mindspore 2.3.0__cp39-none-any.whl → 2.3.0rc2__cp39-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (423) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +0 -1512
  3. mindspore/__init__.py +1 -2
  4. mindspore/_c_dataengine.cpython-39-aarch64-linux-gnu.so +0 -0
  5. mindspore/_c_expression.cpython-39-aarch64-linux-gnu.so +0 -0
  6. mindspore/_c_mindrecord.cpython-39-aarch64-linux-gnu.so +0 -0
  7. mindspore/_checkparam.py +25 -5
  8. mindspore/_extends/graph_kernel/model/graph_parallel.py +1 -1
  9. mindspore/_extends/parse/__init__.py +2 -2
  10. mindspore/_extends/parse/compile_config.py +0 -29
  11. mindspore/_extends/parse/namespace.py +2 -2
  12. mindspore/_extends/parse/parser.py +5 -21
  13. mindspore/_extends/parse/resources.py +7 -5
  14. mindspore/_extends/parse/standard_method.py +59 -40
  15. mindspore/_mindspore_offline_debug.cpython-39-aarch64-linux-gnu.so +0 -0
  16. mindspore/amp.py +5 -26
  17. mindspore/bin/cache_admin +0 -0
  18. mindspore/bin/cache_server +0 -0
  19. mindspore/boost/adasum.py +1 -1
  20. mindspore/boost/base.py +1 -1
  21. mindspore/boost/boost_cell_wrapper.py +1 -1
  22. mindspore/boost/grad_freeze.py +2 -2
  23. mindspore/boost/less_batch_normalization.py +6 -9
  24. mindspore/common/__init__.py +1 -8
  25. mindspore/common/_register_for_tensor.py +9 -8
  26. mindspore/common/api.py +65 -275
  27. mindspore/common/dtype.py +4 -8
  28. mindspore/common/dump.py +5 -2
  29. mindspore/common/jit_config.py +1 -1
  30. mindspore/common/lazy_inline.py +2 -14
  31. mindspore/common/parameter.py +15 -14
  32. mindspore/common/recompute.py +5 -20
  33. mindspore/common/sparse_tensor.py +6 -21
  34. mindspore/common/tensor.py +52 -100
  35. mindspore/communication/__init__.py +11 -6
  36. mindspore/communication/management.py +94 -92
  37. mindspore/context.py +18 -180
  38. mindspore/dataset/engine/datasets.py +46 -69
  39. mindspore/dataset/engine/datasets_user_defined.py +53 -72
  40. mindspore/dataset/engine/datasets_vision.py +2 -2
  41. mindspore/dataset/engine/queue.py +38 -56
  42. mindspore/dataset/engine/validators.py +5 -11
  43. mindspore/dataset/vision/__init__.py +5 -5
  44. mindspore/dataset/vision/c_transforms.py +5 -5
  45. mindspore/dataset/vision/py_transforms_util.py +1 -1
  46. mindspore/dataset/vision/transforms.py +46 -591
  47. mindspore/dataset/vision/utils.py +1 -121
  48. mindspore/dataset/vision/validators.py +3 -9
  49. mindspore/hal/__init__.py +1 -7
  50. mindspore/hal/device.py +1 -1
  51. mindspore/include/api/model.h +0 -3
  52. mindspore/include/dataset/vision.h +2 -54
  53. mindspore/include/mindapi/base/types.h +0 -1
  54. mindspore/lib/libdnnl.so.2 +0 -0
  55. mindspore/lib/libmindspore.so +0 -0
  56. mindspore/lib/libmindspore_backend.so +0 -0
  57. mindspore/lib/libmindspore_common.so +0 -0
  58. mindspore/lib/libmindspore_core.so +0 -0
  59. mindspore/lib/libmindspore_glog.so.0 +0 -0
  60. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  61. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  62. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  63. mindspore/lib/libmindspore_shared_lib.so +0 -0
  64. mindspore/lib/libmpi_adapter.so +0 -0
  65. mindspore/lib/libmpi_collective.so +0 -0
  66. mindspore/lib/libnnacl.so +0 -0
  67. mindspore/lib/libopencv_core.so.4.5 +0 -0
  68. mindspore/lib/libps_cache.so +0 -0
  69. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +0 -35
  70. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  71. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  72. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  73. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +0 -72
  74. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  75. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/{aclnn_all_finite.h → aclnn_add_custom.h} +11 -9
  76. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_decoder_kv_cache.h +1 -1
  77. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_prompt_kv_cache.h +1 -1
  78. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/lib/libcust_opapi.so +0 -0
  79. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +12 -184
  80. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +15 -7
  81. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +15 -7
  82. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.cpp +81 -0
  83. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.py +134 -0
  84. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.py +31 -77
  85. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.py +31 -77
  86. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/lib/linux/aarch64/libcust_opmaster_rt2.0.so +0 -0
  87. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
  88. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/inc/op_proto.h +5 -4
  89. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/lib/linux/aarch64/libcust_opsproto_rt2.0.so +0 -0
  90. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  91. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  92. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  93. mindspore/lib/plugin/ascend/liblowlatency_collective.so +0 -0
  94. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  95. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/DeviceBin +0 -0
  96. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/PkgInspect +0 -0
  97. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/bin/op_man +0 -0
  98. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/device/ascend910b/bin/ascend910b.bin +286 -275
  99. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_cann_host.so +0 -0
  100. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/host/libasdops_host.so +0 -0
  101. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops.so +0 -0
  102. mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops_static.a +0 -0
  103. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/add_impl.h +0 -1
  104. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/apply_rotary_pos_emb_impl.h +0 -1
  105. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/asdop/asd_op_impl.h +0 -3
  106. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/backend_param.h +0 -5
  107. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/cast/cast_tiling.h +45 -1
  108. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/compare/compare_impl.h +0 -1
  109. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/flash_attention_score_impl.h +4 -8
  110. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/flash_attention_score_tiling.h +4 -11
  111. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/kernel/flash_attention_score_mix_hwsync.h +0 -18
  112. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_kernel.h +0 -6
  113. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_rtbackend.h +75 -1
  114. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/kernel/matmul.h +5 -5
  115. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul/matmul_impl.h +3 -18
  116. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/pp_matmul_common_tiling.h +5 -5
  117. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/pp_matmul_info.h +2 -2
  118. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_common/tiling_data.h +3 -36
  119. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/kernel/matmul_stridedslice_fusion.h +2 -2
  120. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/matmul_stridedslice/matmul_stridedslice_fusion_impl.h +4 -22
  121. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_param.h +2 -16
  122. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/kernel/paged_attention_mix_hwsync.h +3 -1
  123. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_impl.h +4 -5
  124. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_tiling.h +4 -9
  125. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/attention_param.h +2 -5
  126. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_ext_param.h +0 -1
  127. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_qkv_param.h +4 -10
  128. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/sub_param.h +12 -0
  129. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/rms_norm_impl.h +0 -1
  130. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_impl.h +0 -1
  131. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/matmul_table.h +1 -1
  132. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/backend.h +2 -10
  133. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/elewise_utils.h +1 -5
  134. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log.h +0 -1
  135. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_tiling.h +0 -17
  136. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/math.h +7 -2
  137. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libAdd_impl.so +0 -0
  138. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libSub_impl.so +0 -0
  139. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_layernorm_impl.so +0 -0
  140. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_impl.so +0 -0
  141. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_impl.so +0 -0
  142. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcast_impl.so +0 -0
  143. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libgelu_impl.so +0 -0
  144. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_impl.so +0 -0
  145. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_stridedslice_fusion_impl.so +0 -0
  146. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_kernels_internal.so +0 -0
  147. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libnot_equal_impl.so +0 -0
  148. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_impl.so +0 -0
  149. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/librms_norm_impl.so +0 -0
  150. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
  151. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
  152. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_full_mix.o +0 -0
  153. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
  154. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
  155. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
  156. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_full_mix.o +0 -0
  157. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
  158. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bnsd_full_mix.o +0 -0
  159. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_bf16_bsh_full_mix.o +0 -0
  160. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bnsd_full_mix.o +0 -0
  161. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/BSAttention/paged_attention_fp16_bsh_full_mix.o +0 -0
  162. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblcal.so +0 -0
  163. mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblccl_wrapper.so +0 -0
  164. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  165. mindspore/mindrecord/filewriter.py +2 -2
  166. mindspore/mint/__init__.py +40 -720
  167. mindspore/mint/nn/__init__.py +7 -89
  168. mindspore/mint/nn/functional.py +16 -165
  169. mindspore/mint/optim/adamw.py +16 -15
  170. mindspore/nn/__init__.py +2 -0
  171. mindspore/nn/cell.py +98 -97
  172. mindspore/nn/extend/basic.py +2 -2
  173. mindspore/nn/extend/embedding.py +1 -1
  174. mindspore/nn/extend/layer/normalization.py +5 -7
  175. mindspore/nn/generator.py +297 -0
  176. mindspore/nn/layer/activation.py +3 -4
  177. mindspore/nn/layer/basic.py +16 -79
  178. mindspore/nn/layer/conv.py +8 -17
  179. mindspore/nn/layer/embedding.py +4 -1
  180. mindspore/nn/layer/math.py +1 -1
  181. mindspore/nn/layer/normalization.py +1 -1
  182. mindspore/nn/layer/pooling.py +0 -5
  183. mindspore/nn/layer/rnn_cells.py +2 -2
  184. mindspore/nn/loss/loss.py +19 -19
  185. mindspore/nn/optim/adasum.py +1 -1
  186. mindspore/nn/optim/sgd.py +2 -3
  187. mindspore/nn/probability/distribution/exponential.py +1 -1
  188. mindspore/nn/probability/distribution/geometric.py +1 -1
  189. mindspore/nn/probability/distribution/logistic.py +1 -1
  190. mindspore/nn/wrap/cell_wrapper.py +1 -25
  191. mindspore/nn/wrap/loss_scale.py +1 -24
  192. mindspore/numpy/array_ops.py +1 -5
  193. mindspore/numpy/dtypes.py +3 -3
  194. mindspore/numpy/math_ops.py +8 -8
  195. mindspore/ops/__init__.py +1 -1
  196. mindspore/ops/_grad_experimental/grad_comm_ops.py +16 -75
  197. mindspore/ops/_vmap/vmap_array_ops.py +0 -27
  198. mindspore/ops/_vmap/vmap_math_ops.py +1 -29
  199. mindspore/ops/_vmap/vmap_nn_ops.py +18 -19
  200. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +8 -34
  201. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +9 -2
  202. mindspore/ops/auto_generate/gen_arg_handler.py +0 -26
  203. mindspore/ops/auto_generate/gen_extend_func.py +27 -603
  204. mindspore/ops/auto_generate/gen_ops_def.py +203 -993
  205. mindspore/ops/auto_generate/gen_ops_prim.py +402 -1946
  206. mindspore/ops/auto_generate/pyboost_inner_prim.py +20 -90
  207. mindspore/ops/composite/base.py +6 -3
  208. mindspore/ops/composite/math_ops.py +1 -1
  209. mindspore/ops/composite/multitype_ops/_compile_utils.py +17 -24
  210. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  211. mindspore/ops/extend/__init__.py +3 -2
  212. mindspore/ops/extend/array_func.py +51 -10
  213. mindspore/ops/extend/nn_func.py +78 -2
  214. mindspore/ops/function/__init__.py +13 -8
  215. mindspore/ops/function/array_func.py +179 -455
  216. mindspore/ops/function/clip_func.py +1 -1
  217. mindspore/ops/function/grad/grad_func.py +3 -3
  218. mindspore/ops/function/math_func.py +103 -117
  219. mindspore/ops/function/nn_func.py +163 -275
  220. mindspore/ops/function/other_func.py +2 -2
  221. mindspore/ops/function/random_func.py +69 -202
  222. mindspore/ops/function/sparse_func.py +4 -4
  223. mindspore/ops/functional.py +327 -332
  224. mindspore/ops/operations/__init__.py +3 -13
  225. mindspore/ops/operations/_grad_ops.py +27 -3
  226. mindspore/ops/operations/_inner_ops.py +356 -53
  227. mindspore/ops/operations/_rl_inner_ops.py +2 -2
  228. mindspore/ops/operations/_tensor_array.py +8 -8
  229. mindspore/ops/operations/array_ops.py +65 -82
  230. mindspore/ops/operations/comm_ops.py +93 -784
  231. mindspore/ops/operations/custom_ops.py +28 -51
  232. mindspore/ops/operations/debug_ops.py +4 -4
  233. mindspore/ops/operations/inner_ops.py +2 -2
  234. mindspore/ops/operations/manually_defined/ops_def.py +4 -304
  235. mindspore/ops/operations/math_ops.py +50 -3
  236. mindspore/ops/operations/nn_ops.py +247 -14
  237. mindspore/ops/operations/other_ops.py +3 -3
  238. mindspore/ops/operations/random_ops.py +1 -1
  239. mindspore/ops/operations/sparse_ops.py +1 -1
  240. mindspore/ops/primitive.py +8 -9
  241. mindspore/ops/silent_check.py +5 -5
  242. mindspore/ops_generate/arg_dtype_cast.py +9 -2
  243. mindspore/ops_generate/arg_handler.py +0 -26
  244. mindspore/ops_generate/gen_aclnn_implement.py +4 -1
  245. mindspore/ops_generate/gen_ops.py +4 -26
  246. mindspore/ops_generate/gen_pyboost_func.py +12 -41
  247. mindspore/ops_generate/gen_utils.py +0 -21
  248. mindspore/ops_generate/pyboost_utils.py +2 -7
  249. mindspore/ops_generate/template.py +0 -1
  250. mindspore/parallel/_auto_parallel_context.py +1 -21
  251. mindspore/parallel/_tensor.py +5 -0
  252. mindspore/parallel/_transformer/transformer.py +1 -1
  253. mindspore/parallel/_utils.py +1 -15
  254. mindspore/parallel/algo_parameter_config.py +3 -1
  255. mindspore/parallel/checkpoint_transform.py +9 -12
  256. mindspore/parallel/cluster/process_entity/_api.py +29 -28
  257. mindspore/parallel/cluster/process_entity/_utils.py +3 -13
  258. mindspore/parallel/cluster/run.py +16 -13
  259. mindspore/parallel/parameter_broadcast.py +2 -2
  260. mindspore/parallel/shard.py +17 -31
  261. mindspore/profiler/__init__.py +2 -3
  262. mindspore/profiler/common/util.py +2 -107
  263. mindspore/profiler/envprofiling.py +1 -1
  264. mindspore/profiler/parser/ascend_analysis/constant.py +21 -8
  265. mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -82
  266. mindspore/profiler/parser/ascend_analysis/function_event.py +28 -43
  267. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +27 -49
  268. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +10 -15
  269. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +20 -25
  270. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +5 -5
  271. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +1 -10
  272. mindspore/profiler/parser/ascend_hccl_generator.py +1 -4
  273. mindspore/profiler/parser/ascend_msprof_exporter.py +22 -43
  274. mindspore/profiler/parser/ascend_timeline_generator.py +5 -7
  275. mindspore/profiler/parser/minddata_parser.py +3 -72
  276. mindspore/profiler/profiling.py +59 -176
  277. mindspore/rewrite/api/node.py +1 -1
  278. mindspore/rewrite/common/namespace.py +5 -5
  279. mindspore/rewrite/parsers/assign_parser.py +0 -2
  280. mindspore/rewrite/parsers/class_def_parser.py +4 -8
  281. mindspore/run_check/_check_version.py +1 -1
  282. mindspore/scipy/fft.py +3 -1
  283. mindspore/scipy/linalg.py +3 -2
  284. mindspore/scipy/ops.py +3 -5
  285. mindspore/scipy/optimize/__init__.py +2 -2
  286. mindspore/train/__init__.py +4 -4
  287. mindspore/train/anf_ir_pb2.py +2 -8
  288. mindspore/train/callback/__init__.py +2 -5
  289. mindspore/train/callback/_backup_and_restore.py +2 -2
  290. mindspore/train/callback/_checkpoint.py +16 -104
  291. mindspore/train/callback/_landscape.py +1 -1
  292. mindspore/train/callback/_time_monitor.py +1 -1
  293. mindspore/train/data_sink.py +4 -5
  294. mindspore/train/dataset_helper.py +20 -45
  295. mindspore/train/model.py +38 -266
  296. mindspore/train/serialization.py +105 -256
  297. mindspore/train/summary/_summary_adapter.py +1 -1
  298. mindspore/version.py +1 -1
  299. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +2 -2
  300. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +303 -420
  301. mindspore/_extends/pijit/__init__.py +0 -23
  302. mindspore/_extends/pijit/pijit_func_white_list.py +0 -343
  303. mindspore/common/file_system.py +0 -48
  304. mindspore/common/generator.py +0 -260
  305. mindspore/common/no_inline.py +0 -54
  306. mindspore/common/np_dtype.py +0 -25
  307. mindspore/communication/comm_func.py +0 -1140
  308. mindspore/hal/memory.py +0 -326
  309. mindspore/lib/libavcodec.so.59 +0 -0
  310. mindspore/lib/libavdevice.so.59 +0 -0
  311. mindspore/lib/libavfilter.so.8 +0 -0
  312. mindspore/lib/libavformat.so.59 +0 -0
  313. mindspore/lib/libavutil.so.57 +0 -0
  314. mindspore/lib/libmindspore_np_dtype.so +0 -0
  315. mindspore/lib/libswresample.so.4 +0 -0
  316. mindspore/lib/libswscale.so.6 +0 -0
  317. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/all_finite.cpp +0 -326
  318. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/all_finite.py +0 -180
  319. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_576ceaeef5870c451cab59af55ea46ad.json +0 -58
  320. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_576ceaeef5870c451cab59af55ea46ad.o +0 -0
  321. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_86a73ff6e28d734c96bb8d3054f7dd18.json +0 -58
  322. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_86a73ff6e28d734c96bb8d3054f7dd18.o +0 -0
  323. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_f55e0ebaad1f2f572e43677336992fa0.json +0 -58
  324. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/ascend910b/all_finite/AllFinite_f55e0ebaad1f2f572e43677336992fa0.o +0 -0
  325. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/config/ascend910b/all_finite.json +0 -109
  326. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/kernel/config/ascend910b/binary_info_config.json +0 -38
  327. mindspore/lib/plugin/ascend/custom_compiler/OWNERS +0 -12
  328. mindspore/lib/plugin/ascend/custom_compiler/setup.py +0 -255
  329. mindspore/lib/plugin/ascend/custom_compiler/start.sh +0 -26
  330. mindspore/lib/plugin/ascend/custom_compiler/template.json +0 -40
  331. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme.h +0 -24
  332. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme_op.h +0 -69
  333. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/base_type.h +0 -133
  334. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_creator.h +0 -32
  335. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_param.h +0 -35
  336. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/tiling_info.h +0 -60
  337. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/kernel_register.h +0 -37
  338. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/platform_configs.h +0 -89
  339. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/rt_funcs.h +0 -135
  340. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/add_op.h +0 -34
  341. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_backoff_base.h +0 -62
  342. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_elewise_op.h +0 -33
  343. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_ops.h +0 -88
  344. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_pa_op.h +0 -45
  345. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/cast_op.h +0 -52
  346. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/matmul_op.h +0 -95
  347. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/asd_utils.h +0 -84
  348. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/comm_utils.h +0 -61
  349. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp32.h +0 -224
  350. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/and_impl.h +0 -29
  351. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/div_impl.h +0 -29
  352. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_impl.h +0 -48
  353. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_tiling.h +0 -25
  354. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/and_kernel.h +0 -46
  355. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/div_kernel.h +0 -46
  356. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_base.h +0 -260
  357. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_kernel.h +0 -35
  358. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/max_kernel.h +0 -66
  359. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/min_kernel.h +0 -66
  360. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/mul_kernel.h +0 -66
  361. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/or_kernel.h +0 -46
  362. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/max_impl.h +0 -29
  363. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/min_impl.h +0 -29
  364. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/mul_impl.h +0 -29
  365. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/or_impl.h +0 -29
  366. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/abs_impl.h +0 -29
  367. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_impl.h +0 -47
  368. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_tiling.h +0 -24
  369. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/exp_impl.h +0 -29
  370. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/abs_kernel.h +0 -45
  371. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_base.h +0 -148
  372. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_kernel.h +0 -31
  373. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/exp_kernel.h +0 -45
  374. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/ln_kernel.h +0 -45
  375. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/not_kernel.h +0 -45
  376. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/reciprocal_kernel.h +0 -45
  377. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/relu_kernel.h +0 -55
  378. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/rsqrt_kernel.h +0 -45
  379. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/sqrt_kernel.h +0 -45
  380. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/ln_impl.h +0 -29
  381. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/not_impl.h +0 -29
  382. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/reciprocal_impl.h +0 -29
  383. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/relu_impl.h +0 -29
  384. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/rsqrt_impl.h +0 -29
  385. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/sqrt_impl.h +0 -29
  386. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/grouped_matmul_impl.h +0 -45
  387. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/grouped_matmul_tiling.h +0 -187
  388. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul.h +0 -245
  389. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul_interface.h +0 -24
  390. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/kernel/grouped_matmul_utils.h +0 -111
  391. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/grouped_matmul/tiling_data.h +0 -54
  392. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/compare_param.h +0 -31
  393. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/elewise_param.h +0 -41
  394. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/grouped_matmul_param.h +0 -40
  395. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/profiling_util.h +0 -364
  396. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_utils.h +0 -69
  397. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_creator.h +0 -39
  398. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_registry.h +0 -114
  399. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/utils.h +0 -98
  400. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix.json +0 -19
  401. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix.o +0 -0
  402. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix_mix_aic_0.o +0 -0
  403. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MatMulPostFusionMixTactic/matmul_postfusion_mix_mix_aiv_0.o +0 -0
  404. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix.json +0 -19
  405. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix.o +0 -0
  406. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix_mix_aic_0.o +0 -0
  407. mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/MultiMatMulPostFusionMixTactic/multi_matmul_postfusion_mix_mix_aiv_0.o +0 -0
  408. mindspore/mint/linalg/__init__.py +0 -22
  409. mindspore/nn/layer/embedding_service.py +0 -531
  410. mindspore/nn/layer/embedding_service_layer.py +0 -393
  411. mindspore/ops/function/reshard_func.py +0 -102
  412. mindspore/ops/operations/_infer_ops.py +0 -19
  413. mindspore/ops/operations/reshard_ops.py +0 -53
  414. mindspore/profiler/common/process_pool.py +0 -41
  415. mindspore/profiler/common/singleton.py +0 -28
  416. mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
  417. mindspore/profiler/parser/ascend_memory_generator.py +0 -185
  418. mindspore/train/callback/_cluster_monitor.py +0 -201
  419. mindspore/train/callback/_flops_collector.py +0 -238
  420. mindspore/train/callback/_mindio_ttp.py +0 -443
  421. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
  422. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +0 -0
  423. {mindspore-2.3.0.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -150,7 +150,7 @@ def add_ext(input, other, alpha=1):
150
150
  alpha (number.Number): A scaling factor applied to `other`, default 1.
151
151
 
