mindspore 2.3.0rc1__cp37-none-any.whl → 2.3.0rc2__cp37-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (316) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +1 -1
  3. mindspore/_akg/akg/utils/tbe_codegen_utils.py +13 -3
  4. mindspore/_c_dataengine.cpython-37m-aarch64-linux-gnu.so +0 -0
  5. mindspore/_c_expression.cpython-37m-aarch64-linux-gnu.so +0 -0
  6. mindspore/_checkparam.py +20 -0
  7. mindspore/_extends/parse/parser.py +1 -1
  8. mindspore/_extends/parse/standard_method.py +6 -5
  9. mindspore/_mindspore_offline_debug.cpython-37m-aarch64-linux-gnu.so +0 -0
  10. mindspore/amp.py +5 -5
  11. mindspore/bin/cache_admin +0 -0
  12. mindspore/bin/cache_server +0 -0
  13. mindspore/boost/boost_cell_wrapper.py +1 -1
  14. mindspore/boost/group_loss_scale_manager.py +1 -1
  15. mindspore/common/__init__.py +4 -2
  16. mindspore/common/_register_for_recompute.py +48 -0
  17. mindspore/common/_stub_tensor.py +1 -0
  18. mindspore/common/api.py +56 -4
  19. mindspore/common/dtype.py +5 -3
  20. mindspore/common/dump.py +2 -2
  21. mindspore/common/hook_handle.py +51 -4
  22. mindspore/common/initializer.py +1 -1
  23. mindspore/common/jit_config.py +17 -6
  24. mindspore/common/parameter.py +7 -2
  25. mindspore/common/recompute.py +247 -0
  26. mindspore/common/sparse_tensor.py +2 -2
  27. mindspore/common/symbol.py +1 -1
  28. mindspore/common/tensor.py +74 -36
  29. mindspore/communication/__init__.py +3 -3
  30. mindspore/communication/management.py +30 -30
  31. mindspore/context.py +28 -15
  32. mindspore/dataset/__init__.py +5 -5
  33. mindspore/dataset/audio/__init__.py +2 -2
  34. mindspore/dataset/audio/transforms.py +51 -51
  35. mindspore/dataset/callback/ds_callback.py +2 -2
  36. mindspore/dataset/engine/cache_client.py +1 -1
  37. mindspore/dataset/engine/datasets.py +3 -3
  38. mindspore/dataset/engine/datasets_audio.py +14 -14
  39. mindspore/dataset/engine/datasets_standard_format.py +3 -3
  40. mindspore/dataset/engine/datasets_text.py +38 -38
  41. mindspore/dataset/engine/datasets_user_defined.py +3 -3
  42. mindspore/dataset/engine/datasets_vision.py +68 -68
  43. mindspore/dataset/text/__init__.py +3 -3
  44. mindspore/dataset/text/transforms.py +26 -26
  45. mindspore/dataset/transforms/__init__.py +1 -1
  46. mindspore/dataset/vision/__init__.py +3 -3
  47. mindspore/dataset/vision/transforms.py +92 -92
  48. mindspore/dataset/vision/utils.py +1 -1
  49. mindspore/experimental/optim/adadelta.py +2 -2
  50. mindspore/experimental/optim/adagrad.py +2 -2
  51. mindspore/experimental/optim/adam.py +2 -2
  52. mindspore/experimental/optim/adamax.py +2 -2
  53. mindspore/experimental/optim/adamw.py +2 -2
  54. mindspore/experimental/optim/asgd.py +2 -2
  55. mindspore/experimental/optim/lr_scheduler.py +24 -20
  56. mindspore/experimental/optim/nadam.py +2 -2
  57. mindspore/experimental/optim/optimizer.py +1 -1
  58. mindspore/experimental/optim/radam.py +2 -2
  59. mindspore/experimental/optim/rmsprop.py +2 -2
  60. mindspore/experimental/optim/rprop.py +2 -2
  61. mindspore/experimental/optim/sgd.py +2 -2
  62. mindspore/hal/stream.py +2 -0
  63. mindspore/include/mindapi/base/types.h +5 -0
  64. mindspore/lib/libdnnl.so.2 +0 -0
  65. mindspore/lib/libmindspore.so +0 -0
  66. mindspore/lib/libmindspore_backend.so +0 -0
  67. mindspore/lib/libmindspore_common.so +0 -0
  68. mindspore/lib/libmindspore_core.so +0 -0
  69. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  70. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  71. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  72. mindspore/lib/libmindspore_shared_lib.so +0 -0
  73. mindspore/lib/libopencv_core.so.4.5 +0 -0
  74. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  75. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +6 -6
  76. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  77. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  78. mindspore/lib/plugin/ascend/liblowlatency_collective.so +0 -0
  79. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  80. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/DeviceBin +0 -0
  81. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/PkgInspect +0 -0
  82. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/op_man +0 -0
  83. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/device/ascend910b/bin/ascend910b.bin +101787 -98559
  84. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_cann_host.so +0 -0
  85. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_host.so +0 -0
  86. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/base/op_register.h +2 -2
  87. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/mix.h +8 -1
  88. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/norm.h +5 -3
  89. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/params/reduce.h +2 -2
  90. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/backend/backend.h +3 -3
  91. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/backend/rtbackend.h +3 -3
  92. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/base/types.h +0 -1
  93. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/rt/module/module.h +3 -3
  94. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/include/asdops/utils/svector/svector.h +3 -2
  95. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops.so +0 -0
  96. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops_static.a +0 -0
  97. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/tiling/add_tiling.h +9 -9
  98. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/apply_rotary_pos_emb_impl.h +2 -6
  99. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb.h +2 -2
  100. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_base.h +460 -0
  101. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_bf16.h +217 -0
  102. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp16.h +116 -0
  103. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_tiling.h +16 -24
  104. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_value.h +27 -0
  105. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/asdop/asd_op_impl.h +0 -4
  106. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/FlashAttentionScore_impl.h → flash_attention_score/flash_attention_score_impl.h} +2 -1
  107. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/bs_attention_tiling.h → flash_attention_score/flash_attention_score_tiling.h} +15 -19
  108. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/gelu/tiling/gelu_tiling.h +7 -9
  109. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/lccl/lccl_wrapper.h +58 -0
  110. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/matmul_impl.h +19 -8
  111. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/pp_matmul_common_tiling.h +18 -8
  112. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/pp_matmul_info.h +7 -4
  113. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{matmul → matmul_common}/tiling_data.h +44 -6
  114. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/tiling_utils.h +65 -0
  115. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/matmul_stridedslice_fusion_impl.h +10 -6
  116. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_param.h +4 -1
  117. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/kernel/paged_attention_mix_hwsync.h +41 -0
  118. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/PagedAttention_impl.h → paged_attention/paged_attention_impl.h} +1 -1
  119. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_tiling.h +63 -0
  120. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/add_param.h +2 -2
  121. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention_param.h → param/attention_param.h} +11 -2
  122. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_ext_param.h +37 -0
