microlive 1.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- microlive/__init__.py +50 -0
- microlive/data/__init__.py +0 -0
- microlive/data/icons/__init__.py +0 -0
- microlive/data/icons/icon_micro.png +0 -0
- microlive/data/models/__init__.py +0 -0
- microlive/gui/__init__.py +1 -0
- microlive/gui/app.py +16340 -0
- microlive/gui/main.py +86 -0
- microlive/gui/micro_mac.command +18 -0
- microlive/gui/micro_windows.bat +24 -0
- microlive/imports.py +209 -0
- microlive/microscopy.py +13321 -0
- microlive/ml_spot_detection.py +252 -0
- microlive/pipelines/__init__.py +17 -0
- microlive/pipelines/pipeline_FRAP.py +1225 -0
- microlive/pipelines/pipeline_folding_efficiency.py +297 -0
- microlive/pipelines/pipeline_particle_tracking.py +489 -0
- microlive/pipelines/pipeline_spot_detection_no_tracking.py +368 -0
- microlive/utils/__init__.py +13 -0
- microlive/utils/device.py +99 -0
- microlive/utils/resources.py +60 -0
- microlive-1.0.11.dist-info/METADATA +361 -0
- microlive-1.0.11.dist-info/RECORD +26 -0
- microlive-1.0.11.dist-info/WHEEL +4 -0
- microlive-1.0.11.dist-info/entry_points.txt +2 -0
- microlive-1.0.11.dist-info/licenses/LICENSE +674 -0
|
@@ -0,0 +1,297 @@
|
|
|
1
|
+
"""Pipeline module for MicroLive.
|
|
2
|
+
|
|
3
|
+
This module is part of the microlive package.
|
|
4
|
+
"""
|
|
5
|
+
from microlive.imports import *
|
|
6
|
+
|
|
7
|
+
def metadata_folding_efficiency(filename,computer_user_name,original_lif_name, SNR_SELECTION_FOR_CHANNEL_1, SNR_SELECTION_FOR_CHANNEL_0, MIN_LEN_TRAJECTORY, MEMORY,
|
|
8
|
+
SPOT_SIZE_PX, PLOT_FILTERED_IMAGES, MIN_INTENSITY_FOR_BACKGROUND, MIN_SPOTS_FOR_BACKGROUND,use_max_tem_projection_for_plotting,
|
|
9
|
+
max_spots_for_threshold, channels_cytosol, channels_nucleus, pixel_xy_um, voxel_z_um, channel_for_tracking, channel_folding,
|
|
10
|
+
CROP_SIZE_PX, max_crops_to_display, selected_time_point, list_quality_text,maximum_spots_cluster,ml_threshold,use_ml_for_spot_clasification):
|
|
11
|
+
|
|
12
|
+
metadata = {
|
|
13
|
+
"computer_user_name": computer_user_name,
|
|
14
|
+
"Date and Time": pd.Timestamp.now().round('min'),
|
|
15
|
+
"original_lif_name": original_lif_name,
|
|
16
|
+
"SNR_SELECTION_FOR_CHANNEL_1": SNR_SELECTION_FOR_CHANNEL_1,
|
|
17
|
+
"SNR_SELECTION_FOR_CHANNEL_0": SNR_SELECTION_FOR_CHANNEL_0,
|
|
18
|
+
"MIN_LEN_TRAJECTORY": MIN_LEN_TRAJECTORY,
|
|
19
|
+
"MEMORY": MEMORY,
|
|
20
|
+
"SPOT_SIZE_PX": SPOT_SIZE_PX,
|
|
21
|
+
"PLOT_FILTERED_IMAGES": PLOT_FILTERED_IMAGES,
|
|
22
|
+
"MIN_INTENSITY_FOR_BACKGROUND": MIN_INTENSITY_FOR_BACKGROUND,
|
|
23
|
+
"MIN_SPOTS_FOR_BACKGROUND": MIN_SPOTS_FOR_BACKGROUND,
|
|
24
|
+
"use_max_tem_projection_for_plotting": use_max_tem_projection_for_plotting,
|
|
25
|
+
"max_spots_for_threshold": max_spots_for_threshold,
|
|
26
|
+
"channels_cytosol": channels_cytosol,
|
|
27
|
+
"channels_nucleus": channels_nucleus,
|
|
28
|
+
"pixel_xy_nm": int(pixel_xy_um ),
|
|
29
|
+