152
152
  Returns:
153
- Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
153
+ Tensor, the shape is the same as the one of the input `input`, `other` after broadcasting,
154
154
  and the data type is the one with higher precision or higher digits among the two inputs and alpha.
155
155
 
156
156
  Raises:
@@ -165,11 +165,11 @@ def add_ext(input, other, alpha=1):
165
165
  >>> import numpy as np
166
166
  >>> import mindspore
167
167
  >>> from mindspore import Tensor
168
- >>> from mindspore import ops
168
+ >>> from mindspore.ops.extend import add
169
169
  >>> x = Tensor(1, mindspore.int32)
170
170
  >>> y = Tensor(np.array([4, 5, 6]).astype(np.float32))
171
171
  >>> alpha = 0.5
172
- >>> output = ops.auto_generate.add_ext(x, y, alpha)
172
+ >>> output = add(x, y, alpha)
173
173
  >>> print(output)
174
174
  [3. 3.5 4.]
175
175
  >>> # the data type of x is int32, the data type of y is float32,
@@ -208,7 +208,7 @@ def add(input, other):
208
208
  `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
209
209
 
210
210
  Returns:
211
- Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
211
+ Tensor, the shape is the same as the one of the input `input` , `other` after broadcasting,
212
212
  and the data type is the one with higher precision or higher digits among the two inputs.
213
213
 
214
214
  Raises:
@@ -241,13 +241,6 @@ def add(input, other):
241
241
  return add_op(input, other)
242
242
 
243
243
 
244
- def addmm(input, mat1, mat2, beta, alpha):
245
- r"""
246
-
247
- """
248
- return addmm_op(input, mat1, mat2, beta, alpha)
249
-
250
-
251
244
  def addn(x):
252
245
  r"""
253
246
  Computes addition of all input tensors element-wise.
@@ -320,7 +313,7 @@ def apply_rotary_pos_emb_(query, key, cos, sin, position_ids, cos_format=0):
320
313
  return apply_rotary_pos_emb_op(query, key, cos, sin, position_ids)
321
314
 