  123. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/sub_param.h +45 -0
  124. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/reshape_and_cache/reshape_and_cache_tiling.h +1 -2
  125. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm.h +23 -0
  126. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_base.h +175 -0
  127. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_normal.h +276 -0
  128. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/rms_norm_split_d.h +280 -0
  129. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/kernel/tiling_data.h +35 -0
  130. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/rms_norm_impl.h +45 -0
  131. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/kernel/sub_kernel.h +20 -0
  132. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_impl.h +47 -0
  133. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_tiling.h +25 -0
  134. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/matmul_table.h +323 -23
  135. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/types.h +15 -4
  136. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_tiling.h +8 -0
  137. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libAdd_impl.so +0 -0
  138. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libSub_impl.so +0 -0
  139. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_layernorm_impl.so +0 -0
  140. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_impl.so +0 -0
  141. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_impl.so +0 -0
  142. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcast_impl.so +0 -0
  143. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libgelu_impl.so +0 -0
  144. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_impl.so +0 -0
  145. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_stridedslice_fusion_impl.so +0 -0
  146. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_kernels_internal.so +0 -0
  147. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libnot_equal_impl.so +0 -0
  148. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_impl.so +0 -0
  149. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/librms_norm_impl.so +0 -0
  150. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
  151. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
  152. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_full_mix.o +0 -0
  153. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
  154. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
  155. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
  156. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_full_mix.o +0 -0
  157. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
  158. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bnsd_full_mix.o +0 -0
  159. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bsh_full_mix.o +0 -0
  160. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bnsd_full_mix.o +0 -0
  161. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bsh_full_mix.o +0 -0
  162. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal.h +22 -0
  163. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal_comm.h +70 -0
  164. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcal_types.h +103 -0
  165. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lccl.h +47 -0
  166. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lccl_wrapper.h +58 -0
  167. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/include/lcoc.h +154 -0
  168. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblcal.so +0 -0
  169. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblccl_wrapper.so +0 -0
  170. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  171. mindspore/log.py +2 -2
  172. mindspore/mint/__init__.py +457 -0
  173. mindspore/mint/nn/__init__.py +430 -0
  174. mindspore/mint/nn/functional.py +424 -0
  175. mindspore/mint/optim/__init__.py +24 -0
  176. mindspore/mint/optim/adamw.py +186 -0
  177. mindspore/multiprocessing/__init__.py +4 -0
  178. mindspore/nn/__init__.py +3 -0
  179. mindspore/nn/cell.py +51 -47
  180. mindspore/nn/extend/__init__.py +29 -0
  181. mindspore/nn/extend/basic.py +140 -0
  182. mindspore/nn/extend/embedding.py +143 -0
  183. mindspore/nn/extend/layer/__init__.py +27 -0
  184. mindspore/nn/extend/layer/normalization.py +107 -0
  185. mindspore/nn/extend/pooling.py +117 -0
  186. mindspore/nn/generator.py +297 -0
  187. mindspore/nn/layer/basic.py +109 -1
  188. mindspore/nn/layer/container.py +2 -2
  189. mindspore/nn/layer/conv.py +6 -6
  190. mindspore/nn/layer/embedding.py +1 -1
  191. mindspore/nn/layer/normalization.py +21 -43
  192. mindspore/nn/layer/padding.py +4 -0
  193. mindspore/nn/optim/ada_grad.py +2 -2
  194. mindspore/nn/optim/adadelta.py +1 -1
  195. mindspore/nn/optim/adafactor.py +1 -1
  196. mindspore/nn/optim/adam.py +7 -7
  197. mindspore/nn/optim/adamax.py +2 -2
  198. mindspore/nn/optim/adasum.py +2 -2
  199. mindspore/nn/optim/asgd.py +2 -2
  200. mindspore/nn/optim/ftrl.py +1 -1
  201. mindspore/nn/optim/lamb.py +3 -3
  202. mindspore/nn/optim/lars.py +1 -1
  203. mindspore/nn/optim/lazyadam.py +2 -2
  204. mindspore/nn/optim/momentum.py +2 -2
  205. mindspore/nn/optim/optimizer.py +2 -2
  206. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  207. mindspore/nn/optim/rmsprop.py +2 -2
  208. mindspore/nn/optim/rprop.py +2 -2
  209. mindspore/nn/optim/sgd.py +2 -2
  210. mindspore/nn/optim/thor.py +2 -2
  211. mindspore/nn/wrap/cell_wrapper.py +9 -9
  212. mindspore/nn/wrap/grad_reducer.py +5 -5
  213. mindspore/ops/_grad_experimental/grad_comm_ops.py +4 -2
  214. mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -2
  215. mindspore/ops/_vmap/vmap_math_ops.py +27 -8
  216. mindspore/ops/_vmap/vmap_nn_ops.py +66 -8
  217. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +73 -1
  218. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +12 -3
  219. mindspore/ops/auto_generate/gen_arg_handler.py +24 -0
  220. mindspore/ops/auto_generate/gen_extend_func.py +274 -0
  221. mindspore/ops/auto_generate/gen_ops_def.py +889 -22
  222. mindspore/ops/auto_generate/gen_ops_prim.py +3541 -253
  223. mindspore/ops/auto_generate/pyboost_inner_prim.py +282 -0
  224. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
  225. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +9 -0
  226. mindspore/ops/extend/__init__.py +9 -1
  227. mindspore/ops/extend/array_func.py +134 -27
  228. mindspore/ops/extend/math_func.py +3 -3
  229. mindspore/ops/extend/nn_func.py +363 -2
  230. mindspore/ops/function/__init__.py +19 -2
  231. mindspore/ops/function/array_func.py +463 -439
  232. mindspore/ops/function/clip_func.py +7 -18
  233. mindspore/ops/function/grad/grad_func.py +5 -5
  234. mindspore/ops/function/linalg_func.py +4 -4
  235. mindspore/ops/function/math_func.py +260 -243
  236. mindspore/ops/function/nn_func.py +825 -62
  237. mindspore/ops/function/random_func.py +73 -4
  238. mindspore/ops/function/sparse_unary_func.py +1 -1
  239. mindspore/ops/function/vmap_func.py +1 -1
  240. mindspore/ops/functional.py +2 -2
  241. mindspore/ops/op_info_register.py +1 -31
  242. mindspore/ops/operations/__init__.py +2 -3
  243. mindspore/ops/operations/_grad_ops.py +2 -107
  244. mindspore/ops/operations/_inner_ops.py +5 -5
  245. mindspore/ops/operations/_sequence_ops.py +2 -2
  246. mindspore/ops/operations/array_ops.py +11 -233
  247. mindspore/ops/operations/comm_ops.py +32 -32
  248. mindspore/ops/operations/custom_ops.py +7 -89
  249. mindspore/ops/operations/manually_defined/ops_def.py +329 -4
  250. mindspore/ops/operations/math_ops.py +13 -163
  251. mindspore/ops/operations/nn_ops.py +9 -316
  252. mindspore/ops/operations/random_ops.py +1 -1
  253. mindspore/ops/operations/sparse_ops.py +3 -3
  254. mindspore/ops/primitive.py +2 -2
