mg-pso-gui 0.1.40__py3-none-any.whl → 0.2.75__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/METADATA +10 -11
- mg_pso_gui-0.2.75.dist-info/RECORD +76 -0
- {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/WHEEL +1 -1
- mgpsogui/gui/General/ParameterView.py +110 -0
- mgpsogui/gui/General/__init__.py +0 -0
- mgpsogui/gui/HomePage.py +234 -238
- mgpsogui/gui/OptionManager.py +333 -145
- mgpsogui/gui/OptionManager_backup.py +443 -0
- mgpsogui/gui/PlatformTab/PlatformTab.py +15 -6
- mgpsogui/gui/RunTab/OptimalParameterView.py +47 -0
- mgpsogui/gui/RunTab/RunTab.py +90 -17
- mgpsogui/gui/SetupTab/BoundsEditorWindow.py +1 -1
- mgpsogui/gui/SetupTab/BoundsList.py +97 -34
- mgpsogui/gui/SetupTab/CustomFunctionEditorWindow.py +74 -0
- mgpsogui/gui/SetupTab/CustomFunctionMetrics.py +156 -0
- mgpsogui/gui/SetupTab/FunctionsList.py +60 -6
- mgpsogui/gui/SetupTab/{StaticParameterView.py → ListEditor.py} +27 -16
- mgpsogui/gui/SetupTab/ListParametersView.py +7 -6
- mgpsogui/gui/SetupTab/{CalibrationParametersView.py → OverrideParameterMetrics.py} +35 -9
- mgpsogui/gui/SetupTab/OverrideParameterWindow.py +40 -0
- mgpsogui/gui/SetupTab/SetupTab.py +31 -11
- mgpsogui/gui/SetupTab/StepView.py +93 -22
- mgpsogui/gui/VisualizeTab/MatrixEditor.py +68 -0
- mgpsogui/gui/VisualizeTab/SideBar.py +316 -25
- mgpsogui/gui/VisualizeTab/VisualizeTab.py +69 -8
- mgpsogui/gui/defaults/__init__.py +0 -0
- mgpsogui/gui/defaults/optimization.json +176 -0
- mgpsogui/gui/defaults/sampling.json +111 -0
- mgpsogui/gui/defaults/sensitivity.json +20 -0
- mgpsogui/gui/images/plus.png +0 -0
- mgpsogui/util/GraphGenerator.py +721 -50
- mgpsogui/util/PSORunner.py +615 -86
- mgpsogui/util/debug.py +559 -0
- mgpsogui/util/helpers.py +95 -0
- mgpsogui/util/recosu/__init__.py +2 -1
- mgpsogui/util/recosu/pso/pso.py +55 -11
- mgpsogui/util/recosu/sampling/__init__.py +16 -0
- mgpsogui/util/recosu/sampling/halton/__init__.py +0 -0
- mgpsogui/util/recosu/sampling/halton/halton.py +45 -0
- mgpsogui/util/recosu/sampling/halton/prime.py +82 -0
- mgpsogui/util/recosu/sampling/random/__init__.py +0 -0
- mgpsogui/util/recosu/sampling/random/random_sampler.py +34 -0
- mgpsogui/util/recosu/sampling/sample_trace_writer.py +47 -0
- mgpsogui/util/recosu/sampling/sampler_task.py +75 -0
- mgpsogui/util/recosu/sampling/sampling.py +99 -0
- mgpsogui/util/sampler_test_driver.py +129 -0
- mg_pso_gui-0.1.40.dist-info/RECORD +0 -52
- mgpsogui/gui/images/IGOW 4 Logo.png +0 -0
- {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/entry_points.txt +0 -0
- {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/top_level.txt +0 -0
mgpsogui/util/GraphGenerator.py
CHANGED
@@ -1,31 +1,100 @@
|
|
1
1
|
import plotly.express as px
|
2
2
|
import plotly.graph_objs as go
|
3
|
+
from plotly.subplots import make_subplots
|
3
4
|
import pandas as pd
|
4
5
|
import numpy as np
|
5
6
|
import os
|
6
7
|
from PIL import Image, ImageTk
|
7
8
|
import customtkinter
|
9
|
+
import traceback
|
10
|
+
import math
|
11
|
+
|
12
|
+
baseFigureWidth = 700
|
13
|
+
baseFigureHeight = 350
|
14
|
+
|
15
|
+
theme_background_color = {
|
16
|
+
"Dark": 'rgba(42, 42, 42, 0)',
|
17
|
+
"Light": 'rgba(255, 255, 255, 0)',
|
18
|
+
"Publication": 'rgba(255, 255, 255, 0)'
|
19
|
+
}
|
20
|
+
|
21
|
+
theme_background_color_html = {
|
22
|
+
"Dark": '#2a2a2a',
|
23
|
+
"Light": '#ffffff',
|
24
|
+
"Publication": '#ffffff'
|
25
|
+
}
|
26
|
+
|
27
|
+
theme_plot_color = {
|
28
|
+
"Dark": 'rgb(62, 62, 62)',
|
29
|
+
"Light": 'rgba(245,245,255,255)',
|
30
|
+
"Publication": 'rgba(245,245,255,255)'
|
31
|
+
}
|
32
|
+
|
33
|
+
theme_grid_color = {
|
34
|
+
"Dark": 'rgb(72, 72, 72)',
|
35
|
+
"Light": 'rgb(255, 255, 255)',
|
36
|
+
"Publication": 'rgb(255, 255, 255)'
|
37
|
+
}
|
38
|
+
|
39
|
+
theme_line_color = {
|
40
|
+
"Dark": 'rgb(102, 102, 102)',
|
41
|
+
"Light": 'rgb(102, 102, 102)',
|
42
|
+
"Publication": 'rgb(102, 102, 102)'
|
43
|
+
}
|
44
|
+
|
45
|
+
theme_font_color = {
|
46
|
+
"Dark": 'white',
|
47
|
+
"Light": 'black',
|
48
|
+
"Publication": 'black'
|
49
|
+
}
|
50
|
+
|
51
|
+
theme_plot_color_pallet = [
|
52
|
+
"rgba(151, 209, 233, 255)",
|
53
|
+
"rgba(0, 120, 179, 255)",
|
54
|
+
"rgba(179, 223, 146, 255)",
|
55
|
+
"rgba(49, 169, 90, 255)",
|
56
|
+
"rgba(227, 136, 220, 255)",
|
57
|
+
"rgba(127, 0, 255, 255)",
|
58
|
+
"rgba(255, 128, 0, 255)",
|
59
|
+
"rgba(255, 99, 71, 255)",
|
60
|
+
"rgba(102, 205, 170, 255)",
|
61
|
+
"rgba(255, 215, 0, 255)",
|
62
|
+
"rgba(70, 130, 180, 255)"
|
63
|
+
]
|
8
64
|
|
9
65
|
def generate_graphs(HomePage):
|
66
|
+
|
10
67
|
try:
|
11
|
-
selected_graph = HomePage.
