mindspore 2.3.0rc1__cp37-none-any.whl → 2.3.0rc2__cp37-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (316) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +1 -1
  3. mindspore/_akg/akg/utils/tbe_codegen_utils.py +13 -3
  4. mindspore/_c_dataengine.cpython-37m-aarch64-linux-gnu.so +0 -0
  5. mindspore/_c_expression.cpython-37m-aarch64-linux-gnu.so +0 -0
  6. mindspore/_checkparam.py +20 -0
  7. mindspore/_extends/parse/parser.py +1 -1
  8. mindspore/_extends/parse/standard_method.py +6 -5
  9. mindspore/_mindspore_offline_debug.cpython-37m-aarch64-linux-gnu.so +0 -0
  10. mindspore/amp.py +5 -5
  11. mindspore/bin/cache_admin +0 -0
  12. mindspore/bin/cache_server +0 -0
  13. mindspore/boost/boost_cell_wrapper.py +1 -1
  14. mindspore/boost/group_loss_scale_manager.py +1 -1
  15. mindspore/common/__init__.py +4 -2
  16. mindspore/common/_register_for_recompute.py +48 -0
  17. mindspore/common/_stub_tensor.py +1 -0
  18. mindspore/common/api.py +56 -4
  19. mindspore/common/dtype.py +5 -3
  20. mindspore/common/dump.py +2 -2
  21. mindspore/common/hook_handle.py +51 -4
  22. mindspore/common/initializer.py +1 -1
  23. mindspore/common/jit_config.py +17 -6
  24. mindspore/common/parameter.py +7 -2
  25. mindspore/common/recompute.py +247 -0
  26. mindspore/common/sparse_tensor.py +2 -2
  27. mindspore/common/symbol.py +1 -1
  28. mindspore/common/tensor.py +74 -36
  29. mindspore/communication/__init__.py +3 -3
  30. mindspore/communication/management.py +30 -30
  31. mindspore/context.py +28 -15
  32. mindspore/dataset/__init__.py +5 -5
  33. mindspore/dataset/audio/__init__.py +2 -2
  34. mindspore/dataset/audio/transforms.py +51 -51
  35. mindspore/dataset/callback/ds_callback.py +2 -2
  36. mindspore/dataset/engine/cache_client.py +1 -1
  37. mindspore/dataset/engine/datasets.py +3 -3
  38. mindspore/dataset/engine/datasets_audio.py +14 -14
  39. mindspore/dataset/engine/datasets_standard_format.py +3 -3
  40. mindspore/dataset/engine/datasets_text.py +38 -38
  41. mindspore/dataset/engine/datasets_user_defined.py +3 -3
  42. mindspore/dataset/engine/datasets_vision.py +68 -68
  43. mindspore/dataset/text/__init__.py +3 -3
  44. mindspore/dataset/text/transforms.py +26 -26
  45. mindspore/dataset/transforms/__init__.py +1 -1
  46. mindspore/dataset/vision/__init__.py +3 -3
  47. mindspore/dataset/vision/transforms.py +92 -92
  48. mindspore/dataset/vision/utils.py +1 -1
  49. mindspore/experimental/optim/adadelta.py +2 -2
  50. mindspore/experimental/optim/adagrad.py +2 -2
  51. mindspore/experimental/optim/adam.py +2 -2
  52. mindspore/experimental/optim/adamax.py +2 -2
  53. mindspore/experimental/optim/adamw.py +2 -2
  54. mindspore/experimental/optim/asgd.py +2 -2
  55. mindspore/experimental/optim/lr_scheduler.py +24 -20
  56. mindspore/experimental/optim/nadam.py +2 -2
  57. mindspore/experimental/optim/optimizer.py +1 -1
  58. mindspore/experimental/optim/radam.py +2 -2
  59. mindspore/experimental/optim/rmsprop.py +2 -2
  60. mindspore/experimental/optim/rprop.py +2 -2
  61. mindspore/experimental/optim/sgd.py +2 -2
  62. mindspore/hal/stream.py +2 -0
  63. mindspore/include/mindapi/base/types.h +5 -0
  64. mindspore/lib/libdnnl.so.2 +0 -0
  65. mindspore/lib/libmindspore.so +0 -0
  66. mindspore/lib/libmindspore_backend.so +0 -0
  67. mindspore/lib/libmindspore_common.so +0 -0
  68. mindspore/lib/libmindspore_core.so +0 -0
  69. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  70. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  71. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  72. mindspore/lib/libmindspore_shared_lib.so +0 -0
  73. mindspore/lib/libopencv_core.so.4.5 +0 -0
  74. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  75. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +6 -6
  76. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  77. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  78. mindspore/lib/plugin/ascend/liblowlatency_collective.so +0 -0
  79. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  80. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/DeviceBin +0 -0
  81. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/PkgInspect +0 -0
  82. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/op_man +0 -0
  83. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/device/ascend910b/bin/ascend910b.bin +101787 -98559
  84. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_cann_host.so +0 -0
  85. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_host.so +0 -0
  86. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/base/op_register.h +2 -2
  87. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/mix.h +8 -1
  88. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/norm.h +5 -3
  89. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/reduce.h +2 -2
  90. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/backend/backend.h +3 -3
  91. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/backend/rtbackend.h +3 -3
  92. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/base/types.h +0 -1
  93. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/module/module.h +3 -3
  94. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/svector/svector.h +3 -2
  95. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops.so +0 -0
  96. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops_static.a +0 -0
  97. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/tiling/add_tiling.h +9 -9
  98. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/apply_rotary_pos_emb_impl.h +2 -6
  99. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb.h +2 -2
  100. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_base.h +460 -0
  101. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_bf16.h +217 -0
  102. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp16.h +116 -0
  103. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_tiling.h +16 -24
  104. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_value.h +27 -0
  105. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/asdop/asd_op_impl.h +0 -4
  106. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/FlashAttentionScore_impl.h → flash_attention_score/flash_attention_score_impl.h} +2 -1
  107. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/bs_attention_tiling.h → flash_attention_score/flash_attention_score_tiling.h} +15 -19
  108. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/gelu/tiling/gelu_tiling.h +7 -9
  109. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/lccl/lccl_wrapper.h +58 -0
  110. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/matmul_impl.h +19 -8
  111. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/pp_matmul_common_tiling.h +18 -8
  112. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/pp_matmul_info.h +7 -4
  113. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/tiling_data.h +44 -6
  114. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/tiling_utils.h +65 -0
  115. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/matmul_stridedslice_fusion_impl.h +10 -6
  116. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_param.h +4 -1
  117. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/kernel/paged_attention_mix_hwsync.h +41 -0
  118. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/PagedAttention_impl.h → paged_attention/paged_attention_impl.h} +1 -1
  119. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_tiling.h +63 -0
  120. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/add_param.h +2 -2
  121. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention_param.h → param/attention_param.h} +11 -2
  122. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_ext_param.h +37 -0
  123. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/sub_param.h +45 -0
  124. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/reshape_and_cache/reshape_and_cache_tiling.h +1 -2
  125. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm.h +23 -0
  126. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_base.h +175 -0
  127. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_normal.h +276 -0
  128. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_split_d.h +280 -0
  129. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/tiling_data.h +35 -0
  130. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/rms_norm_impl.h +45 -0
  131. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/kernel/sub_kernel.h +20 -0
  132. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_impl.h +47 -0
  133. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_tiling.h +25 -0
  134. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/matmul_table.h +323 -23
  135. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/types.h +15 -4
  136. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_tiling.h +8 -0
  137. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libAdd_impl.so +0 -0
  138. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libSub_impl.so +0 -0
  139. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_layernorm_impl.so +0 -0
  140. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_impl.so +0 -0
  141. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_impl.so +0 -0
  142. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcast_impl.so +0 -0
  143. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libgelu_impl.so +0 -0
  144. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_impl.so +0 -0
  145. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_stridedslice_fusion_impl.so +0 -0
  146. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_kernels_internal.so +0 -0
  147. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libnot_equal_impl.so +0 -0
  148. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_impl.so +0 -0
  149. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/librms_norm_impl.so +0 -0
  150. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
  151. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
  152. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_full_mix.o +0 -0
  153. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
