|
931
|
+
matrix_a = self._process_cholesky_pad(a_pad_dim, matrix_a, a_shape[0])
|
|
932
|
+
matrix_a_inv = self.cholesky(matrix_a)
|
|
933
|
+
matrix_a_inv = self._process_batch_matmul(matrix_a_inv)
|
|
934
|
+
|
|
935
|
+
weight_shape = self.shape(self.params[index])
|
|
936
|
+
out_channels = weight_shape[0]
|
|
937
|
+
in_channels = weight_shape[1]
|
|
938
|
+
if out_channels == 2:
|
|
939
|
+
matrix_a_inv = self.matrix_combine(matrix_a_inv)
|
|
940
|
+
matrix_g_inv = g_eye
|
|
941
|
+
else:
|
|
942
|
+
matrix_g = self.mul(matrix_g, self.loss_scale)
|
|
943
|
+
matrix_g = self.mul(matrix_g, self.batch_size_scale)
|
|
944
|
+
matrix_g = matrix_g + damping * g_eye
|
|
945
|
+
g_pad_dim = self.g_split_pad_dim_map[thor_layer_count]
|
|
946
|
+
matrix_g = self._process_cholesky_pad(g_pad_dim, matrix_g, g_shape[0])
|
|
947
|
+
matrix_g_inv = self.cholesky(matrix_g)
|
|
948
|
+
matrix_g_inv = self._process_batch_matmul(matrix_g_inv)
|
|
949
|
+
if self.conv_layer_count > 0:
|
|
950
|
+
a_max, matrix_a_inv = self._get_abs_max(matrix_a_inv, in_channels)
|
|
951
|
+
g_max, matrix_g_inv = self._get_abs_max(matrix_g_inv, out_channels)
|
|
952
|
+
a_max = F.depend(a_max, g)
|
|
953
|
+
g_max = F.depend(g_max, g)
|
|
954
|
+
matrix_a_max_allreduce = matrix_a_max_allreduce + (a_max,)
|
|
955
|
+
matrix_g_max_allreduce = matrix_g_max_allreduce + (g_max,)
|
|
956
|
+
else:
|
|
957
|
+
matrix_a_inv = self.matrix_combine(matrix_a_inv)
|
|
958
|
+
matrix_g_inv = self.matrix_combine(matrix_g_inv)
|
|
959
|
+
|
|
960
|
+
if a_pad_dim > 0:
|
|
961
|
+
matrix_a_inv = self.slice(matrix_a_inv, (0, 0), (in_channels, in_channels))
|
|
962
|
+
if g_pad_dim > 0:
|
|
963
|
+
matrix_g_inv = self.slice(matrix_g_inv, (0, 0), (out_channels, out_channels))
|
|
964
|
+
matrix_a_inv_shape = self.shape(matrix_a_inv)
|
|
965
|
+
matrix_g_combine_shape = self.shape(matrix_g_inv)
|
|
966
|
+
if matrix_a_inv_shape[0] == 2048 and matrix_g_combine_shape[0] == 1001:
|
|
967
|
+
matrix_a_inv = self.reshape(matrix_a_inv,
|
|
968
|
+
(matrix_a_inv_shape[0] // 16, 16,
|
|
969
|
+
matrix_a_inv_shape[0] // 16, 16))
|
|
970
|
+
matrix_a_inv = self.transpose(matrix_a_inv, (2, 0, 1, 3))
|
|
971
|
+
matrix_g_inv = P.Pad(((0, 7), (0, 7)))(matrix_g_inv)
|
|
972
|
+
|
|
973
|
+
matrix_g_inv_shape = self.shape(matrix_g_inv)
|
|
974
|
+
matrix_g_inv = self.reshape(matrix_g_inv,
|
|
975
|
+
(matrix_g_inv_shape[0] // 16, 16,
|
|
976
|
+
matrix_g_inv_shape[0] // 16, 16))
|
|
977
|
+
matrix_g_inv = self.transpose(matrix_g_inv, (2, 0, 1, 3))
|
|
978
|
+
|
|
979
|
+
matrix_a_allreduce = matrix_a_allreduce + (matrix_a_inv,)
