megadetector 5.0.8__py3-none-any.whl → 5.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (190) hide show
  1. api/__init__.py +0 -0
  2. api/batch_processing/__init__.py +0 -0
  3. api/batch_processing/api_core/__init__.py +0 -0
  4. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  5. api/batch_processing/api_core/batch_service/score.py +0 -1
  6. api/batch_processing/api_core/server_job_status_table.py +0 -1
  7. api/batch_processing/api_core_support/__init__.py +0 -0
  8. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -1
  9. api/batch_processing/api_support/__init__.py +0 -0
  10. api/batch_processing/api_support/summarize_daily_activity.py +0 -1
  11. api/batch_processing/data_preparation/__init__.py +0 -0
  12. api/batch_processing/data_preparation/manage_local_batch.py +65 -65
  13. api/batch_processing/data_preparation/manage_video_batch.py +8 -8
  14. api/batch_processing/integration/digiKam/xmp_integration.py +0 -1
  15. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -1
  16. api/batch_processing/postprocessing/__init__.py +0 -0
  17. api/batch_processing/postprocessing/add_max_conf.py +12 -12
  18. api/batch_processing/postprocessing/categorize_detections_by_size.py +32 -14
  19. api/batch_processing/postprocessing/combine_api_outputs.py +68 -54
  20. api/batch_processing/postprocessing/compare_batch_results.py +113 -43
  21. api/batch_processing/postprocessing/convert_output_format.py +41 -16
  22. api/batch_processing/postprocessing/load_api_results.py +16 -17
  23. api/batch_processing/postprocessing/md_to_coco.py +31 -21
  24. api/batch_processing/postprocessing/md_to_labelme.py +52 -22
  25. api/batch_processing/postprocessing/merge_detections.py +14 -14
  26. api/batch_processing/postprocessing/postprocess_batch_results.py +246 -174
  27. api/batch_processing/postprocessing/remap_detection_categories.py +32 -25
  28. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +60 -27
  29. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +53 -44
  30. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +25 -14
  31. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +242 -158
  32. api/batch_processing/postprocessing/separate_detections_into_folders.py +159 -114
  33. api/batch_processing/postprocessing/subset_json_detector_output.py +146 -169
  34. api/batch_processing/postprocessing/top_folders_to_bottom.py +77 -43
  35. api/synchronous/__init__.py +0 -0
  36. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  37. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -2
  38. api/synchronous/api_core/animal_detection_api/api_frontend.py +266 -268
  39. api/synchronous/api_core/animal_detection_api/config.py +35 -35
  40. api/synchronous/api_core/tests/__init__.py +0 -0
  41. api/synchronous/api_core/tests/load_test.py +109 -109
  42. classification/__init__.py +0 -0
  43. classification/aggregate_classifier_probs.py +21 -24
  44. classification/analyze_failed_images.py +11 -13
  45. classification/cache_batchapi_outputs.py +51 -51
  46. classification/create_classification_dataset.py +69 -68
  47. classification/crop_detections.py +54 -53
  48. classification/csv_to_json.py +97 -100
  49. classification/detect_and_crop.py +105 -105
  50. classification/evaluate_model.py +43 -42
  51. classification/identify_mislabeled_candidates.py +47 -46
  52. classification/json_to_azcopy_list.py +10 -10
  53. classification/json_validator.py +72 -71
  54. classification/map_classification_categories.py +44 -43
  55. classification/merge_classification_detection_output.py +68 -68
  56. classification/prepare_classification_script.py +157 -154
  57. classification/prepare_classification_script_mc.py +228 -228
  58. classification/run_classifier.py +27 -26
  59. classification/save_mislabeled.py +30 -30
  60. classification/train_classifier.py +20 -20
  61. classification/train_classifier_tf.py +21 -22
  62. classification/train_utils.py +10 -10
  63. data_management/__init__.py +0 -0
  64. data_management/annotations/__init__.py +0 -0
  65. data_management/annotations/annotation_constants.py +18 -31
  66. data_management/camtrap_dp_to_coco.py +238 -0
  67. data_management/cct_json_utils.py +102 -59
  68. data_management/cct_to_md.py +176 -158
  69. data_management/cct_to_wi.py +247 -219
  70. data_management/coco_to_labelme.py +272 -263
  71. data_management/coco_to_yolo.py +79 -58
  72. data_management/databases/__init__.py +0 -0
  73. data_management/databases/add_width_and_height_to_db.py +20 -16
  74. data_management/databases/combine_coco_camera_traps_files.py +35 -31
  75. data_management/databases/integrity_check_json_db.py +62 -24
  76. data_management/databases/subset_json_db.py +24 -15
  77. data_management/generate_crops_from_cct.py +27 -45
  78. data_management/get_image_sizes.py +188 -162
  79. data_management/importers/add_nacti_sizes.py +8 -8
  80. data_management/importers/add_timestamps_to_icct.py +78 -78
  81. data_management/importers/animl_results_to_md_results.py +158 -158
  82. data_management/importers/auckland_doc_test_to_json.py +9 -9
  83. data_management/importers/auckland_doc_to_json.py +8 -8
  84. data_management/importers/awc_to_json.py +7 -7
  85. data_management/importers/bellevue_to_json.py +15 -15
  86. data_management/importers/cacophony-thermal-importer.py +13 -13
  87. data_management/importers/carrizo_shrubfree_2018.py +8 -8
  88. data_management/importers/carrizo_trail_cam_2017.py +8 -8
  89. data_management/importers/cct_field_adjustments.py +9 -9
  90. data_management/importers/channel_islands_to_cct.py +10 -10
  91. data_management/importers/eMammal/copy_and_unzip_emammal.py +1 -0
  92. data_management/importers/ena24_to_json.py +7 -7
  93. data_management/importers/filenames_to_json.py +8 -8
  94. data_management/importers/helena_to_cct.py +7 -7
  95. data_management/importers/idaho-camera-traps.py +7 -7
  96. data_management/importers/idfg_iwildcam_lila_prep.py +10 -10
  97. data_management/importers/jb_csv_to_json.py +9 -9
  98. data_management/importers/mcgill_to_json.py +8 -8
  99. data_management/importers/missouri_to_json.py +18 -18
  100. data_management/importers/nacti_fieldname_adjustments.py +10 -10
  101. data_management/importers/noaa_seals_2019.py +7 -7
  102. data_management/importers/pc_to_json.py +7 -7
  103. data_management/importers/plot_wni_giraffes.py +7 -7
  104. data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -359
  105. data_management/importers/prepare_zsl_imerit.py +7 -7
  106. data_management/importers/rspb_to_json.py +8 -8