|
12
|
-
|
13
|
-
folder = os.path.join(info['path'], info['name'])
|
68
|
+
selected_graph = HomePage.option_manager.get("selected_graph").get()
|
69
|
+
folder = HomePage.option_manager.get_project_folder()
|
14
70
|
if not os.path.exists(folder):
|
15
71
|
os.makedirs(folder)
|
16
72
|
|
17
73
|
if (selected_graph == "Best Cost Stacked"):
|
18
74
|
HomePage.selected_graph_name = "best_cost_stacked"
|
19
|
-
best_cost_stacked(HomePage.running_config['steps'], HomePage.progress_data, HomePage.option_manager)
|
75
|
+
best_cost_stacked(HomePage, HomePage.running_config['steps'], HomePage.progress_data, HomePage.option_manager)
|
20
76
|
elif (selected_graph == "Best Cost by Round"):
|
21
77
|
HomePage.selected_graph_name = "best_cost_by_round"
|
22
|
-
best_cost_by_round(HomePage.running_config['steps'], HomePage.progress_data, HomePage.option_manager)
|
78
|
+
best_cost_by_round(HomePage, HomePage.running_config['steps'], HomePage.progress_data, HomePage.option_manager)
|
23
79
|
elif (selected_graph == "Iteration Table"):
|
24
80
|
HomePage.selected_graph_name = "table"
|
25
|
-
table(HomePage.running_config['steps'], HomePage.progress_data, HomePage.option_manager)
|
81
|
+
table(HomePage, HomePage.running_config['steps'], HomePage.progress_data, HomePage.option_manager)
|
26
82
|
elif (selected_graph == "Calibrated Parameters"):
|
27
83
|
HomePage.selected_graph_name = "calibrated_params_by_round"
|
28
|
-
calibrated_params_by_round(HomePage.running_config['steps'], HomePage.calibration_data, HomePage.option_manager)
|
84
|
+
calibrated_params_by_round(HomePage, HomePage.running_config['steps'], HomePage.calibration_data, HomePage.option_manager)
|
85
|
+
elif (selected_graph == "Custom CSV"):
|
86
|
+
HomePage.selected_graph_name = "custom_csv"
|
87
|
+
custom_csv(HomePage, HomePage.option_manager)
|
88
|
+
elif (selected_graph == "Compare CSV"):
|
89
|
+
HomePage.selected_graph_name = "compare_csv"
|
90
|
+
compare_csv(HomePage, HomePage.option_manager)
|
91
|
+
elif (selected_graph == "Sampling CSV"):
|
92
|
+
HomePage.selected_graph_name = "sampling_csv"
|
93
|
+
sampling_csv(HomePage, HomePage.option_manager)
|
94
|
+
elif (selected_graph == "Matrix Editor"):
|
95
|
+
HomePage.selected_graph_name = "matrix_editor"
|
96
|
+
matrix_editor(HomePage, HomePage.option_manager)
|
97
|
+
pass
|
29
98
|
|
30
99
|
image_path = os.path.join(folder, HomePage.selected_graph_name + ".png")
|
31
100
|
|
@@ -36,41 +105,62 @@ def generate_graphs(HomePage):
|
|
36
105
|
HomePage.graph_image = customtkinter.CTkImage(HomePage.graph_image_obj, size=(HomePage.image_width * HomePage.image_scale, HomePage.image_height * HomePage.image_scale))
|
37
106
|
HomePage.graph_label.configure(image=HomePage.graph_image)
|
38
107
|
except Exception as e:
|
39
|
-
|
108
|
+
print(f"An exception occurred in Graph Generator: {str(e)}")
|
109
|
+
print(f"Exception type: {type(e).__name__}")
|
110
|
+
print("Traceback:")
|
111
|
+
traceback.print_exc()
|
112
|
+
|
113
|
+
def best_cost_stacked(homepage, config, data, option_manager):
|
114
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
40
115
|
|
41
|
-
def best_cost_stacked(config, dataframe, option_manager):
|
42
116
|
fig = go.Figure()
|
43
117
|
|
44
118
|
total_steps = len(config)
|
45
119
|
|
46
120
|
# Get unique values from the round_step column of the dataframe
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
step_index = ((iteration) % total_steps)
|
52
|
-
round_index = ((iteration) // total_steps)
|
53
|
-
|
54
|
-
fig.add_trace(go.Scatter(x=df['completed_rounds'], y=df['best_cost'], name='Round ' + str(round_index + 1) + ' Group ' + str(step_index + 1)))
|
121
|
+
pp = 0
|
122
|
+
for round_step in data.keys():
|
123
|
+
fig.add_trace(go.Scatter(x=data[round_step]["percent"], y=data[round_step]["best_cost"], name=round_step, marker_color=theme_plot_color_pallet[pp]))
|
124
|
+
pp += 1
|
55
125
|
|
56
126
|
fig.update_layout(
|
57
127
|
title="",
|
58
|
-
xaxis_title="
|
128
|
+
xaxis_title="Progress (% through Group)",
|
59
129
|
yaxis_title="Best Cost",
|
60
|
-
font=dict(color=
|
61
|
-
paper_bgcolor=
|
62
|
-
plot_bgcolor=
|
130
|
+
font=dict(color=theme_font_color[theme]),
|
131
|
+
paper_bgcolor=theme_background_color[theme],
|
132
|
+
plot_bgcolor=theme_plot_color[theme],
|
63
133
|
xaxis=dict(
|
64
|
-
gridcolor=
|
134
|
+
gridcolor=theme_grid_color[theme],
|
65
135
|
gridwidth=1
|
66
136
|
),
|
67
137
|
yaxis=dict(
|
68
138
|
range=[0, 0.6],
|
69
139
|
autorange=True,
|
70
|
-
gridcolor=
|
140
|
+
gridcolor=theme_grid_color[theme],
|
71
141
|
gridwidth=0.1
|
72
142
|
)
|
73
143
|
)
|
144
|
+
if (theme == "Publication"):
|
145
|
+
fig.update_layout(
|
146
|
+
font=dict(
|
147
|
+
size=16
|
148
|
+
),
|
149