|
|
980
|
+
matrix_g_allreduce = matrix_g_allreduce + (matrix_g_inv,)
|
|
981
|
+
return matrix_a_allreduce, matrix_g_allreduce, matrix_a_max_allreduce, matrix_g_max_allreduce
|
|
982
|
+
|
|
983
|
+
def _process_conv_matmul_device_pad(self, conv_layer_count, weight_shape, matrix_a_inv):
|
|
984
|
+
"""process conv matmul device pad"""
|
|
985
|
+
if self.device_shape_pad_flag[conv_layer_count]:
|
|
986
|
+
kernel_hw = weight_shape[2] * weight_shape[3]
|
|
987
|
+
in_channels = weight_shape[1]
|
|
988
|
+
matrix_a_inv = self.reshape(matrix_a_inv, (kernel_hw, in_channels, kernel_hw, in_channels))
|
|
989
|
+
matrix_a_inv = P.Pad(((0, 0), (0, self.c0 - in_channels), (0, 0),
|
|
990
|
+
(0, self.c0 - in_channels)))(matrix_a_inv)
|
|
991
|
+
return matrix_a_inv
|
|
992
|
+
|
|
993
|
+
def _get_ainv_ginv_amax_gmax_list(self, gradients, damping_step, matrix_a_allreduce, matrix_g_allreduce,
|
|
994
|
+
matrix_a_max_allreduce, matrix_g_max_allreduce):
|
|
995
|
+
"""get matrixA inverse list, matrixG inverse list, matrixA_max list, matrixG_max list"""
|
|
996
|
+
for i in range(len(self.params)):
|
|
997
|
+
thor_layer_count = self.weight_fim_idx_map[i]
|
|
998
|
+
conv_layer_count = self.weight_conv_idx_map[i]
|
|
999
|
+
layer_type = self.weight_layertype_idx_map[i]
|
|
1000
|
+
weight_shape = self.shape(self.params[i])
|
|
1001
|
+
out_channels = weight_shape[0]
|
|
1002
|
+
if layer_type == Conv:
|
|
1003
|
+
g = gradients[i]
|
|
1004
|
+
matrix_a_dim = weight_shape[1] * weight_shape[2] * weight_shape[3]
|
|
1005
|
+
matmul_support_flag = self.conv_matmul_support_map[conv_layer_count]
|
|
1006
|
+
matrix_a = self.matrix_a_cov[thor_layer_count]
|
|
1007
|
+
matrix_g = self.matrix_g_cov[thor_layer_count]
|
|
1008
|
+
matrix_a = F.depend(matrix_a, g)
|
|
1009
|
+
matrix_g = F.depend(matrix_g, g)
|
|
1010
|
+
a_shape = self.shape(matrix_a)
|
|
1011
|
+
a_eye = self.eye(a_shape[0], a_shape[0], mstype.float32)
|
|
1012
|
+
g_shape = self.shape(matrix_g)
|
|
1013
|
+
g_eye = self.eye(g_shape[0], g_shape[0], mstype.float32)
|
|
1014
|
+
a_normalizer = self.a_normalizer[conv_layer_count]
|
|
1015
|
+
g_normalizer = self.g_normalizer[conv_layer_count]
|
|
1016
|
+
a_normalizer = F.depend(a_normalizer, g)
|
|
1017
|
+
g_normalizer = F.depend(g_normalizer, g)
|
|
1018
|
+
damping_a = self.mul(damping_step, self.batch_size / a_normalizer)
|
|
1019
|
+
damping_g = self.mul(damping_step, self.batch_size / g_normalizer)
|
|
1020
|
+
damping_a = self.sqrt(damping_a)
|
|
1021
|
+
matrix_a = matrix_a + damping_a * a_eye
|
|
1022
|
+