  255. mindspore/ops_generate/arg_dtype_cast.py +12 -3
  256. mindspore/ops_generate/arg_handler.py +24 -0
  257. mindspore/ops_generate/gen_ops_inner_prim.py +2 -0
  258. mindspore/ops_generate/gen_pyboost_func.py +13 -6
  259. mindspore/ops_generate/pyboost_utils.py +2 -17
  260. mindspore/parallel/__init__.py +3 -2
  261. mindspore/parallel/_auto_parallel_context.py +106 -1
  262. mindspore/parallel/_parallel_serialization.py +34 -2
  263. mindspore/parallel/_utils.py +16 -0
  264. mindspore/parallel/algo_parameter_config.py +4 -4
  265. mindspore/parallel/checkpoint_transform.py +249 -77
  266. mindspore/parallel/cluster/process_entity/_api.py +1 -1
  267. mindspore/parallel/parameter_broadcast.py +1 -1
  268. mindspore/parallel/shard.py +1 -1
  269. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +1 -0
  270. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +17 -5
  271. mindspore/profiler/parser/ascend_msprof_exporter.py +3 -3
  272. mindspore/profiler/parser/ascend_msprof_generator.py +10 -3
  273. mindspore/profiler/parser/ascend_op_generator.py +26 -9
  274. mindspore/profiler/parser/ascend_timeline_generator.py +7 -4
  275. mindspore/profiler/parser/profiler_info.py +11 -1
  276. mindspore/profiler/profiling.py +13 -5
  277. mindspore/rewrite/api/node.py +12 -12
  278. mindspore/rewrite/api/symbol_tree.py +11 -11
  279. mindspore/run_check/_check_version.py +1 -1
  280. mindspore/safeguard/rewrite_obfuscation.py +2 -2
  281. mindspore/train/amp.py +4 -4
  282. mindspore/train/anf_ir_pb2.py +8 -2
  283. mindspore/train/callback/_backup_and_restore.py +2 -2
  284. mindspore/train/callback/_callback.py +4 -4
  285. mindspore/train/callback/_checkpoint.py +2 -2
  286. mindspore/train/callback/_early_stop.py +2 -2
  287. mindspore/train/callback/_landscape.py +4 -4
  288. mindspore/train/callback/_loss_monitor.py +2 -2
  289. mindspore/train/callback/_on_request_exit.py +2 -2
  290. mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
  291. mindspore/train/callback/_summary_collector.py +2 -2
  292. mindspore/train/callback/_time_monitor.py +2 -2
  293. mindspore/train/dataset_helper.py +8 -3
  294. mindspore/train/loss_scale_manager.py +2 -2
  295. mindspore/train/metrics/metric.py +3 -3
  296. mindspore/train/mind_ir_pb2.py +22 -17
  297. mindspore/train/model.py +15 -15
  298. mindspore/train/serialization.py +18 -18
  299. mindspore/train/summary/summary_record.py +7 -7
  300. mindspore/train/train_thor/convert_utils.py +3 -3
  301. mindspore/version.py +1 -1
  302. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +1 -1
  303. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +307 -260
  304. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/tiling_data.h +0 -59
  305. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_bf16_BNSD_mix.o +0 -0
  306. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_bf16_BSH_mix.o +0 -0
  307. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_fp16_BNSD_mix.o +0 -0
  308. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/FlashAttentionScore_fp16_BSH_mix.o +0 -0
  309. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_bf16_BNSD_mix.o +0 -0
  310. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_bf16_BSH_mix.o +0 -0
  311. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_fp16_BNSD_mix.o +0 -0
  312. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/PagedAttention_fp16_BSH_mix.o +0 -0
  313. /mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{attention/bs_attention_mix_hwsync.h → flash_attention_score/kernel/flash_attention_score_mix_hwsync.h} +0 -0
  314. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
  315. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +0 -0
  316. {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -99,7 +99,7 @@ class WithLossCell(Cell):
99
99
  >>> from mindspore import Tensor, nn
100
100
  >>> import numpy as np
101
101
  >>> # Define the network structure of LeNet5. Refer to
102
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
102
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
103
103
  >>> net = LeNet5()
104
104
  >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
105
105
  >>> net_with_criterion = nn.WithLossCell(net, loss_fn)
@@ -132,7 +132,7 @@ class WithLossCell(Cell):
132
132
  Examples:
133
133
  >>> from mindspore import nn
134
134
  >>> # Define the network structure of LeNet5. Refer to
135
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
135
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
136
136
  >>> net = LeNet5()
137
137
  >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
138
138
  >>> net_with_criterion = nn.WithLossCell(net, loss_fn)
@@ -175,7 +175,7 @@ class WithGradCell(Cell):
175
175
  >>> import mindspore as ms
176
176
  >>> from mindspore import nn
177
177
  >>> # Defined a network without loss function, taking LeNet5 as an example.
178
- >>> # Refer to https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
178
+ >>> # Refer to https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
179
179
  >>> net = LeNet5()
180
180
  >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
181
181
  >>> grad_net = nn.WithGradCell(net, loss_fn)
@@ -346,7 +346,7 @@ class TrainOneStepCell(Cell):
346
346
  Examples:
347
347
  >>> import mindspore.nn as nn
348
348
  >>> # Define the network structure of LeNet5. Refer to
349
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
349
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
350
350
  >>> net = LeNet5()
351
351
  >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
352
352
  >>> optim = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
@@ -586,7 +586,7 @@ class MicroBatchInterleaved(Cell):
586
586
  Examples:
587
587
  >>> import mindspore.nn as nn
588
588
  >>> # Define the network structure of LeNet5. Refer to
589
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
589
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
590
590
  >>> net = LeNet5()
591
591
  >>> net = nn.MicroBatchInterleaved(net, 2)
592
592
  """
@@ -634,7 +634,7 @@ class PipelineCell(Cell):
634
634
  Examples:
635
635
  >>> import mindspore.nn as nn
636
636
  >>> # Define the network structure of LeNet5. Refer to
637
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
637
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
638
638
  >>> net = LeNet5()
639
639
  >>> net = nn.PipelineCell(net, 4)
640
640
  """
@@ -685,7 +685,7 @@ class GradAccumulationCell(Cell):
685
685
  Examples:
686
686
  >>> import mindspore.nn as nn
687
687
  >>> # Define the network structure of LeNet5. Refer to
688
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
688
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
689
689
  >>> net = LeNet5()
690
690
  >>> net = nn.GradAccumulationCell(net, 4)
691
691
  """
@@ -811,7 +811,7 @@ class VirtualDatasetCellTriple(Cell):
811
811
  Examples:
812
812
  >>> import mindspore.nn as nn
813
813
  >>> # Define the network structure of LeNet5. Refer to
814
- >>> # https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
814
+ >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
815
815
  >>> net = LeNet5()
816
816
  >>> net = nn.VirtualDatasetCellTriple(net)
817
817
  """
@@ -854,7 +854,7 @@ class WithEvalCell(Cell):
854
854
  Examples:
855
855
  >>> import mindspore.nn as nn
856
856
  >>> # Define a forward network without loss function, taking LeNet5 as an example.
857
- >>> # Refer to https://gitee.com/mindspore/docs/blob/r2.3.q1/docs/mindspore/code/lenet.py
857
+ >>> # Refer to https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
858
858
  >>> net = LeNet5()
859
859
  >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
860
860
  >>> eval_net = nn.WithEvalCell(net, loss_fn)
@@ -335,14 +335,14 @@ class DistributedGradReducer(Cell):
335
335
 