"voxel_z_nm": int(voxel_z_um ),
|
|
30
|
+
"list_voxels": [int(voxel_z_um ), int(pixel_xy_um )],
|
|
31
|
+
"list_psfs": [int(voxel_z_um ), int(pixel_xy_um )],
|
|
32
|
+
"channel_for_tracking": channel_for_tracking,
|
|
33
|
+
"channel_folding": channel_folding,
|
|
34
|
+
"CROP_SIZE_PX": CROP_SIZE_PX,
|
|
35
|
+
"max_crops_to_display": max_crops_to_display,
|
|
36
|
+
"selected_time_point": selected_time_point,
|
|
37
|
+
"maximum_spots_cluster": maximum_spots_cluster,
|
|
38
|
+
"ml_threshold": ml_threshold,
|
|
39
|
+
"use_ml_for_spot_clasification": use_ml_for_spot_clasification
|
|
40
|
+
}
|
|
41
|
+
|
|
42
|
+
with open(filename, 'w') as file:
|
|
43
|
+
max_key_length = max(len(key) for key in metadata.keys())
|
|
44
|
+
for key, value in metadata.items():
|
|
45
|
+
file.write(f"{key.ljust(max_key_length)} : {value}\n")
|
|
46
|
+
|
|
47
|
+
file.write("\nProcessed Files:\n")
|
|
48
|
+
for index, name in enumerate(list_quality_text, start=1):
|
|
49
|
+
file.write(f"{index}. {name}\n")
|
|
50
|
+
return None
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def pipeline_folding_efficiency(original_lif_name, list_images,list_images_names, data_folder_path, current_dir, list_psfs, list_voxels,
|
|
54
|
+
max_spots_for_threshold, MIN_INTENSITY_FOR_BACKGROUND,MIN_SPOTS_FOR_BACKGROUND, use_max_tem_projection_for_plotting,
|
|
55
|
+
channel_for_tracking,channel_folding, channel_names,crop_size,max_crops_to_display,results_folder_summary,SNR_SELECTION_FOR_CHANNEL_0,
|
|
56
|
+
SNR_SELECTION_FOR_CHANNEL_1,selected_time_point,voxel_z_nm,channels_cytosol,channels_nucleus, PLOT_FILTERED_IMAGES,SPOT_SIZE_PX,
|
|
57
|
+
MEMORY,MIN_LEN_TRAJECTORY,low_quality_pdf,maximum_spots_cluster,ml_threshold,use_ml_for_spot_clasification,pixel_xy_um):
|
|
58
|
+
list_images_quality = []
|
|
59
|
+
list_results_df =[]
|
|
60
|
+
date_lif = data_folder_path.stem[:8]
|
|
61
|
+
construct_lif = data_folder_path.stem[9:]
|
|
62
|
+
list_image_paths_for_pdf = []
|
|
63
|
+
path_summary_df = results_folder_summary.joinpath('results_quantification_'+original_lif_name+ '.csv')
|
|
64
|
+
path_summary_pdf= results_folder_summary.joinpath('results_quantification_'+original_lif_name+'.pdf')
|
|
65
|
+
path_summary_metadata = results_folder_summary.joinpath('metadata_'+original_lif_name+'.txt')
|
|
66
|
+
path_summary_wisker_plot = results_folder_summary.joinpath('results_efficiency_'+original_lif_name+ '.png')
|
|
67
|
+
path_summary_croparray = results_folder_summary.joinpath('croparray_'+original_lif_name+'.pdf')
|
|
68
|
+
list_quality_text = []
|
|
69
|
+
list_crop_array_paths = []
|
|
70
|
+
list_tracking_success = []
|
|
71
|
+
for selected_image, image_TZYXC in enumerate( list_images):
|
|
72
|
+
print('Processing image:', selected_image)
|
|
73
|
+
results_name = f'results_{data_folder_path.stem}_cell_id_{selected_image}'
|
|
74
|
+
results_folder = current_dir.joinpath('results_folding', results_name)
|
|
75
|
+