a_pad_dim = self.a_split_pad_dim_map[thor_layer_count]
|
|
1023
|
+
matrix_a = self._process_cholesky_pad(a_pad_dim, matrix_a, a_shape[0])
|
|
1024
|
+
matrix_a_inv = self.cholesky(matrix_a)
|
|
1025
|
+
matrix_a_inv = self._process_batch_matmul(matrix_a_inv)
|
|
1026
|
+
a_max, matrix_a_inv = self._get_abs_max(matrix_a_inv, matrix_a_dim)
|
|
1027
|
+
|
|
1028
|
+
damping_g = self.sqrt(damping_g)
|
|
1029
|
+
matrix_g = self.mul(matrix_g, self.loss_scale)
|
|
1030
|
+
matrix_g = self.mul(matrix_g, self.batch_size_scale)
|
|
1031
|
+
matrix_g = matrix_g + damping_g * g_eye
|
|
1032
|
+
g_pad_dim = self.g_split_pad_dim_map[thor_layer_count]
|
|
1033
|
+
matrix_g = self._process_cholesky_pad(g_pad_dim, matrix_g, g_shape[0])
|
|
1034
|
+
matrix_g_inv = self.cholesky(matrix_g)
|
|
1035
|
+
matrix_g_inv = self._process_batch_matmul(matrix_g_inv)
|
|
1036
|
+
g_max, matrix_g_inv = self._get_abs_max(matrix_g_inv, out_channels)
|
|
1037
|
+
|
|
1038
|
+
if a_pad_dim > 0:
|
|
1039
|
+
matrix_a_inv = self.slice(matrix_a_inv, (0, 0), (matrix_a_dim, matrix_a_dim))
|
|
1040
|
+
if g_pad_dim > 0:
|
|
1041
|
+
matrix_g_inv = self.slice(matrix_g_inv, (0, 0), (out_channels, out_channels))
|
|
1042
|
+
|
|
1043
|
+
if matmul_support_flag == 1:
|
|
1044
|
+
matrix_a_inv = self._process_conv_matmul_device_pad(conv_layer_count, weight_shape, matrix_a_inv)
|
|
1045
|
+
matrix_a_inv_shape = self.shape(self.matrix_a[thor_layer_count])
|
|
1046
|
+
matrix_a_device_temp_shape = (matrix_a_inv_shape[0], matrix_a_inv_shape[2],
|
|
1047
|
+
matrix_a_inv_shape[1], matrix_a_inv_shape[3])
|
|
1048
|
+
matrix_a_inv = self.reshape(matrix_a_inv, matrix_a_device_temp_shape)
|
|
1049
|
+
matrix_a_inv = self.transpose(matrix_a_inv, (2, 0, 1, 3))
|
|
1050
|
+
matrix_g_inv_shape = self.shape(self.matrix_g[thor_layer_count])
|
|
1051
|
+
matrix_g_device_temp_shape = (matrix_g_inv_shape[0], matrix_g_inv_shape[2],
|
|
1052
|
+
matrix_g_inv_shape[1], matrix_g_inv_shape[3])
|
|
1053
|
+
matrix_g_inv = self.reshape(matrix_g_inv, matrix_g_device_temp_shape)
|
|
1054
|
+
matrix_g_inv = self.transpose(matrix_g_inv, (2, 0, 1, 3))
|
|
1055
|
+
|
|
1056
|
+
a_max = F.depend(a_max, g)
|
|
1057
|
+
g_max = F.depend(g_max, g)
|
|
1058
|
+
matrix_a_allreduce = matrix_a_allreduce + (matrix_a_inv,)
|
|
1059
|
+
matrix_g_allreduce = matrix_g_allreduce + (matrix_g_inv,)
|
|
1060
|
+
matrix_a_max_allreduce = matrix_a_max_allreduce + (a_max,)
|
|
1061
|
+
matrix_g_max_allreduce = matrix_g_max_allreduce + (g_max,)
|
|
1062
|
+
elif layer_type == FC:
|
|
1063
|
+
matrix_a_allreduce, matrix_g_allreduce, matrix_a_max_allreduce, matrix_g_max_allreduce = \
