mindspore 2.3.0__cp39-none-any.whl → 2.3.0rc2__cp39-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (423) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +0 -1512
  3. mindspore/__init__.py +1 -2
  4. mindspore/_c_dataengine.cpython-39-aarch64-linux-gnu.so +0 -0
  5. mindspore/_c_expression.cpython-39-aarch64-linux-gnu.so +0 -0
  6. mindspore/_c_mindrecord.cpython-39-aarch64-linux-gnu.so +0 -0
  7. mindspore/_checkparam.py +25 -5
  8. mindspore/_extends/graph_kernel/model/graph_parallel.py +1 -1
  9. mindspore/_extends/parse/__init__.py +2 -2
  10. mindspore/_extends/parse/compile_config.py +0 -29
  11. mindspore/_extends/parse/namespace.py +2 -2
  12. mindspore/_extends/parse/parser.py +5 -21
  13. mindspore/_extends/parse/resources.py +7 -5
  14. mindspore/_extends/parse/standard_method.py +59 -40
  15. mindspore/_mindspore_offline_debug.cpython-39-aarch64-linux-gnu.so +0 -0
  16. mindspore/amp.py +5 -26
  17. mindspore/bin/cache_admin +0 -0
  18. mindspore/bin/cache_server +0 -0
  19. mindspore/boost/adasum.py +1 -1
  20. mindspore/boost/base.py +1 -1
  21. mindspore/boost/boost_cell_wrapper.py +1 -1
  22. mindspore/boost/grad_freeze.py +2 -2
  23. mindspore/boost/less_batch_normalization.py +6 -9
  24. mindspore/common/__init__.py +1 -8
  25. mindspore/common/_register_for_tensor.py +9 -8
  26. mindspore/common/api.py +65 -275
  27. mindspore/common/dtype.py +4 -8
  28. mindspore/common/dump.py +5 -2
  29. mindspore/common/jit_config.py +1 -1
  30. mindspore/common/lazy_inline.py +2 -14
  31. mindspore/common/parameter.py +15 -14
  32. mindspore/common/recompute.py +5 -20
  33. mindspore/common/sparse_tensor.py +6 -21
  34. mindspore/common/tensor.py +52 -100
  35. mindspore/communication/__init__.py +11 -6
  36. mindspore/communication/management.py +94 -92
  37. mindspore/context.py +18 -180
  38. mindspore/dataset/engine/datasets.py +46 -69
  39. mindspore/dataset/engine/datasets_user_defined.py +53 -72
  40. mindspore/dataset/engine/datasets_vision.py +2 -2
  41. mindspore/dataset/engine/queue.py +38 -56
  42. mindspore/dataset/engine/validators.py +5 -11
  43. mindspore/dataset/vision/__init__.py +5 -5
  44. mindspore/dataset/vision/c_transforms.py +5 -5
  45. mindspore/dataset/vision/py_transforms_util.py +1 -1
  46. mindspore/dataset/vision/transforms.py +46 -591
  47. mindspore/dataset/vision/utils.py +1 -121
  48. mindspore/dataset/vision/validators.py +3 -9
  49. mindspore/hal/__init__.py +1 -7
  50. mindspore/hal/device.py +1 -1
  51. mindspore/include/api/model.h +0 -3
  52. mindspore/include/dataset/vision.h +2 -54
  53. mindspore/include/mindapi/base/types.h +0 -1
  54. mindspore/lib/libdnnl.so.2 +0 -0
  55. mindspore/lib/libmindspore.so +0 -0
  56. mindspore/lib/libmindspore_backend.so +0 -0
  57. mindspore/lib/libmindspore_common.so +0 -0
  58. mindspore/lib/libmindspore_core.so +0 -0
  59. mindspore/lib/libmindspore_glog.so.0 +0 -0
  60. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  61. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  62. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  63. mindspore/lib/libmindspore_shared_lib.so +0 -0
  64. mindspore/lib/libmpi_adapter.so +0 -0
  65. mindspore/lib/libmpi_collective.so +0 -0
  66. mindspore/lib/libnnacl.so +0 -0
  67. mindspore/lib/libopencv_core.so.4.5 +0 -0
  68. mindspore/lib/libps_cache.so +0 -0
  69. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +0 -35
  70. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  71. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  72. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  73. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +0 -72
  74. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  75. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/{aclnn_all_finite.h → aclnn_add_custom.h} +11 -9
  76. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_decoder_kv_cache.h +1 -1
  77. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_prompt_kv_cache.h +1 -1
  78. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/lib/libcust_opapi.so +0 -0
  79. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +12 -184
  80. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +15 -7
  81. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +15 -7
  82. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.cpp +81 -0
  83. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.py +134 -0
  84. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.py +31 -77
  85. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.py +31 -77
  86. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/lib/linux/aarch64/libcust_opmaster_rt2.0.so +0 -0
  87. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
  88. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/inc/op_proto.h +5 -4
  89. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/lib/linux/aarch64/libcust_opsproto_rt2.0.so +0 -0
  90. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  91. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  92. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  93. mindspore/lib/plugin/ascend/liblowlatency_collective.so +0 -0
  94. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  95. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/DeviceBin +0 -0
  96. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/PkgInspect +0 -0
  97. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/op_man +0 -0
  98. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/device/ascend910b/bin/ascend910b.bin +286 -275
  99. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_cann_host.so +0 -0
  100. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_host.so +0 -0
  101. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops.so +0 -0
  102. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops_static.a +0 -0
  103. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/add_impl.h +0 -1
  104. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/apply_rotary_pos_emb_impl.h +0 -1
  105. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/asdop/asd_op_impl.h +0 -3
  106. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/backend_param.h +0 -5
  107. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/cast/cast_tiling.h +45 -1
  108. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/compare/compare_impl.h +0 -1
  109. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/flash_attention_score_impl.h +4 -8
  110. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/flash_attention_score_tiling.h +4 -11
  111. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/kernel/flash_attention_score_mix_hwsync.h +0 -18
  112. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_kernel.h +0 -6
  113. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_rtbackend.h +75 -1
  114. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/kernel/matmul.h +5 -5
  115. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/matmul_impl.h +3 -18
  116. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/pp_matmul_common_tiling.h +5 -5
  117. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/pp_matmul_info.h +2 -2
  118. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/tiling_data.h +3 -36
  119. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/kernel/matmul_stridedslice_fusion.h +2 -2
  120. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/matmul_stridedslice_fusion_impl.h +4 -22
  121. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_param.h +2 -16
  122. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/kernel/paged_attention_mix_hwsync.h +3 -1
  123. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_impl.h +4 -5
  124. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_tiling.h +4 -9
  125. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/attention_param.h +2 -5
  126. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_ext_param.h +0 -1
  127. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_qkv_param.h +4 -10
  128. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/sub_param.h +12 -0
  129. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/rms_norm_impl.h +0 -1
  130. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_impl.h +0 -1
  131. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/matmul_table.h +1 -1
  132. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/backend.h +2 -10
  133. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/elewise_utils.h +1 -5
  134. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log.h +0 -1
  135. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_tiling.h +0 -17
  136. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/math.h +7 -2
  137. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libAdd_impl.so +0 -0
  138. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libSub_impl.so +0 -0
  139. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_layernorm_impl.so +0 -0
  140. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_impl.so +0 -0
