megadetector 5.0.8__py3-none-any.whl → 5.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (190) hide show
  1. api/__init__.py +0 -0
  2. api/batch_processing/__init__.py +0 -0
  3. api/batch_processing/api_core/__init__.py +0 -0
  4. api/batch_processing/api_core/batch_service/__init__.py +0 -0
  5. api/batch_processing/api_core/batch_service/score.py +0 -1
  6. api/batch_processing/api_core/server_job_status_table.py +0 -1
  7. api/batch_processing/api_core_support/__init__.py +0 -0
  8. api/batch_processing/api_core_support/aggregate_results_manually.py +0 -1
  9. api/batch_processing/api_support/__init__.py +0 -0
  10. api/batch_processing/api_support/summarize_daily_activity.py +0 -1
  11. api/batch_processing/data_preparation/__init__.py +0 -0
  12. api/batch_processing/data_preparation/manage_local_batch.py +65 -65
  13. api/batch_processing/data_preparation/manage_video_batch.py +8 -8
  14. api/batch_processing/integration/digiKam/xmp_integration.py +0 -1
  15. api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -1
  16. api/batch_processing/postprocessing/__init__.py +0 -0
  17. api/batch_processing/postprocessing/add_max_conf.py +12 -12
  18. api/batch_processing/postprocessing/categorize_detections_by_size.py +32 -14
  19. api/batch_processing/postprocessing/combine_api_outputs.py +68 -54
  20. api/batch_processing/postprocessing/compare_batch_results.py +113 -43
  21. api/batch_processing/postprocessing/convert_output_format.py +41 -16
  22. api/batch_processing/postprocessing/load_api_results.py +16 -17
  23. api/batch_processing/postprocessing/md_to_coco.py +31 -21
  24. api/batch_processing/postprocessing/md_to_labelme.py +52 -22
  25. api/batch_processing/postprocessing/merge_detections.py +14 -14
  26. api/batch_processing/postprocessing/postprocess_batch_results.py +246 -174
  27. api/batch_processing/postprocessing/remap_detection_categories.py +32 -25
  28. api/batch_processing/postprocessing/render_detection_confusion_matrix.py +60 -27
  29. api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +53 -44
  30. api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +25 -14
  31. api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +242 -158
  32. api/batch_processing/postprocessing/separate_detections_into_folders.py +159 -114
  33. api/batch_processing/postprocessing/subset_json_detector_output.py +146 -169
  34. api/batch_processing/postprocessing/top_folders_to_bottom.py +77 -43
  35. api/synchronous/__init__.py +0 -0
  36. api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  37. api/synchronous/api_core/animal_detection_api/api_backend.py +0 -2
  38. api/synchronous/api_core/animal_detection_api/api_frontend.py +266 -268
  39. api/synchronous/api_core/animal_detection_api/config.py +35 -35
  40. api/synchronous/api_core/tests/__init__.py +0 -0
  41. api/synchronous/api_core/tests/load_test.py +109 -109
  42. classification/__init__.py +0 -0
  43. classification/aggregate_classifier_probs.py +21 -24
  44. classification/analyze_failed_images.py +11 -13
  45. classification/cache_batchapi_outputs.py +51 -51
  46. classification/create_classification_dataset.py +69 -68
  47. classification/crop_detections.py +54 -53
  48. classification/csv_to_json.py +97 -100
  49. classification/detect_and_crop.py +105 -105
  50. classification/evaluate_model.py +43 -42
  51. classification/identify_mislabeled_candidates.py +47 -46
  52. classification/json_to_azcopy_list.py +10 -10
  53. classification/json_validator.py +72 -71
  54. classification/map_classification_categories.py +44 -43
  55. classification/merge_classification_detection_output.py +68 -68
  56. classification/prepare_classification_script.py +157 -154
  57. classification/prepare_classification_script_mc.py +228 -228
  58. classification/run_classifier.py +27 -26
  59. classification/save_mislabeled.py +30 -30
  60. classification/train_classifier.py +20 -20
  61. classification/train_classifier_tf.py +21 -22
  62. classification/train_utils.py +10 -10