322
315
 
323
- def argmax_ext(input, dim=None, keepdim=False):
316
+ def argmax(input, dim=None, keepdim=False):
324
317
  r"""
325
318
  Return the indices of the maximum values of a tensor across a dimension.
326
319
 
@@ -339,14 +332,13 @@ def argmax_ext(input, dim=None, keepdim=False):
339
332
  ValueError: If `dim` is out of range.
340
333
 
341
334
  Supported Platforms:
342
- ``Ascend``
335
+ ``Ascend`` ``GPU`` ``CPU``
343
336
 
344
337
  Examples:
345
338
  >>> import numpy as np
346
- >>> from mindspore import Tensor
347
- >>> from mindspore import ops
339
+ >>> from mindspore import Tensor, ops
348
340
  >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
349
- >>> output = ops.auto_generate.argmax_ext(x, dim=-1)
341
+ >>> output = ops.argmax(x, dim=-1)
350
342
  >>> print(output)
351
343
  [1 0 0]
352
344
  """
@@ -504,47 +496,6 @@ def assign(variable, value):
504
496
  return assign_op(variable, value)
505
497
 
506
498
 
507
- def atan2_ext(input, other):
508
- r"""
509
- Returns arctangent of input/other element-wise.
510
-
511
- It returns :math:`\theta\ \in\ [-\pi, \pi]`
512
- such that :math:`input = r*\sin(\theta), other = r*\cos(\theta)`, where :math:`r = \sqrt{input^2 + other^2}`.
513
-
514
- Note:
515
- - Arg `input` and `other` comply with the implicit type conversion rules to make the data types consistent.
516
- If they have different data types, the lower precision data type will be converted to relatively the
517
- highest precision data type.
518
-
519
- Args:
520
- input (Tensor, Number.number): The input tensor or scalar.
521
- other (Tensor, Number.number): The input tensor or scalar. It has the same shape with `input` or
522
- its shape is able to broadcast with `input`.
523
-
524
- Returns:
525
- Tensor, the shape is the same as the one after broadcasting, and the data type is same as `input`.
526
-
527
- Raises:
528
- TypeError: If `input` or `other` is not a Tensor or scalar.
529
- RuntimeError: If the data type of `input` and `other` conversion of Parameter is required
530
- when data type conversion of Parameter is not supported.
531
-
532
- Supported Platforms:
533
- ``Ascend``
534
-
535
- Examples:
536
- >>> import mindspore
537
- >>> import numpy as np
538
- >>> from mindspore import Tensor, ops
539
- >>> input = Tensor(np.array([0, 1]), mindspore.float32)
540
- >>> other = Tensor(np.array([1, 1]), mindspore.float32)
541
- >>> output = mint.atan2(input, other)
542
- >>> print(output)
543
- [0. 0.7853982]
544
- """
545
- return atan2_ext_op(input, other)
546
-
547
-
548
499
  def atan2(input, other):
549
500
  r"""
550
501
  Returns arctangent of input/other element-wise.
@@ -664,19 +615,19 @@ def bmm_ext(input, mat2):
664
615
  Performs batch matrix-matrix multiplication of two three-dimensional tensors.
665
616
 
666
617
  .. math::
667
- \text{output}= \text{input} @ \text{mat2}
618
+ \text{output}[b, i, j] = \text{input}[b, i, k] @ \text{mat2}[b, k, j]
668
619
 
669
620
  Args:
670
- input (Tensor): The first batch of matrices to be multiplied. Must be a three-dimensional tensor of shape `(b, n, m)`.
671
- mat2 (Tensor): The second batch of matrices to be multiplied. Must be a three-dimensional tensor of shape `(b, m, p)`.
621
+ input (Tensor): The first batch of matrices to be multiplied. Must be a three-dimensional tensor.
622
+ mat2 (Tensor): The second batch of matrices to be multiplied. Must be a three-dimensional tensor.
672
623
 
673
624
  Returns:
674
625
  Tensor, the output tensor of shape `(b, n, p)`, where each matrix is the product of the corresponding matrices in the input batches.
675
626
 
676
627
  Raises:
677
- ValueError: If `input` or `mat2` is not three-dimensional tensors.
628
+ TypeError: If `input` or `mat2` is not three-dimensional tensors.
678
629
  ValueError: If the length of the third dimension of `input` is not equal to the length of the second dimension of `mat2`.
679
- ValueError: If the batch size of the inputs is not equal to the batch size of the mat2.
630
+ ValueError: If the batch size of the inputs do not match.
680
631
 
681
632
  Supported Platforms:
682
633
  ``Ascend`` ``GPU`` ``CPU``
@@ -685,17 +636,12 @@ def bmm_ext(input, mat2):
685
636
  >>> import mindspore
686
637
  >>> import numpy as np
687
638
  >>> from mindspore import Tensor
688
- >>> from mindspore import ops
639
+ >>> from mindspore.ops.extend import bmm
689
640
  >>> a = Tensor(np.ones(shape=[2, 3, 4]), mindspore.float32)
690
641
  >>> b = Tensor(np.ones(shape=[2, 4, 5]), mindspore.float32)
691
- >>> output = ops.auto_generate.bmm_ext(a, b)
692
- >>> print(output)
693
- [[[4. 4. 4. 4. 4.]
694
- [4. 4. 4. 4. 4.]
695
- [4. 4. 4. 4. 4.]]
696
- [[4. 4. 4. 4. 4.]
697
- [4. 4. 4. 4. 4.]
698
- [4. 4. 4. 4. 4.]]]
642
+ >>> output = bmm(a, b)
643
+ >>> print(output.shape)
644
+ (2, 3, 5)
699
645
  """
700
646
  return bmm_ext_op(input, mat2)
701
647
 
@@ -766,13 +712,13 @@ def broadcast_to(input, shape):
766
712
  >>> output = ops.broadcast_to(x, shape)
767
713
  >>> print(output)
768
714
  [[1. 2. 3.]
769
- [1. 2. 3.]]
715
+ [1. 2. 3.]]
770
716
  >>> shape = (-1, 2)
771
717
  >>> x = Tensor(np.array([[1], [2]]).astype(np.float32))
772
718
  >>> output = ops.broadcast_to(x, shape)
773
719
  >>> print(output)
774
720
  [[1. 1.]
775
- [2. 2.]]
721
+ [2. 2.]]
776
722
  """
777
723
  return broadcast_to_impl(input, shape)
778
724
 
@@ -1020,72 +966,6 @@ def clamp_tensor(input, min=None, max=None):
1020
966
  return clamp_tensor_op(input, min, max)
1021
967
 
1022
968
 
1023
- def fold_ext(input, output_size, kernel_size, dilation=1, padding=0, stride=1):
1024
- r"""
1025
- Combines an array of sliding local blocks into a large containing tensor.
1026
-
1027
- Consider a batched input tensor of shape :math:`(N, C \times \prod(\text{kernel_size}), L)` ,
1028
- where :math:`N` is the batch dimension, :math:`C \times \prod(\text{kernel_size})` is the
1029
- total number of values within each block (a block has :math:`\prod(\text{kernel_size})` spatial
1030
- locations each containing a `C`-channeled vector), and :math:`L` is the total number of such blocks:
1031
-
1032
- .. math::
1033
- L = \prod_d \left\lfloor\frac{\text{output_size}[d] + 2 \times \text{padding}[d] %
1034
- - \text{dilation}[d] \times (\text{kernel_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
1035
-
1036
- where :math:`d` is over all spatial dimensions.
1037
-
1038
- Therefore, `output_size` is the spatial shape of the large containing tensor of the sliding local blocks.
1039
-
1040
- The `dilation`, `padding` and `stride` arguments specify how the sliding blocks are retrieved.
1041
-
1042
- .. warning::
1043
- Currently, only unbatched(3D) or batched(4D) image-like output tensors are supported.
1044
-
1045
- Args:
1046
- input (Tensor): 2-D or 3-D Tensor.
1047
- output_size (Union[int, tuple[int], list[int]]): The shape of the spatial dimensions of
1048
- the output(i.e., output.shape[2:]).
1049
- kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two int
1050
- for height and width. If type is int, it means that height equal with width. Must be specified.
1051
- dilation (Union[int, tuple[int], list[int]], optional): The size of the dilation, should be two int
1052
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
1053
- padding (Union[int, tuple[int], list[int]], optional): The size of the padding, should be two int
1054
- for height and width. If type is int, it means that height equal with width. Default: ``0`` .
1055
- stride (Union[int, tuple[int], list[int]], optional): The size of the stride, should be two int
1056
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
1057
-
1058
- Returns:
1059
- A Tensor, with same type as `input` .
1060
-
1061
- Shape:
1062
- - Input: :math:`(N, C \times \prod(\text{kernel_size}), L)` or
1063
- :math:`(C \times \prod(\text{kernel_size}), L)`
1064
- - Output: :math:`(N, C, output\_size[0], output\_size[1], ...)` or
1065
- :math:`(C, output\_size[0], output\_size[1], ...)`
1066
-
1067
- Raises:
1068
- TypeError: If `output_size`, `kernel_size`, `stride`, `dilation`, `padding` data type is not int, tuple or list.
1069
- ValueError: If `output_size`, `kernel_size`, `dilation`, `stride` value is not
1070
- greater than zero or elements number invalid.
1071
- ValueError: If `padding` value is less than zero or elements number invalid.
1072
- ValueError: If input.shape[-2] can't be divisible by the product of kernel_size.
1073
- ValueError: If `input.shape[-1]` is not equal to the calculated number of sliding blocks `L`.
1074
-
1075
- Supported Platforms:
1076
- ``Ascend``
1077
-
1078
- Examples:
1079
- >>> import numpy as np
1080
- >>> from mindspore import Tensor, ops
1081
- >>> x = Tensor(np.random.rand(16, 64, 25).astype(np.float32))
1082
- >>> output = ops.auto_generate.fold_ext(x, (8, 8), [2, 2], [2, 2], [2, 2], [2, 2])
1083
- >>> print(output.shape)
1084
- (16, 16, 8, 8)
1085
- """
1086
- return col2im_ext_op(input, output_size, kernel_size, dilation, padding, stride)
1087
-
1088
-
1089
969
  def cat(tensors, axis=0):
1090
970
  r"""
1091
971
  Connect input tensors along with the given axis.
@@ -1392,54 +1272,6 @@ def cummax(input, axis):
1392
1272
  return cummax_op(input)
1393
1273
 
1394
1274
 
1395
- def cumsum_ext(input, dim, dtype=None):
1396
- r"""
1397
- Computes the cumulative sum of input Tensor along `dim`.
1398
-
1399
- .. math::
1400
-
1401
- y_i = x_1 + x_2 + x_3 + ... + x_i
1402
-
1403
- Args:
1404
- input (Tensor): The input Tensor.
1405
- dim (int): Dim along which the cumulative sum is computed.
1406
- dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If specified,
1407
- the input Tensor will be cast to `dtype` before the computation. This is useful for preventing overflows.
1408
- If not specified, stay the same as original Tensor. Default: ``None`` .
1409
-
1410
- Returns:
1411
- Tensor, the shape of the output Tensor is consistent with the input Tensor's.
1412
-
1413
- Raises:
1414
- TypeError: If `input` is not a Tensor.
1415
- ValueError: If the `dim` is out of range.
1416
-
1417
- Supported Platforms:
1418
- ``Ascend``
1419
-
1420
- Examples:
1421
- >>> import numpy as np
1422
- >>> from mindspore import Tensor
1423
- >>> import mindspore.ops as ops
1424
- >>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))
1425
- >>> # case 1: along the dim 0
1426
- >>> y = ops.auto_generate.cumsum_ext(x, 0)
1427
- >>> print(y)
1428
- [[ 3. 4. 6. 10.]
1429
- [ 4. 10. 13. 19.]
1430
- [ 8. 13. 21. 26.]
1431
- [ 9. 16. 28. 35.]]
1432
- >>> # case 2: along the dim 1
1433
- >>> y = ops.auto_generate.cumsum_ext(x, 1)
1434
- >>> print(y)
1435
- [[ 3. 7. 13. 23.]
1436
- [ 1. 7. 14. 23.]
1437
- [ 4. 7. 15. 22.]
1438
- [ 1. 4. 11. 20.]]
1439
- """
1440
- return cumsum_ext_op(input, dim, dtype)
1441
-
1442
-
1443
1275
  def decoder_k_v_cache(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len):
1444
1276
  r"""
1445
1277
  The DecoderKVCache is used for decoding the KVCache of transformer network.
@@ -1628,56 +1460,6 @@ def dot(input, other):
1628
1460
  return dot_op(input, other)
1629
1461
 