  141. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_impl.so +0 -0
  142. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcast_impl.so +0 -0
  143. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libgelu_impl.so +0 -0
  144. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_impl.so +0 -0
  145. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_stridedslice_fusion_impl.so +0 -0
  146. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_kernels_internal.so +0 -0
  147. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libnot_equal_impl.so +0 -0
  148. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_impl.so +0 -0
  149. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/librms_norm_impl.so +0 -0
  150. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
  151. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
  152. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_full_mix.o +0 -0
  153. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
  154. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
  155. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
  156. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_full_mix.o +0 -0
  157. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
  158. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bnsd_full_mix.o +0 -0
  159. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bsh_full_mix.o +0 -0
  160. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bnsd_full_mix.o +0 -0
  161. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bsh_full_mix.o +0 -0
  162. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblcal.so +0 -0
  163. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblccl_wrapper.so +0 -0
  164. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  165. mindspore/mindrecord/filewriter.py +2 -2
  166. mindspore/mint/__init__.py +40 -720
  167. mindspore/mint/nn/__init__.py +7 -89
  168. mindspore/mint/nn/functional.py +16 -165
  169. mindspore/mint/optim/adamw.py +16 -15
  170. mindspore/nn/__init__.py +2 -0
  171. mindspore/nn/cell.py +98 -97
  172. mindspore/nn/extend/basic.py +2 -2
  173. mindspore/nn/extend/embedding.py +1 -1
  174. mindspore/nn/extend/layer/normalization.py +5 -7
  175. mindspore/nn/generator.py +297 -0
  176. mindspore/nn/layer/activation.py +3 -4
  177. mindspore/nn/layer/basic.py +16 -79
  178. mindspore/nn/layer/conv.py +8 -17
  179. mindspore/nn/layer/embedding.py +4 -1
  180. mindspore/nn/layer/math.py +1 -1
  181. mindspore/nn/layer/normalization.py +1 -1
  182. mindspore/nn/layer/pooling.py +0 -5
  183. mindspore/nn/layer/rnn_cells.py +2 -2
  184. mindspore/nn/loss/loss.py +19 -19
  185. mindspore/nn/optim/adasum.py +1 -1
  186. mindspore/nn/optim/sgd.py +2 -3
  187. mindspore/nn/probability/distribution/exponential.py +1 -1
  188. mindspore/nn/probability/distribution/geometric.py +1 -1
  189. mindspore/nn/probability/distribution/logistic.py +1 -1
  190. mindspore/nn/wrap/cell_wrapper.py +1 -25
  191. mindspore/nn/wrap/loss_scale.py +1 -24
  192. mindspore/numpy/array_ops.py +1 -5
  193. mindspore/numpy/dtypes.py +3 -3
  194. mindspore/numpy/math_ops.py +8 -8
  195. mindspore/ops/__init__.py +1 -1
  196. mindspore/ops/_grad_experimental/grad_comm_ops.py +16 -75
  197. mindspore/ops/_vmap/vmap_array_ops.py +0 -27
  198. mindspore/ops/_vmap/vmap_math_ops.py +1 -29
  199. mindspore/ops/_vmap/vmap_nn_ops.py +18 -19
  200. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +8 -34
  201. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +9 -2
  202. mindspore/ops/auto_generate/gen_arg_handler.py +0 -26
  203. mindspore/ops/auto_generate/gen_extend_func.py +27 -603
  204. mindspore/ops/auto_generate/gen_ops_def.py +203 -993
  205. mindspore/ops/auto_generate/gen_ops_prim.py +402 -1946
  206. mindspore/ops/auto_generate/pyboost_inner_prim.py +20 -90
  207. mindspore/ops/composite/base.py +6 -3
  208. mindspore/ops/composite/math_ops.py +1 -1
  209. mindspore/ops/composite/multitype_ops/_compile_utils.py +17 -24
  210. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  211. mindspore/ops/extend/__init__.py +3 -2
  212. mindspore/ops/extend/array_func.py +51 -10
  213. mindspore/ops/extend/nn_func.py +78 -2
  214. mindspore/ops/function/__init__.py +13 -8
  215. mindspore/ops/function/array_func.py +179 -455
  216. mindspore/ops/function/clip_func.py +1 -1
  217. mindspore/ops/function/grad/grad_func.py +3 -3
  218. mindspore/ops/function/math_func.py +103 -117
  219. mindspore/ops/function/nn_func.py +163 -275
  220. mindspore/ops/function/other_func.py +2 -2
  221. mindspore/ops/function/random_func.py +69 -202
  222. mindspore/ops/function/sparse_func.py +4 -4
  223. mindspore/ops/functional.py +327 -332
  224. mindspore/ops/operations/__init__.py +3 -13
  225. mindspore/ops/operations/_grad_ops.py +27 -3
  226. mindspore/ops/operations/_inner_ops.py +356 -53
  227. mindspore/ops/operations/_rl_inner_ops.py +2 -2
  228. mindspore/ops/operations/_tensor_array.py +8 -8
  229. mindspore/ops/operations/array_ops.py +65 -82
  230. mindspore/ops/operations/comm_ops.py +93 -784
  231. mindspore/ops/operations/custom_ops.py +28 -51
  232. mindspore/ops/operations/debug_ops.py +4 -4
  233. mindspore/ops/operations/inner_ops.py +2 -2
  234. mindspore/ops/operations/manually_defined/ops_def.py +4 -304
  235. mindspore/ops/operations/math_ops.py +50 -3
  236. mindspore/ops/operations/nn_ops.py +247 -14
  237. mindspore/ops/operations/other_ops.py +3 -3
  238. mindspore/ops/operations/random_ops.py +1 -1
  239. mindspore/ops/operations/sparse_ops.py +1 -1
  240. mindspore/ops/primitive.py +8 -9
  241. mindspore/ops/silent_check.py +5 -5
  242. mindspore/ops_generate/arg_dtype_cast.py +9 -2
  243. mindspore/ops_generate/arg_handler.py +0 -26
  244. mindspore/ops_generate/gen_aclnn_implement.py +4 -1
  245. mindspore/ops_generate/gen_ops.py +4 -26
  246. mindspore/ops_generate/gen_pyboost_func.py +12 -41
  247. mindspore/ops_generate/gen_utils.py +0 -21
  248. mindspore/ops_generate/pyboost_utils.py +2 -7
  249. mindspore/ops_generate/template.py +0 -1
  250. mindspore/parallel/_auto_parallel_context.py +1 -21
  251. mindspore/parallel/_tensor.py +5 -0
  252. mindspore/parallel/_transformer/transformer.py +1 -1
  253. mindspore/parallel/_utils.py +1 -15
  254. mindspore/parallel/algo_parameter_config.py +3 -1
  255. mindspore/parallel/checkpoint_transform.py +9 -12
  256. mindspore/parallel/cluster/process_entity/_api.py +29 -28
  257. mindspore/parallel/cluster/process_entity/_utils.py +3 -13
  258. mindspore/parallel/cluster/run.py +16 -13
  259. mindspore/parallel/parameter_broadcast.py +2 -2
  260. mindspore/parallel/shard.py +17 -31
  261. mindspore/profiler/__init__.py +2 -3
  262. mindspore/profiler/common/util.py +2 -107
  263. mindspore/profiler/envprofiling.py +1 -1
  264. mindspore/profiler/parser/ascend_analysis/constant.py +21 -8
  265. mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -82
  266. mindspore/profiler/parser/ascend_analysis/function_event.py +28 -43
  267. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +27 -49
  268. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +10 -15
  269. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +20 -25
  270. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +5 -5
  271. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +1 -10
  272. mindspore/profiler/parser/ascend_hccl_generator.py +1 -4
  273. mindspore/profiler/parser/ascend_msprof_exporter.py +22 -43
  274. mindspore/profiler/parser/ascend_timeline_generator.py +5 -7
  275. mindspore/profiler/parser/minddata_parser.py +3 -72
  276. mindspore/profiler/profiling.py +59 -176
  277. mindspore/rewrite/api/node.py +1 -1
  278. mindspore/rewrite/common/namespace.py +5 -5
  279. mindspore/rewrite/parsers/assign_parser.py +0 -2
  280. mindspore/rewrite/parsers/class_def_parser.py +4 -8
  281. mindspore/run_check/_check_version.py +1 -1
  282. mindspore/scipy/fft.py +3 -1
  283. mindspore/scipy/linalg.py +3 -2
  284. mindspore/scipy/ops.py +3 -5
  285. mindspore/scipy/optimize/__init__.py +2 -2
  286. mindspore/train/__init__.py +4 -4
  287. mindspore/train/anf_ir_pb2.py +2 -8
  288. mindspore/train/callback/__init__.py +2 -5
  289. mindspore/train/callback/_backup_and_restore.py +2 -2
  290. mindspore/train/callback/_checkpoint.py +16 -104
  291. mindspore/train/callback/_landscape.py +1 -1
  292. mindspore/train/callback/_time_monitor.py +1 -1
  293. mindspore/train/data_sink.py +4 -5
  294. mindspore/train/dataset_helper.py +20 -45
  295. mindspore/train/model.py +38 -266
  296. mindspore/train/serialization.py +105 -256
  297. mindspore/train/summary/_summary_adapter.py +1 -1
  298. mindspore/version.py +1 -1
  299. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +2 -2
  300. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +303 -420
  301. mindspore/_extends/pijit/__init__.py +0 -23
  302. mindspore/_extends/pijit/pijit_func_white_list.py +0 -343