  107. data_management/importers/save_the_elephants_survey_A.py +8 -8
  108. data_management/importers/save_the_elephants_survey_B.py +9 -9
  109. data_management/importers/snapshot_safari_importer.py +26 -26
  110. data_management/importers/snapshot_safari_importer_reprise.py +665 -665
  111. data_management/importers/snapshot_serengeti_lila.py +14 -14
  112. data_management/importers/sulross_get_exif.py +8 -9
  113. data_management/importers/timelapse_csv_set_to_json.py +11 -11
  114. data_management/importers/ubc_to_json.py +13 -13
  115. data_management/importers/umn_to_json.py +7 -7
  116. data_management/importers/wellington_to_json.py +8 -8
  117. data_management/importers/wi_to_json.py +9 -9
  118. data_management/importers/zamba_results_to_md_results.py +181 -181
  119. data_management/labelme_to_coco.py +65 -24
  120. data_management/labelme_to_yolo.py +8 -8
  121. data_management/lila/__init__.py +0 -0
  122. data_management/lila/add_locations_to_island_camera_traps.py +9 -9
  123. data_management/lila/add_locations_to_nacti.py +147 -147
  124. data_management/lila/create_lila_blank_set.py +13 -13
  125. data_management/lila/create_lila_test_set.py +8 -8
  126. data_management/lila/create_links_to_md_results_files.py +106 -106
  127. data_management/lila/download_lila_subset.py +44 -110
  128. data_management/lila/generate_lila_per_image_labels.py +55 -42
  129. data_management/lila/get_lila_annotation_counts.py +18 -15
  130. data_management/lila/get_lila_image_counts.py +11 -11
  131. data_management/lila/lila_common.py +96 -33
  132. data_management/lila/test_lila_metadata_urls.py +132 -116
  133. data_management/ocr_tools.py +173 -128
  134. data_management/read_exif.py +110 -97
  135. data_management/remap_coco_categories.py +83 -83
  136. data_management/remove_exif.py +58 -62
  137. data_management/resize_coco_dataset.py +30 -23
  138. data_management/wi_download_csv_to_coco.py +246 -239
  139. data_management/yolo_output_to_md_output.py +86 -73
  140. data_management/yolo_to_coco.py +300 -60
  141. detection/__init__.py +0 -0
  142. detection/detector_training/__init__.py +0 -0
  143. detection/process_video.py +85 -33
  144. detection/pytorch_detector.py +43 -25
  145. detection/run_detector.py +157 -72
  146. detection/run_detector_batch.py +179 -113
  147. detection/run_inference_with_yolov5_val.py +108 -48
  148. detection/run_tiled_inference.py +111 -40
  149. detection/tf_detector.py +51 -29
  150. detection/video_utils.py +606 -521
  151. docs/source/conf.py +43 -0
  152. md_utils/__init__.py +0 -0
  153. md_utils/azure_utils.py +9 -9
  154. md_utils/ct_utils.py +228 -68
  155. md_utils/directory_listing.py +59 -64
  156. md_utils/md_tests.py +968 -871
  157. md_utils/path_utils.py +460 -134
  158. md_utils/process_utils.py +157 -133
  159. md_utils/sas_blob_utils.py +20 -20
  160. md_utils/split_locations_into_train_val.py +45 -32
  161. md_utils/string_utils.py +33 -10
  162. md_utils/url_utils.py +176 -60
  163. md_utils/write_html_image_list.py +40 -33
  164. md_visualization/__init__.py +0 -0
  165. md_visualization/plot_utils.py +102 -109
  166. md_visualization/render_images_with_thumbnails.py +34 -34
  167. md_visualization/visualization_utils.py +597 -291
  168. md_visualization/visualize_db.py +76 -48
  169. md_visualization/visualize_detector_output.py +61 -42
  170. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/METADATA +13 -7
  171. megadetector-5.0.9.dist-info/RECORD +224 -0
  172. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/top_level.txt +1 -0
  173. taxonomy_mapping/__init__.py +0 -0
  174. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +342 -335
  175. taxonomy_mapping/map_new_lila_datasets.py +154 -154
  176. taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -134
  177. taxonomy_mapping/preview_lila_taxonomy.py +591 -591
  178. taxonomy_mapping/retrieve_sample_image.py +12 -12
  179. taxonomy_mapping/simple_image_download.py +11 -11
  180. taxonomy_mapping/species_lookup.py +10 -10
  181. taxonomy_mapping/taxonomy_csv_checker.py +18 -18
  182. taxonomy_mapping/taxonomy_graph.py +47 -47
  183. taxonomy_mapping/validate_lila_category_mappings.py +83 -76
  184. data_management/cct_json_to_filename_json.py +0 -89
  185. data_management/cct_to_csv.py +0 -140
  186. data_management/databases/remove_corrupted_images_from_db.py +0 -191
  187. detection/detector_training/copy_checkpoints.py +0 -43
  188. megadetector-5.0.8.dist-info/RECORD +0 -205
  189. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/LICENSE +0 -0
  190. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/WHEEL +0 -0
@@ -1,191 +0,0 @@
1
- ########
2
- #
3
- # remove_corrupted_images_from_db.py
4
- #
5
- # Given a coco-camera-traps .json file, checks all images for corruption
6
- # and generates a new .json file that only contains the non-corrupted images.
7
- #
8
- ########
9
-
10
- #%% Imports and constants
11
-
12
- import argparse
13
- import gc
14
- import json
15
- import sys
16
- import os
17
- import time
18
-
19
- from multiprocessing.pool import ThreadPool
20
-
21
- import humanfriendly
22
- import numpy as np
23
- import tensorflow as tf
24
-
25
- N_THREADS = 16
26
- DEBUG_MAX_IMAGES = -1
27
- IMAGE_PRINT_FREQUENCY = 10
28
-
29
-
30
- #%% Function definitions
31
-
32
- def check_images(images, image_file_root):
33
- """
34
- Checks all the images in [images] for corruption using TF.
35
-
36
- [images] is a list of image dictionaries, as they would appear in COCO
37
- files.
38
-
39
- Returns a dictionary mapping image IDs to booleans.
40
- """
41
-
42
- # I sometimes pass in a list of images, sometimes a dict with a single
43
- # element mapping a job ID to the list of images
44
- if isinstance(images,dict):
45
- assert(len(images) == 1)
46
- jobID = list(images.keys())[0]
47
- images = images[jobID]
48
- else:
49
- jobID = 0
50
-
51
- keep_im = {im['id']:True for im in images}
52
-
53
- count = 0
54
- nImages = len(images)
55
-
56
- # We're about to start a lot of TF sessions, and we don't want gobs
57
- # of debugging information printing out for every session.
58
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
59
- config=tf.ConfigProto(log_device_placement=False)
60
-
61
- # At some point we were creating a single session and looping over images
62
- # within that session, but the only way I found to reliably not run out
63
- # of GPU memory was to create a session per image and gc.collect() after
64
- # each session.