results_folder.mkdir(parents=True, exist_ok=True)
|
|
76
|
+
mi.Utilities().clear_folder_except_substring(results_folder, 'mask')
|
|
77
|
+
# Clean up existing files
|
|
78
|
+
results_df = results_folder.joinpath('results_df.csv')
|
|
79
|
+
path_efficiency_df = results_folder.joinpath('results_df_efficiency.csv')
|
|
80
|
+
path_quantification_image = results_folder.joinpath('results_image.png')
|
|
81
|
+
path_tracking_df = results_folder.joinpath('results_df_tracking.csv')
|
|
82
|
+
path_crop_array = results_folder.joinpath('crop_array.png')
|
|
83
|
+
list_crop_array_paths.append(path_crop_array)
|
|
84
|
+
for path in [path_efficiency_df, path_quantification_image, path_tracking_df, results_df, path_summary_df, path_summary_pdf, path_summary_metadata, path_summary_wisker_plot,path_summary_croparray]:
|
|
85
|
+
if path.exists():
|
|
86
|
+
path.unlink()
|
|
87
|
+
# Read the masks and calculate the threshold
|
|
88
|
+
mask_file_name = f'mask_{data_folder_path.stem}_image_{selected_image}.tif'
|
|
89
|
+
masks = imread(str(results_folder.joinpath(mask_file_name))).astype(bool)
|
|
90
|
+
threshold_tracking = mi.Utilities().calculate_threshold_for_spot_detection(image_TZYXC, list_psfs, list_voxels, [channel_for_tracking], max_spots_for_threshold, show_plot=True)
|
|
91
|
+
print('Threshold for tracking:', threshold_tracking)
|
|
92
|
+
# Plot histograms and check image quality
|
|
93
|
+
plot_name_histogram = results_folder.joinpath('pixel_histogram_in_cell.png')
|
|
94
|
+
masked_data = image_TZYXC * masks[np.newaxis, np.newaxis, :, :, np.newaxis].astype(float)
|
|
95
|
+
list_median_intensity = mi.Plots().plot_image_pixel_intensity_distribution(image=np.mean(masked_data, axis=0), figsize=(14, 3), bins=100, remove_outliers=True, remove_zeros=True, save_plots=True, plot_name=plot_name_histogram, single_color=None, list_colors=channel_names, tracking_channel=channel_for_tracking, threshold_tracking=threshold_tracking)
|
|
96
|
+
# Image quality assessment
|
|
97
|
+
text_image_quality = ' - [LOW QUALITY IMAGE]' if threshold_tracking < MIN_INTENSITY_FOR_BACKGROUND else ''
|
|
98
|
+
image_to_plot, suptitle_suffix = (np.max(image_TZYXC, axis=0), '- Maximum time projection') if use_max_tem_projection_for_plotting else (image_TZYXC[0], '')
|
|
99
|
+
suptitle = f'Image: {data_folder_path.stem[:16]}- {list_images_names[selected_image]} - Cell_ID: {selected_image} {text_image_quality} {suptitle_suffix}'
|
|
100
|
+
plot_name_original_image = results_folder.joinpath('original_image.png')
|
|
101
|
+
mi.Plots().plot_images(image_to_plot, df=None, masks=masks, figsize=(14, 3), suptitle=suptitle, show_plot=True, selected_time=0, use_maximum_projection=True, use_gaussian_filter=True, cmap='binary', min_max_percentile=[0.01, 99.2], show_gird=False, save_plots=True, plot_name=plot_name_original_image)
|
|
102
|
+
if threshold_tracking < MIN_INTENSITY_FOR_BACKGROUND:
|
|
103
|
+