  303. mindspore/common/file_system.py +0 -48
  304. mindspore/common/generator.py +0 -260
  305. mindspore/common/no_inline.py +0 -54
  306. mindspore/common/np_dtype.py +0 -25
  307. mindspore/communication/comm_func.py +0 -1140
  308. mindspore/hal/memory.py +0 -326
  309. mindspore/lib/libavcodec.so.59 +0 -0
  310. mindspore/lib/libavdevice.so.59 +0 -0
  311. mindspore/lib/libavfilter.so.8 +0 -0
  312. mindspore/lib/libavformat.so.59 +0 -0
  313. mindspore/lib/libavutil.so.57 +0 -0
  314. mindspore/lib/libmindspore_np_dtype.so +0 -0
  315. mindspore/lib/libswresample.so.4 +0 -0
  316. mindspore/lib/libswscale.so.6 +0 -0
  317. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/all_finite.cpp +0 -326
  318. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/all_finite.py +0 -180
  319. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_576ceaeef5870c451cab59af55ea46ad.json +0 -58
  320. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_576ceaeef5870c451cab59af55ea46ad.o +0 -0
  321. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_86a73ff6e28d734c96bb8d3054f7dd18.json +0 -58
  322. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_86a73ff6e28d734c96bb8d3054f7dd18.o +0 -0
  323. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_f55e0ebaad1f2f572e43677336992fa0.json +0 -58
  324. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_f55e0ebaad1f2f572e43677336992fa0.o +0 -0
  325. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/config/ascend910b/all_finite.json +0 -109
  326. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/config/ascend910b/binary_info_config.json +0 -38
  327. mindspore/lib/plugin/ascend/custom_compiler/OWNERS +0 -12
  328. mindspore/lib/plugin/ascend/custom_compiler/setup.py +0 -255
  329. mindspore/lib/plugin/ascend/custom_compiler/start.sh +0 -26
  330. mindspore/lib/plugin/ascend/custom_compiler/template.json +0 -40
  331. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme.h +0 -24
  332. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme_op.h +0 -69
  333. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/base_type.h +0 -133
  334. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_creator.h +0 -32
  335. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_param.h +0 -35
  336. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/tiling_info.h +0 -60
  337. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/kernel_register.h +0 -37
  338. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/platform_configs.h +0 -89
  339. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/rt_funcs.h +0 -135
  340. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/add_op.h +0 -34
  341. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_backoff_base.h +0 -62
  342. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_elewise_op.h +0 -33
  343. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_ops.h +0 -88
  344. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_pa_op.h +0 -45
  345. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/cast_op.h +0 -52
  346. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/matmul_op.h +0 -95
  347. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/asd_utils.h +0 -84
  348. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/comm_utils.h +0 -61
  349. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp32.h +0 -224
  350. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/and_impl.h +0 -29
  351. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/div_impl.h +0 -29
  352. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_impl.h +0 -48
  353. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_tiling.h +0 -25
  354. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/and_kernel.h +0 -46
  355. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/div_kernel.h +0 -46
  356. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_base.h +0 -260
  357. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_kernel.h +0 -35
  358. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/max_kernel.h +0 -66
  359. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/min_kernel.h +0 -66
  360. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/mul_kernel.h +0 -66
  361. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/or_kernel.h +0 -46
  362. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/max_impl.h +0 -29
  363. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/min_impl.h +0 -29
  364. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/mul_impl.h +0 -29
  365. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/or_impl.h +0 -29
  366. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/abs_impl.h +0 -29
  367. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_impl.h +0 -47
  368. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_tiling.h +0 -24
  369. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/exp_impl.h +0 -29
  370. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/abs_kernel.h +0 -45
  371. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_base.h +0 -148
  372. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_kernel.h +0 -31
  373. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/exp_kernel.h +0 -45
  374. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/ln_kernel.h +0 -45
  375. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/not_kernel.h +0 -45
  376. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/reciprocal_kernel.h +0 -45
  377. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/relu_kernel.h +0 -55
  378. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/rsqrt_kernel.h +0 -45
  379. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/sqrt_kernel.h +0 -45
  380. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/ln_impl.h +0 -29
  381. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/not_impl.h +0 -29
  382. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/reciprocal_impl.h +0 -29
  383. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/relu_impl.h +0 -29
  384. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/rsqrt_impl.h +0 -29
  385. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/sqrt_impl.h +0 -29
  386. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/grouped_matmul_impl.h +0 -45
  387. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/grouped_matmul_tiling.h +0 -187
  388. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul.h +0 -245
  389. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul_interface.h +0 -24
  390. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul_utils.h +0 -111
  391. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/tiling_data.h +0 -54
  392. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/compare_param.h +0 -31
  393. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/elewise_param.h +0 -41
  394. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/grouped_matmul_param.h +0 -40
  395. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/profiling_util.h +0 -364
  396. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_utils.h +0 -69
  397. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_creator.h +0 -39
  398. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_registry.h +0 -114
  399. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/utils.h +0 -98
  400. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix.json +0 -19
  401. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix.o +0 -0
  402. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix_mix_aic_0.o +0 -0
  403. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix_mix_aiv_0.o +0 -0
  404. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix.json +0 -19
  405. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix.o +0 -0
  406. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix_mix_aic_0.o +0 -0
  407. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix_mix_aiv_0.o +0 -0
  408. mindspore/mint/linalg/__init__.py +0 -22
  409. mindspore/nn/layer/embedding_service.py +0 -531
  410. mindspore/nn/layer/embedding_service_layer.py +0 -393
  411. mindspore/ops/function/reshard_func.py +0 -102
  412. mindspore/ops/operations/_infer_ops.py +0 -19
  413. mindspore/ops/operations/reshard_ops.py +0 -53
  414. mindspore/profiler/common/process_pool.py +0 -41
  415. mindspore/profiler/common/singleton.py +0 -28
  416. mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
  417. mindspore/profiler/parser/ascend_memory_generator.py +0 -185
  418. mindspore/train/callback/_cluster_monitor.py +0 -201
  419. mindspore/train/callback/_flops_collector.py +0 -238
  420. mindspore/train/callback/_mindio_ttp.py +0 -443
  421. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
  422. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +0 -0
  423. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -43,7 +43,7 @@ def add(input, other, alpha=1):
43
43
  alpha (number.Number): A scaling factor applied to `other`, default 1.
44
44
 