  63. data_management/__init__.py +0 -0
  64. data_management/annotations/__init__.py +0 -0
  65. data_management/annotations/annotation_constants.py +18 -31
  66. data_management/camtrap_dp_to_coco.py +238 -0
  67. data_management/cct_json_utils.py +102 -59
  68. data_management/cct_to_md.py +176 -158
  69. data_management/cct_to_wi.py +247 -219
  70. data_management/coco_to_labelme.py +272 -263
  71. data_management/coco_to_yolo.py +79 -58
  72. data_management/databases/__init__.py +0 -0
  73. data_management/databases/add_width_and_height_to_db.py +20 -16
  74. data_management/databases/combine_coco_camera_traps_files.py +35 -31
  75. data_management/databases/integrity_check_json_db.py +62 -24
  76. data_management/databases/subset_json_db.py +24 -15
  77. data_management/generate_crops_from_cct.py +27 -45
  78. data_management/get_image_sizes.py +188 -162
  79. data_management/importers/add_nacti_sizes.py +8 -8
  80. data_management/importers/add_timestamps_to_icct.py +78 -78
  81. data_management/importers/animl_results_to_md_results.py +158 -158
  82. data_management/importers/auckland_doc_test_to_json.py +9 -9
  83. data_management/importers/auckland_doc_to_json.py +8 -8
  84. data_management/importers/awc_to_json.py +7 -7
  85. data_management/importers/bellevue_to_json.py +15 -15
  86. data_management/importers/cacophony-thermal-importer.py +13 -13
  87. data_management/importers/carrizo_shrubfree_2018.py +8 -8
  88. data_management/importers/carrizo_trail_cam_2017.py +8 -8
  89. data_management/importers/cct_field_adjustments.py +9 -9
  90. data_management/importers/channel_islands_to_cct.py +10 -10
  91. data_management/importers/eMammal/copy_and_unzip_emammal.py +1 -0
  92. data_management/importers/ena24_to_json.py +7 -7
  93. data_management/importers/filenames_to_json.py +8 -8
  94. data_management/importers/helena_to_cct.py +7 -7
  95. data_management/importers/idaho-camera-traps.py +7 -7
  96. data_management/importers/idfg_iwildcam_lila_prep.py +10 -10
  97. data_management/importers/jb_csv_to_json.py +9 -9
  98. data_management/importers/mcgill_to_json.py +8 -8
  99. data_management/importers/missouri_to_json.py +18 -18
  100. data_management/importers/nacti_fieldname_adjustments.py +10 -10
  101. data_management/importers/noaa_seals_2019.py +7 -7
  102. data_management/importers/pc_to_json.py +7 -7
  103. data_management/importers/plot_wni_giraffes.py +7 -7
  104. data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -359
  105. data_management/importers/prepare_zsl_imerit.py +7 -7
  106. data_management/importers/rspb_to_json.py +8 -8
  107. data_management/importers/save_the_elephants_survey_A.py +8 -8
  108. data_management/importers/save_the_elephants_survey_B.py +9 -9
  109. data_management/importers/snapshot_safari_importer.py +26 -26
  110. data_management/importers/snapshot_safari_importer_reprise.py +665 -665
  111. data_management/importers/snapshot_serengeti_lila.py +14 -14
  112. data_management/importers/sulross_get_exif.py +8 -9
  113. data_management/importers/timelapse_csv_set_to_json.py +11 -11
  114. data_management/importers/ubc_to_json.py +13 -13
  115. data_management/importers/umn_to_json.py +7 -7
  116. data_management/importers/wellington_to_json.py +8 -8
  117. data_management/importers/wi_to_json.py +9 -9
  118. data_management/importers/zamba_results_to_md_results.py +181 -181
  119. data_management/labelme_to_coco.py +65 -24
  120. data_management/labelme_to_yolo.py +8 -8
  121. data_management/lila/__init__.py +0 -0
  122. data_management/lila/add_locations_to_island_camera_traps.py +9 -9
  123. data_management/lila/add_locations_to_nacti.py +147 -147
  124. data_management/lila/create_lila_blank_set.py +13 -13
  125. data_management/lila/create_lila_test_set.py +8 -8
  126. data_management/lila/create_links_to_md_results_files.py +106 -106
  127. data_management/lila/download_lila_subset.py +44 -110
  128. data_management/lila/generate_lila_per_image_labels.py +55 -42
  129. data_management/lila/get_lila_annotation_counts.py +18 -15