  154. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
  155. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
  156. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_full_mix.o +0 -0
  157. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
  158. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bnsd_full_mix.o +0 -0
  159. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bsh_full_mix.o +0 -0
  160. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bnsd_full_mix.o +0 -0
  161. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bsh_full_mix.o +0 -0
  162. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal.h +22 -0
  163. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal_comm.h +70 -0
  164. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal_types.h +103 -0
  165. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lccl.h +47 -0
  166. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lccl_wrapper.h +58 -0
  167. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcoc.h +154 -0
  168. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblcal.so +0 -0
  169. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblccl_wrapper.so +0 -0
  170. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  171. mindspore/log.py +2 -2
  172. mindspore/mint/__init__.py +457 -0
  173. mindspore/mint/nn/__init__.py +430 -0
  174. mindspore/mint/nn/functional.py +424 -0
  175. mindspore/mint/optim/__init__.py +24 -0
  176. mindspore/mint/optim/adamw.py +186 -0
  177. mindspore/multiprocessing/__init__.py +4 -0
  178. mindspore/nn/__init__.py +3 -0
  179. mindspore/nn/cell.py +51 -47
  180. mindspore/nn/extend/__init__.py +29 -0
  181. mindspore/nn/extend/basic.py +140 -0
  182. mindspore/nn/extend/embedding.py +143 -0
  183. mindspore/nn/extend/layer/__init__.py +27 -0
  184. mindspore/nn/extend/layer/normalization.py +107 -0
  185. mindspore/nn/extend/pooling.py +117 -0
  186. mindspore/nn/generator.py +297 -0
  187. mindspore/nn/layer/basic.py +109 -1
  188. mindspore/nn/layer/container.py +2 -2
  189. mindspore/nn/layer/conv.py +6 -6
  190. mindspore/nn/layer/embedding.py +1 -1
  191. mindspore/nn/layer/normalization.py +21 -43
  192. mindspore/nn/layer/padding.py +4 -0
  193. mindspore/nn/optim/ada_grad.py +2 -2
  194. mindspore/nn/optim/adadelta.py +1 -1
  195. mindspore/nn/optim/adafactor.py +1 -1
  196. mindspore/nn/optim/adam.py +7 -7
  197. mindspore/nn/optim/adamax.py +2 -2
  198. mindspore/nn/optim/adasum.py +2 -2
  199. mindspore/nn/optim/asgd.py +2 -2
  200. mindspore/nn/optim/ftrl.py +1 -1
  201. mindspore/nn/optim/lamb.py +3 -3
  202. mindspore/nn/optim/lars.py +1 -1
  203. mindspore/nn/optim/lazyadam.py +2 -2
  204. mindspore/nn/optim/momentum.py +2 -2
  205. mindspore/nn/optim/optimizer.py +2 -2
  206. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  207. mindspore/nn/optim/rmsprop.py +2 -2
  208. mindspore/nn/optim/rprop.py +2 -2
  209. mindspore/nn/optim/sgd.py +2 -2
  210. mindspore/nn/optim/thor.py +2 -2
  211. mindspore/nn/wrap/cell_wrapper.py +9 -9
  212. mindspore/nn/wrap/grad_reducer.py +5 -5
  213. mindspore/ops/_grad_experimental/grad_comm_ops.py +4 -2
  214. mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -2
  215. mindspore/ops/_vmap/vmap_math_ops.py +27 -8
  216. mindspore/ops/_vmap/vmap_nn_ops.py +66 -8
  217. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +73 -1
  218. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +12 -3
  219. mindspore/ops/auto_generate/gen_arg_handler.py +24 -0
  220. mindspore/ops/auto_generate/gen_extend_func.py +274 -0
  221. mindspore/ops/auto_generate/gen_ops_def.py +889 -22
  222. mindspore/ops/auto_generate/gen_ops_prim.py +3541 -253
  223. mindspore/ops/auto_generate/pyboost_inner_prim.py +282 -0
  224. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
  225. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +9 -0
  226. mindspore/ops/extend/__init__.py +9 -1
  227. mindspore/ops/extend/array_func.py +134 -27
  228. mindspore/ops/extend/math_func.py +3 -3
  229. mindspore/ops/extend/nn_func.py +363 -2
  230. mindspore/ops/function/__init__.py +19 -2
  231. mindspore/ops/function/array_func.py +463 -439
  232. mindspore/ops/function/clip_func.py +7 -18
  233. mindspore/ops/function/grad/grad_func.py +5 -5
  234. mindspore/ops/function/linalg_func.py +4 -4
  235. mindspore/ops/function/math_func.py +260 -243
  236. mindspore/ops/function/nn_func.py +825 -62
  237. mindspore/ops/function/random_func.py +73 -4
  238. mindspore/ops/function/sparse_unary_func.py +1 -1
  239. mindspore/ops/function/vmap_func.py +1 -1
  240. mindspore/ops/functional.py +2 -2
  241. mindspore/ops/op_info_register.py +1 -31
  242. mindspore/ops/operations/__init__.py +2 -3
  243. mindspore/ops/operations/_grad_ops.py +2 -107
  244. mindspore/ops/operations/_inner_ops.py +5 -5
  245. mindspore/ops/operations/_sequence_ops.py +2 -2
  246. mindspore/ops/operations/array_ops.py +11 -233
  247. mindspore/ops/operations/comm_ops.py +32 -32
  248. mindspore/ops/operations/custom_ops.py +7 -89
  249. mindspore/ops/operations/manually_defined/ops_def.py +329 -4
  250. mindspore/ops/operations/math_ops.py +13 -163
  251. mindspore/ops/operations/nn_ops.py +9 -316
  252. mindspore/ops/operations/random_ops.py +1 -1
  253. mindspore/ops/operations/sparse_ops.py +3 -3
  254. mindspore/ops/primitive.py +2 -2
  255. mindspore/ops_generate/arg_dtype_cast.py +12 -3
  256. mindspore/ops_generate/arg_handler.py +24 -0
  257. mindspore/ops_generate/gen_ops_inner_prim.py +2 -0
  258. mindspore/ops_generate/gen_pyboost_func.py +13 -6
  259. mindspore/ops_generate/pyboost_utils.py +2 -17
  260. mindspore/parallel/__init__.py +3 -2
  261. mindspore/parallel/_auto_parallel_context.py +106 -1
  262. mindspore/parallel/_parallel_serialization.py +34 -2
  263. mindspore/parallel/_utils.py +16 -0
  264. mindspore/parallel/algo_parameter_config.py +4 -4
  265. mindspore/parallel/checkpoint_transform.py +249 -77
  266. mindspore/parallel/cluster/process_entity/_api.py +1 -1
  267. mindspore/parallel/parameter_broadcast.py +1 -1
  268. mindspore/parallel/shard.py +1 -1
  269. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +1 -0
  270. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +17 -5
  271. mindspore/profiler/parser/ascend_msprof_exporter.py +3 -3
  272. mindspore/profiler/parser/ascend_msprof_generator.py +10 -3
  273. mindspore/profiler/parser/ascend_op_generator.py +26 -9
  274. mindspore/profiler/parser/ascend_timeline_generator.py +7 -4
  275. mindspore/profiler/parser/profiler_info.py +11 -1
  276. mindspore/profiler/profiling.py +13 -5
  277. mindspore/rewrite/api/node.py +12 -12
  278. mindspore/rewrite/api/symbol_tree.py +11 -11
  279. mindspore/run_check/_check_version.py +1 -1
  280. mindspore/safeguard/rewrite_obfuscation.py +2 -2
  281. mindspore/train/amp.py +4 -4
  282. mindspore/train/anf_ir_pb2.py +8 -2
  283. mindspore/train/callback/_backup_and_restore.py +2 -2
  284. mindspore/train/callback/_callback.py +4 -4
  285. mindspore/train/callback/_checkpoint.py +2 -2
  286. mindspore/train/callback/_early_stop.py +2 -2
  287. mindspore/train/callback/_landscape.py +4 -4
  288. mindspore/train/callback/_loss_monitor.py +2 -2
  289. mindspore/train/callback/_on_request_exit.py +2 -2
  290. mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
  291. mindspore/train/callback/_summary_collector.py +2 -2
  292. mindspore/train/callback/_time_monitor.py +2 -2
  293. mindspore/train/dataset_helper.py +8 -3
  294. mindspore/train/loss_scale_manager.py +2 -2
  295. mindspore/train/metrics/metric.py +3 -3
  296. mindspore/train/mind_ir_pb2.py +22 -17
  297. mindspore/train/model.py +15 -15
  298. mindspore/train/serialization.py +18 -18
  299. mindspore/train/summary/summary_record.py +7 -7
  300. mindspore/train/train_thor/convert_utils.py +3 -3
  301. mindspore/version.py +1 -1
  302. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +1 -1
  303. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +307 -260
  304. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/tiling_data.h +0 -59
  305. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_bf16_BNSD_mix.o +0 -0
  306. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_bf16_BSH_mix.o +0 -0
  307. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_fp16_BNSD_mix.o +0 -0
  308. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_fp16_BSH_mix.o +0 -0
  309. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_bf16_BNSD_mix.o +0 -0
  310. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_bf16_BSH_mix.o +0 -0
  311. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_fp16_BNSD_mix.o +0 -0
  312. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_fp16_BSH_mix.o +0 -0
  313. /mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/bs_attention_mix_hwsync.h → flash_attention_score/kernel/flash_attention_score_mix_hwsync.h} +0 -0
  314. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
  315. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +0 -0
  316. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -67,7 +67,9 @@ class AscendOPGenerator:
67
67
  """
68
68
  Analyse op summary op statistic generate op data.
69
69
  """
70
-
70
+ if isinstance(self.op_summary, np.ndarray) and self.op_summary.shape[0] == 0 or \
71
+ not isinstance(self.op_summary, np.ndarray) and not self.op_summary:
72
+ return
71
73
  self._combine_op_and_kernel(self.op_summary, self.launch_ops)
72
74
  # aicore intermediation detail
73
75
  self.op_detail = self._parse_op_detail(self.op_summary)
@@ -97,7 +99,7 @@ class AscendOPGenerator:
97
99
  output_timeline_data_path : output_timeline_data.txt path
98
100
  """
99
101
  # aicore intermediation detail
100
- if self.op_detail.shape[0] != 0:
102
+ if isinstance(self.op_detail, np.ndarray) and self.op_detail.shape[0] != 0:
101
103
  try:
102
104
  with os.fdopen(os.open(aicore_intermediate_detail_path,
103
105
  os.O_WRONLY | os.O_CREAT | os.O_TRUNC, stat.S_IWUSR | stat.S_IRUSR),
@@ -112,7 +114,7 @@ class AscendOPGenerator:
112
114
  os.chmod(aicore_intermediate_detail_path, stat.S_IREAD | stat.S_IWRITE)
113
115
 