45
45
  Returns:
46
- Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
46
+ Tensor, the shape is the same as the one of the input `input`, `other` after broadcasting,
47
47
  and the data type is the one with higher precision or higher digits among the two inputs and alpha.
48
48
 
49
49
  Raises:
@@ -58,11 +58,11 @@ def add(input, other, alpha=1):
58
58
  >>> import numpy as np
59
59
  >>> import mindspore
60
60
  >>> from mindspore import Tensor
61
- >>> from mindspore import ops
61
+ >>> from mindspore.ops.extend import add
62
62
  >>> x = Tensor(1, mindspore.int32)
63
63
  >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32))
64
64
  >>> alpha = 0.5
65
- >>> output = ops.auto_generate.add_ext(x, y, alpha)
65
+ >>> output = add(x, y, alpha)
66
66
  >>> print(output)
67
67
  [3. 3.5 4.]
68
68
  >>> # the data type of x is int32, the data type of y is float32,
@@ -73,98 +73,24 @@ def add(input, other, alpha=1):
73
73
  return add_impl(input, other, alpha)
74
74
 
75
75
 
76
- def argmax(input, dim=None, keepdim=False):
77
- r"""
78
- Return the indices of the maximum values of a tensor across a dimension.
79
-
80
- Args:
81
- input (Tensor): Input tensor.
82
- dim (Union[int, None], optional): The dimension to reduce. If `dim` is ``None`` , the indices of the maximum
83
- value within the flattened input will be returned. Default: ``None`` .
84
- keepdim (bool, optional): Whether the output tensor retains the specified
85
- dimension. Ignored if `dim` is None. Default: ``False`` .
86
-
87
- Returns:
88
- Tensor, indices of the maximum values across a dimension.
89
-
90
- Raises:
91
- TypeError: If `keepdim` is not bool.
92
- ValueError: If `dim` is out of range.
93
-
94
- Supported Platforms:
95
- ``Ascend``
96
-
97
- Examples:
98
- >>> import numpy as np
99
- >>> from mindspore import Tensor
100
- >>> from mindspore import ops
101
- >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
102
- >>> output = ops.auto_generate.argmax_ext(x, dim=-1)
103
- >>> print(output)
104
- [1 0 0]
105
- """
106
- return argmax_impl(input, dim, keepdim)
107
-
108
-
109
- def atan2(input, other):
110
- r"""
111
- Returns arctangent of input/other element-wise.
112
-
113
- It returns :math:`\theta\ \in\ [-\pi, \pi]`
114
- such that :math:`input = r*\sin(\theta), other = r*\cos(\theta)`, where :math:`r = \sqrt{input^2 + other^2}`.
115
-
116
- Note:
117
- - Arg `input` and `other` comply with the implicit type conversion rules to make the data types consistent.
118
- If they have different data types, the lower precision data type will be converted to relatively the
119
- highest precision data type.
120
-
121
- Args:
122
- input (Tensor, Number.number): The input tensor or scalar.
123
- other (Tensor, Number.number): The input tensor or scalar. It has the same shape with `input` or
124
- its shape is able to broadcast with `input`.
125
-
126
- Returns:
127
- Tensor, the shape is the same as the one after broadcasting, and the data type is same as `input`.
128
-
129
- Raises:
130
- TypeError: If `input` or `other` is not a Tensor or scalar.
131
- RuntimeError: If the data type of `input` and `other` conversion of Parameter is required
132
- when data type conversion of Parameter is not supported.
133
-
134
- Supported Platforms:
135
- ``Ascend``
136
-
137
- Examples:
138
- >>> import mindspore
139
- >>> import numpy as np
140
- >>> from mindspore import Tensor, ops
141
- >>> input = Tensor(np.array([0, 1]), mindspore.float32)
142
- >>> other = Tensor(np.array([1, 1]), mindspore.float32)
143
- >>> output = mint.atan2(input, other)
144
- >>> print(output)
145
- [0. 0.7853982]
146
- """
147
- return atan2_impl(input, other)
148
-
149
-
150
76
  def bmm(input, mat2):
151
77
  r"""
152
78
  Performs batch matrix-matrix multiplication of two three-dimensional tensors.
153
79
 
154
80
  .. math::
155
- \text{output}= \text{input} @ \text{mat2}
81
+ \text{output}[b, i, j] = \text{input}[b, i, k] @ \text{mat2}[b, k, j]
156
82
 
157
83
  Args:
158
- input (Tensor): The first batch of matrices to be multiplied. Must be a three-dimensional tensor of shape `(b, n, m)`.
159
- mat2 (Tensor): The second batch of matrices to be multiplied. Must be a three-dimensional tensor of shape `(b, m, p)`.
84
+ input (Tensor): The first batch of matrices to be multiplied. Must be a three-dimensional tensor.
85
+ mat2 (Tensor): The second batch of matrices to be multiplied. Must be a three-dimensional tensor.
160
86
 
161
87
  Returns:
162
88
  Tensor, the output tensor of shape `(b, n, p)`, where each matrix is the product of the corresponding matrices in the input batches.
163
89
 
164
90
  Raises:
165
- ValueError: If `input` or `mat2` is not three-dimensional tensors.
91
+ TypeError: If `input` or `mat2` is not three-dimensional tensors.
166
92
  ValueError: If the length of the third dimension of `input` is not equal to the length of the second dimension of `mat2`.
167
- ValueError: If the batch size of the inputs is not equal to the batch size of the mat2.
93
+ ValueError: If the batch size of the inputs do not match.
168
94
 