path_image_quality = results_folder.joinpath('results_image_quality.png')
|
|
104
|
+
mi.Utilities().combine_images_vertically([plot_name_original_image, plot_name_histogram], path_image_quality, delete_originals=True)
|
|
105
|
+
list_image_paths_for_pdf.append(path_image_quality)
|
|
106
|
+
list_quality_text.append(list_images_names[selected_image] + ' Rejected : Low quality')
|
|
107
|
+
list_tracking_success.append(False)
|
|
108
|
+
else:
|
|
109
|
+
# particle tracking
|
|
110
|
+
try:
|
|
111
|
+
list_dataframes_trajectories, _ = mi.ParticleTracking (image=image_TZYXC,channels_spots= [channel_for_tracking], masks=masks, memory=MEMORY ,list_voxels=list_voxels,list_psfs=list_psfs, channels_cytosol=channels_cytosol,channels_nucleus=channels_nucleus,min_length_trajectory=MIN_LEN_TRAJECTORY,threshold_for_spot_detection=threshold_tracking,yx_spot_size_in_px=SPOT_SIZE_PX,maximum_spots_cluster=maximum_spots_cluster).run()
|
|
112
|
+
df_tracking= list_dataframes_trajectories[0]
|
|
113
|
+
except:
|
|
114
|
+
df_tracking = pd.DataFrame()
|
|
115
|
+
if df_tracking.empty:
|
|
116
|
+
list_quality_text.append(list_images_names[selected_image] + ' Rejected : No spots detected')
|
|
117
|
+
list_tracking_success.append(False)
|
|
118
|
+
else:
|
|
119
|
+
# remove low quality tracks. those that have a SNR less a threshold
|
|
120
|
+
field_for_quality = 'snr_ch_1' # 'snr_ch_1'
|
|
121
|
+
array_selected_field_ch1= mi.Utilities().df_trajectories_to_array(dataframe=df_tracking, selected_field=field_for_quality, fill_value='nans')
|
|
122
|
+
mean_selected_field_quality = np.nanmean(array_selected_field_ch1, axis=1)
|
|
123
|
+
indices_low_quality_tracks = np.where(mean_selected_field_quality < SNR_SELECTION_FOR_CHANNEL_1 )[0] # SNR_SELECTION_FOR_CHANNEL_1
|
|
124
|
+
# removing low quality tracks
|
|
125
|
+
df_tracking = df_tracking[~df_tracking['particle'].isin(indices_low_quality_tracks)]
|
|
126
|
+
df_tracking = df_tracking.reset_index(drop=True)
|
|
127
|
+
df_tracking['particle'] = df_tracking.groupby('particle').ngroup()
|
|
128
|
+
if df_tracking.empty:
|
|
129
|
+
list_quality_text.append(list_images_names[selected_image] + ' Rejected : No spots detected')
|
|
130
|
+
list_tracking_success.append(False)
|
|
131
|
+
continue
|
|
132
|
+
else:
|
|
133
|
+
list_images_quality.append(selected_image)
|
|
134
|
+
plot_name_original_image_spots = results_folder.joinpath('original_image_spots.png')
|
|
135
|
+
if use_max_tem_projection_for_plotting:
|
|
136
|
+
image_to_plot = np.max(image_TZYXC,axis=0)
|
|
137
|
+
max_time_projection_title = '- Maximum time projection'
|
|
138
|
+
selected_time = None
|
|
139
|
+
else:
|
|
140
|
+
image_to_plot = image_TZYXC[0]
|
|
141
|
+
max_time_projection_title = ''
|
|
142
|
+
selected_time = 0
|
|
143
|
+
suptitle = 'Image: ' + data_folder_path.stem[:16]+'- '+list_images_names[selected_image] +' - Cell_ID: '+ str(selected_image) + max_time_projection_title
|
|
144
|
+