|
|
1064
|
+
self._get_fc_ainv_ginv(i, damping_step, gradients, matrix_a_allreduce, matrix_g_allreduce,
|
|
1065
|
+
matrix_a_max_allreduce, matrix_g_max_allreduce)
|
|
1066
|
+
elif layer_type == Embedding:
|
|
1067
|
+
g = gradients[i]
|
|
1068
|
+
matrix_a = self.matrix_a_cov[thor_layer_count]
|
|
1069
|
+
matrix_g = self.matrix_g_cov[thor_layer_count]
|
|
1070
|
+
matrix_a = F.depend(matrix_a, g)
|
|
1071
|
+
matrix_g = F.depend(matrix_g, g)
|
|
1072
|
+
g_shape = self.shape(matrix_g)
|
|
1073
|
+
g_eye = self.eye(g_shape[0], g_shape[0], mstype.float32)
|
|
1074
|
+
damping = self.sqrt(damping_step)
|
|
1075
|
+
a_eye = P.OnesLike()(matrix_a)
|
|
1076
|
+
matrix_a = self.mul(matrix_a, 1.0 / self.batch_size)
|
|
1077
|
+
matrix_a = matrix_a + damping * a_eye
|
|
1078
|
+
matrix_a_inv = self.inv(matrix_a)
|
|
1079
|
+
matrix_g = self.mul(matrix_g, self.loss_scale)
|
|
1080
|
+
matrix_g = self.mul(matrix_g, self.batch_size_scale)
|
|
1081
|
+
matrix_g = matrix_g + damping * g_eye
|
|
1082
|
+
matrix_g_inv = self.cholesky(matrix_g)
|
|
1083
|
+
matrix_g_inv = self._process_batch_matmul(matrix_g_inv)
|
|
1084
|
+
matrix_g_inv = self.matrix_combine(matrix_g_inv)
|
|
1085
|
+
matrix_a_allreduce = matrix_a_allreduce + (matrix_a_inv,)
|
|
1086
|
+
matrix_g_allreduce = matrix_g_allreduce + (matrix_g_inv,)
|
|
1087
|
+
return matrix_a_allreduce, matrix_g_allreduce, matrix_a_max_allreduce, matrix_g_max_allreduce
|
|
1088
|
+
|
|
1089
|
+
def _process_layernorm(self, damping_step, gradient):
|
|
1090
|
+
"""process layernorm layer for thor"""
|
|
1091
|
+
damping = self.sqrt(damping_step)
|
|
1092
|
+
normalizer = self.cast(self.batch_size, mstype.float32)
|
|
1093
|
+
fim_cov = self.square(gradient)
|
|
1094
|
+
fim_cov = self.mul(fim_cov, 1.0 / normalizer)
|
|
1095
|
+
fim_cov = fim_cov + damping
|
|
1096
|
+
fim_inv = self.inv(fim_cov)
|
|
1097
|
+
gradient = self.mul(fim_inv, gradient)
|
|
1098
|
+
return gradient
|
|
1099
|
+
|
|
1100
|
+
def _process_thor_fc(self, thor_layer_count, matrix_a_allreduce, matrix_g_allreduce, g):
|
|
1101
|
+
"""process thor graph fc layer"""
|
|
1102
|
+
temp_a = matrix_a_allreduce[thor_layer_count]
|
|
1103
|
+
temp_g = matrix_g_allreduce[thor_layer_count]
|
|
1104
|
+
self.assign(self.matrix_a_cov[thor_layer_count], temp_a)
|
|
1105
|
+
self.assign(self.matrix_g_cov[thor_layer_count], temp_g)
|
|
1106
|
+
temp_a = self.cast(temp_a, mstype.float16)
|
|
1107
|
+
temp_g = self.cast(temp_g, mstype.float16)
|
|
1108
|
+
g = self.cast(g, mstype.float16)
|
|
1109
|
+
g = self.matmul(temp_g, g)