1630
1462
 
1631
- def elu_ext(input, alpha=1.0):
1632
- r"""
1633
- Exponential Linear Unit activation function.
1634
-
1635
- Applies the exponential linear unit function element-wise.
1636
- The activation function is defined as:
1637
-
1638
- .. math::
1639
-
1640
- \text{ELU}(x)= \left\{
1641
- \begin{array}{align}
1642
- \alpha(e^{x} - 1) & \text{if } x \le 0\\
1643
- x & \text{if } x \gt 0\\
1644
- \end{array}\right.
1645
-
1646
- Where :math:`x` is the element of input Tensor `input`, :math:`\alpha` is param `alpha`,
1647
- it determines the smoothness of ELU.
1648
-
1649
- ELU function graph:
1650
-
1651
- .. image:: ../images/ELU.png
1652
- :align: center
1653
-
1654
- Args:
1655
- input (Tensor): The input of ELU is a Tensor of any dimension.
1656
- alpha (float, optional): The alpha value of ELU, the data type is float.
1657
- Default: ``1.0`` .
1658
-
1659
- Returns:
1660
- Tensor, has the same shape and data type as `input`.
1661
-
1662
- Raises:
1663
- TypeError: If `alpha` is not a float.
1664
-
1665
- Supported Platforms:
1666
- ``Ascend``
1667
-
1668
- Examples:
1669
- >>> import mindspore
1670
- >>> import numpy as np
1671
- >>> from mindspore import Tensor, ops
1672
- >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
1673
- >>> output = ops.auto_generate.elu_ext(x)
1674
- >>> print(output)
1675
- [[-0.63212055 4. -0.99966455]
1676
- [ 2. -0.99326205 9. ]]
1677
- """
1678
- return elu_ext_impl(input, alpha)
1679
-
1680
-
1681
1463
  def elu(input_x, alpha=1.0):
1682
1464
  r"""
1683
1465
  Exponential Linear Unit activation function.
@@ -1695,6 +1477,8 @@ def elu(input_x, alpha=1.0):
1695
1477
 
1696
1478
  Where :math:`x` is the element of input Tensor `input_x`, :math:`\alpha` is param `alpha`,
1697
1479
  it determines the smoothness of ELU.
1480
+ The picture about ELU looks like this `ELU <https://en.wikipedia.org/wiki/
1481
+ Activation_function#/media/File:Activation_elu.svg>`_ .
1698
1482
 
1699
1483
  ELU function graph:
1700
1484
 
@@ -1746,7 +1530,6 @@ def equal(input, other):
1746
1530
 
1747
1531
  Note:
1748
1532
  - `input` and `other` comply with the implicit type conversion rules to make the data types consistent.
1749
- - The input must be two Tensors, or a Tensor and a Scalar.
1750
1533
  - The shapes of the inputs can be broadcasted to each other.
1751
1534
 
1752
1535
  Args:
@@ -1794,18 +1577,20 @@ def erf(input):
1794
1577
  input (Tensor): The input tensor of Gaussian error function. :math:`x` in the following formula.
1795
1578
  Supported dtypes:
1796
1579
 
1580
+ - Ascend: float16, float32, int64, bool.
1797
1581
  - GPU/CPU: float16, float32, float64.
1798
- - Ascend: float16, float32, float64, int64, bool.
1799
1582
 
1800
1583
  Returns:
1801
- Tensor, has the same shape as the `input`.
1802
- The dtype of output is float32 when dtype of `input` is in
1803
- [bool, int64]. Otherwise output has the same dtype as the `input`.
1584
+ Tensor. If the input is int64 or bool, the return value type is float32.
1585
+ Otherwise, the return value type is the same as the input type.
1804
1586
 
1805
- :raise TypeError: If `input` is not a Tensor.
1806
- :raise TypeError:
1807
- * GPU/CPU: If dtype of `input` is not float16, float32, float64.
1808
- * Ascend: If dtype of `input` is not float16, float32, float64, int64, bool.
1587
+
1588
+ Raises:
1589
+ TypeError: If `input` is not a Tensor.
1590
+ TypeError: If dtype of `input` is not as follows
1591
+
1592
+ - Ascend: float16, float32, int64, bool.
1593
+ - GPU/CPU: float16, float32, float64.
1809
1594
 
1810
1595
  Supported Platforms:
1811
1596
  ``Ascend`` ``GPU`` ``CPU``
@@ -1877,8 +1662,7 @@ def erfinv(input):
1877
1662
  - GPU/CPU: float16, float32 or float64.
1878
1663
 
1879
1664
  Returns:
1880
- Tensor. When the `input` is int8, int16, int32, int64, uint8, bool, the return value type is float32.
1881
- Otherwise, the return value type is the same as the input type.
1665
+ Tensor, has the same shape and dtype as `input`.
1882
1666
 
1883
1667
  :raise TypeError: If dtype of `input` is not as follows
1884
1668
 
@@ -1895,7 +1679,7 @@ def erfinv(input):
1895
1679
  >>> input = Tensor(np.array([0, 0.5, -0.9]), mindspore.float32)
1896
1680
  >>> output = ops.erfinv(input)
1897
1681
  >>> print(output)
1898
- [ 0. 0.47693613 -1.1630869 ]
1682
+ [ 0. 0.47695306 -1.1630805 ]
1899
1683
  """
1900
1684
  return erfinv_op(input)
1901
1685
 
@@ -1926,7 +1710,7 @@ def exp(input):
1926
1710
  >>> input = Tensor(np.array([0.0, 1.0, 3.0]), mindspore.float32)
1927
1711
  >>> output = ops.exp(input)
1928
1712
  >>> print(output)
1929
- [ 1. 2.7182817 20.085537]
1713
+ [ 1. 2.718282 20.085537]
1930
1714
  """
1931
1715
  return exp_op(input)
1932
1716
 
@@ -2456,20 +2240,18 @@ def floor(input):
2456
2240
 
2457
2241
  .. math::
2458
2242
 
2459
- out_i = \lfloor input_i \rfloor
2243
+ out_i = \lfloor x_i \rfloor
2460
2244
 
2461
2245
  Args:
2462
- input (Tensor): The input tensor. Its supported data types are:
2463
-
2464
- - Ascend: float16, float32, float64, bfloat16, int8, int16, int32, int64, uint8, uint16, uint32, uint64.
2465
- - GPU/CPU: float16, float32, float64.
2246
+ input (Tensor): The input tensor, :math:`x` in the above formula. Its data type must be float16,
2247
+ float32 or float64.
2466
2248
 
2467
2249
  Returns:
2468
2250
  Tensor, has the same shape as `input`.
2469
2251
 
2470
2252
  Raises:
2471
2253
  TypeError: If `input` is not a Tensor.
2472
- TypeError: If dtype of `input` is not support.
2254
+ TypeError: If dtype of `input` is not in [float16, float32, float64].
2473
2255
 
2474
2256
  Supported Platforms:
2475
2257
  ``Ascend`` ``GPU`` ``CPU``
@@ -2728,8 +2510,8 @@ def greater_equal(input, other):
2728
2510
  Args:
2729
2511
  input (Union[Tensor, Number]): The first input is a number or
2730
2512
  a bool or a tensor whose data type is number or bool.
2731
- other (Union[Tensor, Number]): When the first input is a Tensor, the second input should be a Number or Tensor with data type number or bool.
2732
- When the first input is a Scalar, the second input must be a Tensor with data type number or bool.
2513
+ other (Union[Tensor, Number]): The second input is a number
2514
+ or a tensor whose data type is number or bool.
2733
2515
 
2734
2516
  Returns:
2735
2517
  Tensor, the shape is the same as the one after broadcasting, and the data type is bool.
@@ -3017,124 +2799,6 @@ def ifftshift(input, dim=None):
3017
2799
  return ifftshift_op(input, dim)
3018
2800
 
3019
2801
 
3020
- def unfold_ext(input, kernel_size, dilation=1, padding=0, stride=1):
3021
- r"""
3022
- Extracts sliding local blocks from a batched input tensor.
3023
-
3024
- Consider a batched input tensor of shape :math:`(N, C, *)`,
3025
- where :math:`N` is the batch dimension, :math:`C` is the channel dimension,
3026
- and :math:`*` represent arbitrary spatial dimensions. This operation flattens
3027
- each sliding `Kernel_size`- sized block within the spatial dimensions
3028
- of `input` into a column (i.e., last dimension) of a 3-D output
3029
- tensor of shape :math:`(N, C \times \prod(\text{kernel_size}), L)`, where
3030
- :math:`C \times \prod(\text{kernel_size})` is the total number of values
3031
- within each block (a block has :math:`\prod(\text{kernel_size})` spatial
3032
- locations each containing a `C`-channeled vector), and :math:`L` is
3033
- the total number of such blocks:
3034
-
3035
- .. math::
3036
- L = \prod_d \left\lfloor\frac{\text{spatial_size}[d] + 2 \times \text{padding}[d] %
3037
- - \text{dilation}[d] \times (\text{kernel_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
3038
-
3039
- where :math:`\text{spatial_size}` is formed by the spatial dimensions
3040
- of `input` (:math:`*` above), and :math:`d` is over all spatial
3041
- dimensions.
3042
-
3043
- Therefore, indexing `output` at the last dimension (column dimension)
3044
- gives all values within a certain block.
3045
-
3046
- The `dilation`, `padding` and `stride` arguments specify
3047
- how the sliding blocks are retrieved.
3048
-
3049
- .. warning::
3050
- - Currently, batched(4D) image-like tensors are supported.
3051
- - For Ascend, it is only supported on platforms above Atlas A2.
3052
-
3053
- Args:
3054
- input (Tensor): 4-D Tensor.
3055
- kernel_size (Union[int, tuple[int], list[int]]): The size of the kernel, should be two int
3056
- for height and width. If type is int, it means that height equal with width. Must be specified.
3057
- dilation (Union[int, tuple[int], list[int]], optional): The dilation of the window, should be two int
3058
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
3059
- padding (Union[int, tuple[int], list[int]], optional): The pad of the window, should be two int
3060
- for height and width. If type is int, it means that height equal with width. Default: ``0`` .
3061
- stride (Union[int, tuple[int], list[int]], optional): The stride of the window, should be two int
3062
- for height and width. If type is int, it means that height equal with width. Default: ``1`` .
3063
-
3064
- Returns:
3065
- A Tensor, with same type as `input` .
3066
-
3067
- Shape:
3068
- - Input: :math:`(N, C, *)`
3069
- - Output: :math:`(N, C \times \prod(\text{kernel_size}), L)`
3070
-
3071
- Raises:
3072
- TypeError: If any data type of `kernel_size`, `stride`, `dilation`, `padding` is not int, tuple or list.
3073
- ValueError: If `kernel_size`, `dilation`, `stride` value is not
3074
- greater than zero or elements number more than `2`.
3075
- ValueError: If `padding` value is less than zero.
3076
-
3077
- Supported Platforms:
3078
- ``Ascend``
3079
-
3080
- Examples:
3081
- >>> import mindspore
3082
- >>> import numpy as np
3083
- >>> from mindspore import Tensor, ops
3084
- >>> x = Tensor(np.random.rand(4, 4, 32, 32), mindspore.float32)
3085
- >>> output = ops.auto_generate.unfold_ext(x, kernel_size=3, dilation=1, stride=1)
3086
- >>> print(output.shape)
3087
- (4, 36, 900)
3088
- """
3089
- return im2col_ext_op(input, kernel_size, dilation, padding, stride)
3090
-
3091
-
3092
- def index_select_ext(input, dim, index):
3093
- r"""
3094
- Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
3095
- using the indices specified in `index`. The new Tensor has the same number of dimensions as `input`,
3096
- with the size of the `dim` dimension being equal to the length of `index`, and the size of all other
3097
- dimensions will be unchanged from the original `input` Tensor.
3098
-
3099
- .. note::
3100
- The value of index must be in the range of `[0, input.shape[dim])`, the result is undefined out of range.
3101
-
3102
- Args:
3103
- input (Tensor): The input Tensor.
3104
- dim (int): The dimension to be indexed.
3105
- index (Tensor): A 1-D Tensor with the indices.
3106
-
3107
- Returns:
3108
- Tensor, has the same dtype as input Tensor.
3109
-
3110
- Raises:
3111
- TypeError: If `input` or `index` is not a Tensor.
3112
- TypeError: If `dim` is not int number.
3113
- ValueError: If the value of `dim` is out the range of `[-input.ndim, input.ndim - 1]`.
3114
- ValueError: If the dimension of `index` is not equal to 1.
3115
-
3116
- Supported Platforms:
3117
- ``Ascend``
3118
-
3119
- Examples:
3120
- >>> import mindspore
3121
- >>> from mindspore import Tensor, ops
3122
- >>> import numpy as np
3123
- >>> input = Tensor(np.arange(16).astype(np.float32).reshape(2, 2, 4))
3124
- >>> print(input)
3125
- [[[ 0. 1. 2. 3.]
3126
- [ 4. 5. 6. 7.]]
3127
- [[ 8. 9. 10. 11.]
3128
- [12. 13. 14. 15.]]]
3129
- >>> index = Tensor([0,], mindspore.int32)
3130
- >>> y = ops.auto_generate.index_select_ext(input, 1, index)
3131
- >>> print(y)
3132
- [[[ 0. 1. 2. 3.]]
3133
- [[ 8. 9. 10. 11.]]]
3134
- """
3135
- return index_select_op(input, dim, index)
3136
-
3137
-
3138
2802
  def irfft(input, n=None, dim=-1, norm=None):
3139
2803
  r"""
3140
2804
  Calculates the inverse of `rfft()`.
@@ -3233,9 +2897,9 @@ def leaky_relu_ext(input, negative_slope=0.01):
3233
2897
 