  130. data_management/lila/get_lila_image_counts.py +11 -11
  131. data_management/lila/lila_common.py +96 -33
  132. data_management/lila/test_lila_metadata_urls.py +132 -116
  133. data_management/ocr_tools.py +173 -128
  134. data_management/read_exif.py +110 -97
  135. data_management/remap_coco_categories.py +83 -83
  136. data_management/remove_exif.py +58 -62
  137. data_management/resize_coco_dataset.py +30 -23
  138. data_management/wi_download_csv_to_coco.py +246 -239
  139. data_management/yolo_output_to_md_output.py +86 -73
  140. data_management/yolo_to_coco.py +300 -60
  141. detection/__init__.py +0 -0
  142. detection/detector_training/__init__.py +0 -0
  143. detection/process_video.py +85 -33
  144. detection/pytorch_detector.py +43 -25
  145. detection/run_detector.py +157 -72
  146. detection/run_detector_batch.py +179 -113
  147. detection/run_inference_with_yolov5_val.py +108 -48
  148. detection/run_tiled_inference.py +111 -40
  149. detection/tf_detector.py +51 -29
  150. detection/video_utils.py +606 -521
  151. docs/source/conf.py +43 -0
  152. md_utils/__init__.py +0 -0
  153. md_utils/azure_utils.py +9 -9
  154. md_utils/ct_utils.py +228 -68
  155. md_utils/directory_listing.py +59 -64
  156. md_utils/md_tests.py +968 -871
  157. md_utils/path_utils.py +460 -134
  158. md_utils/process_utils.py +157 -133
  159. md_utils/sas_blob_utils.py +20 -20
  160. md_utils/split_locations_into_train_val.py +45 -32
  161. md_utils/string_utils.py +33 -10
  162. md_utils/url_utils.py +176 -60
  163. md_utils/write_html_image_list.py +40 -33
  164. md_visualization/__init__.py +0 -0
  165. md_visualization/plot_utils.py +102 -109
  166. md_visualization/render_images_with_thumbnails.py +34 -34
  167. md_visualization/visualization_utils.py +597 -291
  168. md_visualization/visualize_db.py +76 -48
  169. md_visualization/visualize_detector_output.py +61 -42
  170. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/METADATA +13 -7
  171. megadetector-5.0.9.dist-info/RECORD +224 -0
  172. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/top_level.txt +1 -0
  173. taxonomy_mapping/__init__.py +0 -0
  174. taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +342 -335
  175. taxonomy_mapping/map_new_lila_datasets.py +154 -154
  176. taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -134
  177. taxonomy_mapping/preview_lila_taxonomy.py +591 -591
  178. taxonomy_mapping/retrieve_sample_image.py +12 -12
  179. taxonomy_mapping/simple_image_download.py +11 -11
  180. taxonomy_mapping/species_lookup.py +10 -10
  181. taxonomy_mapping/taxonomy_csv_checker.py +18 -18
  182. taxonomy_mapping/taxonomy_graph.py +47 -47
  183. taxonomy_mapping/validate_lila_category_mappings.py +83 -76
  184. data_management/cct_json_to_filename_json.py +0 -89
  185. data_management/cct_to_csv.py +0 -140
  186. data_management/databases/remove_corrupted_images_from_db.py +0 -191
  187. detection/detector_training/copy_checkpoints.py +0 -43
  188. megadetector-5.0.8.dist-info/RECORD +0 -205
  189. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/LICENSE +0 -0
  190. {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/WHEEL +0 -0
@@ -1,263 +1,272 @@
1
- ########
2
- #
3
- # coco_to_labelme.py
4
- #
5
- # Converts a COCO dataset to labelme format (one .json per image file).
6
- #
7
- # If you want to convert YOLO data to labelme, use yolo_to_coco, then coco_to_labelme.
8
- #
9
- ########
10
-
11
- #%% Imports and constants
12
-
13
- import os
14
- import json
15
-
16
- from tqdm import tqdm
17
- from collections import defaultdict
18
-
19
- from md_visualization.visualization_utils import open_image
20
-
21
-
22
- #%% Functions
23
-
24
- def get_labelme_dict_for_image_from_coco_record(im,annotations,categories,info=None):
25
- """
26
- For the given image struct in COCO format and associated list of annotations, reformat the detections
27
- into labelme format. Returns a dict. All annotations in this list should point to this image.