169
95
  Supported Platforms:
170
96
  ``Ascend`` ``GPU`` ``CPU``
@@ -173,183 +99,14 @@ def bmm(input, mat2):
173
99
  >>> import mindspore
174
100
  >>> import numpy as np
175
101
  >>> from mindspore import Tensor
176
- >>> from mindspore import ops
102
+ >>> from mindspore.ops.extend import bmm
177
103
  >>> a = Tensor(np.ones(shape=[2, 3, 4]), mindspore.float32)
178
104
  >>> b = Tensor(np.ones(shape=[2, 4, 5]), mindspore.float32)
179
- >>> output = ops.auto_generate.bmm_ext(a, b)
180
- >>> print(output)
181
- [[[4. 4. 4. 4. 4.]
182
- [4. 4. 4. 4. 4.]
183
- [4. 4. 4. 4. 4.]]
184
- [[4. 4. 4. 4. 4.]
185
- [4. 4. 4. 4. 4.]
186
- [4. 4. 4. 4. 4.]]]
187
- """
188
- return bmm_impl(input, mat2)
189
-
190
-
191
- def fold(input, output_size, kernel_size, dilation=1, padding=0, stride=1):
192
- r"""
193
- Combines an array of sliding local blocks into a large containing tensor.
194
-
195
- Consider a batched input tensor of shape :math:`(N, C \times \prod(\text{kernel_size}), L)` ,
196
- where :math:`N` is the batch dimension, :math:`C \times \prod(\text{kernel_size})` is the
197
- total number of values within each block (a block has :math:`\prod(\text{kernel_size})` spatial
198
- locations each containing a `C`-channeled vector), and :math:`L` is the total number of such blocks:
199
-
200
- .. math::
201
- L = \prod_d \left\lfloor\frac{\text{output_size}[d] + 2 \times \text{padding}[d] %
202
- - \text{dilation}[d] \times (\text{kernel_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
203
-
204
- where :math:`d` is over all spatial dimensions.
205
-
206
- Therefore, `output_size` is the spatial shape of the large containing tensor of the sliding local blocks.
207
-
208
- The `dilation`, `padding` and `stride` arguments specify how the sliding blocks are retrieved.
209
-
210
- .. warning::
211
- Currently, only unbatched(3D) or batched(4D) image-like output tensors are supported.
212
-
213
- Args:
214
- input (Tensor): 2-D or 3-D Tensor.
215
- output_size (Union[int, tuple[int], list[int]]): The shape of the spatial dimensions of
216
- the output(i.e., output.shape[2:]).
217
- kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two int
218
- for height and width. If type is int, it means that height equal with width. Must be specified.
219
- dilation (Union[int, tuple[int], list[int]], optional): The size of the dilation, should be two int
220
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
221
- padding (Union[int, tuple[int], list[int]], optional): The size of the padding, should be two int
222
- for height and width. If type is int, it means that height equal with width. Default: ``0`` .
223
- stride (Union[int, tuple[int], list[int]], optional): The size of the stride, should be two int
224
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
225
-
226
- Returns:
227
- A Tensor, with same type as `input` .
228
-
229
- Shape:
230
- - Input: :math:`(N, C \times \prod(\text{kernel_size}), L)` or
231
- :math:`(C \times \prod(\text{kernel_size}), L)`
232
- - Output: :math:`(N, C, output\_size[0], output\_size[1], ...)` or
233
- :math:`(C, output\_size[0], output\_size[1], ...)`
234
-
235
- Raises:
236
- TypeError: If `output_size`, `kernel_size`, `stride`, `dilation`, `padding` data type is not int, tuple or list.
237
- ValueError: If `output_size`, `kernel_size`, `dilation`, `stride` value is not
238
- greater than zero or elements number invalid.
239
- ValueError: If `padding` value is less than zero or elements number invalid.
240
- ValueError: If input.shape[-2] can't be divisible by the product of kernel_size.
241
- ValueError: If `input.shape[-1]` is not equal to the calculated number of sliding blocks `L`.
242
-
243
- Supported Platforms:
244
- ``Ascend``
245
-
246
- Examples:
247
- >>> import numpy as np
248
- >>> from mindspore import Tensor, ops
249
- >>> x = Tensor(np.random.rand(16, 64, 25).astype(np.float32))
250
- >>> output = ops.auto_generate.fold_ext(x, (8, 8), [2, 2], [2, 2], [2, 2], [2, 2])
105
+ >>> output = bmm(a, b)
251
106
  >>> print(output.shape)
252
- (16, 16, 8, 8)
253
- """
254
- return fold_impl(input, converted_output_size, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
255
-
256
-
257
- def cumsum(input, dim, dtype=None):
258
- r"""
259
- Computes the cumulative sum of input Tensor along `dim`.
260
-
261
- .. math::
262
-
263
- y_i = x_1 + x_2 + x_3 + ... + x_i
264
-
265
- Args:
266
- input (Tensor): The input Tensor.
267
- dim (int): Dim along which the cumulative sum is computed.
268
- dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If specified,
269
- the input Tensor will be cast to `dtype` before the computation. This is useful for preventing overflows.
270
- If not specified, stay the same as original Tensor. Default: ``None`` .
271
-
272
- Returns:
273
- Tensor, the shape of the output Tensor is consistent with the input Tensor's.
274
-
275
- Raises:
276
- TypeError: If `input` is not a Tensor.
277
- ValueError: If the `dim` is out of range.
278
-
279
- Supported Platforms:
280
- ``Ascend``
281
-
282
- Examples:
283
- >>> import numpy as np
284
- >>> from mindspore import Tensor
285
- >>> import mindspore.ops as ops
286
- >>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))
287
- >>> # case 1: along the dim 0
288
- >>> y = ops.auto_generate.cumsum_ext(x, 0)
289
- >>> print(y)
290
- [[ 3. 4. 6. 10.]
291
- [ 4. 10. 13. 19.]
292
- [ 8. 13. 21. 26.]
293
- [ 9. 16. 28. 35.]]
294
- >>> # case 2: along the dim 1
295
- >>> y = ops.auto_generate.cumsum_ext(x, 1)
296
- >>> print(y)
297
- [[ 3. 7. 13. 23.]
298
- [ 1. 7. 14. 23.]
299
- [ 4. 7. 15. 22.]
300
- [ 1. 4. 11. 20.]]
301
- """
302
- return cumsum_impl(input, dim, dtype)
303
-
304
-
305
- def elu(input, alpha=1.0):
306
- r"""
307
- Exponential Linear Unit activation function.
308
-
309
- Applies the exponential linear unit function element-wise.
310
- The activation function is defined as:
311
-
312
- .. math::
313
-
314
- \text{ELU}(x)= \left\{
315
- \begin{array}{align}
316
- \alpha(e^{x} - 1) & \text{if } x \le 0\\
317
- x & \text{if } x \gt 0\\
318
- \end{array}\right.
319
-
320
- Where :math:`x` is the element of input Tensor `input`, :math:`\alpha` is param `alpha`,
321
- it determines the smoothness of ELU.
322
-
323
- ELU function graph:
324
-
325
- .. image:: ../images/ELU.png
326
- :align: center
327
-
328
- Args:
329
- input (Tensor): The input of ELU is a Tensor of any dimension.
330
- alpha (float, optional): The alpha value of ELU, the data type is float.
331
- Default: ``1.0`` .
332
-
333
- Returns:
334
- Tensor, has the same shape and data type as `input`.
335
-
336
- Raises:
337
- TypeError: If `alpha` is not a float.
338
-
339
- Supported Platforms:
340
- ``Ascend``
341
-
342
- Examples:
343
- >>> import mindspore
344
- >>> import numpy as np
345
- >>> from mindspore import Tensor, ops
346
- >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
347
- >>> output = ops.auto_generate.elu_ext(x)
348
- >>> print(output)
349
- [[-0.63212055 4. -0.99966455]
350
- [ 2. -0.99326205 9. ]]
107
+ (2, 3, 5)
351
108
  """
352
- return elu_impl(input, alpha)
109
+ return bmm_impl(input, mat2)
353
110
 
