mindspore 2.3.0__cp39-none-any.whl → 2.3.0rc2__cp39-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (423) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +0 -1512
  3. mindspore/__init__.py +1 -2
  4. mindspore/_c_dataengine.cpython-39-aarch64-linux-gnu.so +0 -0
  5. mindspore/_c_expression.cpython-39-aarch64-linux-gnu.so +0 -0
  6. mindspore/_c_mindrecord.cpython-39-aarch64-linux-gnu.so +0 -0
  7. mindspore/_checkparam.py +25 -5
  8. mindspore/_extends/graph_kernel/model/graph_parallel.py +1 -1
  9. mindspore/_extends/parse/__init__.py +2 -2
  10. mindspore/_extends/parse/compile_config.py +0 -29
  11. mindspore/_extends/parse/namespace.py +2 -2
  12. mindspore/_extends/parse/parser.py +5 -21
  13. mindspore/_extends/parse/resources.py +7 -5
  14. mindspore/_extends/parse/standard_method.py +59 -40
  15. mindspore/_mindspore_offline_debug.cpython-39-aarch64-linux-gnu.so +0 -0
  16. mindspore/amp.py +5 -26
  17. mindspore/bin/cache_admin +0 -0
  18. mindspore/bin/cache_server +0 -0
  19. mindspore/boost/adasum.py +1 -1
  20. mindspore/boost/base.py +1 -1
  21. mindspore/boost/boost_cell_wrapper.py +1 -1
  22. mindspore/boost/grad_freeze.py +2 -2
  23. mindspore/boost/less_batch_normalization.py +6 -9
  24. mindspore/common/__init__.py +1 -8
  25. mindspore/common/_register_for_tensor.py +9 -8
  26. mindspore/common/api.py +65 -275
  27. mindspore/common/dtype.py +4 -8
  28. mindspore/common/dump.py +5 -2
  29. mindspore/common/jit_config.py +1 -1
  30. mindspore/common/lazy_inline.py +2 -14
  31. mindspore/common/parameter.py +15 -14
  32. mindspore/common/recompute.py +5 -20
  33. mindspore/common/sparse_tensor.py +6 -21
  34. mindspore/common/tensor.py +52 -100
  35. mindspore/communication/__init__.py +11 -6
  36. mindspore/communication/management.py +94 -92
  37. mindspore/context.py +18 -180
  38. mindspore/dataset/engine/datasets.py +46 -69
  39. mindspore/dataset/engine/datasets_user_defined.py +53 -72
  40. mindspore/dataset/engine/datasets_vision.py +2 -2
  41. mindspore/dataset/engine/queue.py +38 -56
  42. mindspore/dataset/engine/validators.py +5 -11
  43. mindspore/dataset/vision/__init__.py +5 -5
  44. mindspore/dataset/vision/c_transforms.py +5 -5
  45. mindspore/dataset/vision/py_transforms_util.py +1 -1
  46. mindspore/dataset/vision/transforms.py +46 -591
  47. mindspore/dataset/vision/utils.py +1 -121
  48. mindspore/dataset/vision/validators.py +3 -9
  49. mindspore/hal/__init__.py +1 -7
  50. mindspore/hal/device.py +1 -1
  51. mindspore/include/api/model.h +0 -3
  52. mindspore/include/dataset/vision.h +2 -54
  53. mindspore/include/mindapi/base/types.h +0 -1
  54. mindspore/lib/libdnnl.so.2 +0 -0
  55. mindspore/lib/libmindspore.so +0 -0
  56. mindspore/lib/libmindspore_backend.so +0 -0
  57. mindspore/lib/libmindspore_common.so +0 -0
  58. mindspore/lib/libmindspore_core.so +0 -0
  59. mindspore/lib/libmindspore_glog.so.0 +0 -0
  60. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  61. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  62. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  63. mindspore/lib/libmindspore_shared_lib.so +0 -0
  64. mindspore/lib/libmpi_adapter.so +0 -0
  65. mindspore/lib/libmpi_collective.so +0 -0
  66. mindspore/lib/libnnacl.so +0 -0
  67. mindspore/lib/libopencv_core.so.4.5 +0 -0
  68. mindspore/lib/libps_cache.so +0 -0
  69. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +0 -35
  70. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  71. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  72. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  73. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +0 -72
  74. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  75. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/{aclnn_all_finite.h → aclnn_add_custom.h} +11 -9
  76. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_decoder_kv_cache.h +1 -1
  77. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_prompt_kv_cache.h +1 -1
  78. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/lib/libcust_opapi.so +0 -0
  79. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +12 -184
  80. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +15 -7
  81. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +15 -7
  82. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.cpp +81 -0
  83. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.py +134 -0
  84. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.py +31 -77
  85. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.py +31 -77
  86. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/lib/linux/aarch64/libcust_opmaster_rt2.0.so +0 -0
  87. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
  88. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/inc/op_proto.h +5 -4
  89. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/lib/linux/aarch64/libcust_opsproto_rt2.0.so +0 -0
  90. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  91. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  92. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  93. mindspore/lib/plugin/ascend/liblowlatency_collective.so +0 -0
  94. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  95. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/DeviceBin +0 -0
  96. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/PkgInspect +0 -0
  97. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/op_man +0 -0
  98. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/device/ascend910b/bin/ascend910b.bin +286 -275
  99. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_cann_host.so +0 -0
  100. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_host.so +0 -0
  101. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops.so +0 -0
  102. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops_static.a +0 -0
  103. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/add_impl.h +0 -1
  104. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/apply_rotary_pos_emb_impl.h +0 -1
  105. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/asdop/asd_op_impl.h +0 -3
  106. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/backend_param.h +0 -5
  107. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/cast/cast_tiling.h +45 -1
  108. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/compare/compare_impl.h +0 -1
  109. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/flash_attention_score_impl.h +4 -8
  110. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/flash_attention_score_tiling.h +4 -11
  111. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/kernel/flash_attention_score_mix_hwsync.h +0 -18
  112. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_kernel.h +0 -6
  113. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_rtbackend.h +75 -1
  114. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/kernel/matmul.h +5 -5
  115. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/matmul_impl.h +3 -18
  116. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/pp_matmul_common_tiling.h +5 -5
  117. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/pp_matmul_info.h +2 -2
  118. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/tiling_data.h +3 -36
  119. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/kernel/matmul_stridedslice_fusion.h +2 -2
  120. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/matmul_stridedslice_fusion_impl.h +4 -22
  121. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_param.h +2 -16
  122. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/kernel/paged_attention_mix_hwsync.h +3 -1
  123. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_impl.h +4 -5
  124. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_tiling.h +4 -9
  125. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/attention_param.h +2 -5
  126. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_ext_param.h +0 -1
  127. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_qkv_param.h +4 -10
  128. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/sub_param.h +12 -0
  129. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/rms_norm_impl.h +0 -1
  130. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_impl.h +0 -1
  131. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/matmul_table.h +1 -1
  132. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/backend.h +2 -10
  133. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/elewise_utils.h +1 -5
  134. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log.h +0 -1
  135. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_tiling.h +0 -17
  136. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/math.h +7 -2
  137. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libAdd_impl.so +0 -0
  138. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libSub_impl.so +0 -0
  139. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_layernorm_impl.so +0 -0
  140. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_impl.so +0 -0
  141. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_impl.so +0 -0
  142. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcast_impl.so +0 -0
  143. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libgelu_impl.so +0 -0
  144. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_impl.so +0 -0
  145. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_stridedslice_fusion_impl.so +0 -0