336
336
  For the Ascend devices, users need to prepare the rank table, set rank_id and device_id.
337
337
  Please see the `rank table Startup
338
- <https://www.mindspore.cn/tutorials/experts/en/r2.3.q1/parallel/rank_table.html>`_
338
+ <https://www.mindspore.cn/tutorials/experts/en/master/parallel/rank_table.html>`_
339
339
  for more details.
340
340
 
341
341
  For the GPU devices, users need to prepare the host file and mpi, please see the `mpirun Startup
342
- <https://www.mindspore.cn/tutorials/experts/en/r2.3.q1/parallel/mpirun.html>`_ .
342
+ <https://www.mindspore.cn/tutorials/experts/en/master/parallel/mpirun.html>`_ .
343
343
 
344
344
  For the CPU device, users need to write a dynamic cluster startup script, please see the `Dynamic Cluster
345
- Startup <https://www.mindspore.cn/tutorials/experts/en/r2.3.q1/parallel/dynamic_cluster.html>`_ .
345
+ Startup <https://www.mindspore.cn/tutorials/experts/en/master/parallel/dynamic_cluster.html>`_ .
346
346
 
347
347
  This example should be run with multiple devices.
348
348
 
@@ -509,11 +509,11 @@ class PipelineGradReducer(Cell):
509
509
 
510
510
  For the Ascend devices, users need to prepare the rank table, set rank_id and device_id.
511
511
  Please see the `rank table Startup
512
- <https://www.mindspore.cn/tutorials/experts/en/r2.3.q1/parallel/rank_table.html>`_
512
+ <https://www.mindspore.cn/tutorials/experts/en/master/parallel/rank_table.html>`_
513
513
  for more details.
514
514
 
515
515
  For the GPU devices, users need to prepare the host file and mpi, please see the `mpirun Startup
516
- <https://www.mindspore.cn/tutorials/experts/en/r2.3.q1/parallel/mpirun.html>`_ .
516
+ <https://www.mindspore.cn/tutorials/experts/en/master/parallel/mpirun.html>`_ .
517
517
 
518
518
  This example should be run with multiple devices.
519
519
 
@@ -92,7 +92,8 @@ def get_bprop_send(self):
92
92
  """Generate bprop for Send."""
93
93
  shape = self.get_attr_dict()["shape"]
94
94
  dtype = self.get_attr_dict()["dtype"]
95
- send_grad = Receive(self.sr_tag, self.rank, shape, dtype, self.group_back)
95
+ tag = self.get_attr_dict()["sr_tag"]
96
+ send_grad = Receive(tag, self.rank, shape, dtype, self.group_back)
96
97
  virtual_input = Tensor(0.0, dtype)
97
98
 
98
99
  def bprop(x, out, dout):
@@ -105,7 +106,8 @@ def get_bprop_send(self):
105
106
  @bprop_getters.register(Receive)
106
107
  def get_bprop_receive(self):
107
108
  """Generate bprop for Receive."""
108
- receive_grad = Send(self.tag, self.rank, self.group_back)
109
+ tag = self.get_attr_dict()["sr_tag"]
110
+ receive_grad = Send(tag, self.rank, self.group_back)
109
111
  receive_grad.add_prim_attr("shape", self.shape)
110
112
  depend = P.Depend()
111
113
  cast = P.Cast()
@@ -711,8 +711,7 @@ def get_grid_sampler_grad_vmap_rule(prim, axis_size):
711
711
 
712
712
 
713
713
  @vmap_rules_getters.register(G.UpsampleNearest3DGrad)
714
- @vmap_rules_getters.register(G.UpsampleTrilinear3DGrad)
715
- def get_upsample_grad_vmap_rule(prim, axis_size):
714
+ def get_upsample_nearesst3d_grad_vmap_rule(prim, axis_size):
716
715
  """VmapRule for `UpsampleNearest3DGrad` and `UpsampleTrilinear3DGrad`."""
717
716
  cdhw_reverse_index = -4
718
717
 
@@ -746,6 +745,46 @@ def get_upsample_grad_vmap_rule(prim, axis_size):
746
745
  return vmap_rule
747
746
 
748
747
 
748
+ @vmap_rules_getters.register(G.UpsampleTrilinear3DGrad)
749
+ def get_upsample_trilinear3d_grad_vmap_rule(prim, axis_size):
750
+ """VmapRule for `UpsampleNearest3DGrad` and `UpsampleTrilinear3DGrad`."""
751
+ cdhw_reverse_index = -4
752
+
753
+ def vmap_rule(grad_bdim, isize_bdim, osize_bdim, scales_bdim, align_corners_bdim):
754
+ is_all_none, result = vmap_general_preprocess(prim, grad_bdim)
755
+ if is_all_none:
756
+ return result
757
+
758
+ grad, grad_dim = grad_bdim
759
+ grad = _bdim_at_front(grad, grad_dim, axis_size)
760
+ grad_shape = F.shape(grad)
761
+ input_shape = (-1,) + grad_shape[cdhw_reverse_index:]
762
+ grad = F.reshape(grad, input_shape)
763
+ real_in_shape = F.shape(grad)
764
+
765
+ isize, isize_dim = isize_bdim
766
+ osize, osize_dim = osize_bdim
767
+ scales, scales_dim = scales_bdim
768
+ align_corners, align_corners_dim = align_corners_bdim
769
+ check_args = [isize_dim, osize_dim, scales_dim, align_corners_dim]
770
+ is_all_none = True
771
+ for arg in check_args:
772
+ is_all_none = is_all_none and arg is None
773
+ if not is_all_none:
774
+ _raise_value_error(
775
+ "The source axis of `input_size`, `output_size` and `scales` must be None, but got {0}, {1} and {2}."
776
+ .format(isize_dim, osize_dim, scales_dim))
777
+ # update batch dimension of input_size
778
+ new_isize = (real_in_shape[0],) + isize[1:]
779
+
780
+ out = prim(grad, new_isize, osize, scales, align_corners)
781
+ out_shape = F.shape(out)
782
+ real_out_shape = grad_shape[:cdhw_reverse_index] + out_shape[cdhw_reverse_index:]
783
+ out = F.reshape(out, real_out_shape)
784
+ return out, 0
785
+ return vmap_rule
786
+
787
+
749
788
  @vmap_rules_getters.register(G.LogSoftmaxGrad)
750
789
  def get_log_softmax_grad_vmap_rule(prim_func, axis_size):
751
790
  """VmapRule for 'LogSoftmaxGrad' operation."""
@@ -19,6 +19,7 @@ from __future__ import absolute_import
19
19
  import mindspore.numpy as mnp
20
20
  from mindspore.ops import operations as P
21
21
  from mindspore.ops import functional as F
22
+ from mindspore.ops.auto_generate import MatMulExt
22
23
  from mindspore.ops.primitive import _primexpr
23
24
  from mindspore.common import Tensor
24
25
  from mindspore.ops.operations import math_ops
@@ -290,29 +291,47 @@ def get_matmul_vmap_rule(prim, axis_size):
290
291
  """VmapRule for `*MatMul` operation."""
291
292
  if isinstance(prim, str):
292
293
  prim = Primitive(prim)
293
- transpose_a = False
294
- transpose_b = False
295
- else:
296
- transpose_a = prim.transpose_a
297
- transpose_b = prim.transpose_b
298
- batch_matmul = P.BatchMatMul(transpose_a, transpose_b)
299
294
 