3234
2898
  .. math::
3235
2899
  \text{leaky_relu}(input) = \begin{cases}input, &\text{if } input \geq 0; \cr
3236
- \text{negative_slope} * input, &\text{otherwise.}\end{cases}
2900
+ {\negative_slope} * input, &\text{otherwise.}\end{cases}
3237
2901
 
3238
- where :math:`negative\_slope` represents the `negative_slope` parameter.
2902
+ where :math:`\negative_slope` represents the `negative_slope` parameter.
3239
2903
 
3240
2904
  For more details, see `Rectifier Nonlinearities Improve Neural Network Acoustic Models
3241
2905
  <https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf>`_.
@@ -3258,14 +2922,14 @@ def leaky_relu_ext(input, negative_slope=0.01):
3258
2922
  TypeError: If `negative_slope` is not a float or an int.
3259
2923
 
3260
2924
  Supported Platforms:
3261
- ``Ascend``
2925
+ ``Ascend`` ``GPU`` ``CPU``
3262
2926
 
3263
2927
  Examples:
3264
2928
  >>> import mindspore
3265
2929
  >>> import numpy as np
3266
2930
  >>> from mindspore import Tensor, ops
3267
2931
  >>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
3268
- >>> print(ops.extend.leaky_relu_ext(input, negative_slope=0.2))
2932
+ >>> print(mint.leaky_relu(input, negative_slope=0.2))
3269
2933
  [[-0.2 4. -1.6]
3270
2934
  [ 2. -1. 9. ]]
3271
2935
  """
@@ -3297,7 +2961,7 @@ def less_equal(input, other):
3297
2961
  Tensor, the shape is the same as the one after broadcasting, and the data type is bool.
3298
2962
 
3299
2963
  Raises:
3300
- TypeError: If neither `input` nor `other` is a Tensor, number.Number or bool.
2964
+ TypeError: If neither `input` nor `other` is a Tensor or number.Number.
3301
2965
 
3302
2966
  Supported Platforms:
3303
2967
  ``Ascend`` ``GPU`` ``CPU``
@@ -3549,36 +3213,6 @@ def matrix_exp(input):
3549
3213
  return matrix_exp_op(input)
3550
3214
 
3551
3215
 
3552
- def matrix_inverse_ext(input):
3553
- r"""
3554
- Compute the inverse of the input matrix.
3555
-
3556
- Args:
3557
- input (Tensor): A matrix to be calculated. Input `input` must be at least two dimensions, and the size of
3558
- the last two dimensions must be the same size.
3559
-
3560
- Returns:
3561
- Tensor, has the same type and shape as input`.
3562
-
3563
- Raises:
3564
- TypeError: If `input` is not a Tensor.
3565
- ValueError: If the size of the last two dimensions of `input` is not the same.
3566
- ValueError: If the dimension of `input` is 1.
3567
-
3568
- Supported Platforms:
3569
- ``Ascend``
3570
-
3571
- Examples:
3572
- >>> from mindspore import Tensor, ops
3573
- >>> from mindspore import dtype as mstype
3574
- >>> x = Tensor([[1., 2.], [3., 4.]], mstype.float32)
3575
- >>> print(ops.matrix_inverse_ext(x))
3576
- [[-2. 1. ]
3577
- [ 1.5 -0.5]]
3578
- """
3579
- return matrix_inverse_ext_op(input)
3580
-
3581
-
3582
3216
  def max_(input):
3583
3217
  r"""
3584
3218
  Calculates the maximum value of the input tensor.
@@ -3595,7 +3229,6 @@ def maximum(input, other):
3595
3229
  Note:
3596
3230
  - Inputs of `input` and `other` comply with the implicit type conversion rules to make the data types
3597
3231
  consistent.
3598
- - The input must be two Tensors, or a Tensor and a Scalar.
3599
3232
  - When the inputs are two tensors,
3600
3233
  dtypes of them cannot be bool at the same time, and the shapes of them could be broadcast.
3601
3234
  - When the inputs are one tensor and one scalar,
@@ -3791,6 +3424,13 @@ def minimum(input, other):
3791
3424
  return minimum_op(input, other)
3792
3425
 
3793
3426
 
3427
+ def moe_finalize_routing(expanded_x, x1, x2=None, bias=None, scales=None, expanded_row_idx=None, expanded_expert_idx=None):
3428
+ r"""
3429
+
3430
+ """
3431
+ return moe_finalize_routing_op(expanded_x, x1, x2, bias, scales, expanded_row_idx, expanded_expert_idx)
3432
+
3433
+
3794
3434
  def mul(input, other):
3795
3435
  r"""
3796
3436
  Multiplies two tensors element-wise.
@@ -3926,22 +3566,62 @@ def nextafter(input, other):
3926
3566
  return next_after_op(input, other)
3927
3567
 
3928
3568
 
3929
- def not_equal(input, other):
3569
+ def nonzero(input):
3930
3570
  r"""
3931
- Alias for :func:`mindspore.ops.ne` .
3571
+ Return a Tensor of the positions of all non-zero values.
3932
3572
 
3933
- Supported Platforms:
3934
- ``Ascend`` ``GPU`` ``CPU``
3935
- """
3936
- return not_equal_op(input, other)
3573
+ Args:
3574
+ input (Tensor): The input Tensor, its rank should be greater than or eaqual to 1.
3937
3575
 
3938
- ones_op=Ones()
3576
+ Returns:
3577
+ Tensor, a 2-D Tensor whose data type is int64, containing the positions of all non-zero values of the input.
3939
3578
 
3940
- def ones(shape, dtype=None):
3941
- r"""
3942
- Creates a tensor filled with value ones, whose shape and type are described by the first argument `size` and second argument `dtype` respectively.
3579
+ Raises:
3580
+ TypeError: If `input` is not Tensor.
3581
+ ValueError: If dim of `input` equals to 0.
3943
3582
 
3944
- .. warning::
3583
+ Supported Platforms:
3584
+ ``Ascend`` ``GPU`` ``CPU``
3585
+
3586
+ Examples:
3587
+ >>> import mindspore
3588
+ >>> import numpy as np
3589
+ >>> from mindspore import Tensor
3590
+ >>> import mindspore.ops as ops
3591
+ >>> x = Tensor(np.array([[[1, 0], [-5, 0]]]), mindspore.int32)
3592
+ >>> output = ops.nonzero(x)
3593
+ >>> print(output)
3594
+ [[0 0 0]
3595
+ [0 1 0]]
3596
+ >>> x = Tensor(np.array([1, 0, 2, 0, 3]), mindspore.int32)
3597
+ >>> output = ops.nonzero(x)
3598
+ >>> print(output)
3599
+ [[0]
3600
+ [2]
3601
+ [4]]
3602
+ """
3603
+ return non_zero_op(input)
3604
+
3605
+
3606
+ def not_equal(input, other):
3607
+ r"""
3608
+ Alias for :func:`mindspore.ops.ne` .
3609
+
3610
+ Supported Platforms:
3611
+ ``Ascend`` ``GPU`` ``CPU``
3612
+ """
3613
+ return not_equal_op(input, other)
3614
+
3615
+ ones_op=Ones()
3616
+
3617
+ def ones(shape, dtype=None):
3618
+ r"""
3619
+ Creates a tensor filled with value ones.
3620
+
3621
+ Creates a tensor with shape described by the first argument and fills it with value ones in type of the second
3622
+ argument.
3623
+
3624
+ .. warning::
3945
3625
  For argument `shape`, Tensor type input will be deprecated in the future version.
3946
3626
 
3947
3627
  Args:
@@ -4170,84 +3850,6 @@ def prelu(x, weight):
4170
3850
  return prelu_op(x, weight)
4171
3851
 
4172
3852
 
4173
- def prod_ext(input, axis=None, keep_dims=False, dtype=None):
4174
- r"""
4175
- Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. And also can
4176
- reduce a dimension of `input` along the `axis`. Determine whether the dimensions of the output and input are the
4177
- same by controlling `keep_dims`.
4178
-
4179
- Args:
4180
- input (Tensor[Number]): The input tensor. The dtype of the tensor to be reduced is number.
4181
- :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
4182
- axis (int): The dimensions to reduce. Default: ``None`` , reduce all dimensions.
4183
- Only constant value is allowed. Assume the rank of `input` is r, and the value range is [-r,r).
4184
- keep_dims (bool): If ``True`` , keep these reduced dimensions and the length is 1.
4185
- If ``False`` , don't keep these dimensions. Default: ``False`` .
4186
- dtype (:class:`mindspore.dtype`): The desired data type of returned Tensor. Default: ``None`` .
4187
-
4188
- Returns:
4189
- Tensor, has the same data type as input tensor.
4190
-
4191
- - If `axis` is ``None`` , and `keep_dims` is ``False`` ,
4192
- the output is a 0-D tensor representing the product of all elements in the input tensor.
4193
- - If `axis` is int, set as 1, and `keep_dims` is ``False`` ,
4194
- the shape of output is :math:`(input_0, input_2, ..., input_R)`.
4195
-
4196
- Raises:
4197
- TypeError: If `input` is not a Tensor.
4198
- TypeError: If `axis` is not one of the following: int or None.
4199
- TypeError: If `keep_dims` is not a bool.
4200
- ValueError: If `axis` is out of range.
4201
-
4202
- Supported Platforms:
4203
- ``Ascend`` ``GPU`` ``CPU``
4204
-
4205
- Examples:
4206
- >>> import mindspore
4207
- >>> import numpy as np
4208
- >>> from mindspore import Tensor, ops
4209
- >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
4210
- >>> output = ops.ProdExt()(x, 1, keep_dims=True)
4211
- >>> result = output.shape
4212
- >>> print(result)
4213
- (3, 1, 5, 6)
4214
- >>> # case 1: Reduces a dimension by multiplying all elements in the dimension.
4215
- >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
4216
- ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
4217
- ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32)
4218
- >>> output = ops.ProdExt()(x)
4219
- >>> print(output)
4220
- 2.2833798e+33
4221
- >>> print(output.shape)
4222
- ()
4223
- >>> # case 2: Reduces a dimension along axis 0.
4224
- >>> output = ops.ProdExt()(x, 0, True)
4225
- >>> print(output)
4226
- [[[ 28. 28. 28. 28. 28. 28.]
4227
- [ 80. 80. 80. 80. 80. 80.]
4228
- [162. 162. 162. 162. 162. 162.]]]
4229
- >>> # case 3: Reduces a dimension along axis 1.
4230
- >>> output = ops.ProdExt()(x, 1, True)
4231
- >>> print(output)
4232
- [[[ 6. 6. 6. 6. 6. 6.]]
4233
- [[120. 120. 120. 120. 120. 120.]]
4234
- [[504. 504. 504. 504. 504. 504.]]]
4235
- >>> # case 4: Reduces a dimension along axis 2.
4236
- >>> output = ops.ProdExt()(x, 2, True)
4237
- >>> print(output)
4238
- [[[1.00000e+00]
4239
- [6.40000e+01]
4240
- [7.29000e+02]]
4241
- [[4.09600e+03]
4242
- [1.56250e+04]
4243
- [4.66560e+04]]
4244
- [[1.17649e+05]
4245
- [2.62144e+05]
4246
- [5.31441e+05]]]
4247
- """
4248
- return prod_ext_op(input, axis, keep_dims, dtype)
4249
-
4250
-
4251
3853
  def prompt_k_v_cache(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len, align_mode='LEFT'):
4252
3854
  r"""
4253
3855
  The PromptKVCache is used for prefill the KVCache of transformer network.
@@ -4307,6 +3909,13 @@ def prompt_k_v_cache(cache, update, valid_seq_len, batch_index, seq_len_axis, ne
4307
3909
  return prompt_k_v_cache_op(cache, update, valid_seq_len, batch_index, seq_len_axis, new_max_seq_len, cur_max_seq_len)
4308
3910
 
