mindspore 2.3.0rc1__cp37-none-any.whl → 2.3.0rc2__cp37-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (316) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +1 -1
  3. mindspore/_akg/akg/utils/tbe_codegen_utils.py +13 -3
  4. mindspore/_c_dataengine.cpython-37m-aarch64-linux-gnu.so +0 -0
  5. mindspore/_c_expression.cpython-37m-aarch64-linux-gnu.so +0 -0
  6. mindspore/_checkparam.py +20 -0
  7. mindspore/_extends/parse/parser.py +1 -1
  8. mindspore/_extends/parse/standard_method.py +6 -5
  9. mindspore/_mindspore_offline_debug.cpython-37m-aarch64-linux-gnu.so +0 -0
  10. mindspore/amp.py +5 -5
  11. mindspore/bin/cache_admin +0 -0
  12. mindspore/bin/cache_server +0 -0
  13. mindspore/boost/boost_cell_wrapper.py +1 -1
  14. mindspore/boost/group_loss_scale_manager.py +1 -1
  15. mindspore/common/__init__.py +4 -2
  16. mindspore/common/_register_for_recompute.py +48 -0
  17. mindspore/common/_stub_tensor.py +1 -0
  18. mindspore/common/api.py +56 -4
  19. mindspore/common/dtype.py +5 -3
  20. mindspore/common/dump.py +2 -2
  21. mindspore/common/hook_handle.py +51 -4
  22. mindspore/common/initializer.py +1 -1
  23. mindspore/common/jit_config.py +17 -6
  24. mindspore/common/parameter.py +7 -2
  25. mindspore/common/recompute.py +247 -0
  26. mindspore/common/sparse_tensor.py +2 -2
  27. mindspore/common/symbol.py +1 -1
  28. mindspore/common/tensor.py +74 -36
  29. mindspore/communication/__init__.py +3 -3
  30. mindspore/communication/management.py +30 -30
  31. mindspore/context.py +28 -15
  32. mindspore/dataset/__init__.py +5 -5
  33. mindspore/dataset/audio/__init__.py +2 -2
  34. mindspore/dataset/audio/transforms.py +51 -51
  35. mindspore/dataset/callback/ds_callback.py +2 -2
  36. mindspore/dataset/engine/cache_client.py +1 -1
  37. mindspore/dataset/engine/datasets.py +3 -3
  38. mindspore/dataset/engine/datasets_audio.py +14 -14
  39. mindspore/dataset/engine/datasets_standard_format.py +3 -3
  40. mindspore/dataset/engine/datasets_text.py +38 -38
  41. mindspore/dataset/engine/datasets_user_defined.py +3 -3
  42. mindspore/dataset/engine/datasets_vision.py +68 -68
  43. mindspore/dataset/text/__init__.py +3 -3
  44. mindspore/dataset/text/transforms.py +26 -26
  45. mindspore/dataset/transforms/__init__.py +1 -1
  46. mindspore/dataset/vision/__init__.py +3 -3
  47. mindspore/dataset/vision/transforms.py +92 -92
  48. mindspore/dataset/vision/utils.py +1 -1
  49. mindspore/experimental/optim/adadelta.py +2 -2
  50. mindspore/experimental/optim/adagrad.py +2 -2
  51. mindspore/experimental/optim/adam.py +2 -2
  52. mindspore/experimental/optim/adamax.py +2 -2
  53. mindspore/experimental/optim/adamw.py +2 -2
  54. mindspore/experimental/optim/asgd.py +2 -2
  55. mindspore/experimental/optim/lr_scheduler.py +24 -20
  56. mindspore/experimental/optim/nadam.py +2 -2
  57. mindspore/experimental/optim/optimizer.py +1 -1
  58. mindspore/experimental/optim/radam.py +2 -2
  59. mindspore/experimental/optim/rmsprop.py +2 -2
  60. mindspore/experimental/optim/rprop.py +2 -2
  61. mindspore/experimental/optim/sgd.py +2 -2
  62. mindspore/hal/stream.py +2 -0
  63. mindspore/include/mindapi/base/types.h +5 -0
  64. mindspore/lib/libdnnl.so.2 +0 -0
  65. mindspore/lib/libmindspore.so +0 -0
  66. mindspore/lib/libmindspore_backend.so +0 -0
  67. mindspore/lib/libmindspore_common.so +0 -0
  68. mindspore/lib/libmindspore_core.so +0 -0
  69. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  70. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  71. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  72. mindspore/lib/libmindspore_shared_lib.so +0 -0
  73. mindspore/lib/libopencv_core.so.4.5 +0 -0
  74. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  75. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +6 -6
  76. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  77. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  78. mindspore/lib/plugin/ascend/liblowlatency_collective.so +0 -0
  79. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  80. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/DeviceBin +0 -0
  81. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/PkgInspect +0 -0
  82. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/op_man +0 -0
  83. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/device/ascend910b/bin/ascend910b.bin +101787 -98559
  84. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_cann_host.so +0 -0
  85. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_host.so +0 -0
  86. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/base/op_register.h +2 -2
  87. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/mix.h +8 -1
  88. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/norm.h +5 -3
  89. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/reduce.h +2 -2
  90. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/backend/backend.h +3 -3
  91. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/backend/rtbackend.h +3 -3
  92. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/base/types.h +0 -1
  93. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/module/module.h +3 -3
  94. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/svector/svector.h +3 -2
  95. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops.so +0 -0
  96. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops_static.a +0 -0
  97. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/tiling/add_tiling.h +9 -9
  98. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/apply_rotary_pos_emb_impl.h +2 -6
  99. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb.h +2 -2
  100. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_base.h +460 -0
  101. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_bf16.h +217 -0
  102. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp16.h +116 -0
  103. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_tiling.h +16 -24
  104. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_value.h +27 -0
  105. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/asdop/asd_op_impl.h +0 -4
  106. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/FlashAttentionScore_impl.h → flash_attention_score/flash_attention_score_impl.h} +2 -1
  107. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/bs_attention_tiling.h → flash_attention_score/flash_attention_score_tiling.h} +15 -19
  108. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/gelu/tiling/gelu_tiling.h +7 -9
  109. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/lccl/lccl_wrapper.h +58 -0
  110. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/matmul_impl.h +19 -8
  111. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/pp_matmul_common_tiling.h +18 -8
  112. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/pp_matmul_info.h +7 -4
  113. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/tiling_data.h +44 -6
  114. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/tiling_utils.h +65 -0
  115. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/matmul_stridedslice_fusion_impl.h +10 -6
  116. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_param.h +4 -1
  117. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/kernel/paged_attention_mix_hwsync.h +41 -0
  118. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/PagedAttention_impl.h → paged_attention/paged_attention_impl.h} +1 -1
  119. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_tiling.h +63 -0
  120. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/add_param.h +2 -2
  121. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention_param.h → param/attention_param.h} +11 -2
  122. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_ext_param.h +37 -0
  123. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/sub_param.h +45 -0
  124. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/reshape_and_cache/reshape_and_cache_tiling.h +1 -2
  125. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm.h +23 -0
  126. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_base.h +175 -0
  127. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_normal.h +276 -0
  128. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_split_d.h +280 -0
  129. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/tiling_data.h +35 -0
  130. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/rms_norm_impl.h +45 -0
  131. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/kernel/sub_kernel.h +20 -0
  132. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_impl.h +47 -0
  133. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_tiling.h +25 -0
  134. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/matmul_table.h +323 -23
  135. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/types.h +15 -4
  136. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_tiling.h +8 -0
  137. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libAdd_impl.so +0 -0
  138. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libSub_impl.so +0 -0
  139. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_layernorm_impl.so +0 -0
  140. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_impl.so +0 -0
  141. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_impl.so +0 -0
  142. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcast_impl.so +0 -0
  143. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libgelu_impl.so +0 -0
  144. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_impl.so +0 -0
  145. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_stridedslice_fusion_impl.so +0 -0
  146. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_kernels_internal.so +0 -0
  147. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libnot_equal_impl.so +0 -0
  148. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_impl.so +0 -0
  149. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/librms_norm_impl.so +0 -0
  150. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
  151. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
  152. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_full_mix.o +0 -0
  153. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
  154. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
  155. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
  156. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_full_mix.o +0 -0
  157. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
  158. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bnsd_full_mix.o +0 -0
  159. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bsh_full_mix.o +0 -0
  160. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bnsd_full_mix.o +0 -0
  161. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bsh_full_mix.o +0 -0
  162. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal.h +22 -0
  163. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal_comm.h +70 -0
  164. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal_types.h +103 -0
  165. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lccl.h +47 -0
  166. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lccl_wrapper.h +58 -0
  167. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcoc.h +154 -0
  168. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblcal.so +0 -0
  169. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblccl_wrapper.so +0 -0
  170. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  171. mindspore/log.py +2 -2
  172. mindspore/mint/__init__.py +457 -0
  173. mindspore/mint/nn/__init__.py +430 -0
  174. mindspore/mint/nn/functional.py +424 -0
  175. mindspore/mint/optim/__init__.py +24 -0
  176. mindspore/mint/optim/adamw.py +186 -0
  177. mindspore/multiprocessing/__init__.py +4 -0
  178. mindspore/nn/__init__.py +3 -0
  179. mindspore/nn/cell.py +51 -47
  180. mindspore/nn/extend/__init__.py +29 -0
  181. mindspore/nn/extend/basic.py +140 -0
  182. mindspore/nn/extend/embedding.py +143 -0
  183. mindspore/nn/extend/layer/__init__.py +27 -0
  184. mindspore/nn/extend/layer/normalization.py +107 -0
  185. mindspore/nn/extend/pooling.py +117 -0
  186. mindspore/nn/generator.py +297 -0
  187. mindspore/nn/layer/basic.py +109 -1
  188. mindspore/nn/layer/container.py +2 -2
  189. mindspore/nn/layer/conv.py +6 -6
  190. mindspore/nn/layer/embedding.py +1 -1
  191. mindspore/nn/layer/normalization.py +21 -43
  192. mindspore/nn/layer/padding.py +4 -0
  193. mindspore/nn/optim/ada_grad.py +2 -2
  194. mindspore/nn/optim/adadelta.py +1 -1
  195. mindspore/nn/optim/adafactor.py +1 -1
  196. mindspore/nn/optim/adam.py +7 -7
  197. mindspore/nn/optim/adamax.py +2 -2
  198. mindspore/nn/optim/adasum.py +2 -2
  199. mindspore/nn/optim/asgd.py +2 -2
  200. mindspore/nn/optim/ftrl.py +1 -1
  201. mindspore/nn/optim/lamb.py +3 -3
  202. mindspore/nn/optim/lars.py +1 -1
  203. mindspore/nn/optim/lazyadam.py +2 -2
  204. mindspore/nn/optim/momentum.py +2 -2
  205. mindspore/nn/optim/optimizer.py +2 -2
  206. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  207. mindspore/nn/optim/rmsprop.py +2 -2
  208. mindspore/nn/optim/rprop.py +2 -2
  209. mindspore/nn/optim/sgd.py +2 -2
  210. mindspore/nn/optim/thor.py +2 -2
  211. mindspore/nn/wrap/cell_wrapper.py +9 -9
  212. mindspore/nn/wrap/grad_reducer.py +5 -5
  213. mindspore/ops/_grad_experimental/grad_comm_ops.py +4 -2
  214. mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -2
  215. mindspore/ops/_vmap/vmap_math_ops.py +27 -8
  216. mindspore/ops/_vmap/vmap_nn_ops.py +66 -8
  217. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +73 -1
  218. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +12 -3
  219. mindspore/ops/auto_generate/gen_arg_handler.py +24 -0
  220. mindspore/ops/auto_generate/gen_extend_func.py +274 -0
  221. mindspore/ops/auto_generate/gen_ops_def.py +889 -22
  222. mindspore/ops/auto_generate/gen_ops_prim.py +3541 -253