  146. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_kernels_internal.so +0 -0
  147. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libnot_equal_impl.so +0 -0
  148. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_impl.so +0 -0
  149. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/librms_norm_impl.so +0 -0
  150. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
  151. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
  152. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_full_mix.o +0 -0
  153. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
  154. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
  155. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
  156. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_full_mix.o +0 -0
  157. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
  158. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bnsd_full_mix.o +0 -0
  159. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bsh_full_mix.o +0 -0
  160. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bnsd_full_mix.o +0 -0
  161. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bsh_full_mix.o +0 -0
  162. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblcal.so +0 -0
  163. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblccl_wrapper.so +0 -0
  164. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  165. mindspore/mindrecord/filewriter.py +2 -2
  166. mindspore/mint/__init__.py +40 -720
  167. mindspore/mint/nn/__init__.py +7 -89
  168. mindspore/mint/nn/functional.py +16 -165
  169. mindspore/mint/optim/adamw.py +16 -15
  170. mindspore/nn/__init__.py +2 -0
  171. mindspore/nn/cell.py +98 -97
  172. mindspore/nn/extend/basic.py +2 -2
  173. mindspore/nn/extend/embedding.py +1 -1
  174. mindspore/nn/extend/layer/normalization.py +5 -7
  175. mindspore/nn/generator.py +297 -0
  176. mindspore/nn/layer/activation.py +3 -4
  177. mindspore/nn/layer/basic.py +16 -79
  178. mindspore/nn/layer/conv.py +8 -17
  179. mindspore/nn/layer/embedding.py +4 -1
  180. mindspore/nn/layer/math.py +1 -1
  181. mindspore/nn/layer/normalization.py +1 -1
  182. mindspore/nn/layer/pooling.py +0 -5
  183. mindspore/nn/layer/rnn_cells.py +2 -2
  184. mindspore/nn/loss/loss.py +19 -19
  185. mindspore/nn/optim/adasum.py +1 -1
  186. mindspore/nn/optim/sgd.py +2 -3
  187. mindspore/nn/probability/distribution/exponential.py +1 -1
  188. mindspore/nn/probability/distribution/geometric.py +1 -1
  189. mindspore/nn/probability/distribution/logistic.py +1 -1
  190. mindspore/nn/wrap/cell_wrapper.py +1 -25
  191. mindspore/nn/wrap/loss_scale.py +1 -24
  192. mindspore/numpy/array_ops.py +1 -5
  193. mindspore/numpy/dtypes.py +3 -3
  194. mindspore/numpy/math_ops.py +8 -8
  195. mindspore/ops/__init__.py +1 -1
  196. mindspore/ops/_grad_experimental/grad_comm_ops.py +16 -75
  197. mindspore/ops/_vmap/vmap_array_ops.py +0 -27
  198. mindspore/ops/_vmap/vmap_math_ops.py +1 -29
  199. mindspore/ops/_vmap/vmap_nn_ops.py +18 -19
  200. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +8 -34
  201. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +9 -2
  202. mindspore/ops/auto_generate/gen_arg_handler.py +0 -26
  203. mindspore/ops/auto_generate/gen_extend_func.py +27 -603
  204. mindspore/ops/auto_generate/gen_ops_def.py +203 -993
  205. mindspore/ops/auto_generate/gen_ops_prim.py +402 -1946
  206. mindspore/ops/auto_generate/pyboost_inner_prim.py +20 -90
  207. mindspore/ops/composite/base.py +6 -3
  208. mindspore/ops/composite/math_ops.py +1 -1
  209. mindspore/ops/composite/multitype_ops/_compile_utils.py +17 -24
  210. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  211. mindspore/ops/extend/__init__.py +3 -2
  212. mindspore/ops/extend/array_func.py +51 -10
  213. mindspore/ops/extend/nn_func.py +78 -2
  214. mindspore/ops/function/__init__.py +13 -8
  215. mindspore/ops/function/array_func.py +179 -455
  216. mindspore/ops/function/clip_func.py +1 -1
  217. mindspore/ops/function/grad/grad_func.py +3 -3
  218. mindspore/ops/function/math_func.py +103 -117
  219. mindspore/ops/function/nn_func.py +163 -275
  220. mindspore/ops/function/other_func.py +2 -2
  221. mindspore/ops/function/random_func.py +69 -202
  222. mindspore/ops/function/sparse_func.py +4 -4
  223. mindspore/ops/functional.py +327 -332
  224. mindspore/ops/operations/__init__.py +3 -13
  225. mindspore/ops/operations/_grad_ops.py +27 -3
  226. mindspore/ops/operations/_inner_ops.py +356 -53
  227. mindspore/ops/operations/_rl_inner_ops.py +2 -2
  228. mindspore/ops/operations/_tensor_array.py +8 -8
  229. mindspore/ops/operations/array_ops.py +65 -82
  230. mindspore/ops/operations/comm_ops.py +93 -784
  231. mindspore/ops/operations/custom_ops.py +28 -51
  232. mindspore/ops/operations/debug_ops.py +4 -4
  233. mindspore/ops/operations/inner_ops.py +2 -2
  234. mindspore/ops/operations/manually_defined/ops_def.py +4 -304
  235. mindspore/ops/operations/math_ops.py +50 -3
  236. mindspore/ops/operations/nn_ops.py +247 -14
  237. mindspore/ops/operations/other_ops.py +3 -3
  238. mindspore/ops/operations/random_ops.py +1 -1
  239. mindspore/ops/operations/sparse_ops.py +1 -1
  240. mindspore/ops/primitive.py +8 -9
  241. mindspore/ops/silent_check.py +5 -5
  242. mindspore/ops_generate/arg_dtype_cast.py +9 -2
  243. mindspore/ops_generate/arg_handler.py +0 -26
  244. mindspore/ops_generate/gen_aclnn_implement.py +4 -1
  245. mindspore/ops_generate/gen_ops.py +4 -26
  246. mindspore/ops_generate/gen_pyboost_func.py +12 -41
  247. mindspore/ops_generate/gen_utils.py +0 -21
  248. mindspore/ops_generate/pyboost_utils.py +2 -7
  249. mindspore/ops_generate/template.py +0 -1
  250. mindspore/parallel/_auto_parallel_context.py +1 -21
  251. mindspore/parallel/_tensor.py +5 -0
  252. mindspore/parallel/_transformer/transformer.py +1 -1
  253. mindspore/parallel/_utils.py +1 -15
  254. mindspore/parallel/algo_parameter_config.py +3 -1
  255. mindspore/parallel/checkpoint_transform.py +9 -12
  256. mindspore/parallel/cluster/process_entity/_api.py +29 -28
  257. mindspore/parallel/cluster/process_entity/_utils.py +3 -13
  258. mindspore/parallel/cluster/run.py +16 -13
  259. mindspore/parallel/parameter_broadcast.py +2 -2
  260. mindspore/parallel/shard.py +17 -31
  261. mindspore/profiler/__init__.py +2 -3
  262. mindspore/profiler/common/util.py +2 -107
  263. mindspore/profiler/envprofiling.py +1 -1
  264. mindspore/profiler/parser/ascend_analysis/constant.py +21 -8
  265. mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -82
  266. mindspore/profiler/parser/ascend_analysis/function_event.py +28 -43
  267. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +27 -49
  268. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +10 -15
  269. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +20 -25
  270. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +5 -5
  271. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +1 -10
  272. mindspore/profiler/parser/ascend_hccl_generator.py +1 -4
  273. mindspore/profiler/parser/ascend_msprof_exporter.py +22 -43
  274. mindspore/profiler/parser/ascend_timeline_generator.py +5 -7
  275. mindspore/profiler/parser/minddata_parser.py +3 -72
  276. mindspore/profiler/profiling.py +59 -176
  277. mindspore/rewrite/api/node.py +1 -1
  278. mindspore/rewrite/common/namespace.py +5 -5
  279. mindspore/rewrite/parsers/assign_parser.py +0 -2
  280. mindspore/rewrite/parsers/class_def_parser.py +4 -8
  281. mindspore/run_check/_check_version.py +1 -1
  282. mindspore/scipy/fft.py +3 -1
  283. mindspore/scipy/linalg.py +3 -2
  284. mindspore/scipy/ops.py +3 -5
  285. mindspore/scipy/optimize/__init__.py +2 -2
  286. mindspore/train/__init__.py +4 -4
  287. mindspore/train/anf_ir_pb2.py +2 -8
  288. mindspore/train/callback/__init__.py +2 -5
  289. mindspore/train/callback/_backup_and_restore.py +2 -2
  290. mindspore/train/callback/_checkpoint.py +16 -104
  291. mindspore/train/callback/_landscape.py +1 -1
  292. mindspore/train/callback/_time_monitor.py +1 -1
  293. mindspore/train/data_sink.py +4 -5
  294. mindspore/train/dataset_helper.py +20 -45
  295. mindspore/train/model.py +38 -266
  296. mindspore/train/serialization.py +105 -256
  297. mindspore/train/summary/_summary_adapter.py +1 -1
  298. mindspore/version.py +1 -1
  299. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +2 -2
  300. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +303 -420
  301. mindspore/_extends/pijit/__init__.py +0 -23
  302. mindspore/_extends/pijit/pijit_func_white_list.py +0 -343
  303. mindspore/common/file_system.py +0 -48
  304. mindspore/common/generator.py +0 -260
  305. mindspore/common/no_inline.py +0 -54
  306. mindspore/common/np_dtype.py +0 -25
  307. mindspore/communication/comm_func.py +0 -1140
  308. mindspore/hal/memory.py +0 -326
  309. mindspore/lib/libavcodec.so.59 +0 -0
  310. mindspore/lib/libavdevice.so.59 +0 -0
  311. mindspore/lib/libavfilter.so.8 +0 -0
  312. mindspore/lib/libavformat.so.59 +0 -0
  313. mindspore/lib/libavutil.so.57 +0 -0
  314. mindspore/lib/libmindspore_np_dtype.so +0 -0
  315. mindspore/lib/libswresample.so.4 +0 -0
  316. mindspore/lib/libswscale.so.6 +0 -0
  317. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/all_finite.cpp +0 -326
  318. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/all_finite.py +0 -180
  319. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_576ceaeef5870c451cab59af55ea46ad.json +0 -58