4309
3911
 
3912
+ def quant_batch_matmul(x1, x2, scale, offset=None, bias=None, transpose_x1=False, transpose_x2=False, dtype=mstype.float16):
3913
+ r"""
3914
+
3915
+ """
3916
+ return quant_batch_matmul_impl(x1, x2, scale, offset, bias, transpose_x1, transpose_x2, dtype)
3917
+
3918
+
4310
3919
  def randperm(n, seed=0, offset=0, dtype=mstype.int64):
4311
3920
  r"""
4312
3921
  Generates random permutation of integers from 0 to n-1.
@@ -4572,6 +4181,13 @@ def relu(input):
4572
4181
  return relu_op(input)
4573
4182
 
4574
4183
 
4184
+ def repeat_interleave(input, repeats, axis=None, output_size=None):
4185
+ r"""
4186
+
4187
+ """
4188
+ return repeat_interleave_op(input, repeats, axis, output_size)
4189
+
4190
+
4575
4191
  def reshape_and_cache(key, value, key_cache, value_cache, slot_mapping):
4576
4192
  r"""
4577
4193
  The ReshapeAndCache is used for updating the block-wise KVCache of transformer network.
@@ -4746,55 +4362,6 @@ def rfft(input, n=None, dim=-1, norm=None):
4746
4362
  return rfft_op(input, n, dim, norm)
4747
4363
 
4748
4364
 
4749
- def rms_norm(x, gamma, epsilon=1e-6):
4750
- r"""
4751
- The RmsNorm(Root Mean Square Layer Normalization) operator is a normalization operation. Compared to
4752
- LayerNorm, it retains scaling invariance and removes translation invariance. Its formula is:
4753
-
4754
- .. math::
4755
- y=\frac{x_i}{\sqrt{\frac{1}{n}}\sum_{i=1}^{n}{ x_i^2}+\varepsilon }\gamma_i
4756
-
4757
- .. warning::
4758
- This is an experimental API that is subject to change or deletion. This API is only supported in Atlas A2
4759
- training series for now.
4760
-
4761
- Args:
4762
- x (Tensor): Input data of RmsNorm. Support data type: float16, float32, bfloat16.
4763
- gamma (Tensor): Learnable parameter :math:`\gamma` . Support data type: float16, float32, bfloat16.
4764
- epsilon (float, optional): A float number ranged in (0, 1] to prevent division by 0. Default value is `1e-6`.
4765
-
4766
- Returns:
4767
- - Tensor, denotes the normalized result, has the same type and shape as `x`.
4768
- - Tensor, with the float data type, denotes the reciprocal of the input standard deviation, used by gradient
4769
- calculation.
4770
-
4771
- Raises:
4772
- TypeError: If data type of `x` is not one of the following: float16, float32, bfloat16.
4773
- TypeError: If data type of `gamma` is not one of the following: float16, float32, bfloat16.
4774
- TypeError: If data type of `x` is not the same with the data type of `gamma`.
4775
- ValueError: If `epsilon` is not a float between 0 and 1.
4776
- ValueError: If the rank of `gamma` is lagger than the rank of `x`.
4777
-
4778
- Supported Platforms:
4779
- ``Ascend``
4780
-
4781
- Examples:
4782
- >>> import mindspore
4783
- >>> import numpy as np
4784
- >>> from mindspore import Tensor, ops
4785
- >>> x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32)
4786
- >>> gamma = Tensor(np.ones([3]), mindspore.float32)
4787
- >>> y, rstd = ops.rms_norm(x, gamma)
4788
- >>> print(y)
4789
- [[0.46290997 0.92581993 1.3887299]
4790
- [0.46290997 0.92581993 1.3887299]]
4791
- >>> print(rstd)
4792
- [[0.46290997]
4793
- [0.46290997]]
4794
- """
4795
- return rms_norm_impl(x, gamma, epsilon)
4796
-
4797
-
4798
4365
  def round(input):
4799
4366
  r"""
4800
4367
  Returns half to even of a tensor element-wise.
@@ -4854,7 +4421,7 @@ def rsqrt(input):
4854
4421
  >>> input = ms.Tensor([-0.0370, 0.2970, 1.5420, -0.9105])
4855
4422
  >>> output = ops.rsqrt(input)
4856
4423
  >>> print(output)
4857
- [ nan 1.8349396 0.8053002 nan]
4424
+ [ nan 1.8349396 0.80530024 nan]
4858
4425
  """
4859
4426
  return rsqrt_op(input)
4860
4427
 
@@ -5120,47 +4687,6 @@ def sigmoid(input):
5120
4687
  return sigmoid_op(input)
5121
4688
 
5122
4689
 
5123
- def sign(input):
5124
- r"""
5125
- Returns an element-wise indication of the sign of a number. Notice: When the input dtype is float64, the gradient of this operator is NaN.
5126
-
5127
- .. math::
5128
- \text{out}_{i} = \begin{cases}
5129
- -1 & \text{input}_{i} < 0 \\
5130
- 0 & \text{input}_{i} = 0 \\
5131
- 1 & \text{input}_{i} > 0
5132
- \end{cases}
5133
-
5134
- Args:
5135
- input (Tensor): Input Tensor.
5136
-
5137
- Returns:
5138
- Tensor, the sign of input.
5139
-
5140
- Raises:
5141
- TypeError: If `input` is not a Tensor.
5142
-
5143
- Supported Platforms:
5144
- ``Ascend`` ``GPU`` ``CPU``
5145
-
5146
- Examples:
5147
- >>> import mindspore as ms
5148
- >>> import mindspore.ops as ops
5149
- >>> input = ms.Tensor([[-1, 0, 2, 4, 6], [2, 3, 5, -6, 0]])
5150
- >>> output = ops.sign(input)
5151
- >>> print(output)
5152
- [[-1 0 1 1 1]
5153
- [ 1 1 1 -1 0]]
5154
- >>> ms.set_context(device_target="CPU")
5155
- >>> x = ms.Tensor([[-1, 0, float('inf'), 4, float('nan')], [2, 3, float('-inf'), -6, 0]])
5156
- >>> output = ops.sign(x)
5157
- >>> print(output)
5158
- [[-1. 0. 1. 1. 0.]
5159
- [ 1. 1. -1. -1. 0.]]
5160
- """
5161
- return sign_op(input)
5162
-
5163
-
5164
4690
  def silu(input):
5165
4691
  r"""
5166
4692
  Computes Sigmoid Linear Unit of input element-wise. The SiLU function is defined as:
@@ -5222,10 +4748,10 @@ def sin(input):
5222
4748
  The dtype of output is float32 when dtype of `input` is in
5223
4749
  [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as the `input`.
5224
4750
 
5225
- :raise TypeError: If `input` is not a Tensor.
5226
- :raise TypeError:
5227
- * CPU/GPU: If dtype of `input` is not float16, float32 or float64, complex64, complex128.
5228
- * Ascend: If type of `input` is not bool, int8, uint8, int16, int32, int64, float16, float32 or float64, complex64, complex128.
4751
+ Raises:
4752
+ TypeError: If `input` is not a Tensor.
4753
+ TypeError: On CPU or GPU: If dtype of `input` is not float16, float32 or float64, complex64, complex128.
4754
+ On Ascend: If type of `input` is not bool, int8, uint8, int16, int32, int64, float16, float32 or float64, complex64, complex128.
5229
4755
 
5230
4756
  Supported Platforms:
5231
4757
  ``Ascend`` ``GPU`` ``CPU``
@@ -5237,7 +4763,7 @@ def sin(input):
5237
4763
  >>> input = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32)
5238
4764
  >>> output = ops.sin(input)
5239
4765
  >>> print(output)
5240
- [0.58103514 0.27635565 0.4168708 0.58103514]
4766
+ [0.5810352 0.27635565 0.41687083 0.5810352]
5241
4767
  """
5242
4768
  return sin_op(input)
5243
4769
 
@@ -5309,42 +4835,7 @@ def sinh(input):
5309
4835
 
5310
4836
  def softplus_ext(input, beta=1, threshold=20):
5311
4837
  r"""
5312
- Applies softplus function to `input` element-wise.
5313
-
5314
- The softplus function is shown as follows, x is the element of `input` :
5315
-
5316
- .. math::
5317
-
5318
- \text{output} = \frac{1}{beta}\log(1 + \exp(\text{beta * x}))
5319
-
5320
- where :math:`input * beta > threshold`, the implementation converts to the linear function to ensure numerical stability.
5321
-
5322
- Args:
5323
- input (Tensor): Tensor of any dimension. Supported dtypes:
5324
-
5325
- - Ascend: float16, float32, bfloat16.
5326
- beta (number.Number, optional): Scaling parameters in the softplus function. Default: ``1`` .
5327
- threshold (number.Number, optional): For numerical stability, the softplus function is converted
5328
- to a threshold parameter of a linear function. Default: ``20`` .
5329
-
5330
- Returns:
5331
- Tensor, with the same type and shape as the input.
5332
-
5333
- Raises:
5334
- TypeError: If `input` is not a Tensor.
5335
- TypeError: If dtype of `input` is not float16, float32, bfloat16.
5336
-
5337
- Supported Platforms:
5338
- ``Ascend``
5339
-
5340
- Examples:
5341
- >>> import mindspore
5342
- >>> import numpy as np
5343
- >>> from mindspore import Tensor, ops
5344
- >>> input = Tensor(np.array([0.1, 0.2, 30, 25]), mindspore.float32)
5345
- >>> output = ops.auto_generate.softplus_ext(input)
5346
- >>> print(output)
5347
- [0.74439657 0.7981388 30. 25.]
4838
+
5348
4839
  """
5349
4840
  return softplus_ext_op(input, beta, threshold)
5350
4841
 
@@ -5406,13 +4897,6 @@ def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False):
5406
4897
  return solve_triangular_op(a, b, trans, lower, unit_diagonal)
5407
4898
 
5408
4899
 
5409
- def sort_ext(input, dim=-1, descending=False, stable=False):
5410
- r"""
5411
-
5412
- """
5413
- return sort_ext_op(input, dim, descending, stable)
5414
-
5415
-
5416
4900
  def sqrt(x):
5417
4901
  r"""
5418
4902
  Returns sqrt of a tensor element-wise.
@@ -5496,22 +4980,23 @@ def stack_ext(tensors, dim=0):
5496
4980
 
5497
4981
  Raises:
5498
4982
  TypeError: If the data types of elements in `tensors` are not the same.
5499
- ValueError: If `dim` is out of the range [-(R+1), R+1);
4983
+ ValueError: If the length of `tensors` is not greater than zero;
4984
+ or if dim is out of the range [-(R+1), R+1);
5500
4985
  or if the shapes of elements in tensors are not the same.
5501
4986
 
5502
4987
  Supported Platforms:
5503
- ``Ascend``
4988
+ ``Ascend`` ``GPU`` ``CPU``
5504
4989
 
5505
4990
  Examples:
5506
4991
  >>> import mindspore
5507
- >>> from mindspore import Tensor, ops
4992
+ >>> from mindspore import Tensor, mint
5508
4993
  >>> import numpy as np
5509
4994
  >>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
5510
4995
  >>> data2 = Tensor(np.array([2, 3]).astype(np.float32))
5511
- >>> output = ops.auto_generate.stack_ext([data1, data2], 0)
4996
+ >>> output = mint.stack([data1, data2], 0)
5512
4997
  >>> print(output)
5513
4998
  [[0. 1.]
5514
- [2. 3.]]
4999
+ [2. 3.]]
5515
5000
  """
5516
5001
  return stack_ext_impl(tensors, dim)
5517
5002
 
@@ -5703,7 +5188,7 @@ def sub_ext(input, other, alpha=1):
5703
5188
  alpha (number.Number): A scaling factor applied to `other`, default 1.
5704
5189
 
5705
5190
  Returns:
5706
- Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
5191
+ Tensor, the shape is the same as the one of the input `input`, `other` after broadcasting,
5707
5192
  and the data type is the one with higher precision or higher digits among the two inputs and alpha.
5708
5193
 
5709
5194
  Raises:
@@ -5718,11 +5203,11 @@ def sub_ext(input, other, alpha=1):
5718
5203
  >>> import numpy as np
5719
5204
  >>> import mindspore
5720
5205
  >>> from mindspore import Tensor
5721
- >>> from mindspore import ops
5206
+ >>> from mindspore.ops.extend import sub
5722
5207
  >>> x = Tensor(np.array([4, 5, 6]).astype(np.float32))
5723
5208
  >>> y = Tensor(1, mindspore.int32)
5724
5209
  >>> alpha = 0.5
5725
- >>> output = ops.auto_generate.sub_ext(x, y, alpha)
5210
+ >>> output = sub(x, y, alpha)
5726
5211
  >>> print(output)
5727
5212
  [3.5 4.5 5.5]
5728
5213
  >>> # the data type of x is float32, the data type of y is int32,
@@ -5757,7 +5242,7 @@ def sub(input, other):
5757
5242
  the second input should be a number.Number or bool value, or a Tensor whose data type is number or bool.
5758
5243
 