354
111
 
355
112
  def ffn(x, weight1, weight2, expertTokens=None, bias1=None, bias2=None, scale=None, offset=None, deqScale1=None, deqScale2=None, antiquant_scale1=None, antiquant_scale2=None, antiquant_offset1=None, antiquant_offset2=None, activation='fastgelu', inner_precise=0):
@@ -395,124 +152,6 @@ def flatten(input, start_dim=0, end_dim=-1):
395
152
  return flatten_impl(input, start_dim, end_dim)
396
153
 
397
154
 
398
- def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
399
- r"""
400
- Extracts sliding local blocks from a batched input tensor.
401
-
402
- Consider a batched input tensor of shape :math:`(N, C, *)`,
403
- where :math:`N` is the batch dimension, :math:`C` is the channel dimension,
404
- and :math:`*` represent arbitrary spatial dimensions. This operation flattens
405
- each sliding `Kernel_size`- sized block within the spatial dimensions
406
- of `input` into a column (i.e., last dimension) of a 3-D output
407
- tensor of shape :math:`(N, C \times \prod(\text{kernel_size}), L)`, where
408
- :math:`C \times \prod(\text{kernel_size})` is the total number of values
409
- within each block (a block has :math:`\prod(\text{kernel_size})` spatial
410
- locations each containing a `C`-channeled vector), and :math:`L` is
411
- the total number of such blocks:
412
-
413
- .. math::
414
- L = \prod_d \left\lfloor\frac{\text{spatial_size}[d] + 2 \times \text{padding}[d] %
415
- - \text{dilation}[d] \times (\text{kernel_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
416
-
417
- where :math:`\text{spatial_size}` is formed by the spatial dimensions
418
- of `input` (:math:`*` above), and :math:`d` is over all spatial
419
- dimensions.
420
-
421
- Therefore, indexing `output` at the last dimension (column dimension)
422
- gives all values within a certain block.
423
-
424
- The `dilation`, `padding` and `stride` arguments specify
425
- how the sliding blocks are retrieved.
426
-
427
- .. warning::
428
- - Currently, batched(4D) image-like tensors are supported.
429
- - For Ascend, it is only supported on platforms above Atlas A2.
430
-
431
- Args:
432
- input (Tensor): 4-D Tensor.
433
- kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two int
434
- for height and width. If type is int, it means that height equal with width. Must be specified.
435
- dilation (Union[int, tuple[int], list[int]], optional): The dilation of the window, should be two int
436
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
437
- padding (Union[int, tuple[int], list[int]], optional): The pad of the window, should be two int
438
- for height and width. If type is int, it means that height equal with width. Default: ``0`` .
439
- stride (Union[int, tuple[int], list[int]], optional): The stride of the window, should be two int
440
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
441
-
442
- Returns:
443
- A Tensor, with same type as `input` .
444
-
445
- Shape:
446
- - Input: :math:`(N, C, *)`
447
- - Output: :math:`(N, C \times \prod(\text{kernel_size}), L)`
448
-
449
- Raises:
450
- TypeError: If any data type of `kernel_size`, `stride`, `dilation`, `padding` is not int, tuple or list.
451
- ValueError: If `kernel_size`, `dilation`, `stride` value is not
452
- greater than zero or elements number more than `2`.
453
- ValueError: If `padding` value is less than zero.
454
-
455
- Supported Platforms:
456
- ``Ascend``
457
-
458
- Examples:
459
- >>> import mindspore
460
- >>> import numpy as np
461
- >>> from mindspore import Tensor, ops
462
- >>> x = Tensor(np.random.rand(4, 4, 32, 32), mindspore.float32)
463
- >>> output = ops.auto_generate.unfold_ext(x, kernel_size=3, dilation=1, stride=1)
464
- >>> print(output.shape)
465
- (4, 36, 900)
466
- """
467
- return unfold_impl(input, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
468
-
469
-
470
- def index_select(input, dim, index):
471
- r"""
472
- Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
473
- using the indices specified in `index`. The new Tensor has the same number of dimensions as `input`,
474
- with the size of the `dim` dimension being equal to the length of `index`, and the size of all other
475
- dimensions will be unchanged from the original `input` Tensor.
476
-
477
- .. note::
478
- The value of index must be in the range of `[0, input.shape[dim])`, the result is undefined out of range.
479
-
480
- Args:
481
- input (Tensor): The input Tensor.
482
- dim (int): The dimension to be indexed.
483
- index (Tensor): A 1-D Tensor with the indices.
484
-
485
- Returns:
486
- Tensor, has the same dtype as input Tensor.
487
-
488
- Raises:
489
- TypeError: If `input` or `index` is not a Tensor.
490
- TypeError: If `dim` is not int number.
491
- ValueError: If the value of `dim` is out the range of `[-input.ndim, input.ndim - 1]`.
492
- ValueError: If the dimension of `index` is not equal to 1.
493
-
494
- Supported Platforms:
495
- ``Ascend``
496
-
497
- Examples:
498
- >>> import mindspore
499
- >>> from mindspore import Tensor, ops
500
- >>> import numpy as np
501
- >>> input = Tensor(np.arange(16).astype(np.float32).reshape(2, 2, 4))
502
- >>> print(input)
503
- [[[ 0. 1. 2. 3.]
504
- [ 4. 5. 6. 7.]]
505
- [[ 8. 9. 10. 11.]
506
- [12. 13. 14. 15.]]]
507
- >>> index = Tensor([0,], mindspore.int32)
508
- >>> y = ops.auto_generate.index_select_ext(input, 1, index)
509
- >>> print(y)
510
- [[[ 0. 1. 2. 3.]]
511
- [[ 8. 9. 10. 11.]]]
512
- """
513
- return index_select_impl(input, dim, index)
514
-
515
-
516
155
  def leaky_relu(input, negative_slope=0.01):
517
156
  r"""
518
157
  leaky_relu activation function. The element of `input` less than 0 times `negative_slope` .
@@ -521,9 +160,9 @@ def leaky_relu(input, negative_slope=0.01):
521
160
 