114
116
  # aicore intermediation type
115
- if self.op_type.shape[0] != 0:
117
+ if isinstance(self.op_type, np.ndarray) and self.op_type.shape[0] != 0:
116
118
  try:
117
119
  with os.fdopen(os.open(aicore_intermediate_type_path,
118
120
  os.O_WRONLY | os.O_CREAT | os.O_TRUNC, stat.S_IWUSR | stat.S_IRUSR),
@@ -127,7 +129,7 @@ class AscendOPGenerator:
127
129
  os.chmod(aicore_intermediate_type_path, stat.S_IREAD | stat.S_IWRITE)
128
130
 
129
131
  # aicpu_intermediation
130
- if self.aicpu_detail.shape[0] != 0:
132
+ if isinstance(self.aicpu_detail, np.ndarray) and self.aicpu_detail.shape[0] != 0:
131
133
  try:
132
134
  with os.fdopen(os.open(aicpu_intermediate_detail_path,
133
135
  os.O_WRONLY | os.O_CREAT | os.O_TRUNC, stat.S_IWUSR | stat.S_IRUSR),
@@ -142,7 +144,7 @@ class AscendOPGenerator:
142
144
  os.chmod(aicpu_intermediate_detail_path, stat.S_IREAD | stat.S_IWRITE)
143
145
 
144
146
  # framwork_raw
145
- if self.framework_raw.shape[0] != 0:
147
+ if isinstance(self.framework_raw, np.ndarray) and self.framework_raw.shape[0] != 0:
146
148
  try:
147
149
  with os.fdopen(os.open(framework_raw_path,
148
150
  os.O_WRONLY | os.O_CREAT | os.O_TRUNC, stat.S_IWUSR | stat.S_IRUSR),
@@ -157,7 +159,8 @@ class AscendOPGenerator:
157
159
  os.chmod(framework_raw_path, stat.S_IREAD | stat.S_IWRITE)
158
160
 
159
161
  # output_timeline_data
160
- if self.output_timeline_data.shape[0] != 0 and output_timeline_data_path:
162
+ if isinstance(self.output_timeline_data, np.ndarray) and self.output_timeline_data.size and \
163
+ self.output_timeline_data.shape[0] != 0 and output_timeline_data_path:
161
164
  try:
162
165
  with os.fdopen(os.open(output_timeline_data_path,
163
166
  os.O_WRONLY | os.O_CREAT | os.O_TRUNC, stat.S_IWUSR | stat.S_IRUSR),
@@ -173,6 +176,9 @@ class AscendOPGenerator:
173
176
 
174
177
  def _combine_op_and_kernel(self, op_summary, launch_ops):
175
178
  """update op name, kernel name etc."""
179
+ if isinstance(op_summary, np.ndarray) and op_summary.shape[0] == 0 or not isinstance(op_summary, np.ndarray) \
180
+ and not op_summary:
181
+ return
176
182
  self._full_kernel_name = op_summary['Op Name'].copy()
177
183
  self._op_name = op_summary['Op Name'].copy()
178
184
  self._kernel_name = np.array(
@@ -199,6 +205,9 @@ class AscendOPGenerator:
199
205
  Args:
200
206
  op_summary(DataFrame): op summary data.
201
207
  """
208
+ if isinstance(op_summary, np.ndarray) and op_summary.shape[0] == 0 or \
209
+ not isinstance(op_summary, np.ndarray) and not op_summary:
210
+ return None
202
211
  if self.aclnn_status:
203
212
  op_detail = np.empty((len(op_summary),), dtype=self.op_detail_dt)
204
213
  op_detail['task_type'] = op_summary['Task Type']
@@ -226,7 +235,9 @@ class AscendOPGenerator:
226
235
  Args:
227
236
  op_statistic(DataFrame): op statistic data.
228
237
  """
229
-
238
+ if isinstance(op_statistic, np.ndarray) and op_statistic.shape[0] == 0 or \
239
+ not isinstance(op_statistic, np.ndarray) and not op_statistic:
240
+ return None
230
241
  groups, _, inverse, _ = np.unique(op_statistic['Op Type'], return_index=True, return_inverse=True,
231
242
  return_counts=True)
232
243
 
@@ -246,7 +257,9 @@ class AscendOPGenerator:
246
257
  Args:
247
258
  op_summary(DataFrame): op summary data.
248
259
  """
249
-
260
+ if isinstance(op_summary, np.ndarray) and op_summary.shape[0] == 0 or \
261
+ not isinstance(op_summary, np.ndarray) and not op_summary:
262
+ return None
250
263
  op_summary = op_summary[op_summary['Task Type'] == 'AI_CPU']
251
264
 
252
265
  aicpu_detail = np.empty((len(op_summary),), dtype=self.aicpu_detail_dt)
@@ -271,6 +284,8 @@ class AscendOPGenerator:
271
284
 
272
285
  def op_info_analyse(row):
273
286
  """generate op info data"""
287
+ if not row['Input Shapes']:
288
+ return ""
274
289
  input_shapes = row['Input Shapes'].replace('"', '').split(';')
275
290
  input_data_types = row['Input Data Types'].replace('_', '').split(';')
276
291
  input_formats = row['Input Formats'].replace('_', '').split(';')
@@ -295,7 +310,9 @@ class AscendOPGenerator:
295
310
  'shape': output_shapes[i]
296
311
  }
297
312
  return json.dumps(op_info)
298
-
313
+ if isinstance(op_summary, np.ndarray) and op_summary.shape[0] == 0 or \
314
+ not isinstance(op_summary, np.ndarray) and not op_summary:
315
+ return None
299
316
  if self.dynamic_status or self.aclnn_status:
300
317
  index = list(range(op_summary.shape[0]))
301
318
  else:
@@ -37,12 +37,13 @@ class AscendTimelineGenerator(BaseTimelineGenerator):
37
37
  scope_index = 1
38
38
  cpu_index = 2
39
39
 
40
- def __init__(self, profiling_dir, source_path, mindstudio_profiler_output, rank_id, mode):
40
+ def __init__(self, profiling_dir, source_path, mindstudio_profiler_output, rank_id, rank_size, mode):
41
41
  super().__init__(DeviceTarget.ASCEND.value, mode)
42
42
  self._profiling_dir = profiling_dir
43
43
  self._source_path = source_path
44
44
  self._mindstudio_profiler_output = mindstudio_profiler_output
45
45
  self._rank_id = rank_id
46
+ self._rank_size = rank_size
46
47
  self._timeline_display_filename = self._timeline_display_filename.format(rank_id)
47
48
  self._timeline_summary_filename = self._timeline_summary_filename.format(rank_id)
48
49
  self._timeline_data = []
@@ -63,7 +64,9 @@ class AscendTimelineGenerator(BaseTimelineGenerator):
63
64
  """
64
65
 
65
66
  logger.info('parse cluster data...')
66
-
67
+ if isinstance(op_summary, np.ndarray) and op_summary.shape[0] == 0 or \
68
+ not isinstance(op_summary, np.ndarray) and not op_summary:
69
+ return
67
70
  timeline_list = op_summary[~np.isin(op_summary['Task Type'], ['AI_CPU', 'HCCL'])][
68
71
  ['Op Name', 'Stream ID', 'Task Start Time', 'Task Duration']]
69
72
 