300
- def vmap_rule(a_bdim, b_bdim):
301
- is_all_none, result = vmap_general_preprocess(prim, a_bdim, b_bdim)
295
+ def vmap_rule(a_bdim, b_bdim, trans_a_bdim, trans_b_bdim):
296
+ is_all_none, result = vmap_general_preprocess(prim, a_bdim, b_bdim, trans_a_bdim, trans_b_bdim)
302
297
  if is_all_none:
303
298
  return result
304
299
 
305
300
  a, a_dim = a_bdim
306
301
  b, b_dim = b_bdim
302
+ trans_a, _ = trans_a_bdim
303
+ trans_b, _ = trans_b_bdim
307
304
  a = _bdim_at_front(a, a_dim, axis_size)
308
305
  b = _bdim_at_front(b, b_dim, axis_size)
309
306
 
307
+ batch_matmul = P.BatchMatMul(trans_a, trans_b)
310
308
  out = batch_matmul(a, b)
311
309
  return out, 0
312
310
 
313
311
  return vmap_rule
314
312
 
315
313
 
314
+ @vmap_rules_getters.register(MatMulExt)
315
+ def get_matmul_ext_vmap_rule(prim, axis_size):
316
+ """VmapRule for `*MatMulExt` operation."""
317
+ if isinstance(prim, str):
318
+ prim = Primitive(prim)
319
+
320
+ def vmap_rule(a_bdim, b_bdim):
321
+ is_all_none, result = vmap_general_preprocess(prim, a_bdim, b_bdim)
322
+ if is_all_none:
323
+ return result
324
+
325
+ a, _ = a_bdim
326
+ b, _ = b_bdim
327
+
328
+ matmul_ext = MatMulExt()
329
+ out = matmul_ext(a, b)
330
+ return out, 0
331
+
332
+ return vmap_rule
333
+
334
+
316
335
  @vmap_rules_getters.register(P.math_ops.MatrixSolve)
317
336
  def get_matrix_solve_vmap_rule(prim, axis_size):
318
337
  """VmapRule for `*MatMul` operation."""
@@ -30,6 +30,7 @@ from mindspore.ops._vmap.vmap_base import vmap_rules_getters, vmap_general_prepr
30
30
  _vmap_clone_prim, _get_reduce_batch_axis
31
31
  from mindspore.ops.primitive import Primitive
32
32
  from mindspore.ops.auto_generate.gen_arg_handler import Format
33
+ from mindspore.ops.auto_generate import Embedding
33
34
 
34
35
 
35
36
  @vmap_rules_getters.register(P.ApplyAdaMax)
@@ -1936,11 +1937,18 @@ def get_grid_sampler_vmap_rule(prim, axis_size):
1936
1937
  return vmap_rule
1937
1938
 
1938
1939
 
1940
+ @vmap_rules_getters.register(NN.UpsampleNearest1D)
1941
+ @vmap_rules_getters.register(NN.UpsampleNearest2D)
1939
1942
  @vmap_rules_getters.register(NN.UpsampleNearest3D)
1940
- @vmap_rules_getters.register(NN.UpsampleTrilinear3D)
1941
1943
  def get_upsample_nearest_3d_vmap_rule(prim, axis_size):
1942
- """VmapRule for `UpsampleNearest3D` and `UpsampleTrilinear3D`."""
1943
- cdhw_reverse_index = -4
1944
+ """VmapRule for `UpsampleNearest1D`, `UpsampleNearest2D` and `UpsampleNearest3D`."""
1945
+ prim_name = prim.name
1946
+ if prim_name == "UpsampleNearest1D":
1947
+ reverse_index = -2
1948
+ elif prim_name == "UpsampleNearest2D":
1949
+ reverse_index = -3
1950
+ else:
1951
+ reverse_index = -4
1944
1952
 
1945
1953
  def vmap_rule(x_bdim, size_bdim, scales_bdim):
1946
1954
  is_all_none, result = vmap_general_preprocess(prim, x_bdim, size_bdim,
@@ -1954,16 +1962,56 @@ def get_upsample_nearest_3d_vmap_rule(prim, axis_size):
1954
1962
  scales, scales_dim = scales_bdim
1955
1963
  if size_dim is not None or scales_dim is not None:
1956
1964
  _raise_value_error(
1957
- "The source axis of `output_size` and `scales` must be None, but got {0} and {1}."
1958
- .format(size_dim, scales_dim))
1965
+ "For {0}, the source axis of `output_size` and `scales` must be None,"
1966
+ " but got {1} and {2}.".format(prim_name, size_dim, scales_dim))
1959
1967
 
1960
1968
  x_shape = F.shape(x)
1961
- input_shape = (-1,) + x_shape[cdhw_reverse_index:]
1969
+ input_shape = (-1,) + x_shape[reverse_index:]
1962
1970
  x = F.reshape(x, input_shape)
1963
1971
  out = prim(x, size, scales)
1964
1972
  out_shape = F.shape(out)
1965
- return_shape = x_shape[:cdhw_reverse_index] + out_shape[
1966
- cdhw_reverse_index:]
1973
+ return_shape = x_shape[:reverse_index] + out_shape[reverse_index:]
1974
+ out = F.reshape(out, return_shape)
1975
+ return out, 0
1976
+
1977
+ return vmap_rule
1978
+
1979
+
1980
+ @vmap_rules_getters.register(NN.UpsampleLinear1D)
1981
+ @vmap_rules_getters.register(NN.UpsampleBilinear2D)
1982
+ @vmap_rules_getters.register(NN.UpsampleTrilinear3D)
1983
+ def get_upsample_linear_vmap_rule(prim, axis_size):
1984
+ """VmapRule for `UpsampleLinear1D`, `UpsampleBilinear2D` and `UpsampleTrilinear3D`."""
1985
+ prim_name = prim.name
1986
+ if prim_name == "UpsampleLinear1D":
1987
+ reverse_index = -2
1988
+ elif prim_name == "UpsampleBilinear2D":
1989
+ reverse_index = -3
1990
+ else:
1991
+ reverse_index = -4
1992
+
1993
+ def vmap_rule(x_bdim, size_bdim, scales_bdim, align_corners_bdim):
1994
+ is_all_none, result = vmap_general_preprocess(prim, x_bdim, size_bdim,
1995
+ scales_bdim, align_corners_bdim)
1996
+ if is_all_none:
1997
+ return result
1998
+
1999
+ x, x_dim = x_bdim
2000
+ x = _bdim_at_front(x, x_dim, axis_size)
2001
+ size, size_dim = size_bdim
2002
+ scales, scales_dim = scales_bdim
2003
+ align_corners, align_corners_dim = align_corners_bdim
2004
+ if size_dim is not None or scales_dim is not None or align_corners_dim is not None:
2005
+ _raise_value_error(
2006
+ "For {0}, the source axis of `output_size`, `scales` and `align_corners`must"
2007
+ "be None, but got {1} and {2}.".format(prim_name, size_dim, scales_dim))
2008
+
2009
+ x_shape = F.shape(x)
2010
+ input_shape = (-1,) + x_shape[reverse_index:]
2011
+ x = F.reshape(x, input_shape)
2012
+ out = prim(x, size, scales, align_corners)
2013
+ out_shape = F.shape(out)
2014
+ return_shape = x_shape[:reverse_index] + out_shape[reverse_index:]
1967
2015
  out = F.reshape(out, return_shape)
1968
2016
  return out, 0
1969
2017
 