65
- for iImage,im in enumerate(images):
66
-
67
- with tf.Session(config=config) as sess:
68
-
69
- if ((DEBUG_MAX_IMAGES > 0) and (iImage >= DEBUG_MAX_IMAGES)):
70
- print('Breaking after {} images'.format(DEBUG_MAX_IMAGES))
71
- break
72
-
73
- if (count % IMAGE_PRINT_FREQUENCY == 0):
74
- print('Job {}: processed {} of {} images'.format(jobID,count,nImages))
75
-
76
- count += 1
77
- image_file = os.path.join(image_file_root,im['file_name'])
78
- assert(os.path.isfile(image_file))
79
-
80
- try:
81
- image_data = tf.gfile.FastGFile(image_file,'rb').read()
82
- image = tf.image.decode_jpeg(image_data)
83
- sess.run(image)
84
- except:
85
- keep_im[im['id']] = False
86
-
87
- gc.collect()
88
-
89
- return keep_im
90
-
91
-
92
- def remove_corrupted_images_from_database(data, image_file_root):
93
- """
94
- Given the COCO database [data], checks all images for corruption using
95
- TF, and returns a subset of [data] containing only non-corrupted images.
96
- """
97
-
98
- # Map Image IDs to boolean (should I keep this image?)
99
- images = data['images']
100
-
101
- if (N_THREADS == 1):
102
-
103
- keep_im = check_images(images,image_file_root)
104
-
105
- else:
106
-
107
- start = time.time()
108
- imageChunks = np.array_split(images,N_THREADS)
109
- # Convert to lists, append job numbers to the image lists
110
- for iChunk in range(0,len(imageChunks)):
111
- imageChunks[iChunk] = list(imageChunks[iChunk])
112
- imageChunks[iChunk] = {iChunk:imageChunks[iChunk]}
113
- pool = ThreadPool(N_THREADS)
114
- # results = pool.imap_unordered(lambda x: fetch_url(x,nImages), indexedUrlList)
115
- results = pool.map(lambda x: check_images(x,image_file_root), imageChunks)
116
- processingTime = time.time() - start
117
-
118
- # Merge results
119
- keep_im = {}
120
- for d in results:
121
- keep_im.update(d)
122
- bValid = keep_im.values()
123
-
124
- print("Checked image corruption in {}, found {} invalid images (of {})".format(
125
- humanfriendly.format_timespan(processingTime),
126
- len(bValid)-sum(bValid),len(bValid)))
127
-
128
- data['images'] = [im for im in data['images'] if keep_im[im['id']]]
129
- data['annotations'] = [ann for ann in data['annotations'] if keep_im[ann['image_id']]]
130
-
131
- return data
132
-
133
-
134
- #%% Interactive driver
135
-
136
- if False:
137
-
138
- #%%
139
-
140
- # base_dir = r'D:\temp\snapshot_serengeti_tfrecord_generation'
141
- base_dir = r'/data/ss_corruption_check'
142
- input_file = os.path.join(base_dir,'imerit_batch7_renamed.json')
143
- output_file = os.path.join(base_dir,'imerit_batch7_renamed_uncorrupted.json')
144
- image_file_root = os.path.join(base_dir,'imerit_batch7_images_renamed')
145
- assert(os.path.isfile(input_file))
146
- assert(os.path.isdir(image_file_root))
147
-
148
- # Load annotations
149
- with open(input_file,'r') as f:
150
- data = json.load(f)
151
-
152
- # Check for corruption
153
- data_uncorrupted = remove_corrupted_images_from_database(data,image_file_root)
154
-
155
- # Write out only the uncorrupted data
156
- json.dump(data_uncorrupted, open(output_file,'w'))
157
-
158
-
159
- #%% Command-line driver
160
-
161
- def main():
162
-
163
- parser = argparse.ArgumentParser(description = 'Remove images from a .json file that can''t be opened in TF')
164
-
165
- parser.add_argument('--input_file', dest='input_file',
166
- help='Path to .json database that includes corrupted jpegs',
167
- type=str, required=True)
168
- parser.add_argument('--image_file_root', dest='image_file_root',
169
- help='Path to image files',
170
- type=str, required=True)
171
- parser.add_argument('--output_file', dest='output_file',
172
- help='Path to store uncorrupted .json database',
173
- type=str, required=True)
174
-
175
- if len(sys.argv[1:]) == 0:
176
- parser.print_help()
177
- parser.exit()
178
-
179
- args = parser.parse_args()
180
-
181
- print('Reading input file')
182
- with open(args.input_file,'r') as f:
183
- data = json.load(f)
184
- print('Removing corrupted images from database')
185
- uncorrupted_data = remove_corrupted_images_from_database(data, args.image_file_root)
186
-
187
- json.dump(uncorrupted_data, open(args.output_file,'w'))
188
-
189
-
190
- if __name__ == '__main__':
191
- main()
@@ -1,43 +0,0 @@
1
- ########
2
- #
3
- # copy_checkpoints.py
4
- #
5
- # Run this script with specified source_dir and target_dir while the model is training to make a copy
6
- # of every checkpoint (checkpoints are kept once an hour by default and is difficult to adjust)
7
- #
8
- ########
9
-
10
- #%% Imports and constants
11
-
12
- import time
13
- import os
14
- import shutil
15
-
16
- check_every_n_minutes = 10