  320. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_576ceaeef5870c451cab59af55ea46ad.o +0 -0
  321. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_86a73ff6e28d734c96bb8d3054f7dd18.json +0 -58
  322. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_86a73ff6e28d734c96bb8d3054f7dd18.o +0 -0
  323. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_f55e0ebaad1f2f572e43677336992fa0.json +0 -58
  324. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_f55e0ebaad1f2f572e43677336992fa0.o +0 -0
  325. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/config/ascend910b/all_finite.json +0 -109
  326. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/config/ascend910b/binary_info_config.json +0 -38
  327. mindspore/lib/plugin/ascend/custom_compiler/OWNERS +0 -12
  328. mindspore/lib/plugin/ascend/custom_compiler/setup.py +0 -255
  329. mindspore/lib/plugin/ascend/custom_compiler/start.sh +0 -26
  330. mindspore/lib/plugin/ascend/custom_compiler/template.json +0 -40
  331. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme.h +0 -24
  332. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme_op.h +0 -69
  333. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/base_type.h +0 -133
  334. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_creator.h +0 -32
  335. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_param.h +0 -35
  336. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/tiling_info.h +0 -60
  337. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/kernel_register.h +0 -37
  338. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/platform_configs.h +0 -89
  339. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/rt_funcs.h +0 -135
  340. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/add_op.h +0 -34
  341. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_backoff_base.h +0 -62
  342. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_elewise_op.h +0 -33
  343. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_ops.h +0 -88
  344. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_pa_op.h +0 -45
  345. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/cast_op.h +0 -52
  346. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/matmul_op.h +0 -95
  347. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/asd_utils.h +0 -84
  348. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/comm_utils.h +0 -61
  349. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp32.h +0 -224
  350. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/and_impl.h +0 -29
  351. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/div_impl.h +0 -29
  352. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_impl.h +0 -48
  353. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_tiling.h +0 -25
  354. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/and_kernel.h +0 -46
  355. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/div_kernel.h +0 -46
  356. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_base.h +0 -260
  357. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_kernel.h +0 -35
  358. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/max_kernel.h +0 -66
  359. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/min_kernel.h +0 -66
  360. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/mul_kernel.h +0 -66
  361. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/or_kernel.h +0 -46
  362. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/max_impl.h +0 -29
  363. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/min_impl.h +0 -29
  364. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/mul_impl.h +0 -29
  365. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/or_impl.h +0 -29
  366. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/abs_impl.h +0 -29
  367. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_impl.h +0 -47
  368. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_tiling.h +0 -24
  369. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/exp_impl.h +0 -29
  370. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/abs_kernel.h +0 -45
  371. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_base.h +0 -148
  372. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_kernel.h +0 -31
  373. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/exp_kernel.h +0 -45
  374. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/ln_kernel.h +0 -45
  375. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/not_kernel.h +0 -45
  376. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/reciprocal_kernel.h +0 -45
  377. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/relu_kernel.h +0 -55
  378. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/rsqrt_kernel.h +0 -45
  379. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/sqrt_kernel.h +0 -45
  380. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/ln_impl.h +0 -29
  381. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/not_impl.h +0 -29
  382. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/reciprocal_impl.h +0 -29
  383. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/relu_impl.h +0 -29
  384. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/rsqrt_impl.h +0 -29
  385. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/sqrt_impl.h +0 -29
  386. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/grouped_matmul_impl.h +0 -45
  387. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/grouped_matmul_tiling.h +0 -187
  388. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul.h +0 -245
  389. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul_interface.h +0 -24
  390. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul_utils.h +0 -111
  391. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/tiling_data.h +0 -54
  392. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/compare_param.h +0 -31
  393. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/elewise_param.h +0 -41
  394. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/grouped_matmul_param.h +0 -40
  395. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/profiling_util.h +0 -364
  396. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_utils.h +0 -69
  397. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_creator.h +0 -39
  398. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_registry.h +0 -114
  399. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/utils.h +0 -98
  400. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix.json +0 -19
  401. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix.o +0 -0
  402. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix_mix_aic_0.o +0 -0
  403. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix_mix_aiv_0.o +0 -0
  404. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix.json +0 -19
  405. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix.o +0 -0
  406. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix_mix_aic_0.o +0 -0
  407. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix_mix_aiv_0.o +0 -0
  408. mindspore/mint/linalg/__init__.py +0 -22
  409. mindspore/nn/layer/embedding_service.py +0 -531
  410. mindspore/nn/layer/embedding_service_layer.py +0 -393
  411. mindspore/ops/function/reshard_func.py +0 -102
  412. mindspore/ops/operations/_infer_ops.py +0 -19
  413. mindspore/ops/operations/reshard_ops.py +0 -53
  414. mindspore/profiler/common/process_pool.py +0 -41
  415. mindspore/profiler/common/singleton.py +0 -28
  416. mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
  417. mindspore/profiler/parser/ascend_memory_generator.py +0 -185
  418. mindspore/train/callback/_cluster_monitor.py +0 -201
  419. mindspore/train/callback/_flops_collector.py +0 -238
  420. mindspore/train/callback/_mindio_ttp.py +0 -443
  421. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
  422. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +0 -0
  423. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -39,15 +39,16 @@ from mindspore.ops.operations.nn_ops import FractionalMaxPoolWithFixedKsize, Fra
39
39
  from mindspore.ops.operations.nn_ops import PadV3
40
40
  from mindspore.ops.operations.nn_ops import ChannelShuffle
41
41
  from mindspore.ops.operations.nn_ops import TripletMarginLoss
42
+ from mindspore.ops.operations.nn_ops import LayerNormExt
42
43
  from mindspore.ops.operations._sequence_ops import TupleToTensor, TensorToTuple, ListToTensor
43
44
  from mindspore.common.api import _function_forbid_reuse
44
45
  from mindspore.ops.auto_generate import log_softmax, dense, prelu, celu, relu, fast_gelu, silu, elu, sigmoid, relu6
45
- from mindspore.ops.auto_generate import group_norm_op, rms_norm, layer_norm_ext_op, batch_norm_ext_op
46
- from mindspore.ops.auto_generate import (reflection_pad_1d_op, reflection_pad_2d_op, reflection_pad_3d_op, # pylint: disable=W0611
46
+ from mindspore.ops.auto_generate.gen_ops_prim import GroupNorm
47
+ from mindspore.ops.auto_generate import (reflection_pad_1d_op, reflection_pad_2d_op, reflection_pad_3d_op,
47
48
  replication_pad_1d_op, replication_pad_2d_op, replication_pad_3d_op,
48
- constant_pad_nd_op, dropout_ext_op, reverse_v2_impl)
49
+ constant_pad_nd_op, dropout_ext_op)
49
50
  from mindspore.ops.auto_generate.gen_ops_prim import embedding_op, Convolution
50
- from mindspore.common.generator import default_generator
51
+ from mindspore.nn.generator import default_generator
51
52
 
