megadetector 5.0.8__py3-none-any.whl → 5.0.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- api/__init__.py +0 -0
- api/batch_processing/__init__.py +0 -0
- api/batch_processing/api_core/__init__.py +0 -0
- api/batch_processing/api_core/batch_service/__init__.py +0 -0
- api/batch_processing/api_core/batch_service/score.py +0 -1
- api/batch_processing/api_core/server_job_status_table.py +0 -1
- api/batch_processing/api_core_support/__init__.py +0 -0
- api/batch_processing/api_core_support/aggregate_results_manually.py +0 -1
- api/batch_processing/api_support/__init__.py +0 -0
- api/batch_processing/api_support/summarize_daily_activity.py +0 -1
- api/batch_processing/data_preparation/__init__.py +0 -0
- api/batch_processing/data_preparation/manage_local_batch.py +65 -65
- api/batch_processing/data_preparation/manage_video_batch.py +8 -8
- api/batch_processing/integration/digiKam/xmp_integration.py +0 -1
- api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -1
- api/batch_processing/postprocessing/__init__.py +0 -0
- api/batch_processing/postprocessing/add_max_conf.py +12 -12
- api/batch_processing/postprocessing/categorize_detections_by_size.py +32 -14
- api/batch_processing/postprocessing/combine_api_outputs.py +68 -54
- api/batch_processing/postprocessing/compare_batch_results.py +113 -43
- api/batch_processing/postprocessing/convert_output_format.py +41 -16
- api/batch_processing/postprocessing/load_api_results.py +16 -17
- api/batch_processing/postprocessing/md_to_coco.py +31 -21
- api/batch_processing/postprocessing/md_to_labelme.py +52 -22
- api/batch_processing/postprocessing/merge_detections.py +14 -14
- api/batch_processing/postprocessing/postprocess_batch_results.py +246 -174
- api/batch_processing/postprocessing/remap_detection_categories.py +32 -25
- api/batch_processing/postprocessing/render_detection_confusion_matrix.py +60 -27
- api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +53 -44
- api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +25 -14
- api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +242 -158
- api/batch_processing/postprocessing/separate_detections_into_folders.py +159 -114
- api/batch_processing/postprocessing/subset_json_detector_output.py +146 -169
- api/batch_processing/postprocessing/top_folders_to_bottom.py +77 -43
- api/synchronous/__init__.py +0 -0
- api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
- api/synchronous/api_core/animal_detection_api/api_backend.py +0 -2
- api/synchronous/api_core/animal_detection_api/api_frontend.py +266 -268
- api/synchronous/api_core/animal_detection_api/config.py +35 -35
- api/synchronous/api_core/tests/__init__.py +0 -0
- api/synchronous/api_core/tests/load_test.py +109 -109
- classification/__init__.py +0 -0
- classification/aggregate_classifier_probs.py +21 -24
- classification/analyze_failed_images.py +11 -13
- classification/cache_batchapi_outputs.py +51 -51
- classification/create_classification_dataset.py +69 -68
- classification/crop_detections.py +54 -53
- classification/csv_to_json.py +97 -100
- classification/detect_and_crop.py +105 -105
- classification/evaluate_model.py +43 -42
- classification/identify_mislabeled_candidates.py +47 -46
- classification/json_to_azcopy_list.py +10 -10
- classification/json_validator.py +72 -71
- classification/map_classification_categories.py +44 -43
- classification/merge_classification_detection_output.py +68 -68
- classification/prepare_classification_script.py +157 -154
- classification/prepare_classification_script_mc.py +228 -228
- classification/run_classifier.py +27 -26
- classification/save_mislabeled.py +30 -30
- classification/train_classifier.py +20 -20
- classification/train_classifier_tf.py +21 -22
- classification/train_utils.py +10 -10
- data_management/__init__.py +0 -0
- data_management/annotations/__init__.py +0 -0
- data_management/annotations/annotation_constants.py +18 -31
- data_management/camtrap_dp_to_coco.py +238 -0