28
-
29
- "categories" is in the standard COCO format.
30
-
31
- 'height' and 'width' are required in [im].
32
- """
33
-
34
- image_base_name = os.path.basename(im['file_name'])
35
-
36
- output_dict = {}
37
- if info is not None:
38
- output_dict['custom_info'] = info
39
- output_dict['version'] = '5.3.0a0'
40
- output_dict['flags'] = {}
41
- output_dict['shapes'] = []
42
- output_dict['imagePath'] = image_base_name
43
- output_dict['imageHeight'] = im['height']
44
- output_dict['imageWidth'] = im['width']
45
- output_dict['imageData'] = None
46
-
47
- # Store COCO categories in case we want to reconstruct the original IDs later
48
- output_dict['coco_categories'] = categories
49
-
50
- category_id_to_name = {c['id']:c['name'] for c in categories}
51
-
52
- if 'flags' in im:
53
- output_dict['flags'] = im['flags']
54
-
55
- # ann = annotations[0]
56
- for ann in annotations:
57
-
58
- if 'bbox' not in ann:
59
- continue
60
-
61
- shape = {}
62
- shape['label'] = category_id_to_name[ann['category_id']]
63
- shape['shape_type'] = 'rectangle'
64
- shape['description'] = ''
65
- shape['group_id'] = None
66
-
67
- # COCO boxes are [x_min, y_min, width_of_box, height_of_box] (absolute)
68
- #
69
- # labelme boxes are [[x0,y0],[x1,y1]] (absolute)
70
- x0 = ann['bbox'][0]
71
- y0 = ann['bbox'][1]
72
- x1 = ann['bbox'][0] + ann['bbox'][2]
73
- y1 = ann['bbox'][1] + ann['bbox'][3]
74
-
75
- shape['points'] = [[x0,y0],[x1,y1]]
76
- output_dict['shapes'].append(shape)
77
-
78
- # ...for each detection
79
-
80
- return output_dict
81
-
82
- # ...def get_labelme_dict_for_image()
83
-
84
-
85
- def coco_to_labelme(coco_data,image_base,overwrite=False,bypass_image_size_check=False,verbose=False):
86
- """
87
- For all the images in [coco_data] (a dict or a filename), write a .json file in
88
- labelme format alongside the corresponding relative path within image_base.
89
- """
90
-
91
- # Load COCO data if necessary
92
- if isinstance(coco_data,str):
93
- with open(coco_data,'r') as f:
94
- coco_data = json.load(f)
95
- assert isinstance(coco_data,dict)
96
-
97
-
98
- ## Read image sizes if necessary
99
-
100
- if bypass_image_size_check:
101
-
102
- print('Bypassing size check')
103
-
104
- else:
105
-
106
- # TODO: parallelize this loop
107
-
108
- print('Reading/validating image sizes...')
109
-
110
- # im = coco_data['images'][0]
111
- for im in tqdm(coco_data['images']):
112
-
113
- # Make sure this file exists
114
- im_full_path = os.path.join(image_base,im['file_name'])
115
- assert os.path.isfile(im_full_path), 'Image file {} does not exist'.format(im_full_path)
116
-
117
- # Load w/h information if necessary
118
- if 'height' not in im or 'width' not in im:
119
-
120
- try:
121
- pil_im = open_image(im_full_path)
122
- im['width'] = pil_im.width
123
- im['height'] = pil_im.height
124
- except Exception:
125
- print('Warning: cannot open image {}'.format(im_full_path))
126
- if 'failure' not in im:
127
- im['failure'] = 'Failure image access'
128
-
129
- # ...if we need to read w/h information
130
-
131
- # ...for each image
132
-
133
- # ...if we need to load image sizes
134
-
135
-
136
- ## Generate labelme files
137
-
138
- print('Generating .json files...')