|
+
legend=dict(
|
150
|
+
orientation="h",
|
151
|
+
yanchor="bottom",
|
152
|
+
y=1.02,
|
153
|
+
xanchor="center",
|
154
|
+
x=0.47
|
155
|
+
),
|
156
|
+
margin=dict(
|
157
|
+
t=0,
|
158
|
+
b=1,
|
159
|
+
l=1,
|
160
|
+
r=1,
|
161
|
+
autoexpand=True
|
162
|
+
)
|
163
|
+
)
|
74
164
|
|
75
165
|
info = option_manager.get_project_data()
|
76
166
|
folder = os.path.join(info['path'], info['name'])
|
@@ -80,6 +170,8 @@ def best_cost_stacked(config, dataframe, option_manager):
|
|
80
170
|
|
81
171
|
fig.write_image(os.path.join(folder, "best_cost_stacked.png"), width=1280, height=720)
|
82
172
|
fig.write_html(os.path.join(folder, "best_cost_stacked.html"), include_plotlyjs='cdn', auto_open=False)
|
173
|
+
fig.write_json(os.path.join(folder, "best_cost_stacked.json"))
|
174
|
+
fig.write_image(os.path.join(folder, "best_cost_stacked.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
83
175
|
with open(os.path.join(folder, "best_cost_stacked.html"), "r") as f:
|
84
176
|
html = f.read()
|
85
177
|
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
@@ -89,7 +181,9 @@ def best_cost_stacked(config, dataframe, option_manager):
|
|
89
181
|
|
90
182
|
return fig
|
91
183
|
|
92
|
-
def table(config, dataframe, option_manager):
|
184
|
+
def table(homepage, config, dataframe, option_manager):
|
185
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
186
|
+
|
93
187
|
# Create a plotly table with the values in the dataframe
|
94
188
|
fig = go.Figure(data=[go.Table(
|
95
189
|
header=dict(
|
@@ -107,20 +201,40 @@ def table(config, dataframe, option_manager):
|
|
107
201
|
title="",
|
108
202
|
xaxis_title="Iteration",
|
109
203
|
yaxis_title="Best Cost",
|
110
|
-
font=dict(color=
|
111
|
-
paper_bgcolor=
|
112
|
-
plot_bgcolor=
|
204
|
+
font=dict(color=theme_font_color[theme]),
|
205
|
+
paper_bgcolor=theme_background_color[theme],
|
206
|
+
plot_bgcolor=theme_plot_color[theme],
|
113
207
|
xaxis=dict(
|
114
|
-
gridcolor=
|
208
|
+
gridcolor=theme_grid_color[theme],
|
115
209
|
gridwidth=1
|
116
210
|
),
|
117
211
|
yaxis=dict(
|
118
212
|
range=[0, 0.6],
|
119
213
|
autorange=True,
|
120
|
-
gridcolor=
|
214
|
+
gridcolor=theme_grid_color[theme],
|
121
215
|
gridwidth=0.1
|
122
216
|
)
|
123
217
|
)
|
218
|
+
if (theme == "Publication"):
|
219
|
+
fig.update_layout(
|
220
|
+
font=dict(
|
221
|
+
size=16
|
222
|
+
),
|
223
|
+
legend=dict(
|
224
|
+
orientation="h",
|
225
|
+
yanchor="bottom",
|
226
|
+
y=1.02,
|
227
|
+
xanchor="center",
|
228
|
+
x=0.47
|
229
|
+
),
|
230
|
+
margin=dict(
|
231
|
+
t=0,
|
232
|
+
b=1,
|
233
|
+
l=1,
|
234
|
+
r=1,
|
235
|
+
autoexpand=True
|
236
|
+
)
|
237
|
+
)
|
124
238
|
|
125
239
|
info = option_manager.get_project_data()
|
126
240
|
folder = os.path.join(info['path'], info['name'])
|
@@ -130,6 +244,8 @@ def table(config, dataframe, option_manager):
|
|
130
244
|
|
131
245
|
fig.write_image(os.path.join(folder, "table.png"), width=1280, height=720)
|
132
246
|
fig.write_html(os.path.join(folder, "table.html"), include_plotlyjs='cdn', auto_open=False)
|
247
|
+
fig.write_json(os.path.join(folder, "table.json"))
|
248
|
+
fig.write_image(os.path.join(folder, "table.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
133
249
|
with open(os.path.join(folder, "table.html"), "r") as f:
|
134
250
|
html = f.read()
|
135
251
|
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
@@ -138,22 +254,33 @@ def table(config, dataframe, option_manager):
|
|
138
254
|
|
139
255
|
return fig
|
140
256
|
|
141
|
-
def best_cost_by_round(config,
|
257
|
+
def best_cost_by_round(homepage, config, data, option_manager):
|
258
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
259
|
+
|
142
260
|
fig = go.Figure()
|
143
261
|
|
144
262
|
total_steps = len(config)
|
145
263
|
|
264
|
+
pp = 0
|
146
265
|
# Get unique values from the round_step column of the dataframe
|
147
|
-
for
|
266
|
+
for round_step in data.keys():
|
267
|
+
#for iteration in dataframe['round_step'].unique():
|
148
268
|
# Get best_cost and completed rounds rows for this iteration
|
149
|
-
|
269
|
+
|
270
|
+
round_index = int(round_step.split(" -")[0].replace("Round: ", "")) - 1
|
271
|
+
|
272
|
+
#df = dataframe[dataframe['round_step'] == iteration]
|
150
273
|
|
151
|
-
step_index = ((iteration) % total_steps)
|
152
|
-
round_index = ((iteration) // total_steps)
|
274
|
+
#step_index = ((iteration) % total_steps)
|
275
|
+
#round_index = ((iteration) // total_steps)
|
276
|
+
|
277
|
+
fig.add_trace(go.Scatter(x=np.array(data[round_step]['percent']) + (100 * round_index), y=data[round_step]['best_cost'], name=round_step, marker_color=theme_plot_color_pallet[pp]))
|
278
|
+
pp += 1
|
279
|
+
|
280
|
+