522
161
  .. math::
523
162
  \text{leaky_relu}(input) = \begin{cases}input, &\text{if } input \geq 0; \cr
524
- \text{negative_slope} * input, &\text{otherwise.}\end{cases}
163
+ {\negative_slope} * input, &\text{otherwise.}\end{cases}
525
164
 
526
- where :math:`negative\_slope` represents the `negative_slope` parameter.
165
+ where :math:`\negative_slope` represents the `negative_slope` parameter.
527
166
 
528
167
  For more details, see `Rectifier Nonlinearities Improve Neural Network Acoustic Models
529
168
  <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`_.
@@ -546,14 +185,14 @@ def leaky_relu(input, negative_slope=0.01):
546
185
  TypeError: If `negative_slope` is not a float or an int.
547
186
 
548
187
  Supported Platforms:
549
- ``Ascend``
188
+ ``Ascend`` ``GPU`` ``CPU``
550
189
 
551
190
  Examples:
552
191
  >>> import mindspore
553
192
  >>> import numpy as np
554
193
  >>> from mindspore import Tensor, ops
555
194
  >>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
556
- >>> print(ops.extend.leaky_relu_ext(input, negative_slope=0.2))
195
+ >>> print(mint.leaky_relu(input, negative_slope=0.2))
557
196
  [[-0.2 4. -1.6]
558
197
  [ 2. -1. 9. ]]
559
198
  """
@@ -567,36 +206,6 @@ def matmul(input, mat2):
567
206
  return matmul_impl(input, mat2)
568
207
 
569
208
 
570
- def matrix_inverse(input):
571
- r"""
572
- Compute the inverse of the input matrix.
573
-
574
- Args:
575
- input (Tensor): A matrix to be calculated. Input `input` must be at least two dimensions, and the size of
576
- the last two dimensions must be the same size.
577
-
578
- Returns:
579
- Tensor, has the same type and shape as input`.
580
-
581
- Raises:
582
- TypeError: If `input` is not a Tensor.
583
- ValueError: If the size of the last two dimensions of `input` is not the same.
584
- ValueError: If the dimension of `input` is 1.
585
-
586
- Supported Platforms:
587
- ``Ascend``
588
-
589
- Examples:
590
- >>> from mindspore import Tensor, ops
591
- >>> from mindspore import dtype as mstype
592
- >>> x = Tensor([[1., 2.], [3., 4.]], mstype.float32)
593
- >>> print(ops.matrix_inverse_ext(x))
594
- [[-2. 1. ]
595
- [ 1.5 -0.5]]
596
- """
597
- return matrix_inverse_impl(input)
598
-
599
-
600
209
  def mean(input, axis=None, keep_dims=False, dtype=None):
601
210
  r"""
602
211
  Reduces all dimension of a tensor by averaging all elements in the dimension, by default.
@@ -684,131 +293,11 @@ def mean(input, axis=None, keep_dims=False, dtype=None):
684
293
  return mean_impl(input, axis, keep_dims, dtype)
685
294
 
686
295
 
687
- def prod(input, axis=None, keep_dims=False, dtype=None):
688
- r"""
689
- Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. And also can
690
- reduce a dimension of `input` along the `axis`. Determine whether the dimensions of the output and input are the
691
- same by controlling `keep_dims`.
692
-
693
- Args:
694
- input (Tensor[Number]): The input tensor. The dtype of the tensor to be reduced is number.
695
- :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
696
- axis (int): The dimensions to reduce. Default: ``None`` , reduce all dimensions.
697
- Only constant value is allowed. Assume the rank of `input` is r, and the value range is [-r,r).
698
- keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1.
699
- If ``False`` , don't keep these dimensions. Default: ``False`` .
700
- dtype (:class:`mindspore.dtype`): The desired data type of returned Tensor. Default: ``None`` .
701
-
702
- Returns:
703
- Tensor, has the same data type as input tensor.
704
-
705
- - If `axis` is ``None`` , and `keep_dims` is ``False`` ,
706
- the output is a 0-D tensor representing the product of all elements in the input tensor.
707
- - If `axis` is int, set as 1, and `keep_dims` is ``False`` ,
708
- the shape of output is :math:`(input_0, input_2, ..., input_R)`.
709
-
710
- Raises:
711
- TypeError: If `input` is not a Tensor.
712
- TypeError: If `axis` is not one of the following: int or None.
713
- TypeError: If `keep_dims` is not a bool.
714
- ValueError: If `axis` is out of range.
715
-
716
- Supported Platforms:
717
- ``Ascend`` ``GPU`` ``CPU``
718
-
719
- Examples:
720
- >>> import mindspore
721
- >>> import numpy as np
722
- >>> from mindspore import Tensor, ops
723
- >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
724
- >>> output = ops.ProdExt()(x, 1, keep_dims=True)
725
- >>> result = output.shape
726
- >>> print(result)
727
- (3, 1, 5, 6)
728
- >>> # case 1: Reduces a dimension by multiplying all elements in the dimension.
729
- >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
730
- ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
731
- ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32)
732
- >>> output = ops.ProdExt()(x)
733
- >>> print(output)
734
- 2.2833798e+33
735
- >>> print(output.shape)
736
- ()
737
- >>> # case 2: Reduces a dimension along axis 0.
738
- >>> output = ops.ProdExt()(x, 0, True)
739
- >>> print(output)
740
- [[[ 28. 28. 28. 28. 28. 28.]
741
- [ 80. 80. 80. 80. 80. 80.]
742
- [162. 162. 162. 162. 162. 162.]]]
743
- >>> # case 3: Reduces a dimension along axis 1.
744
- >>> output = ops.ProdExt()(x, 1, True)
745
- >>> print(output)
746
- [[[ 6. 6. 6. 6. 6. 6.]]
747
- [[120. 120. 120. 120. 120. 120.]]
748
- [[504. 504. 504. 504. 504. 504.]]]
749
- >>> # case 4: Reduces a dimension along axis 2.
750
- >>> output = ops.ProdExt()(x, 2, True)
751
- >>> print(output)
752
- [[[1.00000e+00]
753
- [6.40000e+01]
754
- [7.29000e+02]]
755
- [[4.09600e+03]
756
- [1.56250e+04]
757
- [4.66560e+04]]
758
- [[1.17649e+05]
759
- [2.62144e+05]
760
- [5.31441e+05]]]
761
- """
762
- return prod_impl(input, axis, keep_dims, dtype)
763
-
764
-
765
296
  def softplus(input, beta=1, threshold=20):
766
- r"""
767
- Applies softplus function to `input` element-wise.
768
-
769
- The softplus function is shown as follows, x is the element of `input` :
770
-
771
- .. math::
772
-
773
- \text{output} = \frac{1}{beta}\log(1 + \exp(\text{beta * x}))
774
-
775
- where :math:`input * beta > threshold`, the implementation converts to the linear function to ensure numerical stability.
776
-
777
- Args:
778
- input (Tensor): Tensor of any dimension. Supported dtypes:
779
-
780
- - Ascend: float16, float32, bfloat16.
781
- beta (number.Number, optional): Scaling parameters in the softplus function. Default: ``1`` .
782
- threshold (number.Number, optional): For numerical stability, the softplus function is converted
783
- to a threshold parameter of a linear function. Default: ``20`` .
784
-
785
- Returns:
786
- Tensor, with the same type and shape as the input.
787
-
788
- Raises:
789
- TypeError: If `input` is not a Tensor.
790
- TypeError: If dtype of `input` is not float16, float32, bfloat16.
791
-
792
- Supported Platforms:
793
- ``Ascend``
794
-
795
- Examples:
796
- >>> import mindspore
797
- >>> import numpy as np
798
- >>> from mindspore import Tensor, ops
799
- >>> input = Tensor(np.array([0.1, 0.2, 30, 25]), mindspore.float32)
800
- >>> output = ops.auto_generate.softplus_ext(input)
801
- >>> print(output)
802
- [0.74439657 0.7981388 30. 25.]
803
- """
804
- return softplus_impl(input, beta, threshold)
805
-
806
-
807
- def sort(input, dim=-1, descending=False, stable=False):
808
297
  r"""
809
298
  None
810
299
  """
811
- return sort_impl(input, dim, descending, stable)
300
+ return softplus_impl(input, beta, threshold)
812
301
 