  223. mindspore/ops/auto_generate/pyboost_inner_prim.py +282 -0
  224. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
  225. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +9 -0
  226. mindspore/ops/extend/__init__.py +9 -1
  227. mindspore/ops/extend/array_func.py +134 -27
  228. mindspore/ops/extend/math_func.py +3 -3
  229. mindspore/ops/extend/nn_func.py +363 -2
  230. mindspore/ops/function/__init__.py +19 -2
  231. mindspore/ops/function/array_func.py +463 -439
  232. mindspore/ops/function/clip_func.py +7 -18
  233. mindspore/ops/function/grad/grad_func.py +5 -5
  234. mindspore/ops/function/linalg_func.py +4 -4
  235. mindspore/ops/function/math_func.py +260 -243
  236. mindspore/ops/function/nn_func.py +825 -62
  237. mindspore/ops/function/random_func.py +73 -4
  238. mindspore/ops/function/sparse_unary_func.py +1 -1
  239. mindspore/ops/function/vmap_func.py +1 -1
  240. mindspore/ops/functional.py +2 -2
  241. mindspore/ops/op_info_register.py +1 -31
  242. mindspore/ops/operations/__init__.py +2 -3
  243. mindspore/ops/operations/_grad_ops.py +2 -107
  244. mindspore/ops/operations/_inner_ops.py +5 -5
  245. mindspore/ops/operations/_sequence_ops.py +2 -2
  246. mindspore/ops/operations/array_ops.py +11 -233
  247. mindspore/ops/operations/comm_ops.py +32 -32
  248. mindspore/ops/operations/custom_ops.py +7 -89
  249. mindspore/ops/operations/manually_defined/ops_def.py +329 -4
  250. mindspore/ops/operations/math_ops.py +13 -163
  251. mindspore/ops/operations/nn_ops.py +9 -316
  252. mindspore/ops/operations/random_ops.py +1 -1
  253. mindspore/ops/operations/sparse_ops.py +3 -3
  254. mindspore/ops/primitive.py +2 -2
  255. mindspore/ops_generate/arg_dtype_cast.py +12 -3
  256. mindspore/ops_generate/arg_handler.py +24 -0
  257. mindspore/ops_generate/gen_ops_inner_prim.py +2 -0
  258. mindspore/ops_generate/gen_pyboost_func.py +13 -6
  259. mindspore/ops_generate/pyboost_utils.py +2 -17
  260. mindspore/parallel/__init__.py +3 -2
  261. mindspore/parallel/_auto_parallel_context.py +106 -1
  262. mindspore/parallel/_parallel_serialization.py +34 -2
  263. mindspore/parallel/_utils.py +16 -0
  264. mindspore/parallel/algo_parameter_config.py +4 -4
  265. mindspore/parallel/checkpoint_transform.py +249 -77
  266. mindspore/parallel/cluster/process_entity/_api.py +1 -1
  267. mindspore/parallel/parameter_broadcast.py +1 -1
  268. mindspore/parallel/shard.py +1 -1
  269. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +1 -0
  270. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +17 -5
  271. mindspore/profiler/parser/ascend_msprof_exporter.py +3 -3
  272. mindspore/profiler/parser/ascend_msprof_generator.py +10 -3
  273. mindspore/profiler/parser/ascend_op_generator.py +26 -9
  274. mindspore/profiler/parser/ascend_timeline_generator.py +7 -4
  275. mindspore/profiler/parser/profiler_info.py +11 -1
  276. mindspore/profiler/profiling.py +13 -5
  277. mindspore/rewrite/api/node.py +12 -12
  278. mindspore/rewrite/api/symbol_tree.py +11 -11
  279. mindspore/run_check/_check_version.py +1 -1
  280. mindspore/safeguard/rewrite_obfuscation.py +2 -2
  281. mindspore/train/amp.py +4 -4
  282. mindspore/train/anf_ir_pb2.py +8 -2
  283. mindspore/train/callback/_backup_and_restore.py +2 -2
  284. mindspore/train/callback/_callback.py +4 -4
  285. mindspore/train/callback/_checkpoint.py +2 -2
  286. mindspore/train/callback/_early_stop.py +2 -2
  287. mindspore/train/callback/_landscape.py +4 -4
  288. mindspore/train/callback/_loss_monitor.py +2 -2
  289. mindspore/train/callback/_on_request_exit.py +2 -2
  290. mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
  291. mindspore/train/callback/_summary_collector.py +2 -2
  292. mindspore/train/callback/_time_monitor.py +2 -2
  293. mindspore/train/dataset_helper.py +8 -3
  294. mindspore/train/loss_scale_manager.py +2 -2
  295. mindspore/train/metrics/metric.py +3 -3
  296. mindspore/train/mind_ir_pb2.py +22 -17
  297. mindspore/train/model.py +15 -15
  298. mindspore/train/serialization.py +18 -18
  299. mindspore/train/summary/summary_record.py +7 -7
  300. mindspore/train/train_thor/convert_utils.py +3 -3
  301. mindspore/version.py +1 -1
  302. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +1 -1
  303. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +307 -260
  304. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/tiling_data.h +0 -59
  305. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_bf16_BNSD_mix.o +0 -0
  306. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_bf16_BSH_mix.o +0 -0
  307. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_fp16_BNSD_mix.o +0 -0
  308. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_fp16_BSH_mix.o +0 -0
  309. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_bf16_BNSD_mix.o +0 -0
  310. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_bf16_BSH_mix.o +0 -0
  311. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_fp16_BNSD_mix.o +0 -0
  312. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_fp16_BSH_mix.o +0 -0
  313. /mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/bs_attention_mix_hwsync.h → flash_attention_score/kernel/flash_attention_score_mix_hwsync.h} +0 -0
  314. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
  315. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +0 -0
  316. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -114,13 +114,13 @@ class CheckpointConfig:
114
114
  >>> from mindspore.train import Model, CheckpointConfig, ModelCheckpoint
115
115
  >>>
116
116
  >>> # Define the network structure of LeNet5. Refer to
117
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
117
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
118
118
  >>> net = LeNet5()
119
119
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
120
120
  >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
121
121
  >>> model = Model(net, loss_fn=loss, optimizer=optim)
122
122
  >>> # Create the dataset taking MNIST as an example. Refer to
123
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
123
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
124
124
  >>> dataset = create_dataset()
125
125
  >>> config = CheckpointConfig(save_checkpoint_seconds=100, keep_checkpoint_per_n_minutes=5, saved_network=net)
126
126
  >>> config.save_checkpoint_steps
@@ -85,13 +85,13 @@ class EarlyStopping(Callback):
85
85
  >>> from mindspore import nn
86
86
  >>> from mindspore.train import Model, EarlyStopping
87
87
  >>> # Define the network structure of LeNet5. Refer to
88
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
88
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
89
89
  >>> net = LeNet5()
90
90
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
91
91
  >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
92
92
  >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={"acc"})
93
93
  >>> # Create the dataset taking MNIST as an example. Refer to
94
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
94
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
95
95
  >>> dataset = create_dataset()
96
96
  >>> cb = EarlyStopping(monitor="acc", patience=3, verbose=True)
97
97
  >>> model.fit(10, dataset, callbacks=cb)
@@ -186,10 +186,10 @@ class SummaryLandscape:
186
186
  ... # If the device_target is Ascend, set the device_target to "Ascend"
187
187
  ... ms.set_context(mode=ms.GRAPH_MODE, device_target="GPU")
188
188
  ... # Create the dataset taking MNIST as an example. Refer to
189
- ... # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
189
+ ... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
190
190
  ... ds_train = create_dataset()
191
191
  ... # Define the network structure of LeNet5. Refer to
192
- ... # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
192
+ ... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
193
193
  ... network = LeNet5()
194
194
  ... net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
195
195
  ... net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
@@ -209,13 +209,13 @@ class SummaryLandscape:
209
209
  ... # Simple usage for visualization landscape:
210
210
  ... def callback_fn():
211
211
  ... # Define the network structure of LeNet5. Refer to
212
- ... # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
212
+ ... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
213
213
  ... network = LeNet5()
214
214
  ... net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
215
215
  ... metrics = {"Loss": Loss()}
216
216
  ... model = Model(network, net_loss, metrics=metrics)
217
217
  ... # Create the dataset taking MNIST as an example. Refer to
218
- ... # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
218
+ ... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
219
219
  ... ds_eval = create_dataset()
220
220
  ... return model, network, ds_eval, metrics
221
221
  ...
@@ -43,13 +43,13 @@ class LossMonitor(Callback):
43
43
  >>> from mindspore.train import Model, LossMonitor
44
44
  >>>
45
45
  >>> # Define the network structure of LeNet5. Refer to
46
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
46
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
47
47
  >>> net = LeNet5()
48
48
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
49
49
  >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
50
50
  >>> model = Model(net, loss_fn=loss, optimizer=optim)
51
51
  >>> # Create the dataset taking MNIST as an example. Refer to
52
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
52
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
53
53
  >>> dataset = create_dataset()
54
54
  >>> loss_monitor = LossMonitor()
55
55
  >>> model.train(10, dataset, callbacks=loss_monitor)
@@ -55,13 +55,13 @@ class OnRequestExit(Callback):
55
55
  >>> import mindspore as ms
56
56
  >>>
57
57
  >>> # Define the network structure of LeNet5. Refer to
58
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
58
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
59
59
  >>> net = LeNet5()
60
60
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
61
61
  >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
62
62
  >>> model = Model(net, loss_fn=loss, optimizer=optim)
63
63
  >>> # Create the dataset taking MNIST as an example. Refer to
64
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
64
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
65
65
  >>> dataset = create_dataset()
66
66
  >>> on_request_exit = ms.train.OnRequestExit(file_name='LeNet5')
67
67
  >>> model.train(10, dataset, callbacks=on_request_exit)
@@ -84,13 +84,13 @@ class ReduceLROnPlateau(Callback):
84
84
  >>> from mindspore import nn
85
85
  >>> from mindspore.train import Model, ReduceLROnPlateau
86
86
  >>> # Define the network structure of LeNet5. Refer to
87
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
87
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
88
88
  >>> net = LeNet5()
89
89
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
90
90
  >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
91
91
  >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={"acc"})
92
92
  >>> # Create the dataset taking MNIST as an example. Refer to
93
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
93
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
94
94
  >>> dataset = create_dataset()
95
95
  >>> cb = ReduceLROnPlateau(monitor="acc", patience=3, verbose=True)
96
96
  >>> model.fit(10, dataset, callbacks=cb)
@@ -190,10 +190,10 @@ class SummaryCollector(Callback):
190
190
  ... ms.set_context(mode=ms.GRAPH_MODE, device_target="Ascend")
191
191
  ... mnist_dataset_dir = '/path/to/mnist_dataset_directory'
192
192
  ... # Create the dataset taking MNIST as an example. Refer to
193
- ... # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
193
+ ... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
194
194
  ... ds_train = create_dataset()
195
195
  ... # Define the network structure of LeNet5. Refer to
196
- ... # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
196
+ ... # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
197
197
  ... network = LeNet5(10)
198
198
  ... net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
199
199
  ... net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
@@ -43,13 +43,13 @@ class TimeMonitor(Callback):
43
43
  >>> from mindspore.train import Model, TimeMonitor
44
44
  >>>
45
45
  >>> # Define the network structure of LeNet5. Refer to
46
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
46
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
47
47
  >>> net = LeNet5()
48
48
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
49
49
  >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
50
50
  >>> model = Model(net, loss_fn=loss, optimizer=optim)
51
51
  >>> # Create the dataset taking MNIST as an example. Refer to
52
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
52
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
53
53
  >>> dataset = create_dataset()
54
54
  >>> time_monitor = TimeMonitor()
55
55
  >>> model.train(10, dataset, callbacks=time_monitor)
@@ -28,7 +28,7 @@ from mindspore import context, nn
28
28
  from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, _construct_tensor_list
29
29
  from mindspore.parallel._utils import _get_device_num, _get_global_rank, _need_to_full, \
30
30
  _to_full_shapes, _get_pipeline_stages, _change_symbols_for_parallel, _is_in_auto_parallel_mode, \
31
- _origin_shapes
31
+ _origin_shapes, _dynamic_shape_for_dataset
32
32
  from mindspore.parallel._ps_context import _is_role_sched
33
33
  from mindspore.ops import operations as P
34
34
  from mindspore.common.auto_dynamic_shape import _auto_dynamic_shape
@@ -136,7 +136,12 @@ def _generate_network_with_dataset(network, dataset_helper, queue_name):
136
136
 