@@ -2130,6 +2178,16 @@ def get_elu_vmap_rule(prim, axis_size):
2130
2178
  return vmap_rule
2131
2179
 
2132
2180
 
2181
+ @vmap_rules_getters.register(Embedding)
2182
+ def get_embedding_vmap_rule(prim, axis_size):
2183
+ """VmapRule for Embedding operations."""
2184
+ if isinstance(prim, str):
2185
+ prim_name = prim
2186
+ else:
2187
+ prim_name = prim.name
2188
+ raise RuntimeError(f"THe {prim_name} does not support vmap.")
2189
+
2190
+
2133
2191
  # Unary vmap
2134
2192
  get_unop_vmap_rule = vmap_rules_getters.register(P.ReLU)(get_unop_vmap_rule)
2135
2193
  get_unop_vmap_rule = vmap_rules_getters.register(P.ReLU6)(get_unop_vmap_rule)
@@ -17,18 +17,25 @@
17
17
  from mindspore.common import dtype as mstype
18
18
 
19
19
  op_args_default_value = {
20
+ "AdamWeightDecayExt": {"amsgrad": False, "maximize": False},
20
21
  "AdamWeightDecay": {"use_locking": False},
21
22
  "AddExt": {"alpha": 1},
22
23
  "ApplyCamePart2": {"sum_r": None, "global_shape": None},
23
24
  "ApplyCamePart3": {"global_shape": None, "use_first_moment": False},
24
25
  "ApplyCamePart4": {"global_shape": None},
25
26
  "ApplyRotaryPosEmb": {"cos_format": 0},
27
+ "ArgMaxExt": {"dim": None, "keepdim": False},
26
28
  "Argmax": {"axis": -1, "output_type": mstype.int32},
27
29
  "ArgMaxWithValue": {"axis": 0, "keep_dims": False},
28
30
  "Argmin": {"axis": -1, "output_type": mstype.int32},
29
31
  "ArgMinWithValue": {"axis": 0, "keep_dims": False},
32
+ "AvgPool2DGrad": {"padding": 0, "ceil_mode": False, "count_include_pad": True, "divisor_override": None},
33
+ "AvgPool2D": {"padding": 0, "ceil_mode": False, "count_include_pad": True, "divisor_override": None},
30
34
  "AvgPoolGrad": {"kernel_size": 1, "strides": 1, "pad_mode": 'VALID', "data_format": 'NCHW'},
31
35
  "AvgPool": {"kernel_size": 1, "strides": 1, "pad_mode": 'VALID', "data_format": 'NCHW'},
36
+ "BatchMatMul": {"transpose_a": False, "transpose_b": False},
37
+ "BatchNormExt": {"training": False, "momentum": 0.1, "epsilon": 1e-5},
38
+ "BatchNormGradExt": {"training": False, "eps": 1e-5},
32
39
  "BatchNormGradGrad": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
33
40
  "BatchNormGrad": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
34
41
  "BatchNormGradWithActivation": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
@@ -40,26 +47,45 @@ op_args_default_value = {
40
47
  "CeLU": {"alpha": 1.0},
41
48
  "CholeskyInverse": {"upper": False},
42
49
  "Cholesky": {"upper": False},
50
+ "Chunk": {"dim": 0},
51
+ "ClampScalar": {"min": None, "max": None},
52
+ "ClampTensor": {"min": None, "max": None},
43
53
  "Concat": {"axis": 0},
54
+ "ConstantPadND": {"value": 0.0},
55
+ "ConvolutionGrad": {"bias": None, "stride": 1, "padding": 0, "dilation": 1, "transposed": False, "output_padding": 0, "groups": 1, "output_mask": ()},
56
+ "Convolution": {"bias": None, "stride": 1, "padding": 0, "dilation": 1, "transposed": False, "output_padding": 0, "groups": 1},
44
57
  "Correlate": {"mode": 'valid'},
45
58
  "CumProd": {"exclusive": False, "reverse": False},
46
59
  "CumSum": {"exclusive": False, "reverse": False},
47
60
  "DCT": {"axis": -1, "norm": 'BACKWARD', "forward": True, "grad": False},
61
+ "Dense": {"bias": None},
48
62
  "Diagonal": {"offset": 0, "dim1": 0, "dim2": 1},
63
+ "DivMod": {"rounding_mode": None},
64
+ "DropoutExt": {"p": 0.5, "seed": 0, "offset": 0},
49
65
  "Dropout": {"keep_prob": 0.5, "Seed0": 0, "Seed1": 0},
50
66
  "Eig": {"compute_v": False},
51
67
  "Elu": {"alpha": 1.0},
68
+ "EmbeddingDenseBackward": {"padding_idx": None, "scale_grad_by_freq": False},
69
+ "Embedding": {"padding_idx": None, "max_norm": None, "norm_type": 2.0, "scale_grad_by_freq": False},
52
70
  "ExtractImagePatches": {"padding": 'VALID'},
71
+ "FFNExt": {"expertTokens": None, "bias1": None, "bias2": None, "scale": None, "offset": None, "deqScale1": None, "deqScale2": None, "antiquant_scale1": None, "antiquant_scale2": None, "antiquant_offset1": None, "antiquant_offset2": None, "activation": 'fastgelu', "inner_precise": 0},
53
72
  "FFT2": {"s": None, "dim": (-2, -1), "norm": None},
54
73
  "FFT": {"n": None, "dim": -1, "norm": None},
55
74
  "FFTWithSize": {"norm": 'backward', "onesided": True, "signal_sizes": ()},
56
75
  "FFTN": {"s": None, "dim": None, "norm": None},
57
76
  "FFTShift": {"dim": None},
77
+ "FillScalar": {"dtype": None},
78
+ "FillTensor": {"dtype": None},
79
+ "FlashAttentionScoreGrad": {"pse_shift": None, "drop_mask": None, "padding_mask": None, "atten_mask": None, "softmax_max": None, "softmax_sum": None, "softmax_in": None, "attention_in": None, "prefix": None, "actual_seq_qlen": None, "actual_seq_kvlen": None, "keep_prob": 1.0, "scale_value": 1.0, "pre_tokens": 65536, "next_tokens": 65536, "inner_precise": 1, "input_layout": 'BSH', "sparse_mode": 0},
80
+ "FlashAttentionScore": {"real_shift": None, "drop_mask": None, "padding_mask": None, "attn_mask": None, "prefix": None, "actual_seq_qlen": None, "actual_seq_kvlen": None, "keep_prob": 1.0, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "inner_precise": 0, "input_layout": 'BSH', "sparse_mode": 0},
81
+ "FlattenExt": {"start_dim": 0, "end_dim": -1},
58
82
  "Gather": {"batch_dims": 0},
59
83
  "GridSampler2DGrad": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False},
60
84
  "GridSampler2D": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False},
61
85
  "GridSampler3DGrad": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False},
62
86
  "GridSampler3D": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False},
87
+ "GroupNormGrad": {"dx_is_require": True, "dgamma_is_require": True, "dbeta_is_require": True},
88
+ "GroupNorm": {"weight": None, "bias": None, "eps": 1e-5},
63
89
  "HShrinkGrad": {"lambd": 0.5},
64
90
  "HShrink": {"lambd": 0.5},
65
91
  "IFFT2": {"s": None, "dim": (-2, -1), "norm": None},
@@ -68,28 +94,44 @@ op_args_default_value = {
68
94
  "IFFTShift": {"dim": None},
69
95
  "IRFFTGrad": {"n": None, "dim": -1, "norm": None},
70