mi.Plots().plot_images(image_ZYXC=image_to_plot, df=df_tracking, masks=masks,figsize=(14, 3), show_trajectories=True, suptitle=suptitle,show_plot=True,selected_time=selected_time, use_maximum_projection=True, use_gaussian_filter=True,cmap='binary',min_max_percentile=[0.01,99.2],show_gird=False,save_plots=True,plot_name=plot_name_original_image_spots)
|
|
145
|
+
# crops
|
|
146
|
+
selected_field = 'snr' # options are: psf_sigma, snr, 'spot_int'
|
|
147
|
+
plot_name_selected_field = results_folder.joinpath('spots_'+selected_field+'.png')
|
|
148
|
+
array_selected_field_ch0= mi.Utilities().df_trajectories_to_array(dataframe=df_tracking, selected_field=selected_field+'_ch_0', fill_value='nans')
|
|
149
|
+
array_selected_field_ch1= mi.Utilities().df_trajectories_to_array(dataframe=df_tracking, selected_field=selected_field+'_ch_1', fill_value='nans')
|
|
150
|
+
mi.Plots().plot_crops_properties(list_particles_arrays=[array_selected_field_ch0, array_selected_field_ch1],figsize=(15, 3),save_plots=True,plot_name=plot_name_selected_field,selection_threshold=SNR_SELECTION_FOR_CHANNEL_0, label =selected_field,list_colors=channel_names)
|
|
151
|
+
# plot snr histogram
|
|
152
|
+
plot_name_snr = results_folder.joinpath('histogram_snr.png')
|
|
153
|
+
mean_snr = mi.Plots().plot_histograms_from_df(df_tracking, selected_field=selected_field,figsize=(8,2), plot_name=plot_name_snr, bin_count=60, save_plot=True, list_colors= channel_names,remove_outliers=True)
|
|
154
|
+
# plot crops
|
|
155
|
+
normalize_each_particle = True
|
|
156
|
+
if PLOT_FILTERED_IMAGES:
|
|
157
|
+
filtered_image = mi.Utilities().gaussian_laplace_filter_image(image_TZYXC,list_psfs,list_voxels)
|
|
158
|
+
croparray_filtered, mean_crop_filtered, first_appearance, crop_size = mi.CropArray(image=filtered_image, df_crops=df_tracking, crop_size=crop_size, remove_outliers=False, max_percentile=99.9,selected_time_point=selected_time_point,normalize_each_particle=normalize_each_particle).run()
|
|
159
|
+
else:
|
|
160
|
+
croparray_filtered, mean_crop_filtered, first_appearance, crop_size = mi.CropArray(image=image_TZYXC, df_crops=df_tracking, crop_size=crop_size, remove_outliers=False, max_percentile=99.9,selected_time_point=selected_time_point,normalize_each_particle=normalize_each_particle).run()
|
|
161
|
+
# extracting crops from the croparray
|
|
162
|
+
number_particles = croparray_filtered.shape[1]//crop_size
|
|
163
|
+
number_time_points = croparray_filtered.shape[0]//crop_size
|
|
164
|
+
|
|
165
|
+
list_crops_selected_particle_all_time_points = []
|
|
166
|
+
for particle_id in range(number_particles):
|
|
167
|
+
list_crops_selected_particle = []
|
|
168
|
+
for time_point in range(number_time_points):
|
|
169
|
+
crop = croparray_filtered[time_point * crop_size: (time_point + 1) * crop_size, particle_id * crop_size: (particle_id + 1) * crop_size, :]
|
|
170
|
+
list_crops_selected_particle.append(crop)
|
|
171
|
+