137
137
  if network.get_inputs() and None not in network.get_inputs():
138
138
  if _is_in_auto_parallel_mode():
139
- _check_inputs(network.get_inputs(), _origin_shapes(dataset_shapes), dataset_types)
139
+ # here, the dataset shapes has been processed by full_shape(), so need to resume it to original shape
140
+ # the _check_inputs() will change static origin_shape to dynamic shape
141
+ # after _check_inputs(), convert dataset_shapes to dynamic shape
142
+ origin_shape = _origin_shapes(dataset_shapes)
143
+ _check_inputs(network.get_inputs(), origin_shape, dataset_types)
144
+ dataset_shapes = _dynamic_shape_for_dataset(dataset_shapes, origin_shape)
140
145
  else:
141
146
  _check_inputs(network.get_inputs(), dataset_shapes, dataset_types)
142
147
  elif context.get_context("mode") == context.PYNATIVE_MODE:
@@ -191,7 +196,7 @@ def _get_dataset_aux(dataset):
191
196
  def connect_network_with_dataset(network, dataset_helper):
192
197
  """
193
198
  Connect the `network` with dataset in `dataset_helper`. Only supported in `sink mode
194
- <https://mindspore.cn/tutorials/experts/en/r2.3.q1/optimize/execution_opt.html>`_, (dataset_sink_mode=True).
199
+ <https://mindspore.cn/tutorials/experts/en/master/optimize/execution_opt.html>`_, (dataset_sink_mode=True).
195
200
 
