mg-pso-gui 0.1.40__py3-none-any.whl → 0.2.75__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (50) hide show
  1. {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/METADATA +10 -11
  2. mg_pso_gui-0.2.75.dist-info/RECORD +76 -0
  3. {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/WHEEL +1 -1
  4. mgpsogui/gui/General/ParameterView.py +110 -0
  5. mgpsogui/gui/General/__init__.py +0 -0
  6. mgpsogui/gui/HomePage.py +234 -238
  7. mgpsogui/gui/OptionManager.py +333 -145
  8. mgpsogui/gui/OptionManager_backup.py +443 -0
  9. mgpsogui/gui/PlatformTab/PlatformTab.py +15 -6
  10. mgpsogui/gui/RunTab/OptimalParameterView.py +47 -0
  11. mgpsogui/gui/RunTab/RunTab.py +90 -17
  12. mgpsogui/gui/SetupTab/BoundsEditorWindow.py +1 -1
  13. mgpsogui/gui/SetupTab/BoundsList.py +97 -34
  14. mgpsogui/gui/SetupTab/CustomFunctionEditorWindow.py +74 -0
  15. mgpsogui/gui/SetupTab/CustomFunctionMetrics.py +156 -0
  16. mgpsogui/gui/SetupTab/FunctionsList.py +60 -6
  17. mgpsogui/gui/SetupTab/{StaticParameterView.py → ListEditor.py} +27 -16
  18. mgpsogui/gui/SetupTab/ListParametersView.py +7 -6
  19. mgpsogui/gui/SetupTab/{CalibrationParametersView.py → OverrideParameterMetrics.py} +35 -9
  20. mgpsogui/gui/SetupTab/OverrideParameterWindow.py +40 -0
  21. mgpsogui/gui/SetupTab/SetupTab.py +31 -11
  22. mgpsogui/gui/SetupTab/StepView.py +93 -22
  23. mgpsogui/gui/VisualizeTab/MatrixEditor.py +68 -0
  24. mgpsogui/gui/VisualizeTab/SideBar.py +316 -25
  25. mgpsogui/gui/VisualizeTab/VisualizeTab.py +69 -8
  26. mgpsogui/gui/defaults/__init__.py +0 -0
  27. mgpsogui/gui/defaults/optimization.json +176 -0
  28. mgpsogui/gui/defaults/sampling.json +111 -0
  29. mgpsogui/gui/defaults/sensitivity.json +20 -0
  30. mgpsogui/gui/images/plus.png +0 -0
  31. mgpsogui/util/GraphGenerator.py +721 -50
  32. mgpsogui/util/PSORunner.py +615 -86
  33. mgpsogui/util/debug.py +559 -0
  34. mgpsogui/util/helpers.py +95 -0
  35. mgpsogui/util/recosu/__init__.py +2 -1
  36. mgpsogui/util/recosu/pso/pso.py +55 -11
  37. mgpsogui/util/recosu/sampling/__init__.py +16 -0
  38. mgpsogui/util/recosu/sampling/halton/__init__.py +0 -0
  39. mgpsogui/util/recosu/sampling/halton/halton.py +45 -0
  40. mgpsogui/util/recosu/sampling/halton/prime.py +82 -0
  41. mgpsogui/util/recosu/sampling/random/__init__.py +0 -0
  42. mgpsogui/util/recosu/sampling/random/random_sampler.py +34 -0
  43. mgpsogui/util/recosu/sampling/sample_trace_writer.py +47 -0
  44. mgpsogui/util/recosu/sampling/sampler_task.py +75 -0
  45. mgpsogui/util/recosu/sampling/sampling.py +99 -0
  46. mgpsogui/util/sampler_test_driver.py +129 -0
  47. mg_pso_gui-0.1.40.dist-info/RECORD +0 -52
  48. mgpsogui/gui/images/IGOW 4 Logo.png +0 -0
  49. {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/entry_points.txt +0 -0
  50. {mg_pso_gui-0.1.40.dist-info → mg_pso_gui-0.2.75.dist-info}/top_level.txt +0 -0
@@ -22,7 +22,7 @@ import datetime
22
22
  import queue
23
23
  import json
24
24
  import os
25
- from multiprocessing import Queue
25
+ from multiprocessing import Queue as MPQueue
26
26
 