|
|
1110
|
+
g = self.matmul(g, temp_a)
|
|
1111
|
+
g = self.cast(g, mstype.float32)
|
|
1112
|
+
return g
|
|
1113
|
+
|
|
1114
|
+
def _get_second_gradients_one(self, params_len, gradients, new_grads):
|
|
1115
|
+
"""get second gradients one"""
|
|
1116
|
+
for i in range(params_len):
|
|
1117
|
+
g = gradients[i]
|
|
1118
|
+
thor_layer_count = self.weight_fim_idx_map[i]
|
|
1119
|
+
conv_layer_count = self.weight_conv_idx_map[i]
|
|
1120
|
+
layer_type = self.weight_layertype_idx_map[i]
|
|
1121
|
+
matrix_a = self.matrix_a[thor_layer_count]
|
|
1122
|
+
matrix_g = self.matrix_g[thor_layer_count]
|
|
1123
|
+
matrix_max = self.matrix_max_inv[thor_layer_count]
|
|
1124
|
+
grad_shape = self.shape(g)
|
|
1125
|
+
if layer_type == FC:
|
|
1126
|
+
if grad_shape[0] == 1001:
|
|
1127
|
+
g = self.cube_matmul_left_fc(matrix_g, g)
|
|
1128
|
+
g = self.cube_matmul_right_fc(g, matrix_a, matrix_max)
|
|
1129
|
+
else:
|
|
1130
|
+
temp_a = self.cast(matrix_a, mstype.float16)
|
|
1131
|
+
temp_g = self.cast(matrix_g, mstype.float16)
|
|
1132
|
+
g = self.cast(g, mstype.float16)
|
|
1133
|
+
g = self.matmul(temp_g, g)
|
|
1134
|
+
g = self.matmul(g, temp_a)
|
|
1135
|
+
g = self.cast(g, mstype.float32)
|
|
1136
|
+
g = self.mul(g, matrix_max)
|
|
1137
|
+
elif layer_type == Conv:
|
|
1138
|
+
matmul_support_flag = self.conv_matmul_support_map[conv_layer_count]
|
|
1139
|
+
if matmul_support_flag == 1:
|
|
1140
|
+
g = self.cube_matmul_left(matrix_g, g)
|
|
1141
|
+
g = self.cube_matmul_right_mul(g, matrix_a, matrix_max)
|
|
1142
|
+
else:
|
|
1143
|
+
g = self.reshape(g, (grad_shape[0], grad_shape[1] * grad_shape[2] * grad_shape[3]))
|
|
1144
|
+
temp_a = self.cast(matrix_a, mstype.float16)
|
|
1145
|
+
temp_g = self.cast(matrix_g, mstype.float16)
|
|
1146
|
+
g = self.cast(g, mstype.float16)
|
|
1147
|
+
g = self.matmul(temp_g, g)
|
|
1148
|
+
g = self.matmul(g, temp_a)
|
|
1149
|
+
g = self.cast(g, mstype.float32)
|
|
1150
|
+
g = self.mul(g, matrix_max)
|
|
1151
|
+
g = self.reshape(g, grad_shape)
|
|
1152
|
+
new_grads = new_grads + (g,)
|
|
1153
|
+
return new_grads
|
|
1154
|
+
|
|
1155
|
+
def _get_second_gradients(self, new_grads, damping_step, gradients):
|
|
1156
|
+
"""get second gradients for thor"""
|
|
1157
|
+
params_len = len(self.params)
|
|
1158
|
+
if self.conv_layer_count > 0:
|
|
1159
|
+
new_grads = self._get_second_gradients_one(params_len, gradients, new_grads)
|
|
1160
|
+
else:
|
|
1161
|
+
for i in range(params_len):
|
|
1162
|
+
g = gradients[i]
|
|
1163
|
+
thor_layer_count = self.weight_fim_idx_map[i]
|