196
201
  Args:
197
202
  network (Cell): The training network for dataset.
@@ -62,7 +62,7 @@ class FixedLossScaleManager(LossScaleManager):
62
62
  >>> from mindspore import amp, nn
63
63
  >>>
64
64
  >>> # Define the network structure of LeNet5. Refer to
65
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
65
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
66
66
  >>> net = LeNet5()
67
67
  >>> loss_scale = 1024.0
68
68
  >>> loss_scale_manager = amp.FixedLossScaleManager(loss_scale, False)
@@ -136,7 +136,7 @@ class DynamicLossScaleManager(LossScaleManager):
136
136
  >>> from mindspore import amp, nn
137
137
  >>>
138
138
  >>> # Define the network structure of LeNet5. Refer to
139
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
139
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
140
140
  >>> net = LeNet5()
141
141
  >>> loss_scale_manager = amp.DynamicLossScaleManager()
142
142
  >>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
@@ -200,7 +200,7 @@ class Metric(metaclass=ABCMeta):
200
200
 
201
201
  Tutorial Examples:
202
202
  - `Evaluation Metrics - Customized Metrics
203
- <https://mindspore.cn/tutorials/en/r2.3.q1/advanced/model/metric.html#customized-metrics>`_
203
+ <https://mindspore.cn/tutorials/en/master/advanced/model/metric.html#customized-metrics>`_
204
204
  """
205
205
  raise NotImplementedError('Must define clear function to use this base class')
206
206
 
@@ -214,7 +214,7 @@ class Metric(metaclass=ABCMeta):
214
214
 
215
215
  Tutorial Examples:
216
216
  - `Evaluation Metrics - Customized Metrics
217
- <https://mindspore.cn/tutorials/en/r2.3.q1/advanced/model/metric.html#customized-metrics>`_
217
+ <https://mindspore.cn/tutorials/en/master/advanced/model/metric.html#customized-metrics>`_
218
218
  """
219
219
  raise NotImplementedError('Must define eval function to use this base class')
220
220
 
@@ -231,7 +231,7 @@ class Metric(metaclass=ABCMeta):
231
231
 
232
232
  Tutorial Examples:
233
233
  - `Evaluation Metrics - Customized Metrics
234
- <https://mindspore.cn/tutorials/en/r2.3.q1/advanced/model/metric.html#customized-metrics>`_
234
+ <https://mindspore.cn/tutorials/en/master/advanced/model/metric.html#customized-metrics>`_
235
235
  """
236
236
  raise NotImplementedError('Must define update function to use this base class')
237
237
 