96
  "IRFFT": {"n": None, "dim": -1, "norm": None},
97
+ "LayerNormExt": {"weight": None, "bias": None, "eps": 1e-5},
71
98
  "LayerNormGradGrad": {"begin_norm_axis": 1, "begin_params_axis": 1},
72
99
  "LayerNormGrad": {"begin_norm_axis": 1, "begin_params_axis": 1},
73
100
  "LayerNormGradV3": {"begin_norm_axis": 1, "begin_params_axis": 1},
74
101
  "LayerNorm": {"begin_norm_axis": 1, "begin_params_axis": 1, "epsilon": 1e-7},
75
102
  "LayerNormV3": {"begin_norm_axis": 1, "begin_params_axis": 1, "epsilon": 1e-7},
103
+ "LeakyReLUExt": {"negative_slope": 0.01},
104
+ "LeakyReLUGradExt": {"negative_slope": 0.01, "is_result": False},
105
+ "LinSpaceExt": {"dtype": None},
76
106
  "LogSoftmaxGrad": {"axis": -1},
77
107
  "LogSoftmax": {"axis": -1},
78
108
  "LogitGrad": {"eps": -1.0},
79
109
  "Logit": {"eps": -1.0},
110
+ "MatMul": {"transpose_a": False, "transpose_b": False},
111
+ "MaxPoolGradWithIndices": {"strides": None, "pads": 0, "dilation": (1, 1), "ceil_mode": False, "argmax_type": mstype.int64},
112
+ "MaxPoolGradWithMask": {"strides": None, "pads": 0, "dilation": (1, 1), "ceil_mode": False, "argmax_type": mstype.int64},
113
+ "MaxPoolWithIndices": {"strides": None, "pads": 0, "dilation": (1, 1), "ceil_mode": False, "argmax_type": mstype.int64},
114
+ "MaxPoolWithMask": {"strides": None, "pads": 0, "dilation": (1, 1), "ceil_mode": False, "argmax_type": mstype.int64},
80
115
  "MaximumGradGrad": {"grad_x": True, "grad_y": True},
81
116
  "MaximumGrad": {"grad_x": True, "grad_y": True},
117
+ "MeanExt": {"axis": None, "keep_dims": False, "dtype": None},
82
118
  "MinimumGrad": {"grad_x": True, "grad_y": True},
119
+ "MoeFinalizeRouting": {"x2": None, "bias": None, "scales": None, "expanded_row_idx": None, "expanded_expert_idx": None},
83
120
  "NanToNum": {"nan": None, "posinf": None, "neginf": None},
84
121
  "NLLLossGrad": {"reduction": 'mean', "ignore_index": -100},
85
122
  "NLLLoss": {"reduction": 'mean', "ignore_index": -100},
123
+ "Norm": {"ord": None, "dim": None, "keepdim": False, "dtype": None},
124
+ "OneHotExt": {"axis": -1},
86
125
  "OneHot": {"axis": -1},
126
+ "OnesLikeExt": {"dtype": None},
127
+ "Ones": {"dtype": None},
128
+ "ProdExt": {"axis": None, "keep_dims": False, "dtype": None},
87
129
  "PromptKVCache": {"align_mode": 'LEFT'},
88
130
  "Qr": {"full_matrices": False},
89
131
  "QuantBatchMatmul": {"offset": None, "bias": None, "transpose_x1": False, "transpose_x2": False, "dtype": mstype.float16},
90
132
  "RandpermV2": {"seed": 0, "offset": 0, "dtype": mstype.int64},
91
133
  "Range": {"maxlen": 1000000},
92
- "ReduceAll": {"axis": (), "keep_dims": False},
134
+ "ReduceAll": {"axis": None, "keep_dims": False},
93
135
  "ReduceAny": {"axis": (), "keep_dims": False},
94
136
  "ReduceMax": {"axis": (), "keep_dims": False},
95
137
  "ReduceMean": {"axis": (), "keep_dims": False},
@@ -97,10 +139,12 @@ op_args_default_value = {
97
139
  "ReduceProd": {"axis": (), "keep_dims": False},
98
140
  "ReduceStd": {"axis": [], "unbiased": True, "keep_dims": False},
99
141
  "ReduceSum": {"axis": (), "keep_dims": False, "skip_mode": False},
142
+ "RepeatInterleave": {"axis": None, "output_size": None},
100
143
  "ResizeBicubicGrad": {"align_corners": False, "half_pixel_centers": False},
101
144
  "ResizeBicubic": {"align_corners": False, "half_pixel_centers": False},
102
145
  "ResizeBilinearGrad": {"align_corners": False, "half_pixel_centers": False},
103
146
  "ResizeBilinearV2": {"align_corners": False, "half_pixel_centers": False},
147
+ "ResizeD": {"coordinate_transformation_mode": 'align_corners'},
104
148
  "ResizeLinear1DGrad": {"coordinate_transformation_mode": 'align_corners'},
105
149
  "ResizeLinear1D": {"coordinate_transformation_mode": 'align_corners'},
106
150
  "ResizeNearestNeighborGrad": {"align_corners": False, "half_pixel_centers": False},
@@ -113,21 +157,49 @@ op_args_default_value = {
113
157
  "SequenceConcat": {"axis": 0},
114
158
  "SoftmaxBackward": {"dim": -1},
115
159
  "Softmax": {"axis": -1},
160
+ "SoftplusExt": {"beta": 1, "threshold": 20},
161
+ "SoftplusGradExt": {"beta": 1, "threshold": 20},
116
162
  "SolveTriangular": {"trans": 0, "lower": False, "unit_diagonal": False},
117
163
  "Split": {"axis": 0, "output_num": 1},
164
+ "SplitTensor": {"axis": 0},
165
+ "SplitWithSize": {"axis": 0},
166
+ "StackExt": {"dim": 0},
118
167
  "StridedSlice": {"begin_mask": 0, "end_mask": 0, "ellipsis_mask": 0, "new_axis_mask": 0, "shrink_axis_mask": 0},
119
168
  "SubExt": {"alpha": 1},
169
+ "SumExt": {"dim": None, "keepdim": False, "dtype": None},
170
+ "TopkExt": {"dim": -1, "largest": True, "sorted": True},
171
+ "Tril": {"diagonal": 0},
172
+ "Triu": {"diagonal": 0},
120
173
  "TupleToTensor": {"dtype": None},
174
+ "UpsampleBilinear2DGrad": {"output_size": None, "scales": None, "align_corners": False},
175
+ "UpsampleBilinear2D": {"output_size": None, "scales": None, "align_corners": False},
176
+ "UpsampleLinear1DGrad": {"output_size": None, "scales": None, "align_corners": False},
177
+ "UpsampleLinear1D": {"output_size": None, "scales": None, "align_corners": False},
178
+ "UpsampleNearest1DGrad": {"output_size": None, "scales": None},
179
+ "UpsampleNearest1D": {"output_size": None, "scales": None},
180
+ "UpsampleNearest2DGrad": {"output_size": None, "scales": None},
181
+ "UpsampleNearest2D": {"output_size": None, "scales": None},
182
+ "UpsampleNearest3DGrad": {"output_size": None, "scales": None},
183
+ "UpsampleNearest3D": {"output_size": None, "scales": None},
184
+ "UpsampleTrilinear3DGrad": {"output_size": None, "scales": None, "align_corners": False},
185
+ "UpsampleTrilinear3D": {"output_size": None, "scales": None, "align_corners": False},
121
186
  "WeightQuantBatchMatmul": {"antiquant_offset": None, "quant_scale": None, "quant_offset": None, "bias": None, "transpose_x": False, "transpose_weight": False, "antiquant_group_size": 0},
187
+ "ZerosLikeExt": {"dtype": None},
188
+ "Zeros": {"dtype": None},
122
189
  }
123
190
 