#fig.add_trace(go.Scatter(x=df['completed_rounds'] + (df['total_rounds'] * round_index), y=df['best_cost'], name='Group ' + str(step_index + 1)))
|
153
281
|
|
154
|
-
fig.add_trace(go.Scatter(x=df['completed_rounds'] + (df['total_rounds'] * round_index), y=df['best_cost'], name='Group ' + str(step_index + 1)))
|
155
282
|
|
156
|
-
xx = np.max(
|
283
|
+
xx = np.max(np.array(data[round_step]["percent"]) + (100 * round_index))
|
157
284
|
fig.add_shape(
|
158
285
|
type='line',
|
159
286
|
x0=xx,
|
@@ -162,7 +289,7 @@ def best_cost_by_round(config, dataframe, option_manager):
|
|
162
289
|
y1=1,
|
163
290
|
yref='paper',
|
164
291
|
line=dict(
|
165
|
-
color=
|
292
|
+
color=theme_line_color[theme],
|
166
293
|
width=2
|
167
294
|
)
|
168
295
|
)
|
@@ -178,22 +305,42 @@ def best_cost_by_round(config, dataframe, option_manager):
|
|
178
305
|
|
179
306
|
fig.update_layout(
|
180
307
|
title="",
|
181
|
-
xaxis_title="
|
308
|
+
xaxis_title="Progress (%)",
|
182
309
|
yaxis_title="Best Cost",
|
183
|
-
font=dict(color=
|
184
|
-
paper_bgcolor=
|
185
|
-
plot_bgcolor=
|
310
|
+
font=dict(color=theme_font_color[theme]),
|
311
|
+
paper_bgcolor=theme_background_color[theme],
|
312
|
+
plot_bgcolor=theme_plot_color[theme],
|
186
313
|
xaxis=dict(
|
187
|
-
gridcolor=
|
314
|
+
gridcolor=theme_grid_color[theme],
|
188
315
|
gridwidth=1
|
189
316
|
),
|
190
317
|
yaxis=dict(
|
191
318
|
range=[0, 0.6],
|
192
319
|
autorange=True,
|
193
|
-
gridcolor=
|
320
|
+
gridcolor=theme_grid_color[theme],
|
194
321
|
gridwidth=0.1
|
195
322
|
)
|
196
323
|
)
|
324
|
+
if (theme == "Publication"):
|
325
|
+
fig.update_layout(
|
326
|
+
font=dict(
|
327
|
+
size=16
|
328
|
+
),
|
329
|
+
legend=dict(
|
330
|
+
orientation="h",
|
331
|
+
yanchor="bottom",
|
332
|
+
y=1.02,
|
333
|
+
xanchor="center",
|
334
|
+
x=0.47
|
335
|
+
),
|
336
|
+
margin=dict(
|
337
|
+
t=0,
|
338
|
+
b=1,
|
339
|
+
l=1,
|
340
|
+
r=1,
|
341
|
+
autoexpand=True
|
342
|
+
)
|
343
|
+
)
|
197
344
|
|
198
345
|
info = option_manager.get_project_data()
|
199
346
|
folder = os.path.join(info['path'], info['name'])
|
@@ -203,6 +350,8 @@ def best_cost_by_round(config, dataframe, option_manager):
|
|
203
350
|
|
204
351
|
fig.write_image(os.path.join(folder, "best_cost_by_round.png"), width=1280, height=720)
|
205
352
|
fig.write_html(os.path.join(folder, "best_cost_by_round.html"), include_plotlyjs='cdn', auto_open=False)
|
353
|
+
fig.write_json(os.path.join(folder, "best_cost_by_round.json"))
|
354
|
+
fig.write_image(os.path.join(folder, "best_cost_by_round.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
206
355
|
with open(os.path.join(folder, "best_cost_by_round.html"), "r") as f:
|
207
356
|
html = f.read()
|
208
357
|
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
@@ -211,7 +360,9 @@ def best_cost_by_round(config, dataframe, option_manager):
|
|
211
360
|
|
212
361
|
return fig
|
213
362
|
|
214
|
-
def calibrated_params_by_round(config, list_of_objs, option_manager):
|
363
|
+
def calibrated_params_by_round(homepage, config, list_of_objs, option_manager):
|
364
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
365
|
+
|
215
366
|
fig = go.Figure()
|
216
367
|
|
217
368
|
total_steps = len(config)
|
@@ -234,29 +385,51 @@ def calibrated_params_by_round(config, list_of_objs, option_manager):
|
|
234
385
|
round += 1
|
235
386
|
|
236
387
|
# Get unique values from the round_step column of the dataframe
|
388
|
+
pp = 0
|
237
389
|
for key in datalines.keys():
|
238
390
|
# Get best_cost and completed rounds rows for this iteration
|
239
391
|
if key == 'step' or key == 'round':
|
240
392
|
continue
|
241
393
|
|
242
|
-
fig.add_trace(go.Scatter(x=datalines['round'], y=datalines[key], name=key))
|
394
|
+
fig.add_trace(go.Scatter(x=datalines['round'], y=datalines[key], name=key, marker_color=theme_plot_color_pallet[pp]))
|
395
|
+
pp += 1
|
243
396
|
|
244
397
|
fig.update_layout(
|
245
398
|
title="",
|
246
399
|
xaxis_title="Round",
|
247
400
|
yaxis_title="Particle Parameters",
|
248
|
-
font=dict(color=
|
249
|
-
paper_bgcolor=
|
250
|
-
plot_bgcolor=
|
401
|
+
font=dict(color=theme_font_color[theme]),
|
402
|
+
paper_bgcolor=theme_background_color[theme],
|
403
|
+
plot_bgcolor=theme_plot_color[theme],
|
251
404
|
xaxis=dict(
|
252
|
-
gridcolor=
|
405
|
+
gridcolor=theme_grid_color[theme],
|
253
406
|
gridwidth=1
|
254
407
|
),
|
255
408
|
yaxis=dict(
|
256
|
-
gridcolor=
|
409
|
+
gridcolor=theme_grid_color[theme],
|
257
410
|
gridwidth=0.1
|
258
411
|
)
|
259
412
|
)
|
413
|
+
if (theme == "Publication"):
|
414
|
+
fig.update_layout(
|
415
|
+
font=dict(
|
416
|
+
size=16
|
417
|
+
),
|
418
|
+
legend=dict(
|
419
|
+
orientation="h",
|
420
|
+
yanchor="bottom",
|
421
|
+
y=1.02,
|
422
|
+
xanchor="center",
|
423
|
+
x=0.47
|