@@ -20,7 +20,7 @@ DESCRIPTOR = _descriptor.FileDescriptor(
20
20
  syntax='proto2',
21
21
  serialized_options=None,
22
22
  create_key=_descriptor._internal_create_key,
23
- serialized_pb=b'\n\rmind_ir.proto\x12\x07mind_ir\"\x88\t\n\x0e\x41ttributeProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\t\n\x01\x66\x18\x02 \x01(\x02\x12\t\n\x01i\x18\x03 \x01(\x03\x12\t\n\x01\x64\x18\x04 \x01(\x01\x12\t\n\x01s\x18\x05 \x01(\x0c\x12\x1f\n\x01t\x18\x06 \x01(\x0b\x32\x14.mind_ir.TensorProto\x12\x1e\n\x01g\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12\x0e\n\x06\x66loats\x18\x08 \x03(\x02\x12\x0f\n\x07\x64oubles\x18\t \x03(\x01\x12\x0c\n\x04ints\x18\n \x03(\x03\x12\x0f\n\x07strings\x18\x0b \x03(\x0c\x12%\n\x07tensors\x18\x0c \x03(\x0b\x32\x14.mind_ir.TensorProto\x12#\n\x06graphs\x18\r \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x12\n\ndoc_string\x18\x0e \x01(\t\x12\x15\n\rref_attr_name\x18\x0f \x01(\t\x12\x33\n\x04type\x18\x10 \x01(\x0e\x32%.mind_ir.AttributeProto.AttributeType\x12\'\n\x06values\x18\x11 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x36\n\x08seq_info\x18\x12 \x01(\x0b\x32$.mind_ir.AttributeProto.SeqInfoProto\x12&\n\x07\x66unctor\x18\x13 \x01(\x0b\x32\x15.mind_ir.FunctorProto\x1aT\n\x0cSeqInfoProto\x12\x12\n\nis_dyn_len\x18\x01 \x01(\x08\x12\x30\n\x0ftuple_elem_item\x18\x02 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xaf\x04\n\rAttributeType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\n\n\x06TENSOR\x10\x11\x12\t\n\x05GRAPH\x10\x12\x12\x0b\n\x07TENSORS\x10\x13\x12\t\n\x05TUPLE\x10\x14\x12\x08\n\x04LIST\x10\x15\x12\x08\n\x04\x44ICT\x10\x16\x12\n\n\x06UMONAD\x10\x17\x12\x0b\n\x07IOMONAD\x10\x18\x12\x08\n\x04NONE\x10\x19\x12\x14\n\x10PRIMITIVECLOSURE\x10\x1a\x12\x14\n\x10\x46UNCGRAPHCLOSURE\x10\x1b\x12\x12\n\x0ePARTIALCLOSURE\x10\x1c\x12\x14\n\x10UNIONFUNCCLOSURE\x10\x1d\x12\x0e\n\nCSR_TENSOR\x10\x1e\x12\x0e\n\nCOO_TENSOR\x10\x1f\x12\x0e\n\nROW_TENSOR\x10 \x12\x0e\n\nCLASS_TYPE\x10!\x12\x0e\n\nNAME_SPACE\x10\"\x12\n\n\x06SYMBOL\x10#\x12\r\n\tTYPE_NULL\x10$\x12\x0e\n\nMAP_TENSOR\x10%\x12\x0b\n\x07\x46UNCTOR\x10&\x12\n\n\x06SCALAR\x10\'\"\x9d\x01\n\x0c\x46unctorProto\x12/\n\x04type\x18\x01 \x01(\x0e\x32!.mind_ir.FunctorProto.FunctorType\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\x06values\x18\x03 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"%\n\x0b\x46unctorType\x12\x16\n\x12SHAPE_CALC_FUNCTOR\x10\x01\"\x98\x01\n\x0eValueInfoProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12$\n\x06tensor\x18\x02 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x03 \x01(\t\x12\x12\n\ndenotation\x18\x04 \x01(\t\x12*\n\tattr_info\x18\x05 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xf3\x01\n\tNodeProto\x12\r\n\x05input\x18\x01 \x03(\t\x12\x0e\n\x06output\x18\x02 \x03(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12*\n\tattribute\x18\x05 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\x0e\n\x06\x64omain\x18\x07 \x01(\t\x12*\n\tnode_attr\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12,\n\x0bprimal_attr\x18\t \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xf8\x03\n\nModelProto\x12\x12\n\nir_version\x18\x01 \x01(\t\x12\x15\n\rproducer_name\x18\x02 \x01(\t\x12\x18\n\x10producer_version\x18\x03 \x01(\t\x12\x0e\n\x06\x64omain\x18\x04 \x01(\t\x12\x15\n\rmodel_version\x18\x05 \x01(\t\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\"\n\x05graph\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12&\n\tfunctions\x18\x08 \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x30\n\x0cpreprocessor\x18\t \x01(\x0b\x32\x1a.mind_ir.PreprocessorProto\x12\x15\n\rlittle_endian\x18\n \x01(\x08\x12(\n\x08parallel\x18\x0b \x01(\x0b\x32\x16.mind_ir.ParallelProto\x12+\n\nprimitives\x18\x0c \x03(\x0b\x32\x17.mind_ir.PrimitiveProto\x12\x17\n\x0fmind_ir_version\x18\r \x01(\x03\x12\x34\n\tuser_info\x18\x0e \x03(\x0b\x32!.mind_ir.ModelProto.UserInfoEntry\x1a/\n\rUserInfoEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\";\n\x11PreprocessorProto\x12&\n\x02op\x18\x01 \x03(\x0b\x32\x1a.mind_ir.PreprocessOpProto\"\x91\x01\n\x11PreprocessOpProto\x12\x15\n\rinput_columns\x18\x01 \x01(\t\x12\x16\n\x0eoutput_columns\x18\x02 \x01(\t\x12\x17\n\x0fproject_columns\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12\x12\n\noperations\x18\x05 \x01(\t\x12\x0f\n\x07offload\x18\x06 \x01(\x08\"\xd2\x02\n\nGraphProto\x12 \n\x04node\x18\x01 \x03(\x0b\x32\x12.mind_ir.NodeProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\tparameter\x18\x03 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x04 \x01(\t\x12&\n\x05input\x18\x05 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\'\n\x06output\x18\x06 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\x12\n\nbprop_hash\x18\x07 \x01(\t\x12*\n\tattribute\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x16\n\x0e\x62prop_filepath\x18\t \x01(\t\x12.\n\rmap_parameter\x18\n \x03(\x0b\x32\x17.mind_ir.MapTensorProto\"\xcd\x07\n\x0bTensorProto\x12\x0c\n\x04\x64ims\x18\x01 \x03(\x03\x12\x11\n\tdata_type\x18\x02 \x01(\x05\x12\x12\n\nfloat_data\x18\x03 \x03(\x02\x12\x12\n\nint32_data\x18\x04 \x03(\x05\x12\x13\n\x0bstring_data\x18\x05 \x03(\x0c\x12\x12\n\nint64_data\x18\x06 \x03(\x03\x12\x0c\n\x04name\x18\x07 \x01(\t\x12\x12\n\ndoc_string\x18\x08 \x01(\t\x12\x10\n\x08raw_data\x18\t \x01(\x0c\x12\x13\n\x0b\x64ouble_data\x18\n \x03(\x01\x12\x13\n\x0buint64_data\x18\x0b \x03(\x04\x12=\n\rexternal_data\x18\x0c \x01(\x0b\x32&.mind_ir.TensorProto.ExternalDataProto\x12\x0f\n\x07ref_key\x18\r \x01(\t\x12\x10\n\x08min_dims\x18\x0e \x03(\x03\x12\x10\n\x08max_dims\x18\x0f \x03(\x03\x12>\n\x10\x63ompression_type\x18\x10 \x01(\x0e\x32$.mind_ir.TensorProto.CompressionType\x12:\n\x0cquant_params\x18\x11 \x03(\x0b\x32$.mind_ir.TensorProto.QuantParamProto\x1a\x45\n\x11\x45xternalDataProto\x12\x10\n\x08location\x18\x01 \x01(\t\x12\x0e\n\x06offset\x18\x02 \x01(\x03\x12\x0e\n\x06length\x18\x03 \x01(\x03\x1aV\n\x0fQuantParamProto\x12\x17\n\x0fquant_algo_name\x18\x01 \x02(\t\x12*\n\tattribute\x18\x02 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xe7\x01\n\x08\x44\x61taType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\x0b\n\x07\x46LOAT64\x10\x11\"u\n\x0f\x43ompressionType\x12\x12\n\x0eNO_COMPRESSION\x10\x00\x12\x0c\n\x08INDEXING\x10\x01\x12\n\n\x06SPARSE\x10\x02\x12\x07\n\x03\x46SE\x10\x03\x12\x0f\n\x0b\x42IT_PACKING\x10\x04\x12\x0b\n\x07\x46SE_INT\x10\x05\x12\r\n\tFSE_INFER\x10\x06\"\xd1\x01\n\x0eMapTensorProto\x12\x0c\n\x04name\x18\x01 \x02(\t\x12.\n\rdefault_value\x18\x02 \x02(\x0b\x32\x17.mind_ir.AttributeProto\x12(\n\nkey_tensor\x18\x03 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12*\n\x0cvalue_tensor\x18\x04 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12+\n\rstatus_tensor\x18\x05 \x02(\x0b\x32\x14.mind_ir.TensorProto\"5\n\rParallelProto\x12$\n\x06layout\x18\x01 \x03(\x0b\x32\x14.mind_ir.LayoutProto\"\xfd\x01\n\x0bLayoutProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1e\n\x16\x64\x65vice_arrangement_int\x18\x02 \x03(\x03\x12\x16\n\x0etensor_map_int\x18\x03 \x03(\x03\x12\x17\n\x0fslice_shape_int\x18\x04 \x03(\x03\x12\x12\n\nfield_size\x18\x05 \x01(\x03\x12\x15\n\runiform_split\x18\x06 \x01(\x08\x12\x17\n\x0fopt_shard_group\x18\x07 \x01(\t\x12\x17\n\x0fpipeline_shared\x18\x08 \x01(\x08\x12\x0f\n\x07is_send\x18\t \x01(\x08\x12\x11\n\tpeer_rank\x18\n \x01(\x03\x12\x0e\n\x06sr_tag\x18\x0b \x01(\x03\"\xda\x01\n\x0ePrimitiveProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07op_type\x18\x02 \x01(\t\x12*\n\tattribute\x18\x03 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x15\n\rinstance_name\x18\x04 \x01(\t\x12\x33\n\tprim_type\x18\x05 \x01(\x0e\x32 .mind_ir.PrimitiveProto.PrimType\"1\n\x08PrimType\x12\r\n\tPRIMITIVE\x10\x01\x12\x16\n\x12PRIMITIVE_FUNCTION\x10\x02*R\n\x07Version\x12\x14\n\x10IR_VERSION_START\x10\x00\x12\x0e\n\nIR_VERSION\x10\x01\x12!\n\x1dIR_VERSION_WITH_PRIM_FUNCTION\x10\x02'