139
-
140
- image_id_to_annotations = defaultdict(list)
141
- for ann in coco_data['annotations']:
142
- image_id_to_annotations[ann['image_id']].append(ann)
143
-
144
- n_json_files_written = 0
145
- n_json_files_error = 0
146
- n_json_files_exist = 0
147
-
148
- # Write output
149
- for im in tqdm(coco_data['images']):
150
-
151
- # Skip this image if it failed to load in whatever system generated this COCO file
152
- skip_image = False
153
-
154
- # Errors are represented differently depending on the source
155
- for error_string in ('failure','error'):
156
- if (error_string in im) and (im[error_string] is not None):
157
- if verbose:
158
- print('Warning: skipping labelme file generation for failed image {}'.format(
159
- im['file_name']))
160
- skip_image = True
161
- n_json_files_error += 1
162
- break
163
- if skip_image:
164
- continue
165
-
166
- im_full_path = os.path.join(image_base,im['file_name'])
167
- json_path = os.path.splitext(im_full_path)[0] + '.json'
168
-
169
- if (not overwrite) and (os.path.isfile(json_path)):
170
- if verbose:
171
- print('Skipping existing file {}'.format(json_path))
172
- n_json_files_exist += 1
173
- continue
174
-
175
- annotations_this_image = image_id_to_annotations[im['id']]
176
- output_dict = get_labelme_dict_for_image_from_coco_record(im,
177
- annotations_this_image,
178
- coco_data['categories'],
179
- info=None)
180
-
181
- n_json_files_written += 1
182
- with open(json_path,'w') as f:
183
- json.dump(output_dict,f,indent=1)
184
-
185
- # ...for each image
186
-
187
- print('\nWrote {} .json files (skipped {} for errors, {} because they exist)'.format(
188
- n_json_files_written,n_json_files_error,n_json_files_exist))
189
-
190
- # ...def coco_to_labelme()
191
-
192
-
193
- #%% Interactive driver
194
-
195
- if False:
196
-
197
- pass
198
-
199
- #%% Configure options
200
-
201
- coco_file = \
202
- r'C:\\temp\\snapshot-exploration\\images\\training-images-good\\training-images-good_from_yolo.json'
203
- image_folder = os.path.dirname(coco_file)
204
- overwrite = True
205
-
206
-
207
- #%% Programmatic execution
208
-
209
- coco_to_labelme(coco_data=coco_file,image_base=image_folder,overwrite=overwrite)
210
-
211
-
212
- #%% Command-line execution
213
-
214
- s = 'python coco_to_labelme.py "{}" "{}"'.format(coco_file,image_folder)
215
- if overwrite:
216
- s += ' --overwrite'
217
-
218
- print(s)
219
- import clipboard; clipboard.copy(s)
220
-
221
-
222
- #%% Opening labelme
223
-
224
- s = 'python labelme {}'.format(image_folder)
225
- print(s)
226
- import clipboard; clipboard.copy(s)
227
-
228
-
229
- #%% Command-line driver
230
-
231
- import sys,argparse
232
-
233
- def main():
234
-
235
- parser = argparse.ArgumentParser(
236
- description='Convert a COCO database to labelme annotation format')
237
-
238
- parser.add_argument(
239
- 'coco_file',
240
- type=str,
241
- help='Path to COCO data file (.json)')
242
-
243
- parser.add_argument(
244
- 'image_base',
245
- type=str,
246
- help='Path to images (also the output folder)')
247
-
248
- parser.add_argument(
249
- '--overwrite',
250
- action='store_true',
251
- help='Overwrite existing labelme .json files')
252
-
253
- if len(sys.argv[1:]) == 0:
254
- parser.print_help()
255
- parser.exit()
256
-
257
- args = parser.parse_args()
258
-
259
- coco_to_labelme(coco_data=args.coco_file,image_base=args.image_base,overwrite=args.overwrite)
260
-
261
-
262
- if __name__ == '__main__':
263
- main()
1
+ """
2
+
3
+ coco_to_labelme.py
4
+
5
+ Converts a COCO dataset to labelme format (one .json per image file).
6
+
7
+ If you want to convert YOLO-formatted data to labelme format, use yolo_to_coco, then
8
+ coco_to_labelme.
9
+
10
+ """
11
+
12
+ #%% Imports and constants
13
+
14
+ import os
15
+ import json
16
+
17
+ from tqdm import tqdm
18
+ from collections import defaultdict
19
+
20
+ from md_visualization.visualization_utils import open_image
21
+
22
+
23
+ #%% Functions
24
+
25
+ def get_labelme_dict_for_image_from_coco_record(im,annotations,categories,info=None):
26
+ """
27
+ For the given image struct in COCO format and associated list of annotations, reformats the
28
+ detections into labelme format.