|
1164
|
+
layer_type = self.weight_layertype_idx_map[i]
|
|
1165
|
+
if layer_type == Embedding:
|
|
1166
|
+
temp_a_ori = self.matrix_a_cov[thor_layer_count]
|
|
1167
|
+
temp_g = self.matrix_g_cov[thor_layer_count]
|
|
1168
|
+
temp_a = self.expand(temp_a_ori, 1)
|
|
1169
|
+
g = self.mul(temp_a, g)
|
|
1170
|
+
temp_g = self.cast(temp_g, mstype.float16)
|
|
1171
|
+
g = self.cast(g, mstype.float16)
|
|
1172
|
+
g = self.matmul(g, temp_g)
|
|
1173
|
+
g = self.cast(g, mstype.float32)
|
|
1174
|
+
elif layer_type == FC:
|
|
1175
|
+
temp_a = self.matrix_a_cov[thor_layer_count]
|
|
1176
|
+
temp_g = self.matrix_g_cov[thor_layer_count]
|
|
1177
|
+
temp_a = self.cast(temp_a, mstype.float16)
|
|
1178
|
+
temp_g = self.cast(temp_g, mstype.float16)
|
|
1179
|
+
g = self.cast(g, mstype.float16)
|
|
1180
|
+
g = self.matmul(temp_g, g)
|
|
1181
|
+
g = self.matmul(g, temp_a)
|
|
1182
|
+
g = self.cast(g, mstype.float32)
|
|
1183
|
+
elif layer_type == LayerNorm:
|
|
1184
|
+
g = self._process_layernorm(damping_step, g)
|
|
1185
|
+
new_grads = new_grads + (g,)
|
|
1186
|
+
return new_grads
|
|
1187
|
+
|
|
1188
|
+
def _get_second_grad_by_matmul(self, index, temp_a, temp_g, g, temp_max):
|
|
1189
|
+
"""get second gradient by matmul"""
|
|
1190
|
+
conv_layer_count = self.weight_conv_idx_map[index]
|
|
1191
|
+
layer_type = self.weight_layertype_idx_map[index]
|
|
1192
|
+
grad_shape = self.shape(g)
|
|
1193
|
+
if layer_type == FC:
|
|
1194
|
+
if grad_shape[0] == 1001:
|
|
1195
|
+
g = self.cube_matmul_left_fc(temp_g, g)
|
|
1196
|
+
g = self.cube_matmul_right_fc(g, temp_a, temp_max)
|
|
1197
|
+
else:
|
|
1198
|
+
temp_a = self.cast(temp_a, mstype.float16)
|
|
1199
|
+
temp_g = self.cast(temp_g, mstype.float16)
|
|
1200
|
+
g = self.cast(g, mstype.float16)
|
|
1201
|
+
g = self.matmul(temp_g, g)
|
|
1202
|
+
g = self.matmul(g, temp_a)
|
|
1203
|
+
g = self.cast(g, mstype.float32)
|
|
1204
|
+
g = self.mul(g, temp_max)
|
|
1205
|
+
elif layer_type == Conv:
|
|
1206
|
+
a_normalizer = self.a_normalizer[conv_layer_count]
|
|
1207
|
+
a_normalizer = F.depend(a_normalizer, g)
|
|
1208
|
+
temp_max = self.mul(temp_max, self.batch_size / a_normalizer)
|
|
1209
|
+
matmul_support_flag = self.conv_matmul_support_map[conv_layer_count]
|
|
1210
|
+
if matmul_support_flag == 1:
|
|
1211
|
+
g = self.cube_matmul_left(temp_g, g)
|
|
1212
|
+
g = self.cube_matmul_right_mul(g, temp_a, temp_max)
|
|
1213
|
+
else:
|
|
1214
|
+
g = self.reshape(g, (grad_shape[0], grad_shape[1] * grad_shape[2] * grad_shape[3]))
|
|
1215
|
+
temp_a = self.cast(temp_a, mstype.float16)