17
-
18
- source_dir = '/datadrive/megadetectorv3/experiments/190425'
19
- target_dir = '/datadrive/megadetectorv3/experiments/0425_checkpoints'
20
-
21
- os.makedirs(target_dir, exist_ok=True)
22
-
23
-
24
- #%% Main loop
25
-
26
- num_checks = 0
27
-
28
- while True:
29
-
30
- num_checks += 1
31
- print('Checking round {}.'.format(num_checks))
32
-
33
- for f in os.listdir(source_dir):
34
- # do not copy event or evaluation results
35
- if f.startswith('model') or f.startswith('graph'):
36
- target_path = os.path.join(target_dir, f)
37
- if not os.path.exists(target_path):
38
- _ = shutil.copy(os.path.join(source_dir, f), target_path)
39
- print('Copied {}.'.format(f))
40
-
41
- print('End of round {}.'.format(num_checks))
42
-
43
- time.sleep(check_every_n_minutes * 60)
@@ -1,205 +0,0 @@
1
- api/batch_processing/api_core/server.py,sha256=BNqM5EK29B0haCW7rdeOzVqcCJDziZiD0Etc1mPs56c,11668
2
- api/batch_processing/api_core/server_api_config.py,sha256=G8X5wgqEXPrWWQpgDI9ua-JktiUgy9mOpEltXSIazLQ,3318
3
- api/batch_processing/api_core/server_app_config.py,sha256=tQCFsFv0wJCegHfnu-Za3okdXwEd4U522hiM0YGNkMY,1860
4
- api/batch_processing/api_core/server_batch_job_manager.py,sha256=K7fMFBJA8Z1SkA4eBM-nymcq7VQjwZ6ZRaNnNKFlat8,10324
5
- api/batch_processing/api_core/server_job_status_table.py,sha256=Wb8IGwft-_W9pi9ixSe81cCwuSocSP5FrzURzbAqdr4,6240
6
- api/batch_processing/api_core/server_orchestration.py,sha256=LYHABzhOvP0NrM1VIjI6Vwb95YZ5xjQ52mUJW8oIOQ0,17003
7
- api/batch_processing/api_core/server_utils.py,sha256=oFusP1E29op5DN1nEaR-jQZgRExqMDdzmRL6BHj8EDk,3314
8
- api/batch_processing/api_core/batch_service/score.py,sha256=ZuPQV7O1u9QNPhWVSYxQqvYgXo9p15e-XhnUyuz0vLE,17347
9
- api/batch_processing/api_core_support/aggregate_results_manually.py,sha256=8yDXbw12G8Y6SOv09tY-0hPXMNG_iRPv6mzxBiccsaU,2275
10
- api/batch_processing/api_support/summarize_daily_activity.py,sha256=SmRGAMWTKXf9bDXUPsTySMiIg8K1LDkAC8KVBVH_mPg,5383
11
- api/batch_processing/data_preparation/manage_local_batch.py,sha256=z1smCyfw1Pet1AuXALPhGhpt53ClM4qW1OypMre31ac,89186
12
- api/batch_processing/data_preparation/manage_video_batch.py,sha256=fobPIMmfvdqa1OzxsurEYCFVnUTHGrtrGBiCq3xnYHs,9668
13
- api/batch_processing/integration/digiKam/setup.py,sha256=7P1X3JYrBDXmLUeLRrzxNfDkL5lo-pY8nXsp9Cz8rOI,203
14
- api/batch_processing/integration/digiKam/xmp_integration.py,sha256=AbGPTe9RjjOkKdiZDSElai61QyfeiLQQqJR2fiJpymA,17775
15
- api/batch_processing/integration/eMammal/test_scripts/config_template.py,sha256=UnvrgaFRBu59MuVUJa2WpG8ebcOJWcNeZEx6GWuYLzc,73
16
- api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py,sha256=eIzEKiwzCfifCOCGf-jf8G4dMuzyxQMWlrFzt-Z-nVk,3608
17
- api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py,sha256=OYMu97p8vprSv03QcnS6aSxPBocn9sgaozfUqq_JpyM,1369
18
- api/batch_processing/postprocessing/add_max_conf.py,sha256=y4Xr_OHRxcop3vsLWQJ56eYIemm2HHKqVfvKJonTcQA,1530
19
- api/batch_processing/postprocessing/categorize_detections_by_size.py,sha256=b_O2OM44zIXewR4RjzeS2ue-32k5jE6KgjiPn8JRxAA,4877
20
- api/batch_processing/postprocessing/combine_api_outputs.py,sha256=7NR_QbozC6xLTwXpUrw7c1WIL2guAHiHIg4hj1XTbeU,8237
21
- api/batch_processing/postprocessing/compare_batch_results.py,sha256=8oJGwQ3ykNSBjrQNleuEhl2j_z74YynwnW19r0dmBG0,34652
22
- api/batch_processing/postprocessing/convert_output_format.py,sha256=b4hEQOaXSyH6GZQfHr_PLSM85r5aPrriwUOdgH1RkOo,13600
23
- api/batch_processing/postprocessing/load_api_results.py,sha256=aqmsWpqzDIcmompRwzF4oFkV7QPAazFyIGwEWRVd8Ng,6895
24
- api/batch_processing/postprocessing/md_to_coco.py,sha256=dRAkCGWtcNy_vsSTkX1h_0DZAsW6zNO7F-8XSkR8wAo,10139
25
- api/batch_processing/postprocessing/md_to_labelme.py,sha256=0evnkCFC7TucHgFJ1i12rp_C1pEflxFD44Jp98AbGrw,9779
26
- api/batch_processing/postprocessing/merge_detections.py,sha256=O9fjLTZz7PJN19L19BYHVMGr20-gB9M3sIaBFY1_w_8,17192
27
- api/batch_processing/postprocessing/postprocess_batch_results.py,sha256=4lDpYqpA_wcwMWVP5xKpQH6_JfkBFV8N93j_CjkvPh8,74165
28
- api/batch_processing/postprocessing/remap_detection_categories.py,sha256=hcX2-Thk59X0df6H6x1rH1v15IwJrm3NQJK94yOt95w,6042
29
- api/batch_processing/postprocessing/render_detection_confusion_matrix.py,sha256=kIFBgu_JDagm8FhEd3GislSMoBHAz2Fq4ySeYHPKTd0,25047
30
- api/batch_processing/postprocessing/separate_detections_into_folders.py,sha256=l5NKxDDxROc2EXt8EslrswXAZkQXgWTy5FSqCqa09Ug,28720
31
- api/batch_processing/postprocessing/subset_json_detector_output.py,sha256=EROwcj4K-abAwzyZjPCQocuayIVma85lV-D6WvvRMuc,26368
32
- api/batch_processing/postprocessing/top_folders_to_bottom.py,sha256=etJK9DmHppMe3WqGXypuilW-n-7hOjOO9w_k1khlaVU,5476