124
191
  op_labels = {
192
+ "AdamWeightDecayExt": {"side_effect_mem": True},
125
193
  "AdamWeightDecay": {"side_effect_mem": True},
126
194
  "AssignAdd": {"side_effect_mem": True},
127
195
  "Assign": {"side_effect_mem": True},
128
196
  "DecoderKVCache": {"side_effect_mem": True},
197
+ "DropoutExt": {"side_effect_hidden": True},
198
+ "DropoutGenMaskExt": {"side_effect_hidden": True},
129
199
  "Dropout": {"side_effect_hidden": True},
200
+ "Embedding": {"side_effect_mem": True},
130
201
  "Log": {"cust_aicpu": 'Log', "base": -1.0, "scale": 1.0, "shift": 0.0},
131
202
  "PromptKVCache": {"side_effect_mem": True},
132
203
  "ReshapeAndCache": {"side_effect_mem": True},
204
+ "ResizeD": {"mode": 'linear'},
133
205
  }
@@ -20,17 +20,25 @@ import mindspore as ms
20
20
  from mindspore import ops
21
21
  from mindspore.common.tensor import Tensor
22
22
  from mindspore.ops.operations._sequence_ops import TensorToScalar, TensorToTuple
23
- from mindspore.ops_generate.gen_ops_inner_prim import ListToTuple, TupleToList
23
+ from mindspore.ops_generate.gen_ops_inner_prim import TupleToList
24
24
  from mindspore._c_expression import OpDtype
25
25
 
26
26
  tensor_to_tuple_ = TensorToTuple()
27
- list_to_tuple = ListToTuple()
28
27
  tuple_to_list = TupleToList()
29
28
 
29
+
30
30
  def int_to_float(data):
31
31
  return float(data)
32
32
 
33
33
 
34
+ def list_to_tuple(data):
35
+ # tuple() currently does not support Any from JIT Fallback.
36
+ res = ()
37
+ for element in data:
38
+ res += (element,)
39
+ return res
40
+
41
+
34
42
  def scalar_to_tuple(data):
35
43
  return (data,)
36
44
 
@@ -61,6 +69,7 @@ def tuple_to_tensor(data):
61
69
  def list_to_tensor(data):
62
70
  return ops.tuple_to_array(list_to_tuple(data))
63
71
 
72
+
64
73
  # There will be some problems in using OpDtype.xxx directly in GRAPH_MODE, so convert it to int.
65
74
  # type
66
75
  DT_TYPE_VAL = int(OpDtype.DT_TYPE)
@@ -243,6 +252,6 @@ def type_it(op_name, arg_name, data, src_type, dst_type):
243
252
  dst_type = int(dst_type)
244
253
  if not is_instance_in(data, src_type) and not is_instance_of(data, dst_type):
245
254
  support_list = get_support_dtype_list(src_type, dst_type)
246
- raise TypeError(f"For '{op_name}', the type of '{arg_name}' should be one of '[{support_list}]', " \
255
+ raise TypeError(f"For '{op_name}', the type of '{arg_name}' should be one of '[{support_list}]', "
247
256
  f"but got {type(data)}.")
248
257
  return do_type_cast(data, dst_type)
@@ -79,6 +79,30 @@ def to_dilations(op_name, arg_name, dilation):
79
79
  raise ValueError(arg_invalid_info(op_name, arg_name, dilation))
80
80
 
81
81
 
82
+ def to_output_padding(op_name, arg_name, output_padding):
83
+ """
84
+ convert output_padding: int/tuple[int*4] -> tuple[int*2].
85
+ """
86
+ if isinstance(output_padding, int):
87
+ return (output_padding, output_padding)
88
+ if isinstance(output_padding, (tuple, list)):
89
+ if len(output_padding) == 4:
90
+ return (output_padding[2], output_padding[3])
91
+ return output_padding
92
+ raise ValueError(arg_invalid_info(op_name, arg_name, output_padding))
93
+
94
+
95
+ def to_2d_paddings(op_name, arg_name, pad):
96
+ """
97
+ convert paddings: int -> tuple[int*2].
98
+ """
99
+ if isinstance(pad, int):
100
+ return (pad,) * 2
101
+ if isinstance(pad, (tuple, list)):
102
+ return pad
103
+ raise ValueError(arg_invalid_info(op_name, arg_name, pad))
104
+
105
+
82
106
  def to_paddings(op_name, arg_name, pad):
83
107
  """
84
108
  convert paddings: int -> tuple[int*4].