list_crops_selected_particle_all_time_points.append(list_crops_selected_particle)
|
|
172
|
+
# detect spots in Channel 0
|
|
173
|
+
if use_ml_for_spot_clasification:
|
|
174
|
+
list_crops_nomalized = mi.Utilities().normalize_crop_return_list(array_crops_YXC=mean_crop_filtered,crop_size=crop_size,selected_color_channel=channel_folding,normalize_to_255=True)
|
|
175
|
+
flag_vector = ML.predict_crops(model_ML, list_crops_nomalized,threshold=ml_threshold)
|
|
176
|
+
#flag_vector= mi.Utilities().test_particle_presence_all_frames_with_ML(croparray=croparray_filtered,crop_size=crop_size,selected_color_channel=0,minimal_number_spots_in_time=4,ml_threshold=ml_threshold)
|
|
177
|
+
else:
|
|
178
|
+
number_crops = mean_crop_filtered.shape[0]//crop_size
|
|
179
|
+
flag_vector = np.zeros(number_crops, dtype=bool)
|
|
180
|
+
for crop_id in range(number_crops):
|
|
181
|
+
flag_vector[crop_id]= mi.Utilities().is_spot_in_crop(crop_id, crop_size=crop_size, selected_color_channel=channel_folding, array_crops_YXC=mean_crop_filtered,show_plot=False)
|
|
182
|
+
plot_name_crops_filter = results_folder.joinpath('crops.png')
|
|
183
|
+
mi.Plots().plot_matrix_pair_crops (mean_crop_filtered, crop_size,save_plots=True,plot_name=plot_name_crops_filter,flag_vector=flag_vector)
|
|
184
|
+
# Calculating folding efficiency and saving to dataframe
|
|
185
|
+
number_of_detected_particles_ch1 = array_selected_field_ch1.shape[0]
|
|
186
|
+
if number_of_detected_particles_ch1 < MIN_SPOTS_FOR_BACKGROUND:
|
|
187
|
+
list_quality_text.append(list_images_names[selected_image] + ' Rejected : less than ' + str(MIN_SPOTS_FOR_BACKGROUND)+ ' spots detected')
|
|
188
|
+
list_tracking_success.append(False)
|
|
189
|
+
else:
|
|
190
|
+
list_quality_text.append(list_images_names[selected_image] + ' Accepted')
|
|
191
|
+
list_tracking_success.append(True)
|
|
192
|
+
particles_above_threshold = np.sum(flag_vector)
|
|
193
|
+
efficiency = particles_above_threshold / number_of_detected_particles_ch1
|
|
194
|
+
df_folding_efficiency = pd.DataFrame({'Series': list_images_names[selected_image],'cell_index': np.array([selected_image]),
|
|
195
|
+
'spots_ch1':number_of_detected_particles_ch1,
|
|
196
|
+
'spots_ch0_above_ts':particles_above_threshold,
|
|
197
|
+
'ts_int_ch1': threshold_tracking,
|
|
198
|
+
'ts_snr': SNR_SELECTION_FOR_CHANNEL_0,
|
|
199
|
+
'mean_snr_ch0':np.round(mean_snr[0],2),'mean_snr_ch1':np.round(mean_snr[1],2),
|
|
200
|
+
'median_int_ch0': np.round(list_median_intensity[0],2), 'median_int_ch1': np.round(list_median_intensity[1],2),
|
|
201
|
+
'efficiency':np.round(efficiency,4) })
|
|
202
|
+
df_folding_efficiency['date'] = date_lif
|
|
203
|
+
df_folding_efficiency['construct'] = construct_lif
|
|
204
|
+
# save df_tracking to csv to the results folder
|
|
205
|
+
list_results_df.append(df_folding_efficiency)
|
|
206
|
+
df_folding_efficiency.to_csv(path_efficiency_df, index=False)
|
|
207
|
+
df_tracking.to_csv(path_tracking_df, index=False)