27
27
 
28
28
  def eval_cost(x, iteration, step_param_names, step_objfunc, calib_params, req_queue, files, url, param, conf: Dict, rnd,
@@ -82,7 +82,7 @@ def eval_cost(x, iteration, step_param_names, step_objfunc, calib_params, req_qu
82
82
  def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters: int, options: Dict,
83
83
  oh_strategy: Dict = None, n_threads: int = 4, rtol: float = 0.001, ftol: float = -np.inf,
84
84
  ftol_iter: int = 1, full_trace: List = None, rtol_iter: int = 1,
85
- conf: Dict = None, metainfo: Dict = None, cost_target: float = -np.inf, result_queue: Queue = None) -> Tuple:
85
+ conf: Dict = None, metainfo: Dict = None, cost_target: float = -np.inf, result_queue: MPQueue = None) -> Tuple:
86
86
  """Performs a stepwise particle swarm optimization PSO using a global best approach.
87
87
 
88
88
  Parameters
@@ -168,7 +168,15 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
168
168
  step_trace['min_rounds'] = min_rounds
169
169
  step_trace['max_rounds'] = max_rounds
170
170
  step_trace['iters'] = iters
171
- step_trace['ftol'] = ftol
171
+
172
+ # BUG If ftol is -inf set it to a string
173
+ ftol_value = ftol
174
+ if ftol == -np.inf:
175
+ ftol_value = '-inf'
176
+ elif ftol == np.inf:
177
+ ftol_value = 'inf'
178
+
179
+ step_trace['ftol'] = ftol_value
172
180
  step_trace['ftol_iter'] = ftol_iter
173
181
  step_trace['rtol'] = rtol
174
182
  step_trace['rtol_iter'] = rtol_iter
@@ -176,17 +184,21 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
176
184
  step_trace['n_particles'] = n_particles
177
185
  step_trace['n_steps'] = len(steps)
178
186
  step_trace['steps'] = copy.deepcopy(steps)
179
- step_trace['args'] = args
187
+ step_trace['args'] = str(args) #BUG MUST BE REMOVED
180
188
 
181
189
  if step_file is not None:
182
190
  with open(step_file, "w") as fo:
183
191
  json.dump(step_trace, fo)
184
192
 
193
+ print("Wrote step trace")
194
+
185
195
  # best round cost
186
196
  best_round_cost = np.inf
187
197
 
188
198
  # request queue for worker
189
199
  req_queue = queue.Queue()
200
+
201
+ print("Created queue")
190
202
 
191
203
  conf = conf or {}
192
204
  done = False
@@ -199,6 +211,8 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
199
211
  thread_pool.append(worker)
200
212
  worker.start()
201
213
 
214
+ print("Started worker threads")
215
+
202
216
  r_below = 0
203
217
  early_exit = False
204
218
  start_time = datetime.datetime.now()
@@ -222,6 +236,8 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
222
236
  args['req_queue'] = req_queue
223
237
  args['conf'] = conf
224
238
 
239
+ print("Calling global best..")
240
+
225
241
  # create optimizer in the first round.
226
242
  if optimizer[s] is None:
227
243
  optimizer[s] = GlobalBestPSO(step.get('n_particles', n_particles),
@@ -232,21 +248,27 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
232
248
  ftol=step.get('ftol', ftol),
233
249
  ftol_iter=step.get('ftol_iter', ftol_iter),
234
250
  cost_target=step.get('cost_target', cost_target))
235
- print('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names,
236
- args['calib_params']))
251
+
252
+ print('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names, args['calib_params']))
237
253
 
238
- if result_queue is not None:
239
- result_queue.put('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names, args['calib_params']))
254
+ #if result_queue is not None:
255
+ # result_queue.put('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names, args['calib_params']))
256
+
257
+ print("Filled request queue...")
240
258
 
241
259
  args['rnd'] = r + 1
242
260
  args['step'] = s + 1
243
261
 
262
+ print("Evaluating cost...")
263
+
244
264
  # perform optimization
245
265
  cost, pos = optimizer[s].optimize(eval_cost, iters=step.get('iters', iters), **args)
246
266
  if cost is None:
247
267
  early_exit = True
248
268
  break
249
269
 