52
53
  abs_ = P.Abs()
53
54
  add_ = P.Add()
@@ -104,7 +105,6 @@ check_int_const = validator.check_is_int
104
105
  check_non_negative_float_const = validator.check_non_negative_float
105
106
  check_string_const = constexpr(validator.check_string)
106
107
 
107
- generator_step_ = Tensor(1, mstype.int64)
108
108
 
109
109
  def adaptive_avg_pool2d(input, output_size):
110
110
  r"""
@@ -540,23 +540,22 @@ def avg_pool2d_ext(input, kernel_size, stride=None, padding=0, ceil_mode=False,
540
540
  count_include_pad (bool): If True, include the zero-padding in the averaging calculation.
541
541
  Default: ``True`` .
542
542
  divisor_override (int): If specified, it will be used as divisor in the averaging calculation,
543
- otherwise size of pooling region will be used. Default: ``None``.
543
+ otherwise `kernel_size` will be used. Default: ``None``.
544
544
 
545
545
  Returns:
546
546
  Tensor, with shape :math:`(N, C, H_{out}, W_{out})`.
547
547
 
548
- .. math::
549
- \begin{array}{ll} \\
550
- H_{out} = \frac{H_{in} + 2 \times padding[0] - kernel_size[0]}{stride[0]} + 1 \\
551
- W_{out} = \frac{W_{in} + 2 \times padding[1] - kernel_size[1]}{stride[1]} + 1
552
- \end{array}
548
+ .. math::
549
+
550
+ H_{out} = \frac{H_{in} + 2 \times padding[0] - kernel_size[0]}{stride[0]} + 1
551
+ W_{out} = \frac{W_{in} + 2 \times padding[1] - kernel_size[1]}{stride[1]} + 1
553
552
 
554
553
  Raises:
555
554
  TypeError: If `input` is not a Tensor.
556
555
  TypeError: If `kernel_size` or `stride` is neither int nor tuple.
557
556
  TypeError: If `ceil_mode` or `count_include_pad` is not a bool.
558
- TypeError: If `divisor_override` is not an int or None.
559
- ValueError: If the dimension of `input` is not equal to `4` or `3`.
557
+ TypeError: If `divisor_override` is not an int.
558
+ ValueError: If length of shape of `input` is not equal to `4` or `3`.
560
559
  ValueError: If `kernel_size` or `stride` is less than 1.
561
560
  ValueError: If `kernel_size` or `stride` is a tuple whose length is not equal to `2` or `1`.
562
561
  ValueError: If `padding` is neither a int nor a tuple whose length is equal to `2` or `1`.
@@ -568,9 +567,9 @@ def avg_pool2d_ext(input, kernel_size, stride=None, padding=0, ceil_mode=False,
568
567
  Examples:
569
568
  >>> import mindspore
570
569
  >>> import numpy as np
571
- >>> from mindspore import Tensor, ops
570
+ >>> from mindspore import Tensor, mint
572
571
  >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32)
573
- >>> output = ops.function.nn_func.avg_pool2d_ext(x, kernel_size=2, stride=1)
572
+ >>> output = mint.avg_pool2d(x, kernel_size=2, stride=1)
574
573
  >>> print(output)
575
574
  [[[[ 2.5 3.5 4.5]
576
575
  [ 6.5 7.5 8.5]]
@@ -1222,12 +1221,12 @@ def max_unpool3d(x, indices, kernel_size, stride=None, padding=0, output_size=No
1222
1221
  return out
1223
1222
 
1224
1223
 
1225
- def binary_cross_entropy_with_logits(input, target, weight=None, pos_weight=None, reduction='mean'):
1224
+ def binary_cross_entropy_with_logits(logits, label, weight=None, pos_weight=None, reduction='mean'):
1226
1225
  r"""
1227
- Adds sigmoid activation function to input `input` as logits, and uses the given logits to compute binary cross
1228
- entropy between the `input` and the `target`.
1226
+ Adds sigmoid activation function to input `logits`, and uses the given logits to compute binary cross entropy
1227
+ between the logits and the label.
1229
1228
 
1230
- Sets input `input` as :math:`X`, input target as :math:`Y`, input weight as :math:`W`, output as :math:`L`. Then,
1229
+ Sets input logits as :math:`X`, input label as :math:`Y`, input weight as :math:`W`, output as :math:`L`. Then,
1231
1230
 
1232
1231
  .. math::
1233
1232
 
@@ -1268,14 +1267,14 @@ def binary_cross_entropy_with_logits(input, target, weight=None, pos_weight=None
1268
1267
  :math:`P_c>1` increases the recall, :math:`P_c<1` increases the precision.
1269
1268
 
1270
1269
  Args:
1271
- input (Tensor): Input `input`. Data type must be float16 or float32.
1272
- target (Tensor): Ground truth label, has the same shape as `input`.
1270
+ logits (Tensor): Input logits. Data type must be float16 or float32.
1271
+ label (Tensor): Ground truth label, has the same shape as `logits`.
1273
1272
  Data type must be float16 or float32.
1274
1273
  weight (Tensor, optional): A rescaling weight applied to the loss of each batch element. It can be
1275
- broadcast to a tensor with shape of `input`. Data type must be float16 or float32.
1274
+ broadcast to a tensor with shape of `logits`. Data type must be float16 or float32.
1276
1275
  Default: ``None``, `weight` is a Tensor whose value is ``1``.
1277
1276
  pos_weight (Tensor, optional): A weight of positive examples. Must be a vector with length equal to the
1278
- number of classes. It can be broadcast to a tensor with shape of `input`.
1277
+ number of classes. It can be broadcast to a tensor with shape of `logits`.
1279
1278
  Data type must be float16 or float32. Default: ``None``, `pos_weight` is a Tensor whose value is ``1``.
1280
1279
  reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
1281
1280
  ``'sum'`` . Default: ``'mean'`` .
@@ -1285,14 +1284,14 @@ def binary_cross_entropy_with_logits(input, target, weight=None, pos_weight=None
1285
1284
  - ``'sum'``: the output elements will be summed.
1286
1285
 
1287
1286
  Returns:
1288
- Tensor or Scalar, if `reduction` is ``'none'``, it's a tensor with the same shape and type as input `input`.
1287
+ Tensor or Scalar, if `reduction` is ``'none'``, it's a tensor with the same shape and type as input `logits`.
1289
1288
  Otherwise, the output is a scalar.
1290
1289
 
1291
1290
  Raises:
1292
- TypeError: If input `input`, `target`, `weight`, `pos_weight` is not Tensor.
1293
- TypeError: If data type of input `input`, `target`, `weight`, `pos_weight` is neither float16 nor float32.
1291
+ TypeError: If input `logits`, `label`, `weight`, `pos_weight` is not Tensor.
1292
+ TypeError: If data type of input `logits`, `label`, `weight`, `pos_weight` is neither float16 nor float32.
1294
1293
  TypeError: If data type of input `reduction` is not string.
1295
- ValueError: If `weight` or `pos_weight` can not be broadcast to a tensor with shape of `input`.
1294
+ ValueError: If `weight` or `pos_weight` can not be broadcast to a tensor with shape of `logits`.
1296
1295
  ValueError: If `reduction` is not one of ``'none'``, ``'mean'`` or ``'sum'``.
1297
1296
 
1298
1297
  Supported Platforms:
@@ -1302,17 +1301,21 @@ def binary_cross_entropy_with_logits(input, target, weight=None, pos_weight=None
1302
1301
  >>> import mindspore
1303
1302
  >>> import numpy as np
1304
1303
  >>> from mindspore import Tensor, ops
1305
- >>> input = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]), mindspore.float32)
1306
- >>> target = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]), mindspore.float32)
1304
+ >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]), mindspore.float32)
1305
+ >>> label = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]), mindspore.float32)
1307
1306
  >>> weight = Tensor(np.array([1.0, 1.0, 1.0]), mindspore.float32)
1308
1307
  >>> pos_weight = Tensor(np.array([1.0, 1.0, 1.0]), mindspore.float32)
1309
- >>> output = ops.binary_cross_entropy_with_logits(input, target, weight, pos_weight)
1308
+ >>> output = ops.binary_cross_entropy_with_logits(logits, label, weight, pos_weight)
1310
1309
  >>> print(output)
1311
1310
  0.3463612
1312
1311
  """
1313
1312
 
1313
+ if weight is None:
1314
+ weight = ops.ones_like(logits)
1315
+ if pos_weight is None:
1316
+ pos_weight = ops.ones_like(logits)
1314
1317
  bce_with_logits_loss_op = _get_cache_prim(NN_OPS.BCEWithLogitsLoss)(reduction)
1315
- return bce_with_logits_loss_op(input, target, weight, pos_weight)
1318
+ return bce_with_logits_loss_op(logits, label, weight, pos_weight)
1316
1319
 
1317
1320
 
1318
1321
  @_function_forbid_reuse
@@ -1362,25 +1365,27 @@ def dropout(input, p=0.5, training=True, seed=None):
1362
1365
 
1363
1366
 
1364
1367
  @_function_forbid_reuse
1365
- def dropout_ext(input, p=0.5, training=True):
1368
+ def dropout_ext(input, p=0.5, training=True, seed=None):
1366
1369
  r"""
1367
1370
  During training, randomly zeroes some of the elements of the input tensor
1368
1371
  with probability `p` from a Bernoulli distribution. It plays the role of reducing neuron correlation and
1369
1372
  avoid overfitting. And the return will be multiplied by :math:`\frac{1}{1-p}` during training.
1370
- During the reasoning, this operation returns the same Tensor as the `input`.
1373
+ During the reasoning, this operation returns the same Tensor as the `x`.
1371
1374
 