33
- api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py,sha256=fYqPZhaL-6cbpKHz96O3Ch65Y8xux2LQ2-ZlMGhOlM0,9053
34
- api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py,sha256=YdMvM814TX0ZRTnP7BfowE62PoMoCOYcJOFl69DlKhQ,2189
35
- api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py,sha256=79F6sLwGWOSBNZ5GbZMeuZEH3kfRsjYUTl4ouLhwnA8,62880
36
- api/synchronous/api_core/animal_detection_api/api_backend.py,sha256=PJXV0RFb6FoPBmdRug5W_5nbFwY2C_8CvDpFHjDs9w4,4934
37
- api/synchronous/api_core/animal_detection_api/api_frontend.py,sha256=_FGLf5C2tXQABFEGaA2Kzq05hj_D60BaIfWLCI-Os_4,10690
38
- api/synchronous/api_core/animal_detection_api/config.py,sha256=yEf7JZwRJCtHEV80kYvnNnUFJNds_AYLhomffwfFQi0,1017
39
- api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py,sha256=P2CZCbAE0ImLLfaNRb1SMlP3q1fULWAIjgrYOrF9L0g,1566
40
- api/synchronous/api_core/animal_detection_api/detection/process_video.py,sha256=b2xcQThAdlgirumxynHULYLviCr_q5sCDfdkKEqVFyU,22089
41
- api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py,sha256=nI2xctI6FSdbWjSFHYlMT0LTH6CCATOe9DF-I8MLEpc,11505
42
- api/synchronous/api_core/animal_detection_api/detection/run_detector.py,sha256=LBveNOLE3AWSTcQ1MUbbWXaQIutr9e2vtz6RG2SjlWQ,23821
43
- api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py,sha256=eivQu5yee5WtBmNQRQ2p636Gf8IB5slyrQL4QRZ2HeM,41849
44
- api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py,sha256=yxMFxQQDvkydWVpM0ecopDXtPi89gaqMX0TKjyxNyjI,22118
45
- api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py,sha256=cs1IehE2DXj8Nr3CbnYMXqwcFM1vUBT1Rm5We5nlcSM,28785
46
- api/synchronous/api_core/animal_detection_api/detection/tf_detector.py,sha256=xOO8kzd-Um2X_sAZyop524LM53nipv5pNx8YueGTJrc,6760
47
- api/synchronous/api_core/animal_detection_api/detection/video_utils.py,sha256=E96hywSwA_jTUcJNFdkneKPcH0XH_e2qRT5ovV-5SFM,18317
48
- api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py,sha256=t2c3Q4Pf82tAp_OjSG-veIjRPrX0tJYi-bSQmGL2m4c,1091
49
- api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py,sha256=YwNsZ7hkIFaEuwKU0rHG_VyqiR_0E01BbdlD0Yx4Smo,4936
50
- api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py,sha256=SVoQNSknYlBcpZeGrH2v3Qgm5kXxBrqM5Sx2L_Lax-I,6243
51
- api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py,sha256=3_8p5wNnopQZPCIbchQXYnJmhuUTcDw46I4SK3qb--g,7600
52
- api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py,sha256=b3yUwZqK7LdvswXenDo4Y0ue4f4zjgpvncfZmzPGBpI,9598
53
- api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py,sha256=9IFR_uWM1egCMZT3MgoUmdOP8mp7CcF7L9HEbN_A_1E,2005
54
- api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py,sha256=9ZMyzejC_kzAQlymXGghAAgp_WjCjLuOxWJrAC13TAk,12397
55
- api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py,sha256=_LMebsTQX2PFxERj0-LoC-XCua23RPw3heu-ckp0Tjo,3049
56
- api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py,sha256=GpjHn33N2b-XeBAtU3xhGbTIYcBs4YrXHtbQDmlGFvY,16955
57
- api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py,sha256=tFTC9TarPFGa7_UkKF0_t6Q2naH9IEsDVM2DOxwkFTQ,1277
58
- api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py,sha256=aFN7_WvzMJqYHL9t-SGCP2A0-mlYu1-P0HkZwgzUsKg,4598
59
- api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py,sha256=myXMdOwUERZWp9p2RPu8TcStCsu2X7aJNtcomlhoeqA,7573
60
- api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py,sha256=Up8hfM_KYyToIUhTv3sSrXGoYl8Hm57NO5t5AHMW3tk,31680
61
- api/synchronous/api_core/tests/load_test.py,sha256=Xiq2JFv9mnSHehwrm-grZ1Flv9qtkW-zUrTu1cYPry8,3386
62
- classification/aggregate_classifier_probs.py,sha256=1X5hpC2JRj790jyFEWES2RI1UbcjzhGcslhMJpvMpDM,3488
63
- classification/analyze_failed_images.py,sha256=WG2ubdkClRo6-v3JqD6dQ7X0aah1L_rYry2BHzirOYE,8463
64
- classification/cache_batchapi_outputs.py,sha256=EyVG8ynGSX3R7aiz6cN7mDhX7miyMg7FnMXnO2OzScQ,6400
65
- classification/create_classification_dataset.py,sha256=cBsuL_1KRZXIxBBnPI3xZmgDVMsfBv1_i1ZHR4W6oqE,25578
66
- classification/crop_detections.py,sha256=Xs_jnwgbfyUPGyOAi_AkYGstQyHzelw1avNcdfV8K2s,20510
67
- classification/csv_to_json.py,sha256=Di3kl8CRMlM63MqsBauAr0Jn42uTmrTs3eRA4RFkHq8,6088
68
- classification/detect_and_crop.py,sha256=LHKismSArVy23JeeGOKFGK2JdgcCwSOlsnwACiRCFxk,37158
69
- classification/evaluate_model.py,sha256=pyKY7ABcuCe4h0yfAquFVDNtnyV45yun-ttAa0etM-E,19378
70
- classification/identify_mislabeled_candidates.py,sha256=pHB9U_7LFBeLyY1AngIAtbrnma4luJVpwe7BWh9Qhhw,5111
71
- classification/json_to_azcopy_list.py,sha256=o57wLHJPDrP9OPSY-3x81WI3mmcH1DyIOUh3VQmMwxg,1670
72
- classification/json_validator.py,sha256=ZizcEPpW1J26p-oGyfvcffBy2voNRKCNXKF8NtxIt5A,26618