270
+ print("Finished evaluation...")
271
+
250
272
  # capture the best cost
251
273
  # if cost < best_cost[s] and np.abs(cost - best_cost[s]) > rtol:
252
274
  if cost < best_cost[s]:
@@ -262,7 +284,16 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
262
284
  key = "r{}s{}".format(r + 1, s + 1)
263
285
  step_trace[key] = {}
264
286
  step_trace[key]['time'] = str(datetime.datetime.now())
265
- step_trace[key]['best_costs'] = best_cost
287
+
288
+ best_costs_list = best_cost.tolist()
289
+ # If the cost is inf, set it to a string
290
+ for i, c in enumerate(best_costs_list):
291
+ if c == np.inf:
292
+ best_costs_list[i] = 'inf'
293
+ elif c == -np.inf:
294
+ best_costs_list[i] = '-inf'
295
+
296
+ step_trace[key]['best_costs'] = best_costs_list # BUG
266
297
  step_trace[key]['steps'] = copy.deepcopy(steps)
267
298
 
268
299
  if step_file is not None:
@@ -299,8 +330,17 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
299
330
  step_trace[key] = {}
300
331
  step_trace[key]['time'] = str(datetime.datetime.now())
301
332
  step_trace[key]['round_cost'] = round_cost
302
- step_trace[key]['best_costs'] = best_cost
303
- step_trace[key]['improvements'] = no_improvement
333
+
334
+ best_costs_list = best_cost.tolist() #BUG
335
+ # If the cost is inf, set it to a string
336
+ for i, c in enumerate(best_costs_list):
337
+ if c == np.inf:
338
+ best_costs_list[i] = 'inf'
339
+ elif c == -np.inf:
340
+ best_costs_list[i] = '-inf'
341
+
342
+ step_trace[key]['best_costs'] = best_costs_list
343
+ step_trace[key]['improvements'] = no_improvement.tolist()
304
344
  if step_file is not None:
305
345
  with open(step_file, "w") as fo:
306
346
  json.dump(step_trace, fo)
@@ -336,4 +376,8 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
336
376
  with open(step_file, "w") as fo:
337
377
  json.dump(step_trace, fo)
338
378
 