424
|
+
),
|
425
|
+
margin=dict(
|
426
|
+
t=0,
|
427
|
+
b=1,
|
428
|
+
l=1,
|
429
|
+
r=1,
|
430
|
+
autoexpand=True
|
431
|
+
)
|
432
|
+
)
|
260
433
|
|
261
434
|
info = option_manager.get_project_data()
|
262
435
|
folder = os.path.join(info['path'], info['name'])
|
@@ -266,10 +439,508 @@ def calibrated_params_by_round(config, list_of_objs, option_manager):
|
|
266
439
|
|
267
440
|
fig.write_image(os.path.join(folder, "calibrated_params_by_round.png"), width=1280, height=720)
|
268
441
|
fig.write_html(os.path.join(folder, "calibrated_params_by_round.html"), include_plotlyjs='cdn', auto_open=False)
|
442
|
+
fig.write_json(os.path.join(folder, "calibrated_params_by_round.json"))
|
443
|
+
fig.write_image(os.path.join(folder, "calibrated_params_by_round.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
269
444
|
with open(os.path.join(folder, "calibrated_params_by_round.html"), "r") as f:
|
270
445
|
html = f.read()
|
271
446
|
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
272
447
|
with open(os.path.join(folder, "calibrated_params_by_round.html"), "w") as f:
|
273
448
|
f.write(html)
|
274
449
|
|
450
|
+
return fig
|
451
|
+
|
452
|
+
def custom_csv(homepage, option_manager):
|
453
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
454
|
+
|
455
|
+
fig = go.Figure()
|
456
|
+
|
457
|
+
data = homepage.csv_data["data"]
|
458
|
+
|
459
|
+
x = option_manager.get("selected_x").get()
|
460
|
+
val = option_manager.get("selected_y1").get()
|
461
|
+
val2 = option_manager.get("selected_y2").get()
|
462
|
+
|
463
|
+
xx = None
|
464
|
+
if x == "time":
|
465
|
+
xx = pd.to_datetime(data["time"], format='%Y-%m-%d', errors='coerce')
|
466
|
+
elif x == "date":
|
467
|
+
xx = pd.to_datetime(data["date"], format='%d-%m-%Y', errors='coerce')
|
468
|
+
else:
|
469
|
+
xx = pd.to_numeric(data[x], errors="coerce")
|
470
|
+
|
471
|
+
yy = pd.to_numeric(data[val], errors="coerce")
|
472
|
+
|
473
|
+
yy_unit = "-"
|
474
|
+
if "Unit" in homepage.csv_data["data_attributes"]:
|
475
|
+
yy_unit = homepage.csv_data["data_attributes"]["Unit"][val]
|
476
|
+
|
477
|
+
yy2 = pd.to_numeric(data[val2], errors="coerce")
|
478
|
+
|
479
|
+
yy2_unit = "-"
|
480
|
+
if "Unit" in homepage.csv_data["data_attributes"]:
|
481
|
+
yy2_unit = homepage.csv_data["data_attributes"]["Unit"][val2]
|
482
|
+
|
483
|
+
fig.add_trace(go.Scatter(x=xx, y=yy, name=val, marker_color=theme_plot_color_pallet[1]))
|
484
|
+
fig.add_trace(go.Scatter(x=xx, y=yy2, name=val2, yaxis='y2', marker_color=theme_plot_color_pallet[3]))
|
485
|
+
|
486
|
+
fig.update_layout(
|
487
|
+
title="",
|
488
|
+
xaxis_title=x,
|
489
|
+
yaxis_title=val,
|
490
|
+
font=dict(color=theme_font_color[theme]),
|
491
|
+
paper_bgcolor=theme_background_color[theme],
|
492
|
+
plot_bgcolor=theme_plot_color[theme],
|
493
|
+
xaxis=dict(
|
494
|
+
gridcolor=theme_grid_color[theme],
|
495
|
+
gridwidth=1
|
496
|
+
),
|
497
|
+
yaxis=dict(
|
498
|
+
title=val + " (" + str(yy_unit) + ")",
|
499
|
+
autorange=True,
|
500
|
+
gridcolor=theme_grid_color[theme],
|
501
|
+
gridwidth=0.1
|
502
|
+
),
|
503
|
+
yaxis2=dict(
|
504
|
+
title=val2 + " (" + str(yy2_unit) + ")",
|
505
|
+
overlaying='y',
|
506
|
+
side='right'
|
507
|
+
)
|
508
|
+
)
|
509
|
+
if (theme == "Publication"):
|
510
|
+
fig.update_layout(
|
511
|
+
font=dict(
|
512
|
+
size=16
|
513
|
+
),
|
514
|
+
legend=dict(
|
515
|
+
orientation="h",
|
516
|
+
yanchor="bottom",
|
517
|
+
y=1.02,
|
518
|
+
xanchor="center",
|
519
|
+
x=0.47
|
520
|
+
),
|
521
|
+
margin=dict(
|
522
|
+
t=0,
|
523
|
+
b=1,
|
524
|
+
l=1,
|
525
|
+
r=1,
|
526
|
+
autoexpand=True
|
527
|
+
)
|
528
|
+
)
|
529
|
+
|
530
|
+
info = option_manager.get_project_data()
|
531
|
+
folder = os.path.join(info['path'], info['name'])
|
532
|
+
|
533
|
+
if not os.path.exists(folder):
|
534
|
+
os.makedirs(folder)
|
535
|
+
|
536
|
+
fig.write_image(os.path.join(folder, "custom_csv.png"), width=1280, height=720)
|
537
|
+
fig.write_html(os.path.join(folder, "custom_csv.html"), include_plotlyjs='cdn', auto_open=False)
|
538
|
+
fig.write_json(os.path.join(folder, "custom_csv.json"))
|
539
|
+
fig.write_image(os.path.join(folder, "custom_csv.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
540
|
+
with open(os.path.join(folder, "custom_csv.html"), "r") as f:
|
541
|
+
html = f.read()
|
542
|
+
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
543
|
+
with open(os.path.join(folder, "custom_csv.html"), "w") as f:
|
544
|
+
f.write(html)
|
545
|
+
|
546
|
+
return fig
|
547
|
+
|
548
|
+
def compare_csv(homepage, option_manager):
|
549
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
550
|
+
|
551
|
+
fig = go.Figure()
|
552
|
+
|
553
|
+
data = homepage.csv_data["data"]
|
554
|
+