- data_management/cct_json_utils.py +102 -59
- data_management/cct_to_md.py +176 -158
- data_management/cct_to_wi.py +247 -219
- data_management/coco_to_labelme.py +272 -263
- data_management/coco_to_yolo.py +79 -58
- data_management/databases/__init__.py +0 -0
- data_management/databases/add_width_and_height_to_db.py +20 -16
- data_management/databases/combine_coco_camera_traps_files.py +35 -31
- data_management/databases/integrity_check_json_db.py +62 -24
- data_management/databases/subset_json_db.py +24 -15
- data_management/generate_crops_from_cct.py +27 -45
- data_management/get_image_sizes.py +188 -162
- data_management/importers/add_nacti_sizes.py +8 -8
- data_management/importers/add_timestamps_to_icct.py +78 -78
- data_management/importers/animl_results_to_md_results.py +158 -158
- data_management/importers/auckland_doc_test_to_json.py +9 -9
- data_management/importers/auckland_doc_to_json.py +8 -8
- data_management/importers/awc_to_json.py +7 -7
- data_management/importers/bellevue_to_json.py +15 -15
- data_management/importers/cacophony-thermal-importer.py +13 -13
- data_management/importers/carrizo_shrubfree_2018.py +8 -8
- data_management/importers/carrizo_trail_cam_2017.py +8 -8
- data_management/importers/cct_field_adjustments.py +9 -9
- data_management/importers/channel_islands_to_cct.py +10 -10
- data_management/importers/eMammal/copy_and_unzip_emammal.py +1 -0
- data_management/importers/ena24_to_json.py +7 -7
- data_management/importers/filenames_to_json.py +8 -8
- data_management/importers/helena_to_cct.py +7 -7
- data_management/importers/idaho-camera-traps.py +7 -7
- data_management/importers/idfg_iwildcam_lila_prep.py +10 -10
- data_management/importers/jb_csv_to_json.py +9 -9
- data_management/importers/mcgill_to_json.py +8 -8
- data_management/importers/missouri_to_json.py +18 -18
- data_management/importers/nacti_fieldname_adjustments.py +10 -10
- data_management/importers/noaa_seals_2019.py +7 -7
- data_management/importers/pc_to_json.py +7 -7
- data_management/importers/plot_wni_giraffes.py +7 -7
- data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -359
- data_management/importers/prepare_zsl_imerit.py +7 -7
- data_management/importers/rspb_to_json.py +8 -8
- data_management/importers/save_the_elephants_survey_A.py +8 -8
- data_management/importers/save_the_elephants_survey_B.py +9 -9
- data_management/importers/snapshot_safari_importer.py +26 -26
- data_management/importers/snapshot_safari_importer_reprise.py +665 -665
- data_management/importers/snapshot_serengeti_lila.py +14 -14
- data_management/importers/sulross_get_exif.py +8 -9
- data_management/importers/timelapse_csv_set_to_json.py +11 -11
- data_management/importers/ubc_to_json.py +13 -13
- data_management/importers/umn_to_json.py +7 -7
- data_management/importers/wellington_to_json.py +8 -8
- data_management/importers/wi_to_json.py +9 -9
- data_management/importers/zamba_results_to_md_results.py +181 -181
- data_management/labelme_to_coco.py +65 -24
- data_management/labelme_to_yolo.py +8 -8
- data_management/lila/__init__.py +0 -0
- data_management/lila/add_locations_to_island_camera_traps.py +9 -9
- data_management/lila/add_locations_to_nacti.py +147 -147
- data_management/lila/create_lila_blank_set.py +13 -13
- data_management/lila/create_lila_test_set.py +8 -8
- data_management/lila/create_links_to_md_results_files.py +106 -106
- data_management/lila/download_lila_subset.py +44 -110
- data_management/lila/generate_lila_per_image_labels.py +55 -42
- data_management/lila/get_lila_annotation_counts.py +18 -15
- data_management/lila/get_lila_image_counts.py +11 -11
- data_management/lila/lila_common.py +96 -33
- data_management/lila/test_lila_metadata_urls.py +132 -116
- data_management/ocr_tools.py +173 -128
- data_management/read_exif.py +110 -97
- data_management/remap_coco_categories.py +83 -83
- data_management/remove_exif.py +58 -62
- data_management/resize_coco_dataset.py +30 -23