379
+ if result_queue is not None:
380
+ result_queue.put("Step Trace")
381
+ result_queue.put(step_trace)
382
+
339
383
  return optimizer, step_trace
@@ -0,0 +1,16 @@
1
+ # -*- coding: utf-8 -*-
2
+
3
+ """
4
+ LUCA/PSO toolkit
5
+ =========================================
6
+ This is ...
7
+
8
+ """
9
+
10
+ __author__ = """Olaf David"""
11
+ __email__ = "odavid@colostate.edu"
12
+ __version__ = "1.0"
13
+
14
+ from .sampling import run_sampler
15
+
16
+ __all__ = ["run_sampler"]
File without changes
@@ -0,0 +1,45 @@
1
+ from collections.abc import Iterable
2
+ import math
3
+ from ...sampling.halton.prime import generate_n_primes
4
+
5
+
6
+ def halton(index: int, base: int) -> float:
7
+ fraction: float = 1.0
8
+ result: float = 0
9
+
10
+ while index > 0:
11
+ fraction = fraction / base
12
+ result += fraction * (index % base)
13
+ index = math.floor(index / base)
14
+
15
+ return result
16
+
17
+
18
+ class HaltonSampleGenerator:
19
+ index: int
20
+ maxIndex: int
21
+ primes: list[int]
22
+
23
+ def __init__(self, count: int, offset: int, num_parameters: int):
24
+ assert (count > 0)
25
+ assert (offset >= 0)
26
+ self.index = offset + 1
27
+ self.maxIndex = offset + count + 1
28
+ self.primes = generate_n_primes(num_parameters)
29
+
30
+ def __iter__(self) -> Iterable[tuple[int, list[float]]]:
31
+ return self
32
+
33
+ def __next__(self) -> tuple[int, list[float]]:
34
+ if self.index >= self.maxIndex:
35
+ raise StopIteration
36
+
37
+ i = 0
38
+ values: list[float] = []
39
+ for base in self.primes:
40
+ values.append(halton(self.index, base))
41
+
42
+ result: tuple[int, list[float]] = (self.index, values)
43
+ self.index = self.index + 1
44
+ return result
45
+
@@ -0,0 +1,82 @@
1
+ from typing import List
2
+
3
+ PRIME_TABLE: List[int] = [
4
+ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
5
+ 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
6
+ 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
7
+ 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
8
+ 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
9
+ 233, 239, 241, 251, 257, 263, 269, 271, 277, 281,
10
+ 283, 293, 307, 311, 313, 317, 331, 337, 347, 349,
11
+ 353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
12
+ 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
13
+ 467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
14
+ 547, 557, 563, 569, 571, 577, 587, 593, 599, 601,
15
+ 607, 613, 617, 619, 631, 641, 643, 647, 653, 659,
16
+ 661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
17
+ 739, 743, 751, 757, 761, 769, 773, 787, 797, 809,
18
+ 811, 821, 823, 827, 829, 839, 853, 857, 859, 863,
19
+ 877, 881, 883, 887, 907, 911, 919, 929, 937, 941,
20
+ 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013,
21
+ 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069,
22
+ 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
23
+ 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223,
24
+ 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291,
25
+ 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373,
26
+ 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
27
+ 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511,
28
+ 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583,
29
+ 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657,
30
+ 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
31
+ 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811,
32
+ 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889,
33
+ 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987,
34
+ 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
35
+ 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129,
36
+ 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213,
37
+ 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287,
38
+ 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
39
+ 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423,
40
+ 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531,
41
+ 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617,
42
+ 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
43
+ 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741,
44
+ 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819,
45
+ 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903,
46
+ 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
47
+ 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079,
48
+ 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181,
49
+ 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257,
50
+ 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
51
+ 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413,
52
+ 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511,
53
+ 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571,
54
+ 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
55
+ 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727,
56