1372
1375
  Args:
1373
- input (Tensor): The input Tensor of shape :math:`(*, N)`.
1374
- p (float): The dropping rate of input neurons, between 0 and 1, e.g. `p` = 0.1,
1375
- means dropping out 10% of input neurons. Default: ``0.5`` .
1376
- training (bool): Apply dropout if it is ``True`` , if it is ``False`` , the input is returned directly,
1377
- and `p` is invalid. Default: ``True``.
1376
+ input (Tensor): The input Tensor of shape :math:`(*, N)`, with data type of float16, float32 or float64.
1377
+ p (float, optional): The dropping rate, between 0 and 1, e.g. p = 0.1,
1378
+ means dropping out 10% of input units. Default: ``0.5`` .
1379
+ training (bool): Apply dropout_ext if is True. Default: ``True``.
1380
+ seed (int, optional): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
1381
+ Default: ``None`` , which will be treated as ``0`` .
1378
1382
 
1379
1383
  Returns:
1380
1384
  - **output** (Tensor) - Zeroed tensor, with the same shape and data type as `input`.
1381
1385
 
1382
1386
  Raises:
1383
1387
  TypeError: If `p` is not a float.
1388
+ TypeError: If dtype of `input` is not float16, float32 or float64.
1384
1389
  TypeError: If `input` is not a Tensor.
1385
1390
 
1386
1391
  Supported Platforms:
@@ -1390,14 +1395,15 @@ def dropout_ext(input, p=0.5, training=True):
1390
1395
  >>> import mindspore
1391
1396
  >>> from mindspore import Tensor, ops
1392
1397
  >>> input = Tensor(((20, 16), (50, 50)), mindspore.float32)
1393
- >>> output = ops.function.nn_func.dropout_ext(input, p=0.5)
1398
+ >>> output = ops.dropout_ext(input, p=0.5)
1394
1399
  >>> print(output.shape)
1395
1400
  (2, 2)
1396
1401
  """
1397
1402
  check_bool_const(training, "training", "dropout_ext")
1398
1403
  if training is False:
1399
1404
  return input
1400
- seed, offset = default_generator._step(generator_step_) # pylint: disable=protected-access
1405
+ generator = default_generator()
1406
+ seed, offset = generator(1)
1401
1407
  out, _ = dropout_ext_op(input, p, seed, offset)
1402
1408
  return out
1403
1409
 
@@ -2041,10 +2047,10 @@ def flip(input, dims):
2041
2047
  ``Ascend`` ``GPU`` ``CPU``
2042
2048
 
2043
2049
  Examples:
2044
- >>> import mindspore
2045
- >>> from mindspore import ops
2050
+ >>> import mindspore as ms
2051
+ >>> import mindspore.ops as ops
2046
2052
  >>> import numpy as np
2047
- >>> input = mindspore.Tensor(np.arange(1, 9).reshape((2, 2, 2)))
2053
+ >>> input = ms.Tensor(np.arange(1, 9).reshape((2, 2, 2)))
2048
2054
  >>> output = ops.flip(input, (0, 2))
2049
2055
  >>> print(output)
2050
2056
  [[[6 5]
@@ -2052,7 +2058,7 @@ def flip(input, dims):
2052
2058
  [[2 1]
2053
2059
  [4 3]]]
2054
2060
  """
2055
- res = reverse_v2_impl(input, dims)
2061
+ res = _get_cache_prim(ops.ReverseV2)(axis=dims)(input)
2056
2062
  return res
2057
2063
 
2058
2064
 
@@ -2074,7 +2080,7 @@ def flipud(input):
2074
2080
 
2075
2081
  Examples:
2076
2082
  >>> import mindspore as ms
2077
- >>> from mindspore import ops
2083
+ >>> import mindspore.ops as ops
2078
2084
  >>> import numpy as np
2079
2085
  >>> input = ms.Tensor(np.arange(1, 9).reshape((2, 2, 2)))
2080
2086
  >>> output = ops.flipud(input)
@@ -2105,7 +2111,7 @@ def fliplr(input):
2105
2111
 
2106
2112
  Examples:
2107
2113
  >>> import mindspore as ms
2108
- >>> from mindspore import ops
2114
+ >>> import mindspore.ops as ops
2109
2115
  >>> import numpy as np
2110
2116
  >>> input = ms.Tensor(np.arange(1, 9).reshape((2, 2, 2)))
2111
2117
  >>> output = ops.fliplr(input)
@@ -2134,7 +2140,7 @@ def is_floating_point(input):
2134
2140
 
2135
2141
  Examples:
2136
2142
  >>> import mindspore as ms
2137
- >>> from mindspore import ops
2143
+ >>> import mindspore.ops as ops
2138
2144
  >>> from mindspore import Tensor
2139
2145
  >>> x = ms.Tensor([1, 2, 3], ms.float32)
2140
2146
  >>> y = ms.Tensor([1, 2, 3], ms.int64)
@@ -2582,9 +2588,8 @@ def interpolate(input,
2582
2588
  "For 'interpolate', it is incorrect to set 'recompute_scale_factor' to True"
2583
2589
  " after specifying an explicit 'size'.")
2584
2590
  if F.isconstant(shape) and F.isconstant(scale_factor):
2585
- tuple_len = min(len(shape) - 2, len(scale_factor))
2586
- size = tuple([floor(shape[i + 2] * scale_factor[i])
2587
- for i in range(tuple_len)])
2591
+ size = tuple([floor(shape[i + 2] * scale_factor[i]) for i in
2592
+ range(min(len(shape) - 2), len(scale_factor))])
2588
2593
  else:
2589
2594
  size = _interpolate_scale_factor_convert_size(shape, scale_factor)
2590
2595
  scale_factor = None
@@ -2634,9 +2639,8 @@ def _interpolate_ext_scale_factor_convert_size(input, scale_factor):
2634
2639
  shape = F.shape(input)
2635
2640
  size = None
2636
2641
  if F.isconstant(shape) and F.isconstant(scale_factor):
2637
- tuple_len = min(len(shape) - 2, len(scale_factor))
2638
- size = tuple([floor(shape[i + 2] * scale_factor[i])
2639
- for i in range(tuple_len)])
2642
+ size = tuple([floor(shape[i + 2] * scale_factor[i]) for i in
2643
+ range(min(len(shape) - 2), len(scale_factor))])
2640
2644
  else:
2641
2645
  x = tuple_to_tensor_(shape[2:], mstype.int64)
2642
2646
  y = tuple_to_tensor_(scale_factor, mstype.float32)
@@ -3038,54 +3042,6 @@ def softmax(input, axis=-1, *, dtype=None):
3038
3042
  return softmax_(input)
3039
3043
 
3040
3044
 
3041
- def softmax_ext(input, dim=None, dtype=None):
3042
- r"""
3043
- Applies the Softmax operation to the input tensor on the specified axis.
3044
- Suppose a slice in the given axis :math:`dim`, then for each element :math:`input_i`,
3045
- the Softmax function is shown as follows:
3046
-
3047
- .. math::
3048
- \text{output}(input_i) = \frac{\exp(input_i)}{\sum_{j = 0}^{N-1}\exp(input_j)},
3049
-
3050
- where :math:`N` is the length of the tensor.
3051
-
3052
- Args:
3053
- input (Tensor): Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
3054
- additional dimensions.
3055
- dim (int, optional): The dim to perform the Softmax operation. Default: ``None`` .
3056
-
3057
- Keyword Args:
3058
- dtype (:class:`mindspore.dtype`, optional): When set, `input` will be converted to the specified type,
3059
- `dtype`, before execution, and dtype of returned Tensor will also be `dtype`. Default: ``None`` .
3060
-
3061
- Returns:
3062
- Tensor, with the same type and shape as the `input`.
3063
-
3064
- Raises:
3065
- TypeError: If `dim` is not an int.
3066
-
3067
- Supported Platforms:
3068
- ``Ascend`` ``GPU`` ``CPU``
3069
-
3070
- Examples:
3071
- >>> import mindspore
3072
- >>> import numpy as np
3073
- >>> from mindspore import Tensor, ops
3074
- >>> input = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
3075
- >>> output = ops.function.nn_func.softmax_ext(input)
3076
- >>> print(output)
3077
- [0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ]
3078
- """
3079
- dim = -1 if dim is None else dim
3080
- if not isinstance(dim, int):
3081
- type_dim = type(dim).__name__
3082
- raise TypeError(f" the type of 'dim' must be 'int', but got '{dim}' with type '{type_dim}'.")
3083
- if dtype is not None:
3084
- input = ops.cast(input, dtype)
3085
- softmax_ = _get_cache_prim(P.Softmax)(dim)
3086
- return softmax_(input)
3087
-
3088
-
3089
3045
  def softmin(x, axis=-1, *, dtype=None):
3090
3046
  r"""
3091
3047
  Applies the Softmin operation to the input tensor on the specified axis.
@@ -3239,6 +3195,51 @@ def softplus(input, beta=1, threshold=20): # pylint:disable=redefined-outer-name
3239
3195
  return ops.select(input * beta > threshold, input, op_output)
3240
3196
 