73
- classification/map_classification_categories.py,sha256=2B4K-TdE77VNw8XG1h8X7CuUvw0JSIrALdy6a1FvkXw,10738
74
- classification/merge_classification_detection_output.py,sha256=2FDTauvkbMZ3putJH837Ux67HTGsCAnGCOXhnnqjt6g,20123
75
- classification/prepare_classification_script.py,sha256=7xwqws57Fkn0rmH5sADlem9trOJkiriSRwPredeIXho,5952
76
- classification/prepare_classification_script_mc.py,sha256=IMCsLyGL70cViVTH0eow0sYDM9E81AsBGrctNveXP10,7440
77
- classification/run_classifier.py,sha256=eBpkZzP7TtrnwOIlc99fTpe1QocmDuERaIw9mXqwAWI,9363
78
- classification/save_mislabeled.py,sha256=WmOKNXgrvvIkUdehiiWHNiKc5M7q0UM2If0vea0_7K8,3466
79
- classification/train_classifier.py,sha256=M5hsPP-xdx94t6S5AhjzRrmNYcQAUMnUBL6Tkts6-F0,32329
80
- classification/train_classifier_tf.py,sha256=LhTteMic5CP5Zp3Q4tdh--ySa2rGwPB2Lg-IlrO04eI,28096
81
- classification/train_utils.py,sha256=o12OxP8ozli3e9DmOvzrjRDX278S3Ik5oz5EKD9mkIg,11355
82
- classification/efficientnet/__init__.py,sha256=e-jfknjzCc5a0CSW-TaZ2vi0SPU1OMIsayoz2s94QAo,182
83
- classification/efficientnet/model.py,sha256=qJHWV9-rYKa4E_TIee5N_OjRhqDdM-icPpoMap3Q5HM,17040
84
- classification/efficientnet/utils.py,sha256=TF5S2cn2lvlCO2dFhdFPdzjbBBs-SyZGZmEx_dsJMbo,24846
85
- data_management/cct_json_to_filename_json.py,sha256=AxYeOzZHkHF1UxHCUBtofXNKVdUK-5xTfZp3_iE7hFc,2416
86
- data_management/cct_json_utils.py,sha256=tZD2SftV4Vw9dlZQRnOumVoOYIsIkWU_iOAiim8fRMs,12767
87
- data_management/cct_to_csv.py,sha256=urIL8IUByhKZ4FLLa9TKlzT6mu8upLzAPN1WNnDZdIY,3859
88
- data_management/cct_to_md.py,sha256=0QtqUdUkrema2BSNTeJqHYkDuwOLc7tOQwq1KxTbtPE,4485
89
- data_management/cct_to_wi.py,sha256=nJKUhLXcZXKE5tAR9UxbqCjeikfaABfB746wpv-1BmI,8336
90
- data_management/coco_to_labelme.py,sha256=YmztZdYHGenPj6lRe-jB1R5J4jG0kX7Ni9SIAGZTK7s,8077
91
- data_management/coco_to_yolo.py,sha256=IgW51lxyr_j9Y4ZlzIsW8NsgtWgvIkDeNKICVeYDx3s,26042
92
- data_management/generate_crops_from_cct.py,sha256=m6HJ8bB4N50HYV4SXAUV43k1XJl71QZmmWZ4L-9T45Y,4283
93
- data_management/get_image_sizes.py,sha256=34o5LTwanc0XfC7XqKnBJiX8mPiEq_JiiqqVMHglQqI,4961
94
- data_management/labelme_to_coco.py,sha256=yoGr7o-qwogTbvLLJQ6NjCmaYqY6-kHyn2C2860phkQ,18344
95
- data_management/labelme_to_yolo.py,sha256=7oHS-wV9jXqq1c03agsKnc9-YWSN_BeDjJ4pbX_lDW0,10041
96
- data_management/ocr_tools.py,sha256=8cVJMQvzvv_6HXV8zMR4nJH72-L_f3Dy9IjIb3E32Js,29920
97
- data_management/read_exif.py,sha256=9zdMkn4L_Do-4R4yenZw9ffFgb1TEBZuXhiCewVnP1A,21446
98
- data_management/remap_coco_categories.py,sha256=pQSJKHxYY2p3HwDB1JXLchvNIyPDbg7TXBLZdBzAw_g,3002
99
- data_management/remove_exif.py,sha256=_WDrKfRwK0UWCkj4SiLutGCd7-WRaKYoTgLfBWPDhGU,1555
100
- data_management/resize_coco_dataset.py,sha256=3PSrV5T0FzUiHnZFdX7F9jKXLEqZSsNJN0jk-Yf9qh0,6100
101
- data_management/wi_download_csv_to_coco.py,sha256=cQs7b3j-6QcSTcVKocUK0Nl0sV9jepy3Bqi9wM1dzok,7704
102
- data_management/yolo_output_to_md_output.py,sha256=vxUdn4bqg0S67ozvxtnlX77X6S7nCvyZbKAyvCh_Suc,16313
103
- data_management/yolo_to_coco.py,sha256=E0Z0O6O2vyNDks9cC2INJjezstwujjdkz4QZ3PuPMf8,15196
104
- data_management/annotations/annotation_constants.py,sha256=P2CZCbAE0ImLLfaNRb1SMlP3q1fULWAIjgrYOrF9L0g,1566
105
- data_management/databases/add_width_and_height_to_db.py,sha256=71mOEK3xo9gbxK1TVZzBA9nNi-1ElmBZbIPKrUm9XG0,619
106
- data_management/databases/combine_coco_camera_traps_files.py,sha256=cwu_REQXdHWfVLtCvTvFEIvM7z8GwHVoawVuHcWv2aw,6888
107
- data_management/databases/integrity_check_json_db.py,sha256=mZxwc42uL_e4VqmuzRwh0lxvDN7WrwtKsDVPObp9hWc,14887
108
- data_management/databases/remove_corrupted_images_from_db.py,sha256=Dod8UQDFveAUJlrH9Svcp_HezdILRHp74TbAl3YGf84,6138
109
- data_management/databases/subset_json_db.py,sha256=7oHGuiyoPyv8JBh5IrgP4Qez8xs86z94UAPss2_FlfQ,2749
110
- data_management/importers/add_nacti_sizes.py,sha256=qsBHPyJ7MPzl0vgJX5iErZxWkTJ6QRcyLJ8GM2YBu2U,1172
111
- data_management/importers/add_timestamps_to_icct.py,sha256=8XhQAIt_qw63qTMPobCKGl4O9RQZvZmhbmiSetOyNvA,2459
112
- data_management/importers/animl_results_to_md_results.py,sha256=Q43z0TQ5JTRVNbbCrb4E6lZB0kvWbngZMPrRmr43rp0,4884
113
- data_management/importers/auckland_doc_test_to_json.py,sha256=9Fg-n_Kj2jK5iZVaPrioNkhlLNxGnrU5GS_44lsadKo,12910
114
- data_management/importers/auckland_doc_to_json.py,sha256=qSjBcR7FTd5_J2LO6WOoIFxSnE2IiIIqRkhbydULV7s,5952
115
- data_management/importers/awc_to_json.py,sha256=jLXmwGaq81wgH7HcpbAJoNMQP2CqkdfI1mvShdTGeqw,5307
116
- data_management/importers/bellevue_to_json.py,sha256=d5QhZMrOY4hRC9vghojCulX6G8qnVrymnKDx_mUlsRE,7909
117
- data_management/importers/cacophony-thermal-importer.py,sha256=0Y21Hx8Y4dMvpUpbKKMDYb0r-AqFD2k8N0Bf9q75geY,28621