@@ -151,6 +154,7 @@ class AscendTimelineGenerator(BaseTimelineGenerator):
151
154
  # get msprof data
152
155
  msprof_file_name = fr'{self._mindstudio_profiler_output}/msprof_*.json'
153
156
  file_list_msprof = glob.glob(msprof_file_name)
157
+ msprof_timeline = []
154
158
  if not file_list_msprof:
155
159
  logger.error('Could not find msprof_*.json file in %s', self._mindstudio_profiler_output)
156
160
  else:
@@ -179,8 +183,7 @@ class AscendTimelineGenerator(BaseTimelineGenerator):
179
183
  fwk_file_path = fr'{self._profiling_dir}/{self._framework_dir}/{oprange_name}'
180
184
  if os.path.exists(fwk_file_path):
181
185
  # It is faster not to submit to the pool
182
- msprof_side_data = msprof_timeline
183
- result = self._parse_fwk_device_data(msprof_side_data)
186
+ result = self._parse_fwk_device_data(msprof_timeline)
184
187
  timeline_data.extend(result.get("trace_data", []))
185
188
  self._kernel_events = result.get("kernels", [])
186
189
 
@@ -92,9 +92,19 @@ class ProfilerInfo:
92
92
 
93
93
  @staticmethod
94
94
  def set_export_flag(flag):
95
- """Set the graph id list."""
95
+ """Set whether all-export or not."""
96
96
  ProfilerInfo._profiler_info_dict["all_export"] = flag
97
97
 
98
+ @staticmethod
99
+ def set_system_time(sys_time):
100
+ """Set system time."""
101
+ ProfilerInfo._profiler_info_dict["system_time"] = sys_time
102
+
103
+ @staticmethod
104
+ def set_system_cnt(sys_cnt):
105
+ """Set system cnt."""
106
+ ProfilerInfo._profiler_info_dict["system_cnt"] = sys_cnt
107
+
98
108
  @staticmethod
99
109
  def set_diff_time(diff_time):
100
110
  """synchronize timestamps between different devices"""
@@ -662,12 +662,12 @@ class Profiler:
662
662
  >>> # Profiler init.
663
663
  >>> profiler = Profiler()
664
664
  >>> # Train Model or eval Model, taking LeNet5 as an example.
665
- >>> # Refer to https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
665
+ >>> # Refer to https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
666
666
  >>> net = LeNet5()
667
667
  >>> optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
668
668
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
669
669
  >>> # Create the dataset taking MNIST as an example.
670
- >>> # Refer to https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
670
+ >>> # Refer to https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
671
671
  >>> dataloader = create_dataset()
672
672
  >>> model = Model(net, loss, optimizer)
673
673
  >>> model.train(5, dataloader, dataset_sink_mode=False)
@@ -742,7 +742,6 @@ class Profiler:
742
742
  stage_num = get_auto_parallel_context("pipeline_stages")
743
743
 
744
744
  ProfilerInfo.set_parallel_info(parallel_mode, stage_num)
745
- ProfilerInfo.set_rank_size(self._rank_size)
746
745
  ProfilerInfo.set_heterogeneous(self._is_heterogeneous)
747
746
  if offline_path:
748
747
  ProfilerInfo.set_analyse_start_time(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
@@ -842,6 +841,8 @@ class Profiler:
842
841
  self._md_profiler.start()
843
842
  self._ascend_graph_start()
844
843
  ProfilerInfo.set_profiling_start_time(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
844
+ ProfilerInfo.set_system_time(int(c_expression.get_clock_time() * 1e3)) # cast us to ns
845
+ ProfilerInfo.set_system_cnt(c_expression.get_clock_syscnt())
845
846
 
846
847
  def stop(self):
847
848
  """
@@ -1134,6 +1135,7 @@ class Profiler:
1134
1135
  self._rank_size = get_group_size()
1135
1136
  else:
1136
1137
  self._rank_size = int(os.getenv('RANK_SIZE', '1'))
1138
+ ProfilerInfo.set_rank_size(self._rank_size)
1137
1139
 
1138
1140
  if self._has_started:
1139
1141
  self.stop()
@@ -1252,7 +1254,7 @@ class Profiler:
1252
1254
  try:
1253
1255
  logger.info("Profiling: analyzing the timeline data")
1254
1256
  timeline_analyser = AscendTimelineGenerator(self._output_path, source_path, mindstudio_profiler_output,
1255
- self._rank_id, context.get_context('mode'))
1257
+ self._rank_id, self._rank_size, context.get_context('mode'))
1256
1258
  timeline_analyser.parse_cluster_data(op_summary, steptrace)
1257
1259
  timeline_analyser.parse_timeline_data(pretty=self._pretty_json)
1258
1260
  timeline_analyser.write_timeline_display()
@@ -1439,7 +1441,8 @@ class Profiler:
1439
1441
  key = name if name.startswith("hcom_") else (name, ts)
1440
1442
  launch_op = kernel_map.get(key)
1441
1443
  if not launch_op:
1442
- logger.warning(f"Failed to get launch operator for {name}!")
1444
+ if context.get_context("mode") == context.GRAPH_MODE or not name.startswith("aclnn"):
1445
+ logger.warning(f"Failed to get launch operator for {name}!")
1443
1446
  continue
1444
1447
  launch_ops[index] = launch_op.name
1445
1448
  return launch_ops
@@ -1467,6 +1470,9 @@ class Profiler:
1467
1470
  ProfilerInfo.set_export_flag(flag)
1468
1471
  op_summary, op_statistic, steptrace, steptrace_model \
1469
1472
  = _ascend_graph_msprof_analyse(mindstudio_profiler_output)
1473
+ if isinstance(op_statistic, np.ndarray) and op_statistic.shape[0] == 0 or \
1474
+ not isinstance(op_statistic, np.ndarray) and not op_statistic:
1475
+ return
1470
1476
  kernels = self._ascend_timeline_analyse(op_summary, steptrace, source_path, mindstudio_profiler_output)
1471
1477
  launch_ops = self._get_kernel_op_map(op_summary, kernels)
1472
1478
  self._ascend_op_analyse(op_summary, op_statistic, self._dynamic_status, launch_ops)
@@ -1505,6 +1511,8 @@ class Profiler:
1505
1511
  else:
1506
1512
  self._rank_size = int(os.getenv('RANK_SIZE', '1'))
1507
1513
 