3241
3197
 
3198
+ def softplus_ext(input, beta=1, threshold=20): # pylint:disable=redefined-outer-name
3199
+ r"""
3200
+ Applies softplus function to `input` element-wise.
3201
+
3202
+ The softplus function is shown as follows, x is the element of `input` :
3203
+
3204
+ .. math::
3205
+
3206
+ \text{output} = \frac{1}{beta}\log(1 + \exp(\text{beta * x}))
3207
+
3208
+ When :math:`input * beta > threshold`, the implementation converts to the linear function
3209
+ to ensure numerical stability.
3210
+
3211
+ Args:
3212
+ input (Tensor) - Tensor of any dimension.
3213
+ Supported dtypes:
3214
+
3215
+ - Ascend: float16, float32, bfloat16
3216
+
3217
+ beta (number, optional) - The :math:`\beta` value in softplus function. Default: ``1`` .
3218
+ threshold (number, optional) - When :math:`input * beta > threshold`, converting softplus to a linear function.
3219
+ Default: ``20`` .
3220
+
3221
+ Returns:
3222
+ Tensor, with the same type and shape as the `input` .
3223
+
3224
+ Raises:
3225
+ TypeError: If `input` is not a Tensor.
3226
+ TypeError: If the dtype of `input` is not float16, float32, bfloat16.
3227
+
3228
+ Supported Platforms:
3229
+ ``Ascend``
3230
+
3231
+ Examples:
3232
+ >>> import mindspore
3233
+ >>> import numpy as np
3234
+ >>> from mindspore import Tensor, mint
3235
+ >>> input = Tensor(np.array([0.1, 0.2, 30, 25]), mindspore.float32)
3236
+ >>> output = mint.softplus(input)
3237
+ >>> print(output)
3238
+ [0.74439657 0.7981388 30. 25.]
3239
+ """
3240
+ return _get_cache_prim(ops.auto_generate.SoftplusExt)()(input, beta, threshold)
3241
+
3242
+
3242
3243
  def selu(input_x):
3243
3244
  r"""
3244
3245
  Activation function SeLU (Scaled exponential Linear Unit).
@@ -3576,10 +3577,7 @@ def pdist(input, p=2.0):
3576
3577
 
3577
3578
  def _circular_pad(input_x, padding):
3578
3579
  """circular pad"""
3579
- if isinstance(padding, tuple):
3580
- padding = tuple_to_tensor_(padding, mstype.int64)
3581
- elif isinstance(padding, list):
3582
- padding = list_to_tensor_(padding, mstype.int64)
3580
+ padding = scalar_to_tensor_(padding, const_arg=True)
3583
3581
  is_expand = False
3584
3582
  if padding.shape[0] // 2 + 1 == input_x.ndim:
3585
3583
  input_x = input_x.expand_dims(0)
@@ -3590,85 +3588,24 @@ def _circular_pad(input_x, padding):
3590
3588
  return out
3591
3589
 
3592
3590
 
3593
- def _reflection_pad(input, pad):
3594
- """reflection pad"""
3595
- out = input
3596
- if len(pad) == 2:
3597
- out = reflection_pad_1d_op(input, pad)
3598
- elif len(pad) == 4:
3599
- out = reflection_pad_2d_op(input, pad)
3600
- else:
3601
- out = reflection_pad_3d_op(input, pad)
3602
- return out
3603
-
3604
-
3605
- def _replication_pad(input, pad):
3606
- """replication pad"""
3607
- out = input
3608
- if len(pad) == 2:
3609
- out = replication_pad_1d_op(input, pad)
3610
- elif len(pad) == 4:
3611
- out = replication_pad_2d_op(input, pad)
3612
- else:
3613
- out = replication_pad_3d_op(input, pad)
3614
- return out
3615
-
3616
-
3617
- def pad_ext(input, pad, mode='constant', value=0.0):
3591
+ def pad_ext(input, pad, mode='constant', value=None):
3618
3592
  r"""
3619
3593
  Pads the input tensor according to the pad.
3620
3594
 
3621
- .. warning::
3622
- `circular` mode has poor performance and is not recommended.
3623
-
3624
3595
  Args:
3625
3596
  input (Tensor): Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of additional dimensions.
3626
- pad (Union[tuple[int], list[int], Tensor]): Filling position of pad.
3627
- :math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions
3628
- of `input` will be padded.
3629
-
3630
- Example: to pad only the last dimension of the input tensor, then
3631
- :attr:`pad` has the form
3632
- :math:`(\text{padding_left}, \text{padding_right})`;
3633
-
3634
- Example: to pad the last 2 dimensions of the input tensor, then use
3635
- :math:`(\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom})`;
3636
-
3637
- Example: to pad the last 3 dimensions, use
3638
- :math:`(\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom},
3639
- \text{padding_front}, \text{padding_back})` and so on.
3640
-
3597
+ pad (tuple[int]): Filling position of pad.
3641
3598
  mode (str, optional): Pad filling mode, ``'constant'`` , ``'reflect'`` , ``'replicate'`` or ``'circular'`` .
3642
3599
  Default: ``'constant'`` .
3643
-
3644
- For ``'constant'`` mode, please refer to :class:`mindspore.nn.ConstantPad1d` as an example to understand
3645
- this filling pattern and extend the padding pattern to n dimensions.
3646
-
3647
- For ``'reflect'`` mode, please refer to :class:`mindspore.nn.ReflectionPad1d` as an example to understand
3648
- this filling pattern.
3649
- The reflect mode is used to pad the last three dimensions of 4D or 5D input, the last two dimensions of 3D
3650
- or 4D input, or the last dimension of 2D or 3D input.
3651
-
3652
- For ``'replicate'`` mode, please refer to :class:`mindspore.nn.ReplicationPad1d` as an example to understand
3653
- this filling pattern.
3654
- The replicate mode is used to pad the last three dimensions of 4D or 5D input, the last two dimensions of 3D
3655
- or 4D input, or the last dimension of 2D or 3D input.
3656
-
3657
- For ``'circular'`` mode, the pixels from one edge of the image are wrapped around to the opposite edge,
3658
- such that the pixel on the right edge of the image is replaced with the pixel on the left edge,
3659
- and the pixel on the bottom edge is replaced with the pixel on the top edge.
3660
- The circular mode is used to pad the last three dimensions of 4D or 5D input, the last two dimensions of 3D
3661
- or 4D input, or the last dimension of 2D or 3D input.
3662
-
3663
3600
  value (Union[int, float, None], optional): Valid only in ``'constant'`` mode.
3664
- Set the padding value in ``'constant'`` mode. If the value is None, 0 is used as the default padding value.
3665
- Default: ``0.0`` .
3601
+ Set the pad value in ``'constant'`` mode. If the value is None, 0 is used as the default pad value.
3602
+ Default: ``None`` .
3666
3603
 
3667
3604
  Returns:
3668
- Tensor, the tensor after padding.
3605
+ Tensor, the tensor after pad.
3669
3606
 
3670
3607
  Raises:
3671
- TypeError: If `pad` is not an int of tuple or int of list.
3608
+ TypeError: If `pad` is not an int of tuple.
3672
3609
  TypeError: If `input` is not a Tensor.
3673
3610
  ValueError: If length of `pad` is not even.
3674
3611
  ValueError: If length of `pad` is greater than 6.
@@ -3678,10 +3615,11 @@ def pad_ext(input, pad, mode='constant', value=0.0):
3678
3615
  ``Ascend``
3679
3616
 