118
- data_management/importers/carrizo_shrubfree_2018.py,sha256=pEdCh3z458dOnGIM_nXJIKlSb8Yv5yjr7Jjp32AwhaI,7827
119
- data_management/importers/carrizo_trail_cam_2017.py,sha256=Kw0SnOMt7DwIhnSEz5wjLpJ4pMjEx5n5PNPW36vrskk,8830
120
- data_management/importers/cct_field_adjustments.py,sha256=Kw1_gIxqXLovGa65jCRm9MIms6qfpqwTiOdM5unw9K8,1351
121
- data_management/importers/channel_islands_to_cct.py,sha256=DmEhjm7iG11yuJUVkXhqWuAXOLYQvV3AXY8nkwyf2oY,29483
122
- data_management/importers/ena24_to_json.py,sha256=XkJX0clvJREilzDByuoP6cuaOXvXnQoFkG25XoA8opU,8248
123
- data_management/importers/filenames_to_json.py,sha256=wzleV-02pwNHKAVvqhkAwahIJ6La_-OCPEXTOg64ezM,10526
124
- data_management/importers/helena_to_cct.py,sha256=imo-SRsib7c7NIM0vSE_6zbb3X7jA5XiIJrM6RbAoQA,8701
125
- data_management/importers/idaho-camera-traps.py,sha256=xKXfrwTpdMWJM1U92eWXxKhtW57iIjB9YyS4b_nA4e0,54058
126
- data_management/importers/idfg_iwildcam_lila_prep.py,sha256=emnKiw1TckZFsCI1uMgFIZUw1CERAVqufr9Tay94YAc,8166
127
- data_management/importers/jb_csv_to_json.py,sha256=u3IZwDboObYlxtUSa35G8P3t_L48m2Ak5v7Fl8hCnGM,3730
128
- data_management/importers/mcgill_to_json.py,sha256=ZxsNW9qFi6Kyu8SJ0BB5uK7AMuBW92QOOKXHPbIgPwY,6718
129
- data_management/importers/missouri_to_json.py,sha256=y9lbLaD8bGM4m9iqGHIicyZOByeJGfZOF51RikHMSFU,14840
130
- data_management/importers/nacti_fieldname_adjustments.py,sha256=57PyfOft2Ws-1AcG4_9mzOcB3uW4IFxaZ3z0LsItUUU,2045
131
- data_management/importers/noaa_seals_2019.py,sha256=2_XJl-jxSiN1IOzGmRvsUR-bI4Pclo_jO4qSW2ytqks,5147
132
- data_management/importers/pc_to_json.py,sha256=9Nin7R47aaE5bjXjvq7A2trv2vFdJVYzhLHwLFji5Tg,10718
133
- data_management/importers/plot_wni_giraffes.py,sha256=V_kAzbYjtXEBUCdSwSGsEEemLN9aVyZuKhoSZQEvkCI,3787
134
- data_management/importers/prepare-noaa-fish-data-for-lila.py,sha256=WIkuR4ozEeHwzQPs54jIDIbAgKf1I4taZNgpHHzh-Rc,12774
135
- data_management/importers/prepare_zsl_imerit.py,sha256=9wTh9w6kyQXJoA2h0kuzzcoCF1lFNfO9eRlSTnV6unY,3754
136
- data_management/importers/rspb_to_json.py,sha256=L-E4IcwvnwZ_I142dQ6BbQpAqZmNoAcVIuiwtuYGDXw,9834
137
- data_management/importers/save_the_elephants_survey_A.py,sha256=OpGLHXLj1VGZQefZ1R59_mSiQ2KkKN11PyvKWWJnVbY,10639
138
- data_management/importers/save_the_elephants_survey_B.py,sha256=qex23iOkUBttfDvoCeBw3NLVSbkf1xQtS8VhrvN4SgM,11167
139
- data_management/importers/snapshot_safari_importer.py,sha256=h5xSAlFgxckBXmKLKrIIs9Hegq5StgGMaG5pTCPSpc8,23591
140
- data_management/importers/snapshot_safari_importer_reprise.py,sha256=yRzgIYvcvMnlNL0sWv3ZUCNzo2e5_sy3k4DC18xh0Mc,22996
141
- data_management/importers/snapshot_serengeti_lila.py,sha256=mZ_hR7yHfeZFkLtuAO1U7kWRq3_wDtBE28-qXUZmBzo,33854
142
- data_management/importers/sulross_get_exif.py,sha256=nc9MwF_5_Nlsv7f0W74G71G-MF5EZDZIvLqDeKvcwWc,2088
143
- data_management/importers/timelapse_csv_set_to_json.py,sha256=7g1senO7SWUavktI9n214M2SwApN84TPuNTJPxHhZ3A,15902
144
- data_management/importers/ubc_to_json.py,sha256=MP_whIR-CVhNPCE3vQF_tk-6_EpmxWwR40E7pOA10mI,14869
145
- data_management/importers/umn_to_json.py,sha256=emUVCtNfbJmgHS22fBL8GaAMiblaJen52-IuqiFiWyI,16177
146
- data_management/importers/wellington_to_json.py,sha256=QFcVfAxflUVHTMuGhXGxe3z3iMKJ0B8Nziwpx6XcoLE,7671
147
- data_management/importers/wi_to_json.py,sha256=xuHFXE6tuaUnZmiFik18_3UCSCQx9abaG_2TnaRn0Xg,13656
148
- data_management/importers/zamba_results_to_md_results.py,sha256=UV0Iczxf_ghR3yL8D8KUAEg1j81_BavdzWhAFtg6wHQ,5594
149
- data_management/importers/eMammal/copy_and_unzip_emammal.py,sha256=gVB0drYUeCghWXFDpaJkCL0qdmFjMW75YAEEhFe38js,6080
150
- data_management/importers/eMammal/eMammal_helpers.py,sha256=Sv6PBAMDdlgwiek6Q3R6Rjio2RjtA-JpfgBr_Fmr9kA,6838
151
- data_management/importers/eMammal/make_eMammal_json.py,sha256=6C_-6Qk-Xhz_87DEPHA-txw90AvXrybJy1PbQXQbqwo,6987
152
- data_management/importers/snapshotserengeti/make_full_SS_json.py,sha256=khE3W0pO3Uq-UCfrLW_rpzWqjLll2JoBc360XeAuUGc,4126
153
- data_management/importers/snapshotserengeti/make_per_season_SS_json.py,sha256=sAwvcR2siwblgY3LfTsbH4mXOXvJZCA246QIsQWuQBA,4316
154
- data_management/lila/add_locations_to_island_camera_traps.py,sha256=nsIJXyw2IhOwwM9A0SCn108Fg297fRUdADXGUAN8Y34,2561
155
- data_management/lila/add_locations_to_nacti.py,sha256=KVMWwSJx-gYI_J6J8y-AqsWnOTgidtebotJjYPfsj00,5017
156
- data_management/lila/create_lila_blank_set.py,sha256=09b2tvMPG9jThyJoLQ3tHiaoQJ_kBEJ4Yn2dACh_McY,19764
157
- data_management/lila/create_lila_test_set.py,sha256=WxM-LuhtNiee3CLeVPxUEWsfbybgZd7oluZu6epl69A,4825
158
- data_management/lila/create_links_to_md_results_files.py,sha256=f0pXY2Lyj9DtRlgFpmLqNBs2qWd--B8N6UAt8E26tcM,3916