data2 = homepage.csv_data2["data"]
|
555
|
+
|
556
|
+
x = option_manager.get("selected_x").get()
|
557
|
+
val = option_manager.get("selected_y1").get()
|
558
|
+
val2 = option_manager.get("selected_y2").get()
|
559
|
+
|
560
|
+
xx = None
|
561
|
+
if x == "time":
|
562
|
+
xx = pd.to_datetime(data["time"], format='%Y-%m-%d', errors='coerce')
|
563
|
+
elif x == "date":
|
564
|
+
xx = pd.to_datetime(data["date"], format='%d-%m-%Y', errors='coerce')
|
565
|
+
else:
|
566
|
+
xx = pd.to_numeric(data[x], errors="coerce")
|
567
|
+
|
568
|
+
yy = pd.to_numeric(data[val], errors="coerce")
|
569
|
+
|
570
|
+
xx2 = None
|
571
|
+
if x == "time":
|
572
|
+
xx2 = pd.to_datetime(data2["time"], format='%Y-%m-%d', errors='coerce')
|
573
|
+
elif x == "date":
|
574
|
+
xx2 = pd.to_datetime(data2["date"], format='%d-%m-%Y', errors='coerce')
|
575
|
+
else:
|
576
|
+
xx2 = pd.to_numeric(data2[x], errors="coerce")
|
577
|
+
|
578
|
+
yy_unit = "-"
|
579
|
+
if "Unit" in homepage.csv_data["data_attributes"]:
|
580
|
+
yy_unit = homepage.csv_data["data_attributes"]["Unit"][val]
|
581
|
+
|
582
|
+
yy2 = pd.to_numeric(data[val2], errors="coerce")
|
583
|
+
|
584
|
+
yy2_unit = "-"
|
585
|
+
if "Unit" in homepage.csv_data["data_attributes"]:
|
586
|
+
yy2_unit = homepage.csv_data["data_attributes"]["Unit"][val2]
|
587
|
+
|
588
|
+
fig.add_trace(go.Scatter(x=xx, y=yy, name=val, marker_color=theme_plot_color_pallet[1]))
|
589
|
+
fig.add_trace(go.Scatter(x=xx2, y=yy2, name=val2, yaxis='y2', marker_color=theme_plot_color_pallet[3]))
|
590
|
+
|
591
|
+
fig.update_layout(
|
592
|
+
title="",
|
593
|
+
xaxis_title=x,
|
594
|
+
yaxis_title=val,
|
595
|
+
font=dict(color=theme_font_color[theme]),
|
596
|
+
paper_bgcolor=theme_background_color[theme],
|
597
|
+
plot_bgcolor=theme_plot_color[theme],
|
598
|
+
xaxis=dict(
|
599
|
+
gridcolor=theme_grid_color[theme],
|
600
|
+
gridwidth=1
|
601
|
+
),
|
602
|
+
yaxis=dict(
|
603
|
+
title=val + " (" + str(yy_unit) + ")",
|
604
|
+
autorange=True,
|
605
|
+
gridcolor=theme_grid_color[theme],
|
606
|
+
gridwidth=0.1
|
607
|
+
),
|
608
|
+
yaxis2=dict(
|
609
|
+
title=val2 + " (" + str(yy2_unit) + ")",
|
610
|
+
overlaying='y',
|
611
|
+
side='right'
|
612
|
+
)
|
613
|
+
)
|
614
|
+
if (theme == "Publication"):
|
615
|
+
fig.update_layout(
|
616
|
+
font=dict(
|
617
|
+
size=16
|
618
|
+
),
|
619
|
+
legend=dict(
|
620
|
+
orientation="h",
|
621
|
+
yanchor="bottom",
|
622
|
+
y=1.02,
|
623
|
+
xanchor="center",
|
624
|
+
x=0.47
|
625
|
+
),
|
626
|
+
margin=dict(
|
627
|
+
t=0,
|
628
|
+
b=1,
|
629
|
+
l=1,
|
630
|
+
r=1,
|
631
|
+
autoexpand=True
|
632
|
+
)
|
633
|
+
)
|
634
|
+
|
635
|
+
info = option_manager.get_project_data()
|
636
|
+
folder = os.path.join(info['path'], info['name'])
|
637
|
+
|
638
|
+
if not os.path.exists(folder):
|
639
|
+
os.makedirs(folder)
|
640
|
+
|
641
|
+
fig.write_image(os.path.join(folder, "compare_csv.png"), width=1280, height=720)
|
642
|
+
fig.write_html(os.path.join(folder, "compare_csv.html"), include_plotlyjs='cdn', auto_open=False)
|
643
|
+
fig.write_json(os.path.join(folder, "compare_csv.json"))
|
644
|
+
fig.write_image(os.path.join(folder, "compare_csv.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
645
|
+
with open(os.path.join(folder, "compare_csv.html"), "r") as f:
|
646
|
+
html = f.read()
|
647
|
+
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
648
|
+
with open(os.path.join(folder, "compare_csv.html"), "w") as f:
|
649
|
+
f.write(html)
|
650
|
+
|
651
|
+
return fig
|
652
|
+
|
653
|
+
def sampling_csv(homepage, option_manager):
|
654
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
655
|
+
|
656
|
+
fig = go.Figure()
|
657
|
+
|
658
|
+
style = option_manager.get("figure_style").get()
|
659
|
+
|
660
|
+
data = homepage.csv_data
|
661
|
+
|
662
|
+
x = option_manager.get("selected_x").get()
|
663
|
+
val = option_manager.get("selected_y1").get()
|
664
|
+
val2 = option_manager.get("selected_y2").get()
|
665
|
+
|
666
|
+
xx = None
|
667
|
+
if x == "time":
|
668
|
+
xx = pd.to_datetime(data["time"], format='%Y-%m-%d', errors='coerce')
|
669
|
+
elif x == "date":
|
670
|
+
xx = pd.to_datetime(data["date"], format='%d-%m-%Y', errors='coerce')
|
671
|
+
else:
|
672
|
+
xx = pd.to_numeric(data[x], errors="coerce")
|
673
|
+
|
674
|
+
yy = pd.to_numeric(data[val], errors="coerce")
|
675
|
+
|
676
|
+
yy_unit = ""
|
677
|
+
|
678
|
+
yy2 = pd.to_numeric(data[val2], errors="coerce")
|
679
|
+
|
680
|
+
yy2_unit = ""
|
681
|
+
|
682
|
+
if (style == "Scatter"):
|
683
|
+
fig.add_trace(go.Scatter(x=xx, y=yy, name=val, mode='markers', marker_color=theme_plot_color_pallet[1]))
|
684
|
+
fig.add_trace(go.Scatter(x=xx, y=yy2, name=val2, yaxis='y2', mode='markers', marker_color=theme_plot_color_pallet[3]))