3680
3617
  Examples:
3681
- >>> from mindspore import ops
3618
+ >>> import mindspore as ms
3619
+ >>> from mindspore.mint.nn.functional import pad
3682
3620
  >>> import numpy as np
3683
3621
  >>> x = ms.Tensor(np.arange(1 * 2 * 2 * 2).reshape((1, 2, 2, 2)), dtype=ms.float64)
3684
- >>> output = ops.function.nn_func.pad_ext(x, [1, 0, 0, 1], mode='constant', value=6.0)
3622
+ >>> output = pad(x, [1, 0, 0, 1], mode='constant', value=6.0)
3685
3623
  >>> print(output)
3686
3624
  [[[[6. 0. 1.]
3687
3625
  [6. 2. 3.]
@@ -3689,6 +3627,14 @@ def pad_ext(input, pad, mode='constant', value=0.0):
3689
3627
  [[6. 4. 5.]
3690
3628
  [6. 6. 7.]
3691
3629
  [6. 6. 6.]]]]
3630
+ >>> output1 = ops.pad(x, (1, 0, 0, 1), mode='reflect')
3631
+ >>> print(output1)
3632
+ [[[[1. 0. 1.]
3633
+ [3. 2. 3.]
3634
+ [1. 0. 1.]]
3635
+ [[5. 4. 5.]
3636
+ [7. 6. 7.]
3637
+ [5. 4. 5.]]]]
3692
3638
  """
3693
3639
  if not isinstance(input, Tensor):
3694
3640
  raise TypeError(f"For 'pad', the type of 'input' must be Tensor, but got {type(input)}.")
@@ -3698,17 +3644,30 @@ def pad_ext(input, pad, mode='constant', value=0.0):
3698
3644
  if mode == "constant":
3699
3645
  value = 0 if value is None else value
3700
3646
  out = constant_pad_nd_op(input, pad, value)
3647
+ elif mode == "circular":
3648
+ out = _circular_pad(input, pad)
3701
3649
  else:
3702
- if value != 0.0:
3703
- raise ValueError(f"Padding mode {mode} doesn\'t take in value argument.")
3704
- if mode == "circular":
3705
- out = _circular_pad(input, pad)
3706
- elif mode == "reflect":
3707
- out = _reflection_pad(input, pad)
3708
- elif mode == "replicate":
3709
- out = _replication_pad(input, pad)
3650
+ if len(pad) == 2:
3651
+ if mode == "reflect":
3652
+ out = reflection_pad_1d_op(input, pad)
3653
+ elif mode == "replicate":
3654
+ out = replication_pad_1d_op(input, pad)
3655
+ else:
3656
+ raise ValueError(f"Pad filling mode must be 'constant' 'circular' 'reflect' or 'replicate'.")
3657
+ elif len(pad) == 4:
3658
+ if mode == "reflect":
3659
+ out = reflection_pad_2d_op(input, pad)
3660
+ elif mode == "replicate":
3661
+ out = replication_pad_2d_op(input, pad)
3662
+ else:
3663
+ raise ValueError(f"Pad filling mode must be 'constant' 'circular' 'reflect' or 'replicate'.")
3710
3664
  else:
3711
- raise ValueError(f"Pad filling mode must be 'constant' 'circular' 'reflect' or 'replicate'.")
3665
+ if mode == "reflect":
3666
+ out = reflection_pad_3d_op(input, pad)
3667
+ elif mode == "replicate":
3668
+ out = replication_pad_3d_op(input, pad)
3669
+ else:
3670
+ raise ValueError(f"Pad filling mode must be 'constant' 'circular' 'reflect' or 'replicate'.")
3712
3671
  return out
3713
3672
 
3714
3673
 
@@ -3790,7 +3749,7 @@ def pad(input_x, padding, mode='constant', value=None):
3790
3749
 
3791
3750
  Examples:
3792
3751
  >>> import mindspore as ms
3793
- >>> from mindspore import ops
3752
+ >>> import mindspore.ops as ops
3794
3753
  >>> import numpy as np
3795
3754
  >>> x = ms.Tensor(np.arange(1 * 2 * 2 * 2).reshape((1, 2, 2, 2)), dtype=ms.float64)
3796
3755
  >>> output = ops.pad(x, [1, 0, 0, 1], mode='constant', value=6.0)
@@ -5267,7 +5226,7 @@ def hinge_embedding_loss(inputs, targets, margin=1.0, reduction='mean'):
5267
5226
  Examples:
5268
5227
  >>> import numpy as np
5269
5228
  >>> import mindspore.common.dtype as mstype
5270
- >>> from mindspore import ops
5229
+ >>> import mindspore.ops as ops
5271
5230
  >>> from mindspore import Tensor
5272
5231
  >>> arr1 = np.array([0.9, -1.2, 2, 0.8, 3.9, 2, 1, 0, -1]).reshape((3, 3))
5273
5232
  >>> arr2 = np.array([1, 1, -1, 1, -1, 1, -1, 1, 1]).reshape((3, 3))
@@ -6102,23 +6061,18 @@ def adaptive_avg_pool1d(input, output_size):
6102
6061
 
6103
6062
 
6104
6063
  def layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-5):
6105
- r"""Applies the Layer Normalization on the mini-batch input.
6064
+ r"""Applies the Layer Normalization to the input tensor.
6106
6065
 
6107
- Layer normalization is widely used in recurrent neural networks. Apply normalization to the mini-batch
6108
- input of a single training case. LayerNorm is described in the paper
6066
+ This operator will normalize the input tensor on given axis. LayerNorm is described in the paper
6109
6067
  `Layer Normalization <https://arxiv.org/abs/1607.06450>`_.
6110
6068
 
6111
- Unlike batch normalization, layer normalization performs the exact same calculations at training and
6112
- test time. Applies to all channels and pixels, even batch_size=1. The formula is as follows:
6113
-
6114
6069
  .. math::
6115
- y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
6070
+ y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
6116
6071
 
6117
- where :math:`\gamma` is the weight value learned through training, :math:`\beta` is the bias value
6118
- learned through training.
6072
+ where :math:`\gamma` is weight, :math:`\beta` is bias, :math:`\epsilon` is eps.
6119
6073
 
6120
6074
  Args:
6121
- input (Tensor): The shape of input is `(N, *)`, where `*` represents any additional dimension.
6075
+ input (Tensor): Tensor of shape :math:`(N, \ldots)`. The input of LayerNorm.
6122
6076
  normalized_shape (Union(int, tuple[int], list[int])): The normalized shape of `input` for LayerNorm.
6123
6077
  `normalized_shape` equal to `input_shape[begin_norm_axis:]`, where `begin_norm_axis` represents the axis
6124
6078
  where normalization begins.
@@ -6130,7 +6084,7 @@ def layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-5):
6130
6084
  Default: ``1e-5`` .
6131
6085
 
6132
6086
  Returns:
6133
- Tensor. The normalized tensor, has the same type and shape as the `input`.
6087
+ - **output** (Tensor) - The normalized input, has the same type and shape as the `input`.
6134
6088
 
6135
6089
  Raises:
6136
6090
  TypeError: If `input` is not a Tensor.
@@ -6158,6 +6112,7 @@ def layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-5):
6158
6112
  weight = ops.ones(normalized_shape, dtype=input.dtype)
6159
6113
  if bias is None:
6160
6114
  bias = ops.zeros(normalized_shape, dtype=input.dtype)
6115
+ layer_norm_ext_op = LayerNormExt()
6161
6116
  return layer_norm_ext_op(input, normalized_shape, weight, bias, eps)[0]
6162
6117
 
6163
6118
 
@@ -6178,7 +6133,7 @@ def group_norm(input, num_groups, weight=None, bias=None, eps=1e-5):
6178
6133
  where :math:`\gamma` is `weight`, :math:`\beta` is `bias`, :math:`\epsilon` is `eps`.
6179
6134
 
6180
6135
  Args:
6181
- input (Tensor): The input feature with shape :math:`(N, C, *)` where :math:`*` means, any number of
6136
+ input (Tensor) : The input feature with shape :math:`(N, C, *)` where :math:`*` means, any number of
6182
6137
  additional dimensions.
6183
6138
  num_groups (int): The number of groups to be divided along the channel dimension.
6184
6139
  weight (Tensor, optional): The shape :math:`(C,)`, Default: ``None``, has the same data type with `input`.
@@ -6200,9 +6155,9 @@ def group_norm(input, num_groups, weight=None, bias=None, eps=1e-5):
6200
6155
  Examples:
6201
6156
  >>> import mindspore as ms
6202
6157
  >>> import numpy as np
6203
- >>> from mindspore import ops
6158
+ >>> from mindspore.ops import group_norm
6204
6159
  >>> x = ms.Tensor(np.ones([1, 2, 4, 4], np.float32))
6205
- >>> output = ops.group_norm(x, 2)
6160
+ >>> output = group_norm(x, 2)
6206
6161
  >>> print(output)
6207
6162
  [[[[0. 0. 0. 0.]
6208
6163
  [0. 0. 0. 0.]
@@ -6213,78 +6168,9 @@ def group_norm(input, num_groups, weight=None, bias=None, eps=1e-5):
6213
6168
  [0. 0. 0. 0.]
6214
6169
  [0. 0. 0. 0.]]]]
6215
6170
  """
6216
- if weight is None:
6217
- weight = ops.ones([input.shape[1]], dtype=input.dtype)
6218
- if bias is None:
6219
- bias = ops.zeros([input.shape[1]], dtype=input.dtype)
6171
+ group_norm_op = GroupNorm()
6220
6172
  return group_norm_op(input, num_groups, weight, bias, eps)[0]
6221
6173
 