5759
5244
  Returns:
5760
- Tensor with a shape that is the same as the broadcasted shape of the input `input` and `other`,
5245
+ Tensor, the shape is the same as the one after broadcasting,
5761
5246
  and the data type is the one with higher precision or higher digits among the two inputs.
5762
5247
 
5763
5248
  Raises:
@@ -5820,97 +5305,11 @@ def tanh(input):
5820
5305
 
5821
5306
  def topk_ext(input, k, dim=-1, largest=True, sorted=True):
5822
5307
  r"""
5823
- Finds values and indices of the `k` largest or smallest entries along a given dimension.
5824
-
5825
- .. warning::
5826
- - If sorted is set to False, due to different memory layout and traversal methods on different platforms,
5827
- the display order of calculation results may be inconsistent when `sorted` is False.
5828
-
5829
- If the `input` is a one-dimensional Tensor, finds the `k` largest or smallest entries in the Tensor,
5830
- and outputs its value and index as a Tensor. values[`k`] is the `k` largest item in `input`,
5831
- and its index is indices [`k`].
5832
-
5833
- For a multi-dimensional matrix,
5834
- calculates the first or last `k` entries in a given dimension, therefore:
5835
-
5836
- .. math::
5837
-
5838
- values.shape = indices.shape
5839
-
5840
- If the two compared elements are the same, the one with the smaller index value is returned first.
5841
-
5842
- Args:
5843
- input (Tensor): Input to be computed.
5844
- k (int): The number of top or bottom elements to be computed along the last dimension.
5845
- dim (int, optional): The dimension to sort along. Default: ``-1`` .
5846
- largest (bool, optional): If largest is ``False`` then the k smallest elements are returned.
5847
- Default: ``True`` .
5848
- sorted (bool, optional): If ``True`` , the obtained elements will be sorted by the values in descending
5849
- order or ascending order according to `largest`. If ``False`` , the obtained elements will not be
5850
- sorted. Default: ``True`` .
5851
-
5852
- Returns:
5853
- A tuple consisting of `values` and `indices`.
5854
-
5855
- - values (Tensor) - The `k` largest or smallest elements in each slice of the given dimension.
5856
- - indices (Tensor) - The indices of values within the last dimension of input.
5857
-
5858
- Raises:
5859
- TypeError: If `sorted` is not a bool.
5860
- TypeError: If `input` is not a Tensor.
5861
- TypeError: If `k` is not an int.
5862
-
5863
- Supported Platforms:
5864
- ``Ascend``
5865
-
5866
- Examples:
5867
- >>> import mindspore as ms
5868
- >>> from mindspore import ops
5869
- >>> x = ms.Tensor([[0.5368, 0.2447, 0.4302, 0.9673],
5870
- ... [0.4388, 0.6525, 0.4685, 0.1868],
5871
- ... [0.3563, 0.5152, 0.9675, 0.8230]], dtype=ms.float32)
5872
- >>> output = ops.topk_ext(x, 2, dim=1)
5873
- >>> print(output)
5874
- (Tensor(shape=[3, 2], dtype=Float32, value=
5875
- [[ 9.67299998e-01, 5.36800027e-01],
5876
- [ 6.52499974e-01, 4.68499988e-01],
5877
- [ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
5878
- [[3, 0],
5879
- [1, 2],
5880
- [2, 3]]))
5881
- >>> output2 = ops.topk_ext(x, 2, dim=1, largest=False)
5882
- >>> print(output2)
5883
- (Tensor(shape=[3, 2], dtype=Float32, value=
5884
- [[ 2.44700000e-01, 4.30200011e-01],
5885
- [ 1.86800003e-01, 4.38800007e-01],
5886
- [ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=Int32, value=
5887
- [[1, 2],
5888
- [3, 0],
5889
- [0, 1]]))
5308
+
5890
5309
  """
5891
5310
  return topk_ext_op(input, k, dim, largest, sorted)
5892
5311
 
5893
5312
 
5894
- def topkrouter(input, capacity, expert_num):
5895
- r"""
5896
- TopkRouter implementation in MOE.
5897
-
5898
- Inputs:
5899
- - **x** (Tensor) - Input Tensor of 3D, Supporting types:[int32, int64]
5900
- - **capacity** (Int64) - The maximum number of tokens each expert can handle
5901
- - **expert_num** (Int64) - The number of expert.
5902
-
5903
- Outputs:
5904
- tuple(Tensor), tuple of 2 tensors, `dispatch_index` and `combine_inex`.
5905
- - dispatch_index (Tensor) - Token ID processed by each expert.
5906
- - combine_index (Tensor) - The combine index of each token.
5907
-
5908
- Supported Platforms:
5909
- ``Ascend``
5910
- """
5911
- return topkrouter_op(input, capacity, expert_num)
5912
-
5913
-
5914
5313
  def trace(input):
5915
5314
  r"""
5916
5315
  Returns a new tensor that is the sum of the `input` main trace.
@@ -6002,6 +5401,66 @@ def transpose(input, input_perm):
6002
5401
  return transpose_op(input, input_perm)
6003
5402
 
6004
5403
 
5404
+ def tril(input, diagonal=0):
5405
+ r"""
5406
+ Returns the lower triangle part of 'input' (elements that contain the diagonal and below),
5407
+ and set the other elements to zeros.
5408
+
5409
+ Args:
5410
+ input (Tensor): A Tensor with shape :math:`(x_1, x_2, ..., x_R)`. The rank must be at least 2.
5411
+ Supporting all number types including bool.
5412
+ diagonal (int, optional): An optional attribute indicates the diagonal to consider, default: 0,
5413
+ indicating the main diagonal.
5414
+
5415
+ Returns:
5416
+ Tensor, the same shape and data type as the input `x`.
5417
+
5418
+ Raises:
5419
+ TypeError: If `x` is not a Tensor.
5420
+ TypeError: If `diagonal` is not an int.
5421
+ TypeError: If the type of `x` is neither number nor bool.
5422
+ ValueError: If the rank of `x` is less than 2.
5423
+
5424
+ Supported Platforms:
5425
+ ``Ascend`` ``GPU`` ``CPU``
5426
+
5427
+ Examples:
5428
+ >>> import numpy as np
5429
+ >>> from mindspore import Tensor, ops
5430
+ >>> x = Tensor(np.array([[ 1, 2, 3, 4],
5431
+ ... [ 5, 6, 7, 8],
5432
+ ... [10, 11, 12, 13],
5433
+ ... [14, 15, 16, 17]]))
5434
+ >>> result = ops.tril(x)
5435
+ >>> print(result)
5436
+ [[ 1 0 0 0]
5437
+ [ 5 6 0 0]
5438
+ [10 11 12 0]
5439
+ [14 15 16 17]]
5440
+ >>> x = Tensor(np.array([[ 1, 2, 3, 4],
5441
+ ... [ 5, 6, 7, 8],
5442
+ ... [10, 11, 12, 13],
5443
+ ... [14, 15, 16, 17]]))
5444
+ >>> result = ops.tril(x, diagonal=1)
5445
+ >>> print(result)
5446
+ [[ 1 2 0 0]
5447
+ [ 5 6 7 0]
5448
+ [10 11 12 13]
5449
+ [14 15 16 17]]
5450
+ >>> x = Tensor(np.array([[ 1, 2, 3, 4],
5451
+ ... [ 5, 6, 7, 8],
5452
+ ... [10, 11, 12, 13],
5453
+ ... [14, 15, 16, 17]]))
5454
+ >>> result = ops.tril(x, diagonal=-1)
5455
+ >>> print(result)
5456
+ [[ 0 0 0 0]
5457
+ [ 5 0 0 0]
5458
+ [10 11 0 0]
5459
+ [14 15 16 0]]
5460
+ """
5461
+ return tril_impl(input, diagonal)
5462
+
5463
+
6005
5464
  def triu(input, diagonal=0):
6006
5465
  r"""
6007
5466
  Returns the upper triangle part of 'input' (elements that contain the diagonal and below),
@@ -6151,11 +5610,18 @@ def view(input, shape):
6151
5610
  """
6152
5611
  return view_op(input, shape)
6153
5612
 
5613
+
5614
+ def weight_quant_batch_matmul(x, weight, antiquant_scale, antiquant_offset=None, quant_scale=None, quant_offset=None, bias=None, transpose_x=False, transpose_weight=False, antiquant_group_size=0):
5615
+ r"""
5616
+
5617
+ """
5618
+ return weight_quant_batch_matmul_impl(x, weight, antiquant_scale, antiquant_offset, quant_scale, quant_offset, bias, transpose_x, transpose_weight, antiquant_group_size)
5619
+
6154
5620
  zeros_op=Zeros()
6155
5621
 
6156
5622
  def zeros(size, dtype=None):
6157
5623
  r"""
6158
- Creates a tensor filled with value zeros, whose shape and type are described by the first argument `size` and second argument `dtype` respectively.
5624
+ Creates a tensor filled with 0 with shape described by `size` and fills it with value 0 in type of `dtype`.
6159
5625
 