|
|
1216
|
+
temp_g = self.cast(temp_g, mstype.float16)
|
|
1217
|
+
g = self.cast(g, mstype.float16)
|
|
1218
|
+
g = self.matmul(temp_g, g)
|
|
1219
|
+
g = self.matmul(g, temp_a)
|
|
1220
|
+
g = self.cast(g, mstype.float32)
|
|
1221
|
+
g = self.mul(g, temp_max)
|
|
1222
|
+
g = self.reshape(g, grad_shape)
|
|
1223
|
+
return g, temp_max
|
|
1224
|
+
|
|
1225
|
+
def _get_second_grad_by_layertype(self, index, matrix_a_allreduce, matrix_g_allreduce, g, damping_step):
|
|
1226
|
+
"""get second gradient by layertype"""
|
|
1227
|
+
thor_layer_count = self.weight_fim_idx_map[index]
|
|
1228
|
+
layer_type = self.weight_layertype_idx_map[index]
|
|
1229
|
+
if layer_type == Embedding:
|
|
1230
|
+
temp_a_ori = matrix_a_allreduce[thor_layer_count]
|
|
1231
|
+
temp_g = matrix_g_allreduce[thor_layer_count]
|
|
1232
|
+
self.assign(self.matrix_a_cov[thor_layer_count], temp_a_ori)
|
|
1233
|
+
self.assign(self.matrix_g_cov[thor_layer_count], temp_g)
|
|
1234
|
+
temp_a = self.expand(temp_a_ori, 1)
|
|
1235
|
+
g = self.mul(temp_a, g)
|
|
1236
|
+
temp_g = self.cast(temp_g, mstype.float16)
|
|
1237
|
+
g = self.cast(g, mstype.float16)
|
|
1238
|
+
g = self.matmul(g, temp_g)
|
|
1239
|
+
g = self.cast(g, mstype.float32)
|
|
1240
|
+
elif layer_type == FC:
|
|
1241
|
+
g = self._process_thor_fc(thor_layer_count, matrix_a_allreduce, matrix_g_allreduce, g)
|
|
1242
|
+
elif layer_type == LayerNorm:
|
|
1243
|
+
g = self._process_layernorm(damping_step, g)
|
|
1244
|
+
return g
|
|
1245
|
+
|
|
1246
|
+
def construct(self, gradients):
|
|
1247
|
+
params = self.params
|
|
1248
|
+
moments = self.moments
|
|
1249
|
+
gradients = self.flatten_gradients(gradients)
|
|
1250
|
+
gradients = self.scale_grad(gradients)
|
|
1251
|
+
damping_step = self.gather(self.damping, self.cov_step, self.axis)
|
|
1252
|
+
damping_step = self.cast(damping_step, mstype.float32)
|
|
1253
|
+
if self.thor:
|
|
1254
|
+
matrix_a_allreduce = ()
|
|
1255
|
+
matrix_g_allreduce = ()
|
|
1256
|
+
matrix_a_max_allreduce = ()
|
|
1257
|
+
matrix_g_max_allreduce = ()
|
|
1258
|
+
matrix_a_allreduce, matrix_g_allreduce, matrix_a_max_allreduce, matrix_g_max_allreduce = \
|
|
1259
|
+
self._get_ainv_ginv_amax_gmax_list(gradients, damping_step, matrix_a_allreduce, matrix_g_allreduce,
|
|
1260
|
+
matrix_a_max_allreduce, matrix_g_max_allreduce)
|
|
1261
|
+
if self.is_distributed:
|
|
1262
|
+
matrix_a_allreduce = self.grad_reducer_a(matrix_a_allreduce)
|
|
1263
|
+
matrix_g_allreduce = self.grad_reducer_g(matrix_g_allreduce)
|
|
1264
|
+
if self.conv_layer_count > 0:
|
|
1265
|
+