- data_management/wi_download_csv_to_coco.py +246 -239
- data_management/yolo_output_to_md_output.py +86 -73
- data_management/yolo_to_coco.py +300 -60
- detection/__init__.py +0 -0
- detection/detector_training/__init__.py +0 -0
- detection/process_video.py +85 -33
- detection/pytorch_detector.py +43 -25
- detection/run_detector.py +157 -72
- detection/run_detector_batch.py +179 -113
- detection/run_inference_with_yolov5_val.py +108 -48
- detection/run_tiled_inference.py +111 -40
- detection/tf_detector.py +51 -29
- detection/video_utils.py +606 -521
- docs/source/conf.py +43 -0
- md_utils/__init__.py +0 -0
- md_utils/azure_utils.py +9 -9
- md_utils/ct_utils.py +228 -68
- md_utils/directory_listing.py +59 -64
- md_utils/md_tests.py +968 -871
- md_utils/path_utils.py +460 -134
- md_utils/process_utils.py +157 -133
- md_utils/sas_blob_utils.py +20 -20
- md_utils/split_locations_into_train_val.py +45 -32
- md_utils/string_utils.py +33 -10
- md_utils/url_utils.py +176 -60
- md_utils/write_html_image_list.py +40 -33
- md_visualization/__init__.py +0 -0
- md_visualization/plot_utils.py +102 -109
- md_visualization/render_images_with_thumbnails.py +34 -34
- md_visualization/visualization_utils.py +597 -291
- md_visualization/visualize_db.py +76 -48
- md_visualization/visualize_detector_output.py +61 -42
- {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/METADATA +13 -7
- megadetector-5.0.9.dist-info/RECORD +224 -0
- {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/top_level.txt +1 -0
- taxonomy_mapping/__init__.py +0 -0
- taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +342 -335
- taxonomy_mapping/map_new_lila_datasets.py +154 -154
- taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -134
- taxonomy_mapping/preview_lila_taxonomy.py +591 -591
- taxonomy_mapping/retrieve_sample_image.py +12 -12
- taxonomy_mapping/simple_image_download.py +11 -11
- taxonomy_mapping/species_lookup.py +10 -10
- taxonomy_mapping/taxonomy_csv_checker.py +18 -18
- taxonomy_mapping/taxonomy_graph.py +47 -47
- taxonomy_mapping/validate_lila_category_mappings.py +83 -76
- data_management/cct_json_to_filename_json.py +0 -89
- data_management/cct_to_csv.py +0 -140
- data_management/databases/remove_corrupted_images_from_db.py +0 -191
- detection/detector_training/copy_checkpoints.py +0 -43
- megadetector-5.0.8.dist-info/RECORD +0 -205
- {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/LICENSE +0 -0
- {megadetector-5.0.8.dist-info → megadetector-5.0.9.dist-info}/WHEEL +0 -0
|
@@ -1,13 +1,13 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
remap_detection_categories.py
|
|
4
|
+
|
|
5
|
+
Given a MegaDetector results file, remap the category IDs according to a specified
|
|
6
|
+
dictionary, writing the results to a new file.
|
|
7
|
+
|
|
8
|
+
Currently only supports remapping detection categories, not classification categories.
|
|
9
|
+
|
|
10
|
+
"""
|
|
11
11
|
|
|
12
12
|
#%% Constants and imports
|
|
13
13
|
|
|
@@ -27,27 +27,35 @@ def remap_detection_categories(input_file,
|
|
|
27
27
|
extra_category_handling='error',
|
|
28
28
|
overwrite=False):
|
|
29
29
|
"""
|
|
30
|
-
Given a
|
|
30
|
+
Given a MegaDetector results file [input_file], remap the category IDs according to the dictionary
|
|
31
31
|
[target_category_map], writing the results to [output_file]. The remapped dictionary needs to have
|
|
32
32
|
the same category names as the input file's detection_categories dictionary.
|
|
33
33
|
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
target_category_map can also be a MD results file, in which case we'll use that file's
|
|
37
|
-
detection_categories dictionary.
|
|
34
|
+
Typically used to map, e.g., a variety of species to the class "mammal" or the class "animal".
|
|
38
35
|
|
|
39
|
-
|
|
40
|
-
that are not present in the target mapping.
|
|
41
|
-
|
|
42
|
-
'error' == Error in this case.
|
|
43
|
-
'drop_if_unused' == Don't include these in the output file's category