29
+
30
+ Args:
31
+ im (dict): image dict, as loaded from a COCO .json file; 'height' and 'width' are required
32
+ annotations (list): a list of annotations that refer to this image (this function errors if
33
+ that's not the case)
34
+ categories (list): a list of category in dicts in COCO format ({'id':x,'name':'s'})
35
+ info (dict, optional): a dict to store in a non-standard "custom_info" field in the output
36
+
37
+ Returns:
38
+ dict: a dict in labelme format, suitable for writing to a labelme .json file
39
+ """
40
+
41
+ image_base_name = os.path.basename(im['file_name'])
42
+
43
+ output_dict = {}
44
+ if info is not None:
45
+ output_dict['custom_info'] = info
46
+ output_dict['version'] = '5.3.0a0'
47
+ output_dict['flags'] = {}
48
+ output_dict['shapes'] = []
49
+ output_dict['imagePath'] = image_base_name
50
+ output_dict['imageHeight'] = im['height']
51
+ output_dict['imageWidth'] = im['width']
52
+ output_dict['imageData'] = None
53
+
54
+ # Store COCO categories in case we want to reconstruct the original IDs later
55
+ output_dict['coco_categories'] = categories
56
+
57
+ category_id_to_name = {c['id']:c['name'] for c in categories}
58
+
59
+ if 'flags' in im:
60
+ output_dict['flags'] = im['flags']
61
+
62
+ # ann = annotations[0]
63
+ for ann in annotations:
64
+
65
+ assert ann['image_id'] == im['id'], 'Annotation {} does not refer to image {}'.format(
66
+ ann['id'],im['id'])
67
+
68
+ if 'bbox' not in ann:
69
+ continue
70
+
71
+ shape = {}
72
+ shape['label'] = category_id_to_name[ann['category_id']]
73
+ shape['shape_type'] = 'rectangle'
74
+ shape['description'] = ''
75
+ shape['group_id'] = None
76
+
77
+ # COCO boxes are [x_min, y_min, width_of_box, height_of_box] (absolute)
78
+ #
79
+ # labelme boxes are [[x0,y0],[x1,y1]] (absolute)
80
+ x0 = ann['bbox'][0]
81
+ y0 = ann['bbox'][1]
82
+ x1 = ann['bbox'][0] + ann['bbox'][2]
83
+ y1 = ann['bbox'][1] + ann['bbox'][3]
84
+
85
+ shape['points'] = [[x0,y0],[x1,y1]]
86
+ output_dict['shapes'].append(shape)
87
+
88
+ # ...for each detection
89
+
90
+ return output_dict
91
+
92
+ # ...def get_labelme_dict_for_image()
93
+
94
+
95
+ def coco_to_labelme(coco_data,image_base,overwrite=False,bypass_image_size_check=False,verbose=False):
96
+ """
97
+ For all the images in [coco_data] (a dict or a filename), write a .json file in
98
+ labelme format alongside the corresponding relative path within image_base.
99
+ """
100
+
101
+ # Load COCO data if necessary
102
+ if isinstance(coco_data,str):
103
+ with open(coco_data,'r') as f:
104
+ coco_data = json.load(f)
105
+ assert isinstance(coco_data,dict)
106
+
107
+
108
+ ## Read image sizes if necessary
109
+
110
+ if bypass_image_size_check:
111
+
112
+ print('Bypassing size check')
113
+
114
+ else:
115
+
116
+ # TODO: parallelize this loop
117
+
118
+ print('Reading/validating image sizes...')
119
+
120
+ # im = coco_data['images'][0]
121
+ for im in tqdm(coco_data['images']):
122
+
123
+ # Make sure this file exists
124
+ im_full_path = os.path.join(image_base,im['file_name'])
125
+ assert os.path.isfile(im_full_path), 'Image file {} does not exist'.format(im_full_path)
126
+
127
+ # Load w/h information if necessary
128
+ if 'height' not in im or 'width' not in im:
129
+
130
+ try:
131
+ pil_im = open_image(im_full_path)
132
+ im['width'] = pil_im.width
133
+ im['height'] = pil_im.height
134
+ except Exception:
135
+ print('Warning: cannot open image {}'.format(im_full_path))
136
+ if 'failure' not in im:
137
+ im['failure'] = 'Failure image access'
138
+
139
+ # ...if we need to read w/h information
140
+
141
+ # ...for each image
142
+
143
+ # ...if we need to load image sizes
144
+
145
+
146
+ ## Generate labelme files
147
+
148
+ print('Generating .json files...')