1514
+ ProfilerInfo.set_rank_size(self._rank_size)
1515
+
1508
1516
  if self._has_started:
1509
1517
  self.stop()
1510
1518
  else:
@@ -89,7 +89,7 @@ class Node:
89
89
  >>> from mindspore.rewrite import SymbolTree, ScopedValue
90
90
  >>> import mindspore.nn as nn
91
91
  >>> # Define the network structure of LeNet5. Refer to
92
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
92
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
93
93
  >>> net = LeNet5()
94
94
  >>> stree = SymbolTree.create(net)
95
95
  >>> node = stree.get_node("conv1")
@@ -144,7 +144,7 @@ class Node:
144
144
  >>> import mindspore.nn as nn
145
145
  >>> import mindspore.ops as ops
146
146
  >>> # Define the network structure of LeNet5. Refer to
147
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
147
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
148
148
  >>> net = LeNet5()
149
149
  >>> stree = SymbolTree.create(net)
150
150
  >>> node = stree.get_node("conv1")
@@ -184,7 +184,7 @@ class Node:
184
184
  Examples:
185
185
  >>> from mindspore.rewrite import SymbolTree
186
186
  >>> # Define the network structure of LeNet5. Refer to
187
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
187
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
188
188
  >>> net = LeNet5()
189
189
  >>> stree = SymbolTree.create(net)
190
190
  >>> node = stree.get_node("conv2")
@@ -204,7 +204,7 @@ class Node:
204
204
  Examples:
205
205
  >>> from mindspore.rewrite import SymbolTree
206
206
  >>> # Define the network structure of LeNet5. Refer to
207
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
207
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
208
208
  >>> net = LeNet5()
209
209
  >>> stree = SymbolTree.create(net)
210
210
  >>> node = stree.get_node("conv1")
@@ -229,7 +229,7 @@ class Node:
229
229
  Examples:
230
230
  >>> from mindspore.rewrite import SymbolTree
231
231
  >>> # Define the network structure of LeNet5. Refer to
232
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
232
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
233
233
  >>> net = LeNet5()
234
234
  >>> stree = SymbolTree.create(net)
235
235
  >>> node = stree.get_node("relu_3")
@@ -267,7 +267,7 @@ class Node:
267
267
  Examples:
268
268
  >>> from mindspore.rewrite import SymbolTree
269
269
  >>> # Define the network structure of LeNet5. Refer to
270
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
270
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
271
271
  >>> net = LeNet5()
272
272
  >>> stree = SymbolTree.create(net)
273
273
  >>> src_node = stree.get_node("fc1")
@@ -307,7 +307,7 @@ class Node:
307
307
  Examples:
308
308
  >>> from mindspore.rewrite import SymbolTree
309
309
  >>> # Define the network structure of LeNet5. Refer to
310
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
310
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
311
311
  >>> net = LeNet5()
312
312
  >>> stree = SymbolTree.create(net)
313
313
  >>> node = stree.get_node("conv1")
@@ -327,7 +327,7 @@ class Node:
327
327
  Examples:
328
328
  >>> from mindspore.rewrite import SymbolTree
329
329
  >>> # Define the network structure of LeNet5. Refer to
330
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
330
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
331
331
  >>> net = LeNet5()
332
332
  >>> stree = SymbolTree.create(net)
333
333
  >>> node = stree.get_node("conv1")
@@ -354,7 +354,7 @@ class Node:
354
354
  Examples:
355
355
  >>> from mindspore.rewrite import SymbolTree
356
356
  >>> # Define the network structure of LeNet5. Refer to
357
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
357
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
358
358
  >>> net = LeNet5()
359
359
  >>> stree = SymbolTree.create(net)
360
360
  >>> node = stree.get_node("conv1")
@@ -377,7 +377,7 @@ class Node:
377
377
  Examples:
378
378
  >>> from mindspore.rewrite import SymbolTree
379
379
  >>> # Define the network structure of LeNet5. Refer to
380
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
380
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
381
381
  >>> net = LeNet5()
382
382
  >>> stree = SymbolTree.create(net)
383
383
  >>> node = stree.get_node("conv1")
@@ -396,7 +396,7 @@ class Node:
396
396
  Examples:
397
397
  >>> from mindspore.rewrite import SymbolTree
398
398
  >>> # Define the network structure of LeNet5. Refer to
399
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
399
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
400
400
  >>> net = LeNet5()
401
401
  >>> stree = SymbolTree.create(net)
402
402
  >>> node = stree.get_node("conv1")
@@ -434,7 +434,7 @@ class Node:
434
434
  ... x = self.relu(x)
435
435
  ... return x
436
436
  ...
437
- ... class Net(nn.Cell):
437
+ >>> class Net(nn.Cell):
438
438
  ... def __init__(self):
439
439
  ... super().__init__()
440
440
  ... self.subnet = SubNet()
@@ -119,7 +119,7 @@ class SymbolTree:
119
119
  Examples:
120
120
  >>> from mindspore.rewrite import SymbolTree
121
121
  >>> # Define the network structure of LeNet5. Refer to
122
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
122
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
123
123
  >>> net = LeNet5()
124
124
  >>> stree = SymbolTree.create(net)
125
125
  >>> print(type(stree))
@@ -163,7 +163,7 @@ class SymbolTree:
163
163
  Examples:
164
164
  >>> from mindspore.rewrite import SymbolTree
165
165
  >>> # Define the network structure of LeNet5. Refer to
166
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
166
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
167
167
  >>> net = LeNet5()
168
168
  >>> stree = SymbolTree.create(net)
169
169
  >>> print([node.get_name() for node in stree.nodes()])
@@ -188,7 +188,7 @@ class SymbolTree:
188
188
  Examples:
189
189
  >>> from mindspore.rewrite import SymbolTree
190
190
  >>> # Define the network structure of LeNet5. Refer to
191
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
191
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
192
192
  >>> net = LeNet5()
193
193
  >>> stree = SymbolTree.create(net)
194
194
  >>> node = stree.get_node('conv1')
@@ -221,7 +221,7 @@ class SymbolTree:
221
221
  Examples:
222
222
  >>> from mindspore.rewrite import SymbolTree
223
223
  >>> # Define the network structure of LeNet5. Refer to
224
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
224
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
225
225
  >>> net = LeNet5()
226
226
  >>> stree = SymbolTree.create(net)
227
227
  >>> for node in stree.nodes():
@@ -250,7 +250,7 @@ class SymbolTree:
250
250
  Examples:
251
251
  >>> from mindspore.rewrite import SymbolTree
252
252
  >>> # Define the network structure of LeNet5. Refer to
253
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
253
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
254
254
  >>> net = LeNet5()
255
255
  >>> stree = SymbolTree.create(net)
256
256
  >>> for node in stree.nodes():
@@ -284,7 +284,7 @@ class SymbolTree:
284
284
  >>> from mindspore.rewrite import SymbolTree, ScopedValue
285
285
  >>> import mindspore.nn as nn
286
286
  >>> # Define the network structure of LeNet5. Refer to
287
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
287
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
288
288
  >>> net = LeNet5()
289
289
  >>> stree = SymbolTree.create(net)
290
290
  >>> node = stree.get_node("conv1")
@@ -313,7 +313,7 @@ class SymbolTree:
313
313
  Examples:
314
314
  >>> from mindspore.rewrite import SymbolTree
315
315
  >>> # Define the network structure of LeNet5. Refer to
316
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
316
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
317
317
  >>> net = LeNet5()
318
318
  >>> stree = SymbolTree.create(net)
319
319
  >>> node = stree.get_node("conv1")
@@ -351,7 +351,7 @@ class SymbolTree:
351
351
  >>> from mindspore.rewrite import SymbolTree, ScopedValue
352
352
  >>> import mindspore.nn as nn
353
353
  >>> # Define the network structure of LeNet5. Refer to
354
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
354
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
355
355
  >>> net = LeNet5()
356
356
  >>> stree = SymbolTree.create(net)
357
357
  >>> node = stree.get_node("conv1")
@@ -397,7 +397,7 @@ class SymbolTree:
397
397
  Examples:
398
398
  >>> from mindspore.rewrite import SymbolTree
399
399
  >>> # Define the network structure of LeNet5. Refer to
400
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
400
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
401
401
  >>> net = LeNet5()
402
402
  >>> stree = SymbolTree.create(net)
403
403
  >>> stree.print_node_tabulate()
@@ -417,7 +417,7 @@ class SymbolTree:
417
417
  Examples:
418
418
  >>> from mindspore.rewrite import SymbolTree
419
419
  >>> # Define the network structure of LeNet5. Refer to
420
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
420
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
421
421
  >>> net = LeNet5()
422
422
  >>> stree = SymbolTree.create(net)
423
423
  >>> codes = stree.get_code()
@@ -444,7 +444,7 @@ class SymbolTree:
444
444
  Examples:
445
445
  >>> from mindspore.rewrite import SymbolTree
446
446
  >>> # Define the network structure of LeNet5. Refer to
447
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
447
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
448
448
  >>> net = LeNet5()
449
449
  >>> stree = SymbolTree.create(net)
450
450
  >>> new_net = stree.get_network()
@@ -527,7 +527,7 @@ def check_version_and_env_config():
527
527
  except OSError:
528
528
  logger.warning("Pre-Load Library libgomp.so.1 failed, which might cause TLS memory allocation failure. If "
529
529
  "the failure occurs, please refer to the FAQ for a solution: "
530
- "https://www.mindspore.cn/docs/en/r2.3.q1/faq/installation.html.")
530
+ "https://www.mindspore.cn/docs/en/master/faq/installation.html.")
531
531
  MSContext.get_instance().register_check_env_callback(check_env)
532
532
  MSContext.get_instance().register_set_env_callback(set_env)
533
533
  MSContext.get_instance().set_device_target_inner(MSContext.get_instance().get_param(ms_ctx_param.device_target))
@@ -73,7 +73,7 @@ def obfuscate_ckpt(network, ckpt_files, target_modules=None, saved_path='./', ob
73
73
 
74
74
  Examples:
75
75
  >>> from mindspore import obfuscate_ckpt, save_checkpoint
76
- >>> # Refer to https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
76
+ >>> # Refer to https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
77
77
  >>> net = LeNet5()
78
78
  >>> save_checkpoint(net, './test_net.ckpt')
79
79
  >>> target_modules = ['', 'fc1|fc2']
@@ -204,7 +204,7 @@ def load_obf_params_into_net(network, target_modules, obf_ratios, data_parallel_
204
204
  >>> from mindspore import obfuscate_ckpt, save_checkpoint, load_checkpoint, Tensor
205
205
  >>> import mindspore.common.dtype as mstype
206
206
  >>> import numpy as np
207
- >>> # Refer to https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
207
+ >>> # Refer to https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
208
208
  >>> net = LeNet5()
209
209
  >>> save_checkpoint(net, './test_net.ckpt')
210
210
  >>> target_modules = ['', 'fc1|fc2']
mindspore/train/amp.py CHANGED
@@ -331,7 +331,7 @@ def auto_mixed_precision(network, amp_level="O0", dtype=mstype.float16):
331
331
  :class:`mindspore.nn.LayerNorm`]
332
332
 