23
+ serialized_pb=b'\n\rmind_ir.proto\x12\x07mind_ir\"\x88\t\n\x0e\x41ttributeProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\t\n\x01\x66\x18\x02 \x01(\x02\x12\t\n\x01i\x18\x03 \x01(\x03\x12\t\n\x01\x64\x18\x04 \x01(\x01\x12\t\n\x01s\x18\x05 \x01(\x0c\x12\x1f\n\x01t\x18\x06 \x01(\x0b\x32\x14.mind_ir.TensorProto\x12\x1e\n\x01g\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12\x0e\n\x06\x66loats\x18\x08 \x03(\x02\x12\x0f\n\x07\x64oubles\x18\t \x03(\x01\x12\x0c\n\x04ints\x18\n \x03(\x03\x12\x0f\n\x07strings\x18\x0b \x03(\x0c\x12%\n\x07tensors\x18\x0c \x03(\x0b\x32\x14.mind_ir.TensorProto\x12#\n\x06graphs\x18\r \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x12\n\ndoc_string\x18\x0e \x01(\t\x12\x15\n\rref_attr_name\x18\x0f \x01(\t\x12\x33\n\x04type\x18\x10 \x01(\x0e\x32%.mind_ir.AttributeProto.AttributeType\x12\'\n\x06values\x18\x11 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x36\n\x08seq_info\x18\x12 \x01(\x0b\x32$.mind_ir.AttributeProto.SeqInfoProto\x12&\n\x07\x66unctor\x18\x13 \x01(\x0b\x32\x15.mind_ir.FunctorProto\x1aT\n\x0cSeqInfoProto\x12\x12\n\nis_dyn_len\x18\x01 \x01(\x08\x12\x30\n\x0ftuple_elem_item\x18\x02 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xaf\x04\n\rAttributeType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\n\n\x06TENSOR\x10\x11\x12\t\n\x05GRAPH\x10\x12\x12\x0b\n\x07TENSORS\x10\x13\x12\t\n\x05TUPLE\x10\x14\x12\x08\n\x04LIST\x10\x15\x12\x08\n\x04\x44ICT\x10\x16\x12\n\n\x06UMONAD\x10\x17\x12\x0b\n\x07IOMONAD\x10\x18\x12\x08\n\x04NONE\x10\x19\x12\x14\n\x10PRIMITIVECLOSURE\x10\x1a\x12\x14\n\x10\x46UNCGRAPHCLOSURE\x10\x1b\x12\x12\n\x0ePARTIALCLOSURE\x10\x1c\x12\x14\n\x10UNIONFUNCCLOSURE\x10\x1d\x12\x0e\n\nCSR_TENSOR\x10\x1e\x12\x0e\n\nCOO_TENSOR\x10\x1f\x12\x0e\n\nROW_TENSOR\x10 \x12\x0e\n\nCLASS_TYPE\x10!\x12\x0e\n\nNAME_SPACE\x10\"\x12\n\n\x06SYMBOL\x10#\x12\r\n\tTYPE_NULL\x10$\x12\x0e\n\nMAP_TENSOR\x10%\x12\x0b\n\x07\x46UNCTOR\x10&\x12\n\n\x06SCALAR\x10\'\"\x9d\x01\n\x0c\x46unctorProto\x12/\n\x04type\x18\x01 \x01(\x0e\x32!.mind_ir.FunctorProto.FunctorType\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\x06values\x18\x03 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"%\n\x0b\x46unctorType\x12\x16\n\x12SHAPE_CALC_FUNCTOR\x10\x01\"\x98\x01\n\x0eValueInfoProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12$\n\x06tensor\x18\x02 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x03 \x01(\t\x12\x12\n\ndenotation\x18\x04 \x01(\t\x12*\n\tattr_info\x18\x05 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xf3\x01\n\tNodeProto\x12\r\n\x05input\x18\x01 \x03(\t\x12\x0e\n\x06output\x18\x02 \x03(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12*\n\tattribute\x18\x05 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\x0e\n\x06\x64omain\x18\x07 \x01(\t\x12*\n\tnode_attr\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12,\n\x0bprimal_attr\x18\t \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xf8\x03\n\nModelProto\x12\x12\n\nir_version\x18\x01 \x01(\t\x12\x15\n\rproducer_name\x18\x02 \x01(\t\x12\x18\n\x10producer_version\x18\x03 \x01(\t\x12\x0e\n\x06\x64omain\x18\x04 \x01(\t\x12\x15\n\rmodel_version\x18\x05 \x01(\t\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\"\n\x05graph\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12&\n\tfunctions\x18\x08 \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x30\n\x0cpreprocessor\x18\t \x01(\x0b\x32\x1a.mind_ir.PreprocessorProto\x12\x15\n\rlittle_endian\x18\n \x01(\x08\x12(\n\x08parallel\x18\x0b \x01(\x0b\x32\x16.mind_ir.ParallelProto\x12+\n\nprimitives\x18\x0c \x03(\x0b\x32\x17.mind_ir.PrimitiveProto\x12\x17\n\x0fmind_ir_version\x18\r \x01(\x03\x12\x34\n\tuser_info\x18\x0e \x03(\x0b\x32!.mind_ir.ModelProto.UserInfoEntry\x1a/\n\rUserInfoEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\";\n\x11PreprocessorProto\x12&\n\x02op\x18\x01 \x03(\x0b\x32\x1a.mind_ir.PreprocessOpProto\"\x91\x01\n\x11PreprocessOpProto\x12\x15\n\rinput_columns\x18\x01 \x01(\t\x12\x16\n\x0eoutput_columns\x18\x02 \x01(\t\x12\x17\n\x0fproject_columns\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12\x12\n\noperations\x18\x05 \x01(\t\x12\x0f\n\x07offload\x18\x06 \x01(\x08\"\xd2\x02\n\nGraphProto\x12 \n\x04node\x18\x01 \x03(\x0b\x32\x12.mind_ir.NodeProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\tparameter\x18\x03 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x04 \x01(\t\x12&\n\x05input\x18\x05 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\'\n\x06output\x18\x06 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\x12\n\nbprop_hash\x18\x07 \x01(\t\x12*\n\tattribute\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x16\n\x0e\x62prop_filepath\x18\t \x01(\t\x12.\n\rmap_parameter\x18\n \x03(\x0b\x32\x17.mind_ir.MapTensorProto\"\xda\x07\n\x0bTensorProto\x12\x0c\n\x04\x64ims\x18\x01 \x03(\x03\x12\x11\n\tdata_type\x18\x02 \x01(\x05\x12\x12\n\nfloat_data\x18\x03 \x03(\x02\x12\x12\n\nint32_data\x18\x04 \x03(\x05\x12\x13\n\x0bstring_data\x18\x05 \x03(\x0c\x12\x12\n\nint64_data\x18\x06 \x03(\x03\x12\x0c\n\x04name\x18\x07 \x01(\t\x12\x12\n\ndoc_string\x18\x08 \x01(\t\x12\x10\n\x08raw_data\x18\t \x01(\x0c\x12\x13\n\x0b\x64ouble_data\x18\n \x03(\x01\x12\x13\n\x0buint64_data\x18\x0b \x03(\x04\x12=\n\rexternal_data\x18\x0c \x01(\x0b\x32&.mind_ir.TensorProto.ExternalDataProto\x12\x0f\n\x07ref_key\x18\r \x01(\t\x12\x10\n\x08min_dims\x18\x0e \x03(\x03\x12\x10\n\x08max_dims\x18\x0f \x03(\x03\x12>\n\x10\x63ompression_type\x18\x10 \x01(\x0e\x32$.mind_ir.TensorProto.CompressionType\x12:\n\x0cquant_params\x18\x11 \x03(\x0b\x32$.mind_ir.TensorProto.QuantParamProto\x1a\x45\n\x11\x45xternalDataProto\x12\x10\n\x08location\x18\x01 \x01(\t\x12\x0e\n\x06offset\x18\x02 \x01(\x03\x12\x0e\n\x06length\x18\x03 \x01(\x03\x1aV\n\x0fQuantParamProto\x12\x17\n\x0fquant_algo_name\x18\x01 \x02(\t\x12*\n\tattribute\x18\x02 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xf4\x01\n\x08\x44\x61taType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\x0b\n\x07\x46LOAT64\x10\x11\x12\x0b\n\x07QINT4X2\x10\x12\"u\n\x0f\x43ompressionType\x12\x12\n\x0eNO_COMPRESSION\x10\x00\x12\x0c\n\x08INDEXING\x10\x01\x12\n\n\x06SPARSE\x10\x02\x12\x07\n\x03\x46SE\x10\x03\x12\x0f\n\x0b\x42IT_PACKING\x10\x04\x12\x0b\n\x07\x46SE_INT\x10\x05\x12\r\n\tFSE_INFER\x10\x06\"\xd1\x01\n\x0eMapTensorProto\x12\x0c\n\x04name\x18\x01 \x02(\t\x12.\n\rdefault_value\x18\x02 \x02(\x0b\x32\x17.mind_ir.AttributeProto\x12(\n\nkey_tensor\x18\x03 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12*\n\x0cvalue_tensor\x18\x04 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12+\n\rstatus_tensor\x18\x05 \x02(\x0b\x32\x14.mind_ir.TensorProto\"5\n\rParallelProto\x12$\n\x06layout\x18\x01 \x03(\x0b\x32\x14.mind_ir.LayoutProto\"\xfd\x01\n\x0bLayoutProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1e\n\x16\x64\x65vice_arrangement_int\x18\x02 \x03(\x03\x12\x16\n\x0etensor_map_int\x18\x03 \x03(\x03\x12\x17\n\x0fslice_shape_int\x18\x04 \x03(\x03\x12\x12\n\nfield_size\x18\x05 \x01(\x03\x12\x15\n\runiform_split\x18\x06 \x01(\x08\x12\x17\n\x0fopt_shard_group\x18\x07 \x01(\t\x12\x17\n\x0fpipeline_shared\x18\x08 \x01(\x08\x12\x0f\n\x07is_send\x18\t \x01(\x08\x12\x11\n\tpeer_rank\x18\n \x01(\x03\x12\x0e\n\x06sr_tag\x18\x0b \x01(\x03\"\xda\x01\n\x0ePrimitiveProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07op_type\x18\x02 \x01(\t\x12*\n\tattribute\x18\x03 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x15\n\rinstance_name\x18\x04 \x01(\t\x12\x33\n\tprim_type\x18\x05 \x01(\x0e\x32 .mind_ir.PrimitiveProto.PrimType\"1\n\x08PrimType\x12\r\n\tPRIMITIVE\x10\x01\x12\x16\n\x12PRIMITIVE_FUNCTION\x10\x02*R\n\x07Version\x12\x14\n\x10IR_VERSION_START\x10\x00\x12\x0e\n\nIR_VERSION\x10\x01\x12!\n\x1dIR_VERSION_WITH_PRIM_FUNCTION\x10\x02'
24
24
  )
25
25
 