6160
5626
  .. warning::
6161
5627
  For argument `size`, Tensor type input will be deprecated in the future version.
@@ -6185,259 +5651,3 @@ def zeros(size, dtype=None):
6185
5651
  [0. 0.]]
6186
5652
  """
6187
5653
  return zeros_op(size, dtype)
6188
-
6189
-
6190
- def grouped_matmul(x, weight, bias=None, scale=None, offset=None, antiquant_scale=None, antiquant_offset=None, group_list=None, split_item=0, group_type=-1):
6191
- r"""
6192
- Group calculation matmul.
6193
-
6194
- ** Non-Quant: **
6195
-
6196
- .. math::
6197
- y_i = x_i\times weight_i + bias_i
6198
-
6199
- ** Antiquant-Quant: **
6200
-
6201
- .. math::
6202
- y_i = x_i\times (weight_i + antiquant\_offset_i) * antiquant\_scale_i + bias_i
6203
-
6204
- Args:
6205
- split_item (int): Splitting input mode. Only support 0 and 3. 0 represents multiple Tensors, and 3 represents a single Tensor.
6206
- group_type (int): The axis to be split. Only support -1 and 0. If the matrix is multiplied by A[m,k]xB[k,n]=C[m,n].
6207
- -1: No grouping, 0: Group on the m-axis
6208
-
6209
- Inputs:
6210
- x (TensorList): TensorList, including 2D-6D Tensors. Supported dtypes: Float16, Float32.
6211
- The shape of the tensor in tensorlist is :math:`(M, N)` or :math:`(..., M, N)`.
6212
- weight (TensorList): TensorList, include 2D-3D Tensors. Supported dtypes: Float16, Float32, int8.
6213
- The shape of the tensor in tensorlist is :math:`(N, K)` or :math:`(E, N, K)`.
6214
- bias (TensorList, optional): TensorList, include 1D-2D Tensors. Supported dtypes: Float16, Float32. If not used, None.
6215
- Length is the same as the weight length. The shape of the tensor is :math:`(N)` or :math:`(E, N)`.
6216
- scale (TensorList, optional): TensorList, scale factor of quant(A8W8) parameters. Supported dtypes: Unit64.
6217
- Length is the same as the weight length. Currently not supported, use None.
6218
- offset (TensorList, optional): TensorList, offset of quant(A8W8) parameters. Supported dtypes: Float32.
6219
- Length is the same as the weight length. Currently not supported, use None.
6220
- antiquant_scale (TensorList, optional): TensorList, scale factor of antiquant(A16W8) parameters. Supported dtypes: Float16.
6221
- Length is the same as the weight length. Only use in antiquant. If not used, None.
6222
- antiquant_offset (TensorList, optional): TensorList, offset factor of antiquant(A16W8) parameters. Supported dtypes: Float16.
6223
- Length is the same as the weight length. Only use in antiquant. If not used, None.
6224
- group_list (Tensor, optional): Grouping positions for the M-axis of input x. Supported dtypes: Int64
6225
-
6226
-
6227
- Parameter limitations 1
6228
- =========== ============ =========== ====================================================================================================
6229
- split_item group_type group_list notes
6230
- =========== ============ =========== ====================================================================================================
6231
- 0 -1 None The length of x is n, tensor in x must be 2D-6D. The length of weight is n, tensor in weight must be 2D.
6232
- 3 0 1D Tensor The length of x is 1, tensor in x must be 2D. The length of weight is 1, tensor in weight must be 3D.
6233
- (group_list.shape)[0] must be equal to (weight.shape)[0]
6234
- The last number in group_list needs to be equal to the 0th dimension of the shape with weight
6235
- =========== ============ =========== ====================================================================================================
6236
-
6237
- Parameter limitations 2
6238
- Non-quant tyep table
6239
- ========= ========= ========= ========= ========= ================ ================= =========
6240
- x weight bias scale offset antiquant_scale antiquant_offset y
6241
- ========= ========= ========= ========= ========= ================ ================= =========
6242
- Float16 Float16 Float16 None None None None Float16
6243
- ========= ========= ========= ========= ========= ================ ================= =========
6244
-
6245
- Parameter limitations 3
6246
- Only in split_item=3, group_type=0
6247
- ========= ========= ========= ========= ========= ================ ================= =========
6248
- x weight bias scale offset antiquant_scale antiquant_offset y
6249
- ========= ========= ========= ========= ========= ================ ================= =========
6250
- Float32 Float32 Float32 None None None None Float32
6251
- ========= ========= ========= ========= ========= ================ ================= =========
6252
-
6253
- Outputs:
6254
- y (TensorList): TensorList, include 2D Tensors. The shape of the tensor is :math:`(M, K)`.
6255
-
6256
- Raises:
6257
- TypeError: If `split_item` is not 0 or 3.
6258
- TypeError: If `group_type` is not -1 or 0.
6259
- TypeError: when `split_item` is 0, `group_type` is not -1.
6260
- TypeError: when `split_item` is 3, `group_type` is not 0.
6261
- TypeError: when `split_item` is 3, `group_list` is None.
6262
-
6263
- Supported Platforms:
6264
- ``Ascend``
6265
-
6266
- Examples:
6267
- >>> import mindspore as ms
6268
- >>> import numpy as np
6269
- >>> from mindspore import nn, context
6270
- >>> from mindspore.ops.auto_generate import GroupedMatmul
6271
- >>> class Net(nn.Cell):
6272
- ... def __init__(self, split_item=3, group_type=0):
6273
- ... super(Net, self).__init__()
6274
- ... self.gmm = GroupedMatmul(split_item, group_type)
6275
- ...
6276
- ... def construct(self, x, weight, bias, scale, offset, antiquant_scale, antiquant_offset, group_list):
6277
- ... result = self.gmm(x, weight, bias, scale, offset, antiquant_scale, antiquant_offset, group_list)
6278
- ... return result
6279
- ...
6280
- >>> context.set_context(device_target="Ascend", mode=ms.GRAPH_MODE)
6281
- >>> x = [ms.Tensor(np.array([[0, 0, 0, 0],
6282
- ... [1, 1, 1, 1],
6283
- ... [2, 2, 2, 2],
6284
- ... [2, 2, 2, 2],
6285
- ... [1, 1, 1, 1],
6286
- ... [1, 1, 1, 1]]), ms.float16)]
6287
- >>> weight = [ms.Tensor(np.arange(32).reshape((4, 4, 2)), ms.float16)]
6288
- >>> bias = None
6289
- >>> scale = None
6290
- >>> offset = None
6291
- >>> antiquant_scale = None
6292
- >>> antiquant_offset = None
6293
- >>> group_list = ms.Tensor([1, 3, 4, 6], ms.int64)
6294
- >>> net = Net()
6295
- >>> output = net(x, weight, bias, scale, offset, antiquant_scale, antiquant_offset, group_list)
6296
- >>> print(output[0])
6297
- [[0 0 ]
6298
- [44 48 ]
6299
- [88 96 ]
6300
- [152 160]
6301
- [108 112]
6302
- [108 112]]
6303
- """
6304
- return grouped_matmul_impl(x, weight, bias, scale, offset, antiquant_scale, antiquant_offset, group_list, split_item, group_type)
6305
-
6306
-
6307
- def kv_cache_scatter_update(var, indices, updates, axis, reduce='none'):
6308
- r"""
6309
- Update var with updates and indices along sequence axis.
6310
-
6311
- Args:
6312
- var (Tensor): 4-D tensor, the target tensor.
6313
- indices (Tensor): 1-D tensor, the index tensor.
6314
- updates (Tensor): 4-D tensor, the tensor doing the update operation.
6315
- axis (Int): Which axis to scatter, can be '-1' and '-2'.
6316
- reduce (String): Scatter mode, default to string "none" and can be "update".
6317
-
6318
- Returns:
6319
- Tensor, has the same data type and shape as original `var`.
6320
-
6321
- Supported Platforms:
6322
- ``Ascend``
6323
-
6324
- Examples:
6325
- >>> import mindspore
6326
- >>> import numpy as np
6327
- >>> from mindspore import Tensor, ops
6328
- >>> from mindspore.ops.operations._infer_ops import KVCacheScatterUpdate
6329
- >>> kv_cache_scatter_update_op = KVCacheScatterUpdate()
6330
- >>> var_shape = [1, 5, 128, 4096]
6331
- >>> var = np.random.uniform(low=1, high=10, size=var_shape).astype(np.float32)
6332
- >>> indices_shape = [1]
6333
- >>> indices = np.random.randint(low=1, high=10, size=indices_shape).astype(np.int64)
6334
- >>> updates_shape = [1, 5, 128, 1]
6335
- >>> updates = np.random.uniform(low=1, high=10, size=updates_shape).astype(np.float32)
6336
- >>> output = kv_cache_scatter_update_op(Tensor(var), Tensor(indices), Tensor(updates), -1, 'update')
6337
- >>> print(output.shape)
6338
- """
6339
- return kv_cache_scatter_update_op(var, indices, updates, axis, reduce)
6340
-
6341
-
6342
- def moe_finalize_routing(expanded_x, x1, x2=None, bias=None, scales=None, expanded_row_idx=None, expanded_expert_idx=None):
6343
- r"""
6344
- In MoE calculation, merge the results output by FFN and rearrange the output in time order by experts.
6345
-
6346
- Notes:
6347
- - E: The number of experts, such as 8.
6348
- - K: The number of experts selected by a token, such as 1 or 2.
6349
- - N: The number of rows in x1, which is the number of original tokens.
6350
- - H: The number of cols in x1, which is the hiddens of tokens.
6351
-
6352
- .. math::
6353
-
6354
- expertid = expanded_expert_idx[i,k]
6355
- out(i,j) = x1_{i,j} + x2_{i,j} + \sum_{k=0}^{K}(scales_{i,k}*(expanded\_x_{expanded\_row\_idx_{i+k*N},j} + bias_{expertid,j}))
6356
-
6357
- Inputs:
6358
- expanded_x (Tensor): The output of MoE FFN. The tensor must be 2D tensor. The shape of the tensor must be :math:`(K*N, H)`.
6359
- Supported dtypes: Float16, Float32.
6360
- x1 (Tensor): The output of attention. The tensor must be 2D tensor. The shape of the tensor must be :math:`(N, H)`.
6361
- Data type requirements should be consistent with expanded_x.
6362
- If not used, the required values to be passed are all 0, The shape of the Tensor meets the requirements
6363
- x2 (Tensor, optional): The output of attention. The tensor must be 2D tensor. The shape of the tensor must be :math:`(N, H)`. If not used, None.
6364
- Data type requirements should be consistent with expanded_x.
6365
- bias (Tensor): The bias of the last matmul in MoE FFN. The tensor must be 2D tensor. The shape of the tensor must be :math:`(E, H)`.
6366
- Data type requirements should be consistent with expanded_x.
6367
- scales (Tensor): Weighted expanded when each token corresponds to multiple experts. The tensor must be 2D tensor.
6368
- The shape of the tensor must be :math:`(N, K)`. Data type requirements should be consistent with expanded_x.
6369
- If not used, the required values to be passed are all 1. The shape of the Tensor meets the requirements
6370
- expanded_row_idx (Tensor): The index in time order. The tensor must be 1D tensor. The shape of the tensor must be :math:`(K*N)`. Supported dtypes: Int32.
6371
- The value in Tensor must be between 0 and K*N, and the value cannot be repeated.
6372
- expanded_expert_idx (Tensor): The experts selected for each token are used to find the bias of which experts need to be accumulated.
6373
- The tensor must be 2D tensor. The shape of the tensor must be :math:`(N, K)`. Supported dtypes: Int32.
6374
-
6375
- Outputs:
6376
- Tensor, the merged and sorted results. The tensor is 2D tensor. The shape of the tensor is :math:`(N, H)`. Data type consistent with expanded_x.
6377
-
6378
- Raises:
6379
- TypeError: If the data type of input Tensor does not match the description in args.
6380
- ShapeError: If the shape of input Tensor does not match the description in args.
6381
-
6382
- Supported Platforms:
6383
- ``Ascend``
6384
-
6385
- Examples:
6386
- >>> import mindspore as ms
6387
- >>> import numpy as np
6388
- >>> from mindspore import Tensor, nn, context
6389
- >>> from mindspore.ops.auto_generate import MoeFinalizeRouting
6390
- >>> class Net(nn.Cell):
6391
- ... def __init__(self):
6392
- ... super(Net, self).__init__()
6393
- ... self.moe_finalize_routing = MoeFinalizeRouting()
6394
- ...
6395
- ... def construct(self, expanded_x, x1, x2, bias, scales, expanded_row_idx, expanded_expert_idx):
6396
- ... result = self.moe_finalize_routing(expanded_x, x1, x2, bias, scales, expanded_row_idx, expanded_expert_idx)
6397
- ... return result
6398
- ...
6399
- >>> context.set_context(device_target="Ascend", mode=ms.GRAPH_MODE)
6400
- >>> # E = 4, K = 2, N = 3, H = 4
6401
- >>> expanded_x = ms.Tensor(np.array([[0.1, 0.1, 0.1, 0.1],
6402
- ... [0.2, 0.2, 0.2, 0.2],
6403
- ... [0.3, 0.3, 0.3, 0.3],
6404
- ... [0.1, 0.1, 0.1, 0.1],
6405
- ... [0.2, 0.2, 0.2, 0.2],
6406
- ... [0.3, 0.3, 0.3, 0.3]]), ms.float16)
6407
- >>> x1 = ms.Tensor(np.array([[1, 1, 1, 1],
6408
- ... [0.2, 0.2, 0.2, 0.2],
6409
- ... [0.3, 0.3, 0.3, 0.3]]), ms.float16)
6410
- >>> x2 = None
6411
- >>> bias = ms.Tensor(np.array([[0.1, 0.1, 0.1, 0.1],
6412
- ... [0.2, 0.2, 0.2, 0.2],
6413
- ... [0.3, 0.3, 0.3, 0.3],
6414
- ... [0.4, 0.4, 0.4, 0.4]]), ms.float16)
6415
- >>> scales = ms.Tensor(np.array([[0.7, 0.3],
6416
- ... [0.8, 0.2],
6417
- ... [0.8, 0.2]]), ms.float16)
6418
- >>> expanded_row_idx = ms.Tensor(np.array([2, 3, 1, 0, 5, 4]), ms.int32)
6419
- >>> expanded_expert_idx = ms.Tensor(np.array([[0, 1],
6420
- ... [0, 2],
6421
- ... [1, 3]]), ms.int32)
6422
- >>> net = Net()
6423
- >>> output = net(expanded_x, x1, x2, bias, scales, expanded_row_idx, expanded_expert_idx)
6424
- >>> print(output)
6425
- [[1.37 1.37 1.37 1.37]
6426
- [0.48 0.48 0.48 0.48]
6427
- [0.74 0.74 0.74 0.74]]
6428
- """
6429
- return moe_finalize_routing_op(expanded_x, x1, x2, bias, scales, expanded_row_idx, expanded_expert_idx)
6430
-
6431
-
6432
- def quant_batch_matmul(x1, x2, scale, offset=None, bias=None, transpose_x1=False, transpose_x2=False, dtype=mstype.float16):
6433
- r"""
6434
-
6435
- """
6436
- return quant_batch_matmul_impl(x1, x2, scale, offset, bias, transpose_x1, transpose_x2, dtype)
6437
-
6438
-
6439
- def weight_quant_batch_matmul(x, weight, antiquant_scale, antiquant_offset=None, quant_scale=None, quant_offset=None, bias=None, transpose_x=False, transpose_weight=False, antiquant_group_size=0):
6440
- r"""
6441
-
6442
- """
6443
- return weight_quant_batch_matmul_impl(x, weight, antiquant_scale, antiquant_offset, quant_scale, quant_offset, bias, transpose_x, transpose_weight, antiquant_group_size)