|
|
208
|
+
# plotting the complete croparray
|
|
209
|
+
mi.Plots().plot_croparray(croparray_filtered, crop_size, save_plots=True,plot_name= path_crop_array,suptitle=None,show_particle_labels=True, cmap='binary_r',max_percentile = 99,flag_vector=flag_vector)
|
|
210
|
+
# save the results
|
|
211
|
+
mi.Utilities().combine_images_vertically([plot_name_crops_filter, plot_name_selected_field], results_folder.joinpath('results_quantification.png'), delete_originals=True)
|
|
212
|
+
mi.Utilities().combine_images_vertically([plot_name_original_image,plot_name_original_image_spots, plot_name_histogram,plot_name_snr], results_folder.joinpath('results_image_quality_processed.png'), delete_originals=True)
|
|
213
|
+
mi.Utilities().combine_images_vertically([results_folder.joinpath('results_image_quality_processed.png'), results_folder.joinpath('results_quantification.png')], path_quantification_image, delete_originals=True)
|
|
214
|
+
list_image_paths_for_pdf.append(path_quantification_image)
|
|
215
|
+
# concatenate the final dataframes with the results
|
|
216
|
+
df_quantification = pd.concat(list_results_df)
|
|
217
|
+
df_quantification = df_quantification.reset_index(drop=True)
|
|
218
|
+
df_quantification = df_quantification[df_quantification.columns[-2:].tolist() + df_quantification.columns[:-2].tolist()]
|
|
219
|
+
df_quantification.to_csv(path_summary_df, index=False)
|
|
220
|
+
# create wisker plot
|
|
221
|
+
fig, ax = plt.subplots(figsize=(8, 5))
|
|
222
|
+
df_quantification['location'] = 1
|
|
223
|
+
boxplot = df_quantification.boxplot(column='efficiency', by='location', ax=ax, grid=False, showfliers=False,
|
|
224
|
+
boxprops=dict(color="k", linewidth=2),
|
|
225
|
+
whiskerprops=dict(color="k", linewidth=2),
|
|
226
|
+
medianprops=dict(color="orangered", linewidth=2))
|
|
227
|
+
jitter = 0.02
|
|
228
|
+
df_quantification['jitter'] = np.random.uniform(-jitter, jitter, df_quantification.shape[0])
|
|
229
|
+
df_quantification['lif_name_jitter'] = df_quantification['location'] + df_quantification['jitter']
|
|
230
|
+
scatter = ax.scatter(df_quantification['lif_name_jitter'], df_quantification['efficiency'], color='red', marker='o', edgecolor='black', s=50, alpha=0.7)
|
|
231
|
+
# Customize plot aesthetics
|
|
232
|
+
plt.title('Efficiency of Folding')
|
|
233
|
+
plt.suptitle('') # Remove the default suptitle
|
|
234
|
+
plt.xticks([1], [original_lif_name], fontsize=14) # Set tick labels (enclose original_lif_name in a list if it's a single string)
|
|
235
|
+
plt.yticks(fontsize=14) # Set y-tick labels
|
|
236
|
+
plt.ylabel('Efficiency', fontsize=14)
|
|
237
|
+
plt.xlabel('Dataset', fontsize=14)
|
|
238
|
+
plt.ylim(0, 1)
|
|
239
|
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
|
240
|
+
plt.savefig(path_summary_wisker_plot, dpi=300, bbox_inches='tight')
|
|
241
|
+
plt.show()
|
|
242
|
+
# Create PDF with images and quality text
|
|
243
|
+
pdf = FPDF()