6222
-
6223
- def batch_norm_ext(input, running_mean, running_var, weight=None, bias=None, training=False, momentum=0.1, eps=1e-5):
6224
- r"""
6225
- Batch Normalization for input data and updated parameters.
6226
-
6227
- Batch Normalization is widely used in convolutional neural networks. This operation
6228
- applies Batch Normalization over inputs to avoid internal covariate shift as described
6229
- in the paper `Batch Normalization: Accelerating Deep Network Training by Reducing Internal
6230
- Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the
6231
- features using a mini-batch of data and the learned parameters can be described
6232
- in the following formula,
6233
-
6234
- .. math::
6235
-
6236
- y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
6237
-
6238
- where :math:`\gamma` is `weight`, :math:`\beta` is `bias`, :math:`\epsilon` is `eps`, :math:`mean` is the
6239
- mean of :math:`x`, :math:`variance` is the variance of :math:`x`.
6240
-
6241
- Args:
6242
- input (Tensor): Tensor of shape :math:`(N, C, *)`, with bfloat16, float16 or float32 data type.
6243
- For Atlas training products, the shape must be 2-4 dimensions currently.
6244
- running_mean (Tensor): The shape :math:`(C,)`, with bfloat, float16 or float32 data type.
6245
- running_var (Tensor): The shape :math:`(C,)`, with bfloat, float16 or float32 data type.
6246
- weight (Tensor, optional): The shape :math:`(C,)`, with bfloat, float16 or float32 data type, Default: ``None``.
6247
- Initialized to ``1`` when `weight` is None.
6248
- bias (Tensor, optional): The shape :math:`(C,)`, with bfloat, float16 or float32 data type. Default: ``None``.
6249
- Initialized to ``0`` when `weight` is None.
6250
- training (bool, optional): If `training` is `True`, `mean` and `variance` are computed during training.
6251
- If `training` is `False`, they're loaded from checkpoint during inference. Default: ``False`` .
6252
- momentum (float, optional): The hyper parameter to compute moving average for `running_mean` and `running_var`
6253
- (e.g. :math:`new\_running\_mean = (1 - momentum) * running\_mean + momentum * current\_mean`).
6254
- Default: ``0.1`` .
6255
- eps (float, optional): A small value added for numerical stability. Default: ``1e-5``.
6256
-
6257
- Returns:
6258
- Tensor, has the same type and shape as `input`. The shape is :math:`(N, C, *)`.
6259
-
6260
- Raises:
6261
- TypeError: If `training` is not a bool.
6262
- TypeError: If dtype of `eps` or `momentum` is not float.
6263
- TypeError: If `input`, `weight`, `bias`, `running_mean` or `running_var` is not a Tensor.
6264
-
6265
- Supported Platforms:
6266
- ``Ascend``
6267
-
6268
- Examples:
6269
- >>> import mindspore
6270
- >>> from mindspore import Tensor, ops
6271
- >>> input_x = Tensor([[1.0, 2.0], [3.0, 4.0]], mindspore.float32)
6272
- >>> running_mean = Tensor([0.5, 1.5], mindspore.float32)
6273
- >>> running_var = Tensor([0.1, 0.2], mindspore.float32)
6274
- >>> weight = Tensor([2.0, 2.0], mindspore.float32)
6275
- >>> bias = Tensor([-1.0, -1.0], mindspore.float32)
6276
- >>> output = ops.function.nn_func.batch_norm_ext(input_x, running_mean, running_var, weight, bias)
6277
- >>> print(output)
6278
- [[ 2.1621194 1.2360122]
6279
- [14.810596 10.180061 ]]
6280
- """
6281
- if weight is None:
6282
- weight = ops.ones([input.shape[1]], dtype=input.dtype)
6283
- if bias is None:
6284
- bias = ops.zeros([input.shape[1]], dtype=input.dtype)
6285
- output = batch_norm_ext_op(input, weight, bias, running_mean, running_var, training, momentum, eps)
6286
- return output[0]
6287
-
6288
6174
  def batch_norm(input_x, running_mean, running_var, weight, bias, training=False, momentum=0.1, eps=1e-5):
6289
6175
  r"""
6290
6176
  Batch Normalization for input data and updated parameters.
@@ -6422,7 +6308,6 @@ def binary_cross_entropy(logits, labels, weight=None, reduction='mean'):
6422
6308
  Args:
6423
6309
  logits (Tensor): The predictive value whose data type must be float16 or float32.
6424
6310
  labels (Tensor): The target value which has the same shape and data type as `logits`.
6425
- And the data type is float16 or float32.
6426
6311
  weight (Tensor, optional): A rescaling weight applied to the loss of each batch element.
6427
6312
  Its shape must be able to broadcast to that of `logits` and `labels`.
6428
6313
  And it must have the same shape and data type as `logits`. Default: ``None`` . If set to ``None`` ,
@@ -7045,6 +6930,8 @@ def gelu(input, approximate='none'):
7045
6930
  .. math::
7046
6931
  GELU(x_i) = 0.5 * x_i * (1 + \tanh(\sqrt(2 / \pi) * (x_i + 0.044715 * x_i^3)))
7047
6932
 
6933
+ For the related GELU graph, refer to `GELU <https://en.wikipedia.org/wiki/Activation_function#/media/File:Activation_gelu.png>`_ .
6934
+
7048
6935
  GELU Activation Function Graph:
7049
6936
 
7050
6937
  .. image:: ../images/GELU.png
@@ -7072,7 +6959,7 @@ def gelu(input, approximate='none'):
7072
6959
  >>> x = Tensor([1.0, 2.0, 3.0], mindspore.float32)
7073
6960
  >>> result = ops.gelu(x)
7074
6961
  >>> print(result)
7075
- [0.8413447 1.9544997 2.9959505]
6962
+ [0.841192 1.9545976 2.9963627]
7076
6963
  """
7077
6964
  if approximate not in ['none', 'tanh']:
7078
6965
  raise ValueError("For ops.gelu, approximate value should be either 'none' or 'tanh'.")
@@ -7185,7 +7072,7 @@ def lp_pool1d(x, norm_type, kernel_size, stride=None, ceil_mode=False):
7185
7072
 
7186
7073
  Examples:
7187
7074
  >>> import mindspore as ms
7188
- >>> from mindspore import ops
7075
+ >>> import mindspore.ops as ops
7189
7076
  >>> from mindspore import Tensor
7190
7077
  >>> import numpy as np
7191
7078
  >>> x = Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)), dtype=ms.float32)
@@ -7270,7 +7157,7 @@ def lp_pool2d(x, norm_type, kernel_size, stride=None, ceil_mode=False):
7270
7157
 
7271
7158
  Examples:
7272
7159
  >>> import mindspore as ms
7273
- >>> from mindspore import ops
7160
+ >>> import mindspore.ops as ops
7274
7161
  >>> from mindspore import Tensor
7275
7162
  >>> import numpy as np
7276
7163
  >>> x = Tensor(np.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5)), dtype=ms.float32)
@@ -7396,7 +7283,7 @@ def msort(input):
7396
7283
 
7397
7284
  Examples:
7398
7285
  >>> import mindspore as ms
7399
- >>> from mindspore import ops
7286
+ >>> import mindspore.ops as ops
7400
7287
  >>> import numpy as np
7401
7288
  >>> input = ms.Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), ms.float16)
7402
7289
  >>> output = ops.msort(input)
@@ -8128,6 +8015,7 @@ __all__ = [
8128
8015
  'softmin',
8129
8016
  'pdist',
8130
8017
  'pad',
8018
+ 'pad_ext',
8131
8019
  'prelu',
8132
8020
  'mirror_pad',
8133
8021
  'cross_entropy',
@@ -8170,6 +8058,6 @@ __all__ = [
8170
8058
  'channel_shuffle',
8171
8059
  'hardsigmoid',
8172
8060
  'group_norm',
8173
- 'rms_norm',
8061
+ 'dropout_ext',
8174
8062
  ]
8175
8063
  __all__.sort()