149
+
150
+ image_id_to_annotations = defaultdict(list)
151
+ for ann in coco_data['annotations']:
152
+ image_id_to_annotations[ann['image_id']].append(ann)
153
+
154
+ n_json_files_written = 0
155
+ n_json_files_error = 0
156
+ n_json_files_exist = 0
157
+
158
+ # Write output
159
+ for im in tqdm(coco_data['images']):
160
+
161
+ # Skip this image if it failed to load in whatever system generated this COCO file
162
+ skip_image = False
163
+
164
+ # Errors are represented differently depending on the source
165
+ for error_string in ('failure','error'):
166
+ if (error_string in im) and (im[error_string] is not None):
167
+ if verbose:
168
+ print('Warning: skipping labelme file generation for failed image {}'.format(
169
+ im['file_name']))
170
+ skip_image = True
171
+ n_json_files_error += 1
172
+ break
173
+ if skip_image:
174
+ continue
175
+
176
+ im_full_path = os.path.join(image_base,im['file_name'])
177
+ json_path = os.path.splitext(im_full_path)[0] + '.json'
178
+
179
+ if (not overwrite) and (os.path.isfile(json_path)):
180
+ if verbose:
181
+ print('Skipping existing file {}'.format(json_path))
182
+ n_json_files_exist += 1
183
+ continue
184
+
185
+ annotations_this_image = image_id_to_annotations[im['id']]
186
+ output_dict = get_labelme_dict_for_image_from_coco_record(im,
187
+ annotations_this_image,
188
+ coco_data['categories'],
189
+ info=None)
190
+
191
+ n_json_files_written += 1
192
+ with open(json_path,'w') as f:
193
+ json.dump(output_dict,f,indent=1)
194
+
195
+ # ...for each image
196
+
197
+ print('\nWrote {} .json files (skipped {} for errors, {} because they exist)'.format(
198
+ n_json_files_written,n_json_files_error,n_json_files_exist))
199
+
200
+ # ...def coco_to_labelme()
201
+
202
+
203
+ #%% Interactive driver
204
+
205
+ if False:
206
+
207
+ pass
208
+
209
+ #%% Configure options
210
+
211
+ coco_file = \
212
+ r'C:\\temp\\snapshot-exploration\\images\\training-images-good\\training-images-good_from_yolo.json'
213
+ image_folder = os.path.dirname(coco_file)
214
+ overwrite = True
215
+
216
+
217
+ #%% Programmatic execution
218
+
219
+ coco_to_labelme(coco_data=coco_file,image_base=image_folder,overwrite=overwrite)
220
+
221
+
222
+ #%% Command-line execution
223
+
224
+ s = 'python coco_to_labelme.py "{}" "{}"'.format(coco_file,image_folder)
225
+ if overwrite:
226
+ s += ' --overwrite'
227
+
228
+ print(s)
229
+ import clipboard; clipboard.copy(s)
230
+
231
+
232
+ #%% Opening labelme
233
+
234
+ s = 'python labelme {}'.format(image_folder)
235
+ print(s)
236
+ import clipboard; clipboard.copy(s)
237
+
238
+
239
+ #%% Command-line driver
240
+
241
+ import sys,argparse
242
+
243
+ def main():
244
+
245
+ parser = argparse.ArgumentParser(
246
+ description='Convert a COCO database to labelme annotation format')
247
+
248
+ parser.add_argument(
249
+ 'coco_file',
250
+ type=str,
251
+ help='Path to COCO data file (.json)')
252
+
253
+ parser.add_argument(
254
+ 'image_base',
255
+ type=str,
256
+ help='Path to images (also the output folder)')
257
+
258
+ parser.add_argument(
259
+ '--overwrite',
260
+ action='store_true',
261
+ help='Overwrite existing labelme .json files')
262
+
263
+ if len(sys.argv[1:]) == 0:
264
+ parser.print_help()
265
+ parser.exit()
266
+
267
+ args = parser.parse_args()
268
+
269
+ coco_to_labelme(coco_data=args.coco_file,image_base=args.image_base,overwrite=args.overwrite)
270
+
271
+ if __name__ == '__main__':
272
+ main()