333
333
  For details on automatic mixed precision, refer to
334
- `Automatic Mix Precision <https://www.mindspore.cn/tutorials/en/r2.3.q1/advanced/mixed_precision.html>`_ .
334
+ `Automatic Mix Precision <https://www.mindspore.cn/tutorials/en/master/advanced/mixed_precision.html>`_ .
335
335
 
336
336
  Note:
337
337
  - Repeatedly calling mixed-precision interfaces, such as `custom_mixed_precision` and `auto_mixed_precision`,
@@ -362,7 +362,7 @@ def auto_mixed_precision(network, amp_level="O0", dtype=mstype.float16):
362
362
  Examples:
363
363
  >>> from mindspore import amp
364
364
  >>> # Define the network structure of LeNet5. Refer to
365
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
365
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
366
366
  >>> network = LeNet5()
367
367
  >>> amp_level = "O1"
368
368
  >>> net = amp.auto_mixed_precision(network, amp_level)
@@ -597,7 +597,7 @@ def build_train_network(network, optimizer, loss_fn=None, level='O0', boost_leve
597
597
  Examples:
598
598
  >>> from mindspore import amp, nn
599
599
  >>> # Define the network structure of LeNet5. Refer to
600
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
600
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
601
601
  >>> network = LeNet5()
602
602
  >>> net_loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean")
603
603
  >>> net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9)
@@ -744,7 +744,7 @@ def custom_mixed_precision(network, *, white_list=None, black_list=None, dtype=m
744
744
  Examples:
745
745
  >>> from mindspore import amp, nn
746
746
  >>> # Define the network structure of LeNet5. Refer to
747
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
747
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
748
748
  >>> net = LeNet5()
749
749
  >>> custom_white_list = amp.get_white_list()
750
750
  >>> custom_white_list.append(nn.Flatten)
@@ -20,7 +20,7 @@ DESCRIPTOR = _descriptor.FileDescriptor(
20
20
  syntax='proto2',
21
21
  serialized_options=None,
22
22
  create_key=_descriptor._internal_create_key,
23
- serialized_pb=b'\n\x0c\x61nf_ir.proto\x12\x0emindspore.irpb\"\xdb\x04\n\nValueProto\x12\'\n\x05\x64type\x18\x01 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12\x10\n\x08\x62ool_val\x18\x02 \x01(\x08\x12\x0f\n\x07int_val\x18\x03 \x01(\x03\x12\x10\n\x08uint_val\x18\x04 \x01(\x04\x12\x11\n\tfloat_val\x18\x05 \x01(\x02\x12\x12\n\ndouble_val\x18\x06 \x01(\x01\x12\x0f\n\x07str_val\x18\x07 \x01(\t\x12/\n\ntensor_val\x18\x08 \x01(\x0b\x32\x1b.mindspore.irpb.TensorProto\x12)\n\x05graph\x18\t \x01(\x0b\x32\x1a.mindspore.irpb.GraphProto\x12\x11\n\tbool_vals\x18\n \x03(\x08\x12\x10\n\x08int_vals\x18\x0b \x03(\x03\x12\x11\n\tuint_vals\x18\x0c \x03(\x04\x12\x12\n\nfloat_vals\x18\r \x03(\x02\x12\x13\n\x0b\x64ouble_vals\x18\x0e \x03(\x01\x12\x10\n\x08str_vals\x18\x0f \x03(\t\x12\x30\n\x0btensor_vals\x18\x10 \x03(\x0b\x32\x1b.mindspore.irpb.TensorProto\x12*\n\x06graphs\x18\x11 \x03(\x0b\x32\x1a.mindspore.irpb.GraphProto\x12*\n\x06values\x18\x12 \x03(\x0b\x32\x1a.mindspore.irpb.ValueProto\x12\x31\n\x08\x64ict_val\x18\x13 \x03(\x0b\x32\x1f.mindspore.irpb.NamedValueProto\x12+\n\x08type_val\x18\x14 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\"I\n\x0e\x41ttributeProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12)\n\x05value\x18\x02 \x01(\x0b\x32\x1a.mindspore.irpb.ValueProto\"I\n\x0fNamedValueProto\x12\x0b\n\x03key\x18\x01 \x01(\t\x12)\n\x05value\x18\x02 \x01(\x0b\x32\x1a.mindspore.irpb.ValueProto\"t\n\x10TensorShapeProto\x12\x37\n\x03\x64im\x18\x01 \x03(\x0b\x32*.mindspore.irpb.TensorShapeProto.Dimension\x1a\'\n\tDimension\x12\x0c\n\x04size\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\"\xda\x02\n\tTypeProto\x12+\n\tdata_type\x18\x01 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12\x37\n\x0btensor_type\x18\x02 \x01(\x0b\x32 .mindspore.irpb.TypeProto.TensorH\x00\x12;\n\rsequence_type\x18\x03 \x01(\x0b\x32\".mindspore.irpb.TypeProto.SequenceH\x00\x1a\x66\n\x06Tensor\x12+\n\telem_type\x18\x01 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12/\n\x05shape\x18\x02 \x01(\x0b\x32 .mindspore.irpb.TensorShapeProto\x1a\x39\n\x08Sequence\x12-\n\nelem_types\x18\x01 \x03(\x0b\x32\x19.mindspore.irpb.TypeProtoB\x07\n\x05value\"x\n\x0eParameterProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\'\n\x04type\x18\x02 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\x12/\n\x0b\x64\x65\x66\x61ult_val\x18\x03 \x01(\x0b\x32\x1a.mindspore.irpb.ValueProto\"D\n\x0bOutputProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\'\n\x04type\x18\x02 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\"z\n\nInputProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x31\n\x04type\x18\x02 \x01(\x0e\x32#.mindspore.irpb.InputProto.EdgeType\"+\n\x08\x45\x64geType\x12\r\n\tDATA_EDGE\x10\x00\x12\x10\n\x0c\x43ONTROL_EDGE\x10\x01\"\x83\x02\n\tNodeProto\x12)\n\x05input\x18\x01 \x03(\x0b\x32\x1a.mindspore.irpb.InputProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0f\n\x07op_type\x18\x03 \x01(\t\x12\r\n\x05scope\x18\x04 \x01(\t\x12\x31\n\tattribute\x18\x05 \x03(\x0b\x32\x1e.mindspore.irpb.AttributeProto\x12.\n\x0boutput_type\x18\x06 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\x12\x10\n\x08output_i\x18\x07 \x01(\x04\x12\x11\n\tfull_name\x18\x08 \x01(\t\x12\x15\n\rinstance_name\x18\n \x01(\t\"\xb0\x01\n\nModelProto\x12\x12\n\nir_version\x18\x01 \x01(\x03\x12\x0e\n\x06\x64omain\x18\x02 \x01(\t\x12\x15\n\rmodel_version\x18\x03 \x01(\x03\x12)\n\x05graph\x18\x04 \x01(\x0b\x32\x1a.mindspore.irpb.GraphProto\x12<\n\x12metadata_operators\x18\x05 \x01(\x0b\x32 .mindspore.irpb.OperatorSetProto\"?\n\rOperatorProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06\x63onfig\x18\x02 \x01(\x0c\x12\x10\n\x08obj_info\x18\x03 \x01(\x0c\"U\n\x10OperatorSetProto\x12\x30\n\toperators\x18\x01 \x03(\x0b\x32\x1d.mindspore.irpb.OperatorProto\x12\x0f\n\x07summary\x18\x02 \x01(\t\"\xda\x01\n\nGraphProto\x12\'\n\x04node\x18\x01 \x03(\x0b\x32\x19.mindspore.irpb.NodeProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x32\n\nparameters\x18\x03 \x03(\x0b\x32\x1e.mindspore.irpb.ParameterProto\x12,\n\x07outputs\x18\x04 \x03(\x0b\x32\x1b.mindspore.irpb.OutputProto\x12\x33\n\nconst_vals\x18\x05 \x03(\x0b\x32\x1f.mindspore.irpb.NamedValueProto\"\xd4\x01\n\x0bTensorProto\x12\x0c\n\x04\x64ims\x18\x01 \x03(\x03\x12+\n\tdata_type\x18\x02 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12\x16\n\nfloat_data\x18\x03 \x03(\x02\x42\x02\x10\x01\x12\x16\n\nint32_data\x18\x04 \x03(\x05\x42\x02\x10\x01\x12\x16\n\nint64_data\x18\x05 \x03(\x03\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_data\x18\x06 \x03(\x01\x42\x02\x10\x01\x12\x17\n\x0buint64_data\x18\x07 \x03(\x04\x42\x02\x10\x01\x12\x10\n\x08raw_data\x18\x08 \x01(\x0c*/\n\x07Version\x12\x14\n\x10UNKNOWWN_VERSION\x10\x00\x12\x0e\n\nIR_VERSION\x10\x01*\xee\x05\n\x08\x44\x61taType\x12\x10\n\x0c\x44T_UNDEFINED\x10\x00\x12\x0b\n\x07\x44T_BOOL\x10\x01\x12\x0b\n\x07\x44T_INT8\x10\x02\x12\x0c\n\x08\x44T_INT16\x10\x03\x12\x0c\n\x08\x44T_INT32\x10\x04\x12\x0c\n\x08\x44T_INT64\x10\x05\x12\x0c\n\x08\x44T_UINT8\x10\x06\x12\r\n\tDT_UINT16\x10\x07\x12\r\n\tDT_UINT32\x10\x08\x12\r\n\tDT_UINT64\x10\t\x12\x0e\n\nDT_FLOAT16\x10\n\x12\x0e\n\nDT_FLOAT32\x10\x0b\x12\x0e\n\nDT_FLOAT64\x10\x0c\x12\r\n\tDT_STRING\x10\r\x12\r\n\tDT_TENSOR\x10\x0e\x12\x0c\n\x08\x44T_GRAPH\x10\x0f\x12\x0c\n\x08\x44T_BOOLS\x10\x10\x12\x0c\n\x08\x44T_INTS8\x10\x11\x12\r\n\tDT_INTS16\x10\x12\x12\r\n\tDT_INTS32\x10\x13\x12\r\n\tDT_INTS64\x10\x14\x12\r\n\tDT_UINTS8\x10\x15\x12\x0e\n\nDT_UINTS16\x10\x16\x12\x0e\n\nDT_UINTS32\x10\x17\x12\x0e\n\nDT_UINTS64\x10\x18\x12\x0f\n\x0b\x44T_FLOATS16\x10\x19\x12\x0f\n\x0b\x44T_FLOATS32\x10\x1a\x12\x0f\n\x0b\x44T_FLOATS64\x10\x1b\x12\x0e\n\nDT_STRINGS\x10\x1c\x12\x0e\n\nDT_TENSORS\x10\x1d\x12\r\n\tDT_GRAPHS\x10\x1e\x12\x0c\n\x08\x44T_TUPLE\x10\x1f\x12\x0b\n\x07\x44T_LIST\x10 \x12\x0b\n\x07\x44T_DICT\x10!\x12\x0b\n\x07\x44T_NONE\x10\"\x12\x0f\n\x0b\x44T_SYM_INST\x10#\x12\x0f\n\x0b\x44T_BASE_INT\x10$\x12\x10\n\x0c\x44T_BASE_UINT\x10%\x12\x11\n\rDT_BASE_FLOAT\x10&\x12\x0b\n\x07\x44T_TYPE\x10\'\x12\n\n\x06\x44T_ANY\x10(\x12\r\n\tDT_REFKEY\x10)\x12\n\n\x06\x44T_REF\x10*\x12\x10\n\x0c\x44T_COMPLEX64\x10+\x12\x11\n\rDT_COMPLEX128\x10,\x12\x13\n\x0f\x44T_BASE_COMPLEX\x10-\x12\x0f\n\x0b\x44T_BFLOAT16\x10.\x12\x10\n\x0c\x44T_BFLOATS16\x10/'