26
26
  _VERSION = _descriptor.EnumDescriptor(
@@ -48,8 +48,8 @@ _VERSION = _descriptor.EnumDescriptor(
48
48
  ],
49
49
  containing_type=None,
50
50
  serialized_options=None,
51
- serialized_start=4527,
52
- serialized_end=4609,
51
+ serialized_start=4540,
52
+ serialized_end=4622,
53
53
  )
54
54
  _sym_db.RegisterEnumDescriptor(_VERSION)
55
55
 
@@ -391,11 +391,16 @@ _TENSORPROTO_DATATYPE = _descriptor.EnumDescriptor(
391
391
  serialized_options=None,
392
392
  type=None,
393
393
  create_key=_descriptor._internal_create_key),
394
+ _descriptor.EnumValueDescriptor(
395
+ name='QINT4X2', index=18, number=18,
396
+ serialized_options=None,
397
+ type=None,
398
+ create_key=_descriptor._internal_create_key),
394
399
  ],
395
400
  containing_type=None,
396
401
  serialized_options=None,
397
402
  serialized_start=3431,
398
- serialized_end=3662,
403
+ serialized_end=3675,
399
404
  )
400
405
  _sym_db.RegisterEnumDescriptor(_TENSORPROTO_DATATYPE)
401
406
 
@@ -444,8 +449,8 @@ _TENSORPROTO_COMPRESSIONTYPE = _descriptor.EnumDescriptor(
444
449
  ],
445
450
  containing_type=None,
446
451
  serialized_options=None,
447
- serialized_start=3664,
448
- serialized_end=3781,
452
+ serialized_start=3677,
453
+ serialized_end=3794,
449
454
  )
450
455
  _sym_db.RegisterEnumDescriptor(_TENSORPROTO_COMPRESSIONTYPE)
451
456
 