+ 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821,
57
+ 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907,
58
+ 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
59
+ 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057,
60
+ 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139,
61
+ 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231,
62
+ 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
63
+ 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409
64
+ ]
65
+
66
+
67
+ def generate_n_primes(n: int) -> List[int]:
68
+ if n < len(PRIME_TABLE):
69
+ return PRIME_TABLE[0:n]
70
+
71
+ primes: List[int] = PRIME_TABLE.copy()
72
+ num: int = primes[-1] + 2
73
+ while len(primes) < n:
74
+ is_prime = True
75
+ for p in primes:
76
+ if num % p == 0:
77
+ is_prime = False
78
+ break
79
+ if is_prime:
80
+ primes.append(num)
81
+ num += 2
82
+ return primes
File without changes
@@ -0,0 +1,34 @@
1
+ from collections.abc import Iterable
2
+ import random
3
+
4
+
5
+ class RandomSampleGenerator:
6
+ index: int
7
+ count: int
8
+ num_parameters: int
9
+ rand: random.Random
10
+
11
+ def __init__(self, count: int, num_parameters: int):
12
+ assert (count > 0)
13
+ self.index = 1
14
+ self.count = count + 1
15
+ self.num_parameters = num_parameters
16
+ self.rand = random.Random()
17
+
18
+ def __iter__(self) -> Iterable[tuple[int, list[float]]]:
19
+ return self
20
+
21
+ def __next__(self) -> tuple[int, list[float]]:
22
+ if self.index >= self.count:
23
+ raise StopIteration
24
+
25
+ i: int = 0
26
+ values: list[float] = []
27
+ while i < self.num_parameters:
28
+ values.append(self.rand.uniform(0, 1))
29
+ i = i + 1
30
+
31
+ result: tuple[int, list[float]] = (self.index, values)
32
+ self.index = self.index + 1
33
+ return result
34
+
@@ -0,0 +1,47 @@
1
+ import threading
2
+
3
+
4
+ class SampleTraceWriter:
5
+ trace_file: str
6
+ parameter_indices: dict[int, str]
7
+ objective_indices: dict[int, str]
8
+ write_lock: threading.Lock
9
+
10
+ def __init__(self, trace_file: str):
11
+ assert(trace_file is not None and len(trace_file) > 0)
12
+ self.trace_file = trace_file
13
+ self.parameter_indices = {}
14
+ self.objective_indices = {}
15
+ self.write_lock = threading.Lock()
16
+
17
+ def write_header(self, parameter_names: list[str], objective_names: list[str]) -> None:
18
+ with self.write_lock:
19
+ with open(self.trace_file, 'w') as writer:
20
+ writer.write("id")
21
+ self.parameter_indices = {}
22
+ index: int = 0
23
+ for name in parameter_names:
24
+ writer.write(",{}".format(name))
25
+ self.parameter_indices[index] = name
26
+ index = index + 1
27
+ self.objective_indices = {}
28
+ index = 0
29
+ for name in objective_names:
30
+ writer.write(",{}".format(name))
31
+ self.objective_indices[index] = name
32
+ index = index + 1
33
+ writer.write("\n")
34
+
35
+ def append_sample(self, sample_id: int, parameters: dict[str, any], objectives: dict[str, any]) -> None:
36
+ with self.write_lock:
37
+ with open(self.trace_file, 'a') as writer:
38
+ writer.write("{}".format(sample_id))
39
+ index: int = 0
40
+ while index < len(self.parameter_indices):
41
+ writer.write(",{}".format(parameters[self.parameter_indices[index]]))
42
+ index = index + 1
43
+ index = 0
44
+ while index < len(self.objective_indices):
45
+ writer.write(",{}".format(objectives[self.objective_indices[index]]))
46
+ index = index + 1
47
+ writer.write("\n")
@@ -0,0 +1,75 @@
1
+ import os
2
+ from csip import Client
3
+
4
+
5
+ class SamplerTask:
6
+ task_id: int
7
+ parameters: dict[str, any]
8
+ objectives: list[dict[str, any]]
9
+ static_parameters: dict[str, any]
10
+ url: str
11
+ files: list[str]
12
+ metainfo: dict[str, any]
13
+ conf: dict[str, any]
14
+ result: dict[str, any]
15
+
16
+ def __init__(self, task_id: int, parameters: dict[str, any], objectives: list[dict[str, any]],
17
+ static_parameters: dict[str, any], url: str, files: list[str] = None, metainfo: dict[str, any] = None,
18
+ conf: dict[str, any] = None):
19
+ self.task_id = task_id
20
+ assert (parameters is not None and len(parameters) > 0)
21
+ self.parameters = parameters
22
+ assert (objectives is not None and len(objectives) > 0)
23
+ self.objectives = objectives
24
+ self.static_parameters = static_parameters if static_parameters is not None else []
25
+ assert (url is not None and len(url) > 0)
26
+ self.url = url
27
+ self.files = files if files is not None else []
28
+ self.metainfo = metainfo
29
+ self.conf = conf
30
+
31
+ def create_request(self) -> Client:
32
+ request: Client = Client(metainfo=self.metainfo)
33
+
34
+ for key, value in self.static_parameters.items():
35
+ request.add_data(key, value)
36
+
37
+ for key, value in self.parameters.items():
38
+ request.add_data(key, value)
39
+
40
+ for of in self.objectives:
41
+ request.add_cosu(of['name'], of['of'], of['data'])
42
+
43
+ return request
44
+
45
+ def run_task(self) -> bool:
46
+ self.result = {}
47