23
+ serialized_pb=b'\n\x0c\x61nf_ir.proto\x12\x0emindspore.irpb\"\xdb\x04\n\nValueProto\x12\'\n\x05\x64type\x18\x01 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12\x10\n\x08\x62ool_val\x18\x02 \x01(\x08\x12\x0f\n\x07int_val\x18\x03 \x01(\x03\x12\x10\n\x08uint_val\x18\x04 \x01(\x04\x12\x11\n\tfloat_val\x18\x05 \x01(\x02\x12\x12\n\ndouble_val\x18\x06 \x01(\x01\x12\x0f\n\x07str_val\x18\x07 \x01(\t\x12/\n\ntensor_val\x18\x08 \x01(\x0b\x32\x1b.mindspore.irpb.TensorProto\x12)\n\x05graph\x18\t \x01(\x0b\x32\x1a.mindspore.irpb.GraphProto\x12\x11\n\tbool_vals\x18\n \x03(\x08\x12\x10\n\x08int_vals\x18\x0b \x03(\x03\x12\x11\n\tuint_vals\x18\x0c \x03(\x04\x12\x12\n\nfloat_vals\x18\r \x03(\x02\x12\x13\n\x0b\x64ouble_vals\x18\x0e \x03(\x01\x12\x10\n\x08str_vals\x18\x0f \x03(\t\x12\x30\n\x0btensor_vals\x18\x10 \x03(\x0b\x32\x1b.mindspore.irpb.TensorProto\x12*\n\x06graphs\x18\x11 \x03(\x0b\x32\x1a.mindspore.irpb.GraphProto\x12*\n\x06values\x18\x12 \x03(\x0b\x32\x1a.mindspore.irpb.ValueProto\x12\x31\n\x08\x64ict_val\x18\x13 \x03(\x0b\x32\x1f.mindspore.irpb.NamedValueProto\x12+\n\x08type_val\x18\x14 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\"I\n\x0e\x41ttributeProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12)\n\x05value\x18\x02 \x01(\x0b\x32\x1a.mindspore.irpb.ValueProto\"I\n\x0fNamedValueProto\x12\x0b\n\x03key\x18\x01 \x01(\t\x12)\n\x05value\x18\x02 \x01(\x0b\x32\x1a.mindspore.irpb.ValueProto\"t\n\x10TensorShapeProto\x12\x37\n\x03\x64im\x18\x01 \x03(\x0b\x32*.mindspore.irpb.TensorShapeProto.Dimension\x1a\'\n\tDimension\x12\x0c\n\x04size\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\t\"\xda\x02\n\tTypeProto\x12+\n\tdata_type\x18\x01 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12\x37\n\x0btensor_type\x18\x02 \x01(\x0b\x32 .mindspore.irpb.TypeProto.TensorH\x00\x12;\n\rsequence_type\x18\x03 \x01(\x0b\x32\".mindspore.irpb.TypeProto.SequenceH\x00\x1a\x66\n\x06Tensor\x12+\n\telem_type\x18\x01 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12/\n\x05shape\x18\x02 \x01(\x0b\x32 .mindspore.irpb.TensorShapeProto\x1a\x39\n\x08Sequence\x12-\n\nelem_types\x18\x01 \x03(\x0b\x32\x19.mindspore.irpb.TypeProtoB\x07\n\x05value\"x\n\x0eParameterProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\'\n\x04type\x18\x02 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\x12/\n\x0b\x64\x65\x66\x61ult_val\x18\x03 \x01(\x0b\x32\x1a.mindspore.irpb.ValueProto\"D\n\x0bOutputProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\'\n\x04type\x18\x02 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\"z\n\nInputProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x31\n\x04type\x18\x02 \x01(\x0e\x32#.mindspore.irpb.InputProto.EdgeType\"+\n\x08\x45\x64geType\x12\r\n\tDATA_EDGE\x10\x00\x12\x10\n\x0c\x43ONTROL_EDGE\x10\x01\"\x83\x02\n\tNodeProto\x12)\n\x05input\x18\x01 \x03(\x0b\x32\x1a.mindspore.irpb.InputProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0f\n\x07op_type\x18\x03 \x01(\t\x12\r\n\x05scope\x18\x04 \x01(\t\x12\x31\n\tattribute\x18\x05 \x03(\x0b\x32\x1e.mindspore.irpb.AttributeProto\x12.\n\x0boutput_type\x18\x06 \x01(\x0b\x32\x19.mindspore.irpb.TypeProto\x12\x10\n\x08output_i\x18\x07 \x01(\x04\x12\x11\n\tfull_name\x18\x08 \x01(\t\x12\x15\n\rinstance_name\x18\n \x01(\t\"\xb0\x01\n\nModelProto\x12\x12\n\nir_version\x18\x01 \x01(\x03\x12\x0e\n\x06\x64omain\x18\x02 \x01(\t\x12\x15\n\rmodel_version\x18\x03 \x01(\x03\x12)\n\x05graph\x18\x04 \x01(\x0b\x32\x1a.mindspore.irpb.GraphProto\x12<\n\x12metadata_operators\x18\x05 \x01(\x0b\x32 .mindspore.irpb.OperatorSetProto\"?\n\rOperatorProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06\x63onfig\x18\x02 \x01(\x0c\x12\x10\n\x08obj_info\x18\x03 \x01(\x0c\"U\n\x10OperatorSetProto\x12\x30\n\toperators\x18\x01 \x03(\x0b\x32\x1d.mindspore.irpb.OperatorProto\x12\x0f\n\x07summary\x18\x02 \x01(\t\"\xda\x01\n\nGraphProto\x12\'\n\x04node\x18\x01 \x03(\x0b\x32\x19.mindspore.irpb.NodeProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x32\n\nparameters\x18\x03 \x03(\x0b\x32\x1e.mindspore.irpb.ParameterProto\x12,\n\x07outputs\x18\x04 \x03(\x0b\x32\x1b.mindspore.irpb.OutputProto\x12\x33\n\nconst_vals\x18\x05 \x03(\x0b\x32\x1f.mindspore.irpb.NamedValueProto\"\xd4\x01\n\x0bTensorProto\x12\x0c\n\x04\x64ims\x18\x01 \x03(\x03\x12+\n\tdata_type\x18\x02 \x01(\x0e\x32\x18.mindspore.irpb.DataType\x12\x16\n\nfloat_data\x18\x03 \x03(\x02\x42\x02\x10\x01\x12\x16\n\nint32_data\x18\x04 \x03(\x05\x42\x02\x10\x01\x12\x16\n\nint64_data\x18\x05 \x03(\x03\x42\x02\x10\x01\x12\x17\n\x0b\x64ouble_data\x18\x06 \x03(\x01\x42\x02\x10\x01\x12\x17\n\x0buint64_data\x18\x07 \x03(\x04\x42\x02\x10\x01\x12\x10\n\x08raw_data\x18\x08 \x01(\x0c*/\n\x07Version\x12\x14\n\x10UNKNOWWN_VERSION\x10\x00\x12\x0e\n\nIR_VERSION\x10\x01*\xfb\x05\n\x08\x44\x61taType\x12\x10\n\x0c\x44T_UNDEFINED\x10\x00\x12\x0b\n\x07\x44T_BOOL\x10\x01\x12\x0b\n\x07\x44T_INT8\x10\x02\x12\x0c\n\x08\x44T_INT16\x10\x03\x12\x0c\n\x08\x44T_INT32\x10\x04\x12\x0c\n\x08\x44T_INT64\x10\x05\x12\x0c\n\x08\x44T_UINT8\x10\x06\x12\r\n\tDT_UINT16\x10\x07\x12\r\n\tDT_UINT32\x10\x08\x12\r\n\tDT_UINT64\x10\t\x12\x0e\n\nDT_FLOAT16\x10\n\x12\x0e\n\nDT_FLOAT32\x10\x0b\x12\x0e\n\nDT_FLOAT64\x10\x0c\x12\r\n\tDT_STRING\x10\r\x12\r\n\tDT_TENSOR\x10\x0e\x12\x0c\n\x08\x44T_GRAPH\x10\x0f\x12\x0c\n\x08\x44T_BOOLS\x10\x10\x12\x0c\n\x08\x44T_INTS8\x10\x11\x12\r\n\tDT_INTS16\x10\x12\x12\r\n\tDT_INTS32\x10\x13\x12\r\n\tDT_INTS64\x10\x14\x12\r\n\tDT_UINTS8\x10\x15\x12\x0e\n\nDT_UINTS16\x10\x16\x12\x0e\n\nDT_UINTS32\x10\x17\x12\x0e\n\nDT_UINTS64\x10\x18\x12\x0f\n\x0b\x44T_FLOATS16\x10\x19\x12\x0f\n\x0b\x44T_FLOATS32\x10\x1a\x12\x0f\n\x0b\x44T_FLOATS64\x10\x1b\x12\x0e\n\nDT_STRINGS\x10\x1c\x12\x0e\n\nDT_TENSORS\x10\x1d\x12\r\n\tDT_GRAPHS\x10\x1e\x12\x0c\n\x08\x44T_TUPLE\x10\x1f\x12\x0b\n\x07\x44T_LIST\x10 \x12\x0b\n\x07\x44T_DICT\x10!\x12\x0b\n\x07\x44T_NONE\x10\"\x12\x0f\n\x0b\x44T_SYM_INST\x10#\x12\x0f\n\x0b\x44T_BASE_INT\x10$\x12\x10\n\x0c\x44T_BASE_UINT\x10%\x12\x11\n\rDT_BASE_FLOAT\x10&\x12\x0b\n\x07\x44T_TYPE\x10\'\x12\n\n\x06\x44T_ANY\x10(\x12\r\n\tDT_REFKEY\x10)\x12\n\n\x06\x44T_REF\x10*\x12\x10\n\x0c\x44T_COMPLEX64\x10+\x12\x11\n\rDT_COMPLEX128\x10,\x12\x13\n\x0f\x44T_BASE_COMPLEX\x10-\x12\x0f\n\x0b\x44T_BFLOAT16\x10.\x12\x10\n\x0c\x44T_BFLOATS16\x10/\x12\x0b\n\x07\x44T_INT4\x10\x30'
24
24
  )
25
25
 