159
- data_management/lila/download_lila_subset.py,sha256=yDTv_TApQWCi3XzGe8-i4VLku2-gSayd4vRUP-W2kMI,7531
160
- data_management/lila/generate_lila_per_image_labels.py,sha256=pZ6WJJmIRvFrypbjE4LP2-jdwGhEiBYdA2FlL7HK5eA,17352
161
- data_management/lila/get_lila_annotation_counts.py,sha256=QVSKCmeLzliFZimjzi8AClS0Gz94pDMYckjw2cOm-7E,5490
162
- data_management/lila/get_lila_image_counts.py,sha256=r5p2wPL5vuKKO8DWia3Tll-EZZWFNUvax6ljaYtrKsk,3625
163
- data_management/lila/lila_common.py,sha256=lR_kW6qz5bqOFiu_Io5Ax4CLbyOH4Rikev6cJXQHob8,7691
164
- data_management/lila/test_lila_metadata_urls.py,sha256=jDInoM5WD_EoahR_b5yTjrj6pkiitvj_Kz_1U0uSDzE,3966
165
- detection/process_video.py,sha256=wuMoV-DJde_QlTiNAxsRjlDttiLl2e2BiJuyTQBINIE,26825
166
- detection/pytorch_detector.py,sha256=WG6Q4KueBoA8lCZCdR2PrgbQAHs3HCO6MF01Ful4tfc,11992
167
- detection/run_detector.py,sha256=XmQ4s-B7IlkxJye56y6uvx2vx6Ml3IBTo3Wx0SalO1Q,26036
168
- detection/run_detector_batch.py,sha256=NC_tqgnshlmPijyM61WE1kyfA6SLfNNPQfAYqjhlxz0,47426
169
- detection/run_inference_with_yolov5_val.py,sha256=ny1aM94U-sjgJWb-cY1y9HG8r7Qx-RJsi9zCWYH_z1w,33975
170
- detection/run_tiled_inference.py,sha256=SMK6aaeOYZu5Yr3wezW3Pf0Q2TXyf6tHC-19p7854Rc,33931
171
- detection/tf_detector.py,sha256=p3P5ippLo79jdneXilqEuywUbOjUN79VqksL7ayPWy4,6769
172
- detection/video_utils.py,sha256=Rp5H7yl2vPgYKctztPGJFNSsrI3m021oh_uuT8SBmvI,19501
173
- detection/detector_training/copy_checkpoints.py,sha256=t2c3Q4Pf82tAp_OjSG-veIjRPrX0tJYi-bSQmGL2m4c,1091
174
- detection/detector_training/model_main_tf2.py,sha256=YwNsZ7hkIFaEuwKU0rHG_VyqiR_0E01BbdlD0Yx4Smo,4936
175
- md_utils/azure_utils.py,sha256=SVoQNSknYlBcpZeGrH2v3Qgm5kXxBrqM5Sx2L_Lax-I,6243
176
- md_utils/ct_utils.py,sha256=NkxEH5S2qCBcQlqVMgdY07jYU6sOUXPbjDv0GWapca0,13311
177
- md_utils/directory_listing.py,sha256=dgxMczSOEH352YXdWRuNo_ujsonRrPJXFeuS7ocpe9k,9615
178
- md_utils/md_tests.py,sha256=7NQ_c-a4LfDceeHKU3gVr7e94fh7R1pZMLev-925fx8,33520
179
- md_utils/path_utils.py,sha256=Hsk-Rtx3Y_LRR4rAPNtAP9GBgfWmRkt7tVkLnOhgAFg,23176
180
- md_utils/process_utils.py,sha256=YkD38KLgceuqvMvDXIcVyzY51npUuUT3tOAjjF5Mvf8,4316
181
- md_utils/sas_blob_utils.py,sha256=GpjHn33N2b-XeBAtU3xhGbTIYcBs4YrXHtbQDmlGFvY,16955
182
- md_utils/split_locations_into_train_val.py,sha256=psiWoXkYYLLOfjVHUyOhaa3fh9mmlm7HGFthklWbMaA,9241
183
- md_utils/string_utils.py,sha256=Edwa07IWu7-QTNoMmvQYNnYgpwxxNh9VhXQ8AXMX3Qg,1600
184
- md_utils/url_utils.py,sha256=4PLqoRLVVN-W_ovcGEEicQ4zb7-Nc5u8sTCtm3qR8CM,6824
185
- md_utils/write_html_image_list.py,sha256=U4JantMnHe7_aEL5oLOFyz2XvbK34M5ZZ4QVbiA5H98,7532
186
- md_visualization/plot_utils.py,sha256=eppaGgI0k73jhvOCruNrNO-VLH3EEFpFP2la_rZo57E,10712
187
- md_visualization/render_images_with_thumbnails.py,sha256=XJcL5qxu5pe2LQ4MqnD-O6dM_cPxGGNoqk5U_rZzFUQ,10391
188
- md_visualization/visualization_utils.py,sha256=AZyetIxwnAa5eLPPkMvArVCX2ORf6UFJ3Uw39D5mXsY,46496
189
- md_visualization/visualize_db.py,sha256=fleCCGRBoKkdfBjgt277_EjbidnGI4RcunZosVN5_Ms,19616
190
- md_visualization/visualize_detector_output.py,sha256=aeg8DbwfddW5CDe84V2dt07eWMyxr4QdFcwTYbC_Lnk,15814
191
- taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py,sha256=kFDp6r25LhYVkyrm-35TgBc2vgXXh6SmoARqO4aE9PU,16517
192
- taxonomy_mapping/map_new_lila_datasets.py,sha256=rJlj-HuP9wNN2RvIlcWfqnW5N7cyiGLWglbe3FsFG0Q,4324
193
- taxonomy_mapping/prepare_lila_taxonomy_release.py,sha256=Ser_lwpbYR75fMMcE49uT90t7o02dRZ7wY0GUyhzK9c,4357
194
- taxonomy_mapping/preview_lila_taxonomy.py,sha256=iCcvf8dDsh1WZIZWq2ppua5wloAst6F6lphsS9vRTKQ,20144
195
- taxonomy_mapping/retrieve_sample_image.py,sha256=BySUy69DeGwPiIs9Ws5vIILJCTXeVImE5AVoawOiECM,1992
196
- taxonomy_mapping/simple_image_download.py,sha256=dXXVhhaR_bI-Elmk4Tmjt2ftdYzHbkuJCTzIMOJfLKs,6874
197
- taxonomy_mapping/species_lookup.py,sha256=oRqaUbiH_xULH7z5mkrtaFhacxlyM8KT-V-c4FnNq4w,28303
198
- taxonomy_mapping/taxonomy_csv_checker.py,sha256=xmV2SBOfQEuZBMGmXyUzbuNxvd_oXKysXkxU6-IhKJg,4874
199
- taxonomy_mapping/taxonomy_graph.py,sha256=ZDm2enGanBlm8KXWvCndqmeerOp9LREaetSl-Lxy07s,12361
200
- taxonomy_mapping/validate_lila_category_mappings.py,sha256=CApYVWIZ8TTJ3vvQTgfjIvWDGHpPo-Zn9jqJFaw3DNw,2314
201
- megadetector-5.0.8.dist-info/LICENSE,sha256=RMa3qq-7Cyk7DdtqRj_bP1oInGFgjyHn9-PZ3PcrqIs,1100
202
- megadetector-5.0.8.dist-info/METADATA,sha256=tqdjGFYteHST4x9vGmougFqF76DH8J0Hr-wcyaAEaXg,7383
203
- megadetector-5.0.8.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
204
- megadetector-5.0.8.dist-info/top_level.txt,sha256=-mFGpqnmviVz0Vyr2GxZ_kTo_PBPNoK6h4JtqIMjZGQ,88
205
- megadetector-5.0.8.dist-info/RECORD,,