|
685
|
+
elif (style == "Bars"):
|
686
|
+
fig.add_trace(go.Bar(x=xx, y=yy, name=val, marker_color=theme_plot_color_pallet[1]))
|
687
|
+
fig.add_trace(go.Bar(x=xx, y=yy2, name=val2, yaxis='y2', marker_color=theme_plot_color_pallet[3]))
|
688
|
+
elif (style == "Lines"):
|
689
|
+
fig.add_trace(go.Scatter(x=xx, y=yy, name=val, marker_color=theme_plot_color_pallet[1]))
|
690
|
+
fig.add_trace(go.Scatter(x=xx, y=yy2, name=val2, yaxis='y2', marker_color=theme_plot_color_pallet[3]))
|
691
|
+
elif (style == "Area"):
|
692
|
+
fig.add_trace(go.Scatter(x=xx, y=yy, name=val, fill='tozeroy', marker_color=theme_plot_color_pallet[1]))
|
693
|
+
fig.add_trace(go.Scatter(x=xx, y=yy2, name=val2, yaxis='y2', fill='tozeroy', marker_color=theme_plot_color_pallet[3]))
|
694
|
+
elif (style == "Box"):
|
695
|
+
fig.add_trace(go.Box(x=xx, y=yy, name=val, marker_color=theme_plot_color_pallet[1]))
|
696
|
+
fig.add_trace(go.Box(x=xx, y=yy2, name=val2, yaxis='y2', marker_color=theme_plot_color_pallet[3]))
|
697
|
+
|
698
|
+
fig.update_layout(
|
699
|
+
title="",
|
700
|
+
xaxis_title=x,
|
701
|
+
yaxis_title=val,
|
702
|
+
font=dict(color=theme_font_color[theme]),
|
703
|
+
paper_bgcolor=theme_background_color[theme],
|
704
|
+
plot_bgcolor=theme_plot_color[theme],
|
705
|
+
xaxis=dict(
|
706
|
+
gridcolor=theme_grid_color[theme],
|
707
|
+
gridwidth=1
|
708
|
+
),
|
709
|
+
yaxis=dict(
|
710
|
+
title=val,
|
711
|
+
autorange=True,
|
712
|
+
gridcolor=theme_grid_color[theme],
|
713
|
+
gridwidth=0.1
|
714
|
+
),
|
715
|
+
yaxis2=dict(
|
716
|
+
title=val2,
|
717
|
+
overlaying='y',
|
718
|
+
side='right'
|
719
|
+
)
|
720
|
+
)
|
721
|
+
if (theme == "Publication"):
|
722
|
+
fig.update_layout(
|
723
|
+
font=dict(
|
724
|
+
size=16
|
725
|
+
),
|
726
|
+
legend=dict(
|
727
|
+
orientation="h",
|
728
|
+
yanchor="bottom",
|
729
|
+
y=1.02,
|
730
|
+
xanchor="center",
|
731
|
+
x=0.47
|
732
|
+
),
|
733
|
+
margin=dict(
|
734
|
+
t=0,
|
735
|
+
b=1,
|
736
|
+
l=1,
|
737
|
+
r=1,
|
738
|
+
autoexpand=True
|
739
|
+
)
|
740
|
+
)
|
741
|
+
|
742
|
+
info = option_manager.get_project_data()
|
743
|
+
folder = os.path.join(info['path'], info['name'])
|
744
|
+
|
745
|
+
if not os.path.exists(folder):
|
746
|
+
os.makedirs(folder)
|
747
|
+
|
748
|
+
fig.write_image(os.path.join(folder, "sampling_csv.png"), width=1280, height=720)
|
749
|
+
fig.write_html(os.path.join(folder, "sampling_csv.html"), include_plotlyjs='cdn', auto_open=False)
|
750
|
+
fig.write_json(os.path.join(folder, "sampling_csv.json"))
|
751
|
+
fig.write_image(os.path.join(folder, "sampling_csv.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
752
|
+
with open(os.path.join(folder, "sampling_csv.html"), "r") as f:
|
753
|
+
html = f.read()
|
754
|
+
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
755
|
+
with open(os.path.join(folder, "sampling_csv.html"), "w") as f:
|
756
|
+
f.write(html)
|
757
|
+
|
758
|
+
return fig
|
759
|
+
|
760
|
+
def matrix_editor(homepage, option_manager):
|
761
|
+
theme = homepage.option_manager.get("graph_theme").get()
|
762
|
+
|
763
|
+
style = option_manager.get("figure_style").get()
|
764
|
+
data = homepage.csv_data
|
765
|
+
x = option_manager.get("selected_x").get()
|
766
|
+
|
767
|
+
all_figures = []
|
768
|
+
figure_parameters = option_manager.get('figure_parameters')
|
769
|
+
|
770
|
+
#color_list = ['#636EFA', '#EF553B', '#00CC96', '#AB63FA', '#FFA15A', '#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52']
|
771
|
+
color_index = 0
|
772
|
+
color_dict = {}
|
773
|
+
|
774
|
+
total_figures = 0
|
775
|
+
for parameter in figure_parameters:
|
776
|
+
name = parameter['name'].get()
|
777
|
+
if ("Fig" not in name):
|
778
|
+
continue
|
779
|
+
total_figures += 1
|
780
|
+
|
781
|
+
figures_per_row = 1
|
782
|
+
if (total_figures == 1):
|
783
|
+
figures_per_row = 1
|
784
|
+
elif (total_figures == 2):
|
785
|
+
figures_per_row = 2
|
786
|
+
elif (total_figures == 3 or total_figures == 4):
|
787
|
+
figures_per_row = 2
|
788
|
+
elif (total_figures == 5 or total_figures == 6):
|
789
|
+
figures_per_row = 3
|
790
|
+
elif (total_figures == 7 or total_figures == 8):
|
791
|
+
figures_per_row = 4
|
792
|
+
elif (total_figures == 9):
|
793
|
+
figures_per_row = 3
|
794
|
+
else:
|
795
|
+
figures_per_row = 4
|
796
|
+
|
797
|
+
fig_combined = make_subplots(rows=(math.ceil(total_figures / figures_per_row)), cols=figures_per_row, shared_xaxes=False, shared_yaxes=False)
|
798
|
+
|
799
|
+
pp = 0
|
800
|
+
for parameter in figure_parameters:
|
801
|
+
name = parameter['name'].get()
|
802
|
+
|
803
|
+
if ("Fig" not in name):
|
804
|
+
continue
|
805
|
+
|
806
|
+
fig = go.Figure()
|
807
|
+
val = parameter['value'].get()
|
808
|
+
|
809