26
26
  _VERSION = _descriptor.EnumDescriptor(
@@ -296,11 +296,16 @@ _DATATYPE = _descriptor.EnumDescriptor(
296
296
  serialized_options=None,
297
297
  type=None,
298
298
  create_key=_descriptor._internal_create_key),
299
+ _descriptor.EnumValueDescriptor(
300
+ name='DT_INT4', index=48, number=48,
301
+ serialized_options=None,
302
+ type=None,
303
+ create_key=_descriptor._internal_create_key),
299
304
  ],
300
305
  containing_type=None,
301
306
  serialized_options=None,
302
307
  serialized_start=2650,
303
- serialized_end=3400,
308
+ serialized_end=3413,
304
309
  )
305
310
  _sym_db.RegisterEnumDescriptor(_DATATYPE)
306
311
 
@@ -355,6 +360,7 @@ DT_COMPLEX128 = 44
355
360
  DT_BASE_COMPLEX = 45
356
361
  DT_BFLOAT16 = 46
357
362
  DT_BFLOATS16 = 47
363
+ DT_INT4 = 48
358
364
 
359
365
 
360
366
  _INPUTPROTO_EDGETYPE = _descriptor.EnumDescriptor(
@@ -50,13 +50,13 @@ class BackupAndRestore(Callback):
50
50
  >>> from mindspore.train import Model, BackupAndRestore, RunContext
51
51
  >>>
52
52
  >>> # Define the network structure of LeNet5. Refer to
53
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
53
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
54
54
  >>> net = LeNet5()
55
55
  >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
56
56
  >>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
57
57
  >>> model = Model(net, loss_fn=loss, optimizer=optim)
58
58
  >>> # Create the dataset taking MNIST as an example. Refer to
59
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/mnist.py
59
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
60
60
  >>> dataset = create_dataset()
61
61
  >>> backup_ckpt = BackupAndRestore("backup")
62
62
  >>> model.train(10, dataset, callbacks=backup_ckpt)
@@ -123,7 +123,7 @@ class Callback:
123
123
  recording current attributes. Users can add custimized attributes to the information.
124
124
  Training process can also be stopped by calling `request_stop` method. For details
125
125
  of custom Callback, please check
126
- `Callback tutorial <https://www.mindspore.cn/tutorials/en/r2.3.q1/advanced/model/
126
+ `Callback tutorial <https://www.mindspore.cn/tutorials/en/master/advanced/model/
127
127
  callback.html#customized-callback-mechanism>`_.
128
128
 
129
129
  Examples:
@@ -493,7 +493,7 @@ class RunContext:
493
493
  `RunContext.original_args()` and add extra attributes to the information, but also can stop the
494
494
  training process by calling `request_stop` method. For details of custom Callback,
495
495
  please check
496
- `Callback Mechanism <https://www.mindspore.cn/tutorials/en/r2.3.q1/advanced/model/callback.html>`_.
496
+ `Callback Mechanism <https://www.mindspore.cn/tutorials/en/master/advanced/model/callback.html>`_.
497
497
 
498
498
  `RunContext.original_args()` holds the model context information as a dictionary variable, and
499
499
  different attributes of the dictionary are stored in training or eval process. Details are as follows:
@@ -575,7 +575,7 @@ class RunContext:
575
575
 
576
576
  Tutorial Examples:
577
577
  - `Callback Mechanism - Customized Callback Mechanism
578
- <https://mindspore.cn/tutorials/en/r2.3.q1/advanced/model/callback.html#customized-callback-mechanism>`_
578
+ <https://mindspore.cn/tutorials/en/master/advanced/model/callback.html#customized-callback-mechanism>`_
579
579
  """
580
580
  return self._original_args
581
581
 
@@ -588,7 +588,7 @@ class RunContext:
588
588
 
589
589
  Tutorial Examples:
590
590
  - `Callback Mechanism - Customized Training Termination Time
591
- <https://mindspore.cn/tutorials/en/r2.3.q1/advanced/model/callback.html#
591
+ <https://mindspore.cn/tutorials/en/master/advanced/model/callback.html#
592
592
  customized-training-termination-time>`_
593
593
  """
594
594
  self._stop_requested = True