@@ -469,8 +474,8 @@ _PRIMITIVEPROTO_PRIMTYPE = _descriptor.EnumDescriptor(
469
474
  ],
470
475
  containing_type=None,
471
476
  serialized_options=None,
472
- serialized_start=4476,
473
- serialized_end=4525,
477
+ serialized_start=4489,
478
+ serialized_end=4538,
474
479
  )
475
480
  _sym_db.RegisterEnumDescriptor(_PRIMITIVEPROTO_PRIMTYPE)
476
481
 
@@ -1447,7 +1452,7 @@ _TENSORPROTO = _descriptor.Descriptor(
1447
1452
  oneofs=[
1448
1453
  ],
1449
1454
  serialized_start=2808,
1450
- serialized_end=3781,
1455
+ serialized_end=3794,
1451
1456
  )
1452
1457
 
1453
1458
 
@@ -1506,8 +1511,8 @@ _MAPTENSORPROTO = _descriptor.Descriptor(
1506
1511
  extension_ranges=[],
1507
1512
  oneofs=[
1508
1513
  ],
1509
- serialized_start=3784,
1510
- serialized_end=3993,
1514
+ serialized_start=3797,
1515
+ serialized_end=4006,
1511
1516
  )
1512
1517
 
1513
1518
 
@@ -1538,8 +1543,8 @@ _PARALLELPROTO = _descriptor.Descriptor(
1538
1543
  extension_ranges=[],
1539
1544
  oneofs=[
1540
1545
  ],
1541
- serialized_start=3995,
1542
- serialized_end=4048,
1546
+ serialized_start=4008,
1547
+ serialized_end=4061,
1543
1548
  )
1544
1549
 
1545
1550
 
@@ -1640,8 +1645,8 @@ _LAYOUTPROTO = _descriptor.Descriptor(
1640
1645
  extension_ranges=[],
1641
1646
  oneofs=[
1642
1647
  ],
1643
- serialized_start=4051,
1644
- serialized_end=4304,
1648
+ serialized_start=4064,
1649
+ serialized_end=4317,
1645
1650
  )
1646
1651
 
1647
1652
 
@@ -1701,8 +1706,8 @@ _PRIMITIVEPROTO = _descriptor.Descriptor(
1701
1706
  extension_ranges=[],
1702
1707
  oneofs=[
1703
1708
  ],
1704
- serialized_start=4307,
1705
- serialized_end=4525,
1709
+ serialized_start=4320,
1710
+ serialized_end=4538,
1706
1711
  )
1707
1712
 
1708
1713
  _ATTRIBUTEPROTO_SEQINFOPROTO.fields_by_name['tuple_elem_item'].message_type = _ATTRIBUTEPROTO
mindspore/train/model.py CHANGED
@@ -190,7 +190,7 @@ class Model:
190
190
  >>> from mindspore.train import Model
191
191
  >>>
192
192
  >>> # Define the network structure of LeNet5. Refer to
193
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
193
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
194
194
  >>> net = LeNet5()
195
195
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
196
196
  >>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
@@ -199,7 +199,7 @@ class Model:
199
199
  >>> model.predict_network
200
200
  >>> model.eval_network
201
201
  >>> # Create the dataset taking MNIST as an example. Refer to
202
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
202
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
203
203
  >>> dataset = create_dataset()
204
204
  >>> model.train(2, dataset)
205
205
  """
@@ -1022,10 +1022,10 @@ class Model:
1022
1022
  >>> from mindspore.train import Model
1023
1023
  >>>
1024
1024
  >>> # Create the dataset taking MNIST as an example. Refer to
1025
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
1025
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
1026
1026
  >>> dataset = create_dataset()
1027
1027
  >>> # Define the network structure of LeNet5. Refer to
1028
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
1028
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
1029
1029
  >>> net = LeNet5()
1030
1030
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
1031
1031
  >>> loss_scale_manager = ms.FixedLossScaleManager(1024., False)
@@ -1175,11 +1175,11 @@ class Model:
1175
1175
  >>> from mindspore.train import Model
1176
1176
  >>>
1177
1177
  >>> # Create the dataset taking MNIST as an example. Refer to
1178
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
1178
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
1179
1179
  >>> train_dataset = create_dataset("train")
1180
1180
  >>> valid_dataset = create_dataset("test")
1181
1181
  >>> # Define the network structure of LeNet5. Refer to
1182
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
1182
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
1183
1183
  >>> net = LeNet5()
1184
1184
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
1185
1185
  >>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
@@ -1188,7 +1188,7 @@ class Model:
1188
1188
 
1189
1189
  Tutorial Examples:
1190
1190
  - `Advanced Encapsulation: Model - Train and Save Model
1191
- <https://www.mindspore.cn/tutorials/en/r2.3.q1/advanced/model.html#training-and-saving-model>`_
1191
+ <https://www.mindspore.cn/tutorials/en/master/advanced/model.html#training-and-saving-model>`_
1192
1192
  """
1193
1193
  device_target = context.get_context("device_target")
1194
1194
  if _is_ps_mode() and not _cache_enable() and (device_target in ["Ascend", "CPU"]) and dataset_sink_mode:
@@ -1268,10 +1268,10 @@ class Model:
1268
1268
  >>> from mindspore.amp import FixedLossScaleManager
1269
1269
  >>>
1270
1270
  >>> # Create the dataset taking MNIST as an example. Refer to
1271
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
1271
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
1272
1272
  >>> dataset = create_dataset()
1273
1273
  >>> # Define the network structure of LeNet5. Refer to
1274
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
1274
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
1275
1275
  >>> net = LeNet5()
1276
1276
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
1277
1277
  >>> loss_scale_manager = FixedLossScaleManager()
@@ -1444,10 +1444,10 @@ class Model:
1444
1444
  >>> from mindspore.train import Model
1445
1445
  >>>
1446
1446
  >>> # Create the dataset taking MNIST as an example. Refer to
1447
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
1447
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
1448
1448
  >>> dataset = create_dataset()
1449
1449
  >>> # Define the network structure of LeNet5. Refer to
1450
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
1450
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
1451
1451
  >>> net = LeNet5()
1452
1452
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
1453
1453
  >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
@@ -1455,7 +1455,7 @@ class Model:
1455
1455
 
1456
1456
  Tutorial Examples:
1457
1457
  - `Advanced Encapsulation: Model - Train and Save Model
1458
- <https://www.mindspore.cn/tutorials/en/r2.3.q1/advanced/model.html#training-and-saving-model>`_
1458
+ <https://www.mindspore.cn/tutorials/en/master/advanced/model.html#training-and-saving-model>`_
1459
1459
  """
1460
1460
  valid_dataset = self._prepare_obf_dataset(valid_dataset)
1461
1461
  dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
@@ -1701,7 +1701,7 @@ class Model:
1701
1701
  >>>
1702
1702
  >>> input_data = Tensor(np.random.randint(0, 255, [1, 1, 32, 32]), mindspore.float32)
1703
1703
  >>> # Define the network structure of LeNet5. Refer to
1704
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
1704
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
1705
1705
  >>> model = Model(LeNet5())
1706
1706
  >>> result = model.predict(input_data)
1707
1707
  """
@@ -1809,10 +1809,10 @@ class Model:
1809
1809
  >>> ms.set_auto_parallel_context(parallel_mode=ms.ParallelMode.SEMI_AUTO_PARALLEL)
1810
1810
  >>>
1811
1811
  >>> # Create the dataset taking MNIST as an example. Refer to
1812
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
1812
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
1813
1813
  >>> dataset = create_dataset()
1814
1814
  >>> # Define the network structure of LeNet5. Refer to
1815
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
1815
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
1816
1816
  >>> net = LeNet5()
1817
1817
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
1818
1818
  >>> loss_scale_manager = ms.FixedLossScaleManager()