|
|
244
|
+
pdf.set_auto_page_break(auto=True, margin=15)
|
|
245
|
+
pdf.set_font("Arial", size=12)
|
|
246
|
+
for i, image_path in enumerate(list_image_paths_for_pdf):
|
|
247
|
+
pdf.add_page()
|
|
248
|
+
pdf.set_xy(10, 10)
|
|
249
|
+
pdf.cell(0, 10, list_quality_text[i], 0, 1, 'L')
|
|
250
|
+
if low_quality_pdf:
|
|
251
|
+
img = Image.open(image_path)
|
|
252
|
+
base_width = 150 # Desired width in mm in the PDF
|
|
253
|
+
w_percent = (base_width / float(img.size[0]))
|
|
254
|
+
h_size = int((float(img.size[1]) * float(w_percent))) # Height in mm to maintain aspect ratio
|
|
255
|
+
# Temporarily save resized image for quality adjustment
|
|
256
|
+
temp_path = Path(image_path).with_name(Path(image_path).stem + '_temp').with_suffix('.jpg')
|
|
257
|
+
img.save(temp_path, 'JPEG', quality=85) # You can adjust quality to manage file size
|
|
258
|
+
pdf.image(str(temp_path), x=25, y=25, w=base_width, h=h_size) # Now specifying both width and height
|
|
259
|
+
temp_path.unlink() # Delete the temporary file
|
|
260
|
+
else:
|
|
261
|
+
# Directly embed the image at specified dimensions without resizing beforehand
|
|
262
|
+
img = Image.open(image_path)
|
|
263
|
+
w_percent = (150 / float(img.size[0]))
|
|
264
|
+
h_size = int((float(img.size[1]) * float(w_percent))) # Calculate height to maintain aspect ratio
|
|
265
|
+
pdf.image(str(image_path), x=25, y=25, w=150, h=h_size)
|
|
266
|
+
pdf.output(path_summary_pdf)
|
|
267
|
+
|
|
268
|
+
# save metadata
|
|
269
|
+
metadata_folding_efficiency(
|
|
270
|
+
path_summary_metadata,
|
|
271
|
+
computer_user_name=computer_user_name,
|
|
272
|
+
original_lif_name=original_lif_name,
|
|
273
|
+
SNR_SELECTION_FOR_CHANNEL_1=SNR_SELECTION_FOR_CHANNEL_1,
|
|
274
|
+
SNR_SELECTION_FOR_CHANNEL_0=SNR_SELECTION_FOR_CHANNEL_0,
|
|
275
|
+
MIN_LEN_TRAJECTORY=MIN_LEN_TRAJECTORY,
|
|
276
|
+
MEMORY=MEMORY,
|
|
277
|
+
SPOT_SIZE_PX=SPOT_SIZE_PX,
|
|
278
|
+
PLOT_FILTERED_IMAGES=PLOT_FILTERED_IMAGES,
|
|
279
|
+
MIN_INTENSITY_FOR_BACKGROUND=MIN_INTENSITY_FOR_BACKGROUND,
|
|
280
|
+
MIN_SPOTS_FOR_BACKGROUND=MIN_SPOTS_FOR_BACKGROUND,
|
|
281
|
+
use_max_tem_projection_for_plotting=use_max_tem_projection_for_plotting,
|
|
282
|
+
max_spots_for_threshold=max_spots_for_threshold,
|
|
283
|
+
channels_cytosol=channels_cytosol,
|
|
284
|
+
channels_nucleus=channels_nucleus,
|
|
285
|
+
pixel_xy_um=pixel_xy_um,
|
|
286
|
+
voxel_z_um=voxel_z_nm,
|
|
287
|
+
channel_for_tracking=channel_for_tracking,
|
|
288
|
+
channel_folding=channel_folding,
|
|
289
|
+
CROP_SIZE_PX=crop_size,
|
|
290
|
+
max_crops_to_display=max_crops_to_display,
|
|
291
|
+
selected_time_point=selected_time_point,
|
|
292
|
+
list_quality_text = list_quality_text,
|
|
293
|
+
maximum_spots_cluster = maximum_spots_cluster,
|
|
294
|
+
ml_threshold = ml_threshold,
|
|
295
|
+
use_ml_for_spot_clasification = use_ml_for_spot_clasification)
|
|
296
|
+
|
|
297
|
+
return df_quantification
|