813
302
 
814
303
  def stack(tensors, dim=0):
@@ -830,22 +319,23 @@ def stack(tensors, dim=0):
830
319
 
831
320
  Raises:
832
321
  TypeError: If the data types of elements in `tensors` are not the same.
833
- ValueError: If `dim` is out of the range [-(R+1), R+1);
322
+ ValueError: If the length of `tensors` is not greater than zero;
323
+ or if dim is out of the range [-(R+1), R+1);
834
324
  or if the shapes of elements in tensors are not the same.
835
325
 
836
326
  Supported Platforms:
837
- ``Ascend``
327
+ ``Ascend`` ``GPU`` ``CPU``
838
328
 
839
329
  Examples:
840
330
  >>> import mindspore
841
- >>> from mindspore import Tensor, ops
331
+ >>> from mindspore import Tensor, mint
842
332
  >>> import numpy as np
843
333
  >>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
844
334
  >>> data2 = Tensor(np.array([2, 3]).astype(np.float32))
845
- >>> output = ops.auto_generate.stack_ext([data1, data2], 0)
335
+ >>> output = mint.stack([data1, data2], 0)
846
336
  >>> print(output)
847
337
  [[0. 1.]
848
- [2. 3.]]
338
+ [2. 3.]]
849
339
  """
850
340
  return stack_impl(tensors, dim)
851
341
 
@@ -876,7 +366,7 @@ def sub(input, other, alpha=1):
876
366
  alpha (number.Number): A scaling factor applied to `other`, default 1.
877
367
 
878
368
  Returns:
879
- Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
369
+ Tensor, the shape is the same as the one of the input `input`, `other` after broadcasting,
880
370
  and the data type is the one with higher precision or higher digits among the two inputs and alpha.
881
371
 
882
372
  Raises:
@@ -891,11 +381,11 @@ def sub(input, other, alpha=1):
891
381
  >>> import numpy as np
892
382
  >>> import mindspore
893
383
  >>> from mindspore import Tensor
894
- >>> from mindspore import ops
384
+ >>> from mindspore.ops.extend import sub
895
385
  >>> x = Tensor(np.array([4, 5, 6]).astype(np.float32))
896
386
  >>> y = Tensor(1, mindspore.int32)
897
387
  >>> alpha = 0.5
898
- >>> output = ops.auto_generate.sub_ext(x, y, alpha)
388
+ >>> output = sub(x, y, alpha)
899
389
  >>> print(output)
900
390
  [3.5 4.5 5.5]
901
391
  >>> # the data type of x is float32, the data type of y is int32,
@@ -908,73 +398,7 @@ def sub(input, other, alpha=1):
908
398
 
909
399
  def topk(input, k, dim=-1, largest=True, sorted=True):
910
400
  r"""
911
- Finds values and indices of the `k` largest or smallest entries along a given dimension.
912
-
913
- .. warning::
914
- - If sorted is set to False, due to different memory layout and traversal methods on different platforms,
915
- the display order of calculation results may be inconsistent when `sorted` is False.
916
-
917
- If the `input` is a one-dimensional Tensor, finds the `k` largest or smallest entries in the Tensor,
918
- and outputs its value and index as a Tensor. values[`k`] is the `k` largest item in `input`,
919
- and its index is indices [`k`].
920
-
921
- For a multi-dimensional matrix,
922
- calculates the first or last `k` entries in a given dimension, therefore:
923
-
924
- .. math::
925
-
926
- values.shape = indices.shape
927
-
928
- If the two compared elements are the same, the one with the smaller index value is returned first.
929
-
930
- Args:
931
- input (Tensor): Input to be computed.
932
- k (int): The number of top or bottom elements to be computed along the last dimension.
933
- dim (int, optional): The dimension to sort along. Default: ``-1`` .
934
- largest (bool, optional): If largest is ``False`` then the k smallest elements are returned.
935
- Default: ``True`` .
936
- sorted (bool, optional): If ``True`` , the obtained elements will be sorted by the values in descending
937
- order or ascending order according to `largest`. If ``False`` , the obtained elements will not be
938
- sorted. Default: ``True`` .
939
-
940
- Returns:
941
- A tuple consisting of `values` and `indices`.
942
-
943
- - values (Tensor) - The `k` largest or smallest elements in each slice of the given dimension.
944
- - indices (Tensor) - The indices of values within the last dimension of input.
945
-
946
- Raises:
947
- TypeError: If `sorted` is not a bool.
948
- TypeError: If `input` is not a Tensor.
949
- TypeError: If `k` is not an int.
950
-
951
- Supported Platforms:
952
- ``Ascend``
953
-
954
- Examples:
955
- >>> import mindspore as ms
956
- >>> from mindspore import ops
957
- >>> x = ms.Tensor([[0.5368, 0.2447, 0.4302, 0.9673],
958
- ... [0.4388, 0.6525, 0.4685, 0.1868],
959
- ... [0.3563, 0.5152, 0.9675, 0.8230]], dtype=ms.float32)
960
- >>> output = ops.topk_ext(x, 2, dim=1)
961
- >>> print(output)
962
- (Tensor(shape=[3, 2], dtype=Float32, value=
963
- [[ 9.67299998e-01, 5.36800027e-01],
964
- [ 6.52499974e-01, 4.68499988e-01],
965
- [ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
966
- [[3, 0],
967
- [1, 2],
968
- [2, 3]]))
969
- >>> output2 = ops.topk_ext(x, 2, dim=1, largest=False)
970
- >>> print(output2)
971
- (Tensor(shape=[3, 2], dtype=Float32, value=
972
- [[ 2.44700000e-01, 4.30200011e-01],
973
- [ 1.86800003e-01, 4.38800007e-01],
974
- [ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
975
- [[1, 2],
976
- [3, 0],
977
- [0, 1]]))
401
+ None
978
402
  """
979
403
  return topk_impl(input, k, dim, largest, sorted)
980
404