|
+
xx = None
|
810
|
+
#if x == "time":
|
811
|
+
# xx = pd.to_datetime(data["time"], format='%Y-%m-%d', errors='coerce')
|
812
|
+
#elif x == "date":
|
813
|
+
# xx = pd.to_datetime(data["date"], format='%d-%m-%Y', errors='coerce')
|
814
|
+
#else:
|
815
|
+
xx = pd.to_numeric(data[x], errors="coerce")
|
816
|
+
yy = pd.to_numeric(data[val], errors="coerce")
|
817
|
+
|
818
|
+
yy_unit = ""
|
819
|
+
|
820
|
+
if (style == "Scatter"):
|
821
|
+
fig.add_trace(go.Scatter(x=yy, y=xx, name=val, mode='markers', marker_color=theme_plot_color_pallet[pp]))
|
822
|
+
elif (style == "Bars"):
|
823
|
+
fig.add_trace(go.Bar(x=yy, y=xx, name=val, marker_color=theme_plot_color_pallet[pp]))
|
824
|
+
elif (style == "Lines"):
|
825
|
+
fig.add_trace(go.Scatter(x=yy, y=xx, name=val, marker_color=theme_plot_color_pallet[pp]))
|
826
|
+
elif (style == "Area"):
|
827
|
+
fig.add_trace(go.Scatter(x=yy, y=xx, name=val, fill='tozeroy', marker_color=theme_plot_color_pallet[pp]))
|
828
|
+
elif (style == "Box"):
|
829
|
+
fig.add_trace(go.Box(x=yy, y=xx, name=val, marker_color=theme_plot_color_pallet[pp]))
|
830
|
+
|
831
|
+
pp += 1
|
832
|
+
|
833
|
+
fig.update_layout(
|
834
|
+
title="",
|
835
|
+
xaxis_title=val,
|
836
|
+
yaxis_title=x,
|
837
|
+
font=dict(color=theme_font_color[theme]),
|
838
|
+
paper_bgcolor=theme_background_color[theme],
|
839
|
+
plot_bgcolor=theme_plot_color[theme],
|
840
|
+
xaxis=dict(
|
841
|
+
gridcolor=theme_grid_color[theme],
|
842
|
+
gridwidth=1
|
843
|
+
),
|
844
|
+
yaxis=dict(
|
845
|
+
title=x,
|
846
|
+
autorange=True,
|
847
|
+
gridcolor=theme_grid_color[theme],
|
848
|
+
gridwidth=0.1
|
849
|
+
)
|
850
|
+
)
|
851
|
+
if (theme == "Publication"):
|
852
|
+
fig.update_layout(
|
853
|
+
font=dict(
|
854
|
+
size=16
|
855
|
+
),
|
856
|
+
legend=dict(
|
857
|
+
orientation="h",
|
858
|
+
yanchor="bottom",
|
859
|
+
y=1.02,
|
860
|
+
xanchor="center",
|
861
|
+
x=0.47
|
862
|
+
),
|
863
|
+
margin=dict(
|
864
|
+
t=0,
|
865
|
+
b=1,
|
866
|
+
l=1,
|
867
|
+
r=1,
|
868
|
+
autoexpand=True
|
869
|
+
)
|
870
|
+
)
|
871
|
+
|
872
|
+
all_figures.append(fig)
|
873
|
+
|
874
|
+
row = 1
|
875
|
+
col = 1
|
876
|
+
for fig in all_figures:
|
877
|
+
for trace in fig.data:
|
878
|
+
|
879
|
+
if trace.name not in color_dict:
|
880
|
+
color_dict[trace.name] = theme_plot_color_pallet[color_index % len(theme_plot_color_pallet)]
|
881
|
+
color_index += 1
|
882
|
+
|
883
|
+
trace.marker.color = color_dict[trace.name]
|
884
|
+
|
885
|
+
if fig_combined.data:
|
886
|
+
trace.showlegend = not any(t.name == trace.name for t in fig_combined.data)
|
887
|
+
fig_combined.add_trace(trace, row=row, col=col)
|
888
|
+
|
889
|
+
# Get the layout titles from the individual figure
|
890
|
+
xaxis_title = fig.layout.xaxis.title.text
|
891
|
+
yaxis_title = fig.layout.yaxis.title.text
|
892
|
+
|
893
|
+
# Update the combined figure's subplot with the titles
|
894
|
+
fig_combined.update_xaxes(title_text=xaxis_title, row=row, col=col)
|
895
|
+
fig_combined.update_yaxes(title_text=yaxis_title, row=row, col=col)
|
896
|
+
|
897
|
+
col += 1
|
898
|
+
if col > figures_per_row:
|
899
|
+
row += 1
|
900
|
+
col = 1
|
901
|
+
|
902
|
+
info = option_manager.get_project_data()
|
903
|
+
folder = os.path.join(info['path'], info['name'])
|
904
|
+
|
905
|
+
fig = fig_combined
|
906
|
+
fig.update_layout(
|
907
|
+
title="",
|
908
|
+
font=dict(color=theme_font_color[theme]),
|
909
|
+
paper_bgcolor=theme_background_color[theme],
|
910
|
+
plot_bgcolor=theme_plot_color[theme]
|
911
|
+
)
|
912
|
+
if (theme == "Publication"):
|
913
|
+
fig.update_layout(
|
914
|
+
font=dict(
|
915
|
+
size=16
|
916
|
+
),
|
917
|
+
legend=dict(
|
918
|
+
orientation="h",
|
919
|
+
yanchor="bottom",
|
920
|
+
y=1.02,
|
921
|
+
xanchor="center",
|
922
|
+
x=0.47
|
923
|
+
),
|
924
|
+
margin=dict(
|
925
|
+
t=0,
|
926
|
+
b=1,
|
927
|
+
l=1,
|
928
|
+
r=1,
|
929
|
+
autoexpand=True
|
930
|
+
)
|
931
|
+
)
|
932
|
+
|
933
|
+
if not os.path.exists(folder):
|
934
|
+
os.makedirs(folder)
|
935
|
+
|
936
|
+
fig.write_image(os.path.join(folder, "matrix_editor.png"), width=1280, height=720)
|
937
|
+
fig.write_html(os.path.join(folder, "matrix_editor.html"), include_plotlyjs='cdn', auto_open=False)
|
938
|
+
fig.write_json(os.path.join(folder, "matrix_editor.json"))
|
939
|
+
fig.write_image(os.path.join(folder, "matrix_editor.pdf"), engine="kaleido", width=baseFigureWidth, height=baseFigureHeight)
|
940
|
+
with open(os.path.join(folder, "matrix_editor.html"), "r") as f:
|
941
|
+
html = f.read()
|
942
|
+
html = html.replace("<body>", "<body bgcolor='#2a2a2a'>")
|
943
|
+
with open(os.path.join(folder, "matrix_editor.html"), "w") as f:
|
944
|
+
f.write(html)
|
945
|
+
|
275
946
|
return fig
|