matrix_a_max_allreduce = self.grad_reducer_amax(matrix_a_max_allreduce)
|
|
1266
|
+
matrix_g_max_allreduce = self.grad_reducer_gmax(matrix_g_max_allreduce)
|
|
1267
|
+
|
|
1268
|
+
new_grads = ()
|
|
1269
|
+
if self.conv_layer_count > 0:
|
|
1270
|
+
for i in range(len(self.params)):
|
|
1271
|
+
g = gradients[i]
|
|
1272
|
+
thor_layer_count = self.weight_fim_idx_map[i]
|
|
1273
|
+
temp_a = matrix_a_allreduce[thor_layer_count]
|
|
1274
|
+
temp_g = matrix_g_allreduce[thor_layer_count]
|
|
1275
|
+
matrix_a_inv_max = self.log(matrix_a_max_allreduce[thor_layer_count])
|
|
1276
|
+
matrix_a_inv_max = self.mul(matrix_a_inv_max, -1)
|
|
1277
|
+
matrix_a_inv_max = self.exp(matrix_a_inv_max)
|
|
1278
|
+
temp_a = self.mul(temp_a, matrix_a_inv_max)
|
|
1279
|
+
matrix_g_inv_max = self.log(matrix_g_max_allreduce[thor_layer_count])
|
|
1280
|
+
matrix_g_inv_max = self.mul(matrix_g_inv_max, -1)
|
|
1281
|
+
matrix_g_inv_max = self.exp(matrix_g_inv_max)
|
|
1282
|
+
temp_g = self.mul(temp_g, matrix_g_inv_max)
|
|
1283
|
+
temp_max = self.mul(matrix_g_max_allreduce[thor_layer_count],
|
|
1284
|
+
matrix_g_max_allreduce[thor_layer_count])
|
|
1285
|
+
temp_a = self.cast(temp_a, mstype.float16)
|
|
1286
|
+
temp_g = self.cast(temp_g, mstype.float16)
|
|
1287
|
+
g, temp_max = self._get_second_grad_by_matmul(i, temp_a, temp_g, g, temp_max)
|
|
1288
|
+
self.assign(self.matrix_a[thor_layer_count], temp_a)
|
|
1289
|
+
self.assign(self.matrix_g[thor_layer_count], temp_g)
|
|
1290
|
+
self.assign(self.matrix_max_inv[thor_layer_count], temp_max)
|
|
1291
|
+
new_grads = new_grads + (g,)
|
|
1292
|
+
gradients = new_grads
|
|
1293
|
+
else:
|
|
1294
|
+
for i in range(len(self.params)):
|
|
1295
|
+
g = gradients[i]
|
|
1296
|
+
g = self._get_second_grad_by_layertype(i, matrix_a_allreduce, matrix_g_allreduce, g, damping_step)
|
|
1297
|
+
new_grads = new_grads + (g,)
|
|
1298
|
+
gradients = new_grads
|
|
1299
|
+
else:
|
|
1300
|
+
new_grads = ()
|
|
1301
|
+
gradients = self._get_second_gradients(new_grads, damping_step, gradients)
|
|
1302
|
+
|
|
1303
|
+
self.cov_step = self.cov_step + self.one
|
|
1304
|
+
if self.weight_decay > 0:
|
|
1305
|
+
gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags, params, gradients)
|
|
1306
|
+
gradients = clip_gradient(self.enable_clip_grad, gradients)
|
|
1307
|
+
lr = self.get_lr()
|
|
1308
|
+
self.assignadd(self.global_step, self.global_step_increase_tensor)
|
|
1309
|
+
success = self.hyper_map(F.partial(_momentum_opt, self.opt, self.momentum, lr), gradients, params, moments)
|
|
1310
|
+
return success
|