+ request: Client = self.create_request()
48
+ async_call: bool = self.conf.get('async_call', True) if self.conf is not None else True
49
+ # save response, set it to a folder if responses should be saved.
50
+ save_resp = self.conf.get('save_response_to', None) if self.conf is not None else None
51
+ successful: bool = False
52
+
53
+ response: Client = None
54
+ try:
55
+ if async_call:
56
+ response = request.execute_async(self.url, files=self.files, conf=self.conf)
57
+ else:
58
+ response = request.execute(self.url, files=self.files, conf=self.conf)
59
+
60
+ successful = response.is_finished()
61
+ if not successful:
62
+ print(response)
63
+
64
+ if save_resp:
65
+ response.save_to(os.path.join(save_resp, 'task_{}.json'.format(self.task_id)))
66
+
67
+ objectives: list[dict[str, str]] = response.get_metainfo("cosu")
68
+ for of in objectives:
69
+ self.result[of["name"]] = of["value"]
70
+ except Exception as ex:
71
+ print(ex)
72
+ print(response)
73
+ successful = False
74
+
75
+ return successful
@@ -0,0 +1,99 @@
1
+ from collections.abc import Iterable
2
+ import math
3
+ import asyncio
4
+ import concurrent
5
+ import datetime
6
+ from ..utils import utils
7
+ from ..sampling.halton.halton import HaltonSampleGenerator
8
+ from ..sampling.random.random_sampler import RandomSampleGenerator
9
+ from ..sampling.sampler_task import SamplerTask
10
+ from ..sampling.sample_trace_writer import SampleTraceWriter
11
+
12
+
13
+ def weighted_value(weight: float, lower: float, upper: float) -> float:
14
+ return lower + weight * (upper - lower)
15
+
16
+
17
+ def get_static_parameters(args: dict[str, any]) -> dict[str, any]:
18
+ static_parameters: dict[str, any] = {}
19
+ for param in args["param"]:
20
+ static_parameters[param["name"]] = param["value"]
21
+ return static_parameters
22
+
23
+
24
+ def get_objective_names(objfunc: dict[str, any]) -> list[str]:
25
+ objective_names: list[str] = []
26
+ for of in objfunc:
27
+ objective_names.append(of["name"])
28
+ return objective_names
29
+
30
+
31
+ def thread_function(task: SamplerTask) -> tuple[bool, SamplerTask]:
32
+ return task.run_task(), task
33
+
34
+
35
+ def create_generator(method: str, count: int, num_parameters: int, **kwargs) -> Iterable[tuple[int, list[float]]]:
36
+ if method == "halton":
37
+ offset: int = 0
38
+ if "offset" in kwargs:
39
+ offset = kwargs["offset"]
40
+ return HaltonSampleGenerator(count, offset, num_parameters)
41
+ elif method == "random":
42
+ return RandomSampleGenerator(count, num_parameters)
43
+
44
+ raise Exception("Sampling method is not recognized")
45
+
46
+
47
+ def run_sampler(steps: list[dict[str, any]], args: dict[str, any], count: int, num_threads: int, method: str = "halton",
48
+ metainfo: dict[str, any] = None, conf: dict[str, any] = None, trace_file: str = "trace.csv",
49
+ **kwargs) -> dict[int, tuple[dict[str, any], dict[str, any]]]:
50
+ param_names, bounds, objfunc = utils.get_step_info(steps, 0)
51
+ generator: Iterable[tuple[int, list[float]]] = create_generator(method, count, len(param_names), **kwargs)
52
+ objective_names: list[str] = get_objective_names(objfunc)
53
+ static_parameters: dict[str, any] = get_static_parameters(args)
54
+ url: str = args["url"]
55
+ files: list[str] = args["files"]
56
+
57
+ trace: dict[int, tuple[dict[str, float], dict[str, float]]] = {}
58
+ trace_writer: SampleTraceWriter = SampleTraceWriter(trace_file)
59
+ trace_writer.write_header(param_names, objective_names)
60
+
61
+ with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
62
+ futures = []
63
+ for sample_id, sample in generator:
64
+ params: dict[str, float] = {}
65
+ index: int = 0
66
+ while index < len(sample):
67
+ params[param_names[index]] = weighted_value(sample[index], bounds[0][index], bounds[1][index])
68
+ index += 1
69
+
70
+ task: SamplerTask = SamplerTask(sample_id, params, objfunc, static_parameters, url, files, metainfo, conf)
71
+ futures.append(executor.submit(thread_function, task))
72
+ # for future in concurrent.futures.as_completed(futures):
73
+ # pass
74
+ num_finished: int = 0
75
+ percentage: float
76
+ last_percentage: float = 0
77
+ for future in concurrent.futures.as_completed(futures):
78
+ try:
79
+ successful, task = future.result()
80
+
81
+ if successful:
82
+ trace[task.task_id] = (task.parameters, task.result)
83
+ trace_writer.append_sample(task.task_id, task.parameters, task.result)
84
+ else:
85
+ print("Failed to successfully execute task: {}", task.task_id, flush=True)
86
+ except asyncio.CancelledError as ce:
87
+ pass
88
+ except asyncio.InvalidStateError as ise:
89
+ pass
90
+ except Exception as ex:
91
+ print(ex, flush=True)
92
+
93
+ num_finished = num_finished + 1
94
+ percentage = math.trunc(num_finished / count * 1000) / 10
95
+ if percentage > last_percentage:
96
+ last_percentage = percentage
97
+ print("{}% Done {}".format(percentage, datetime.datetime.now()), flush=True)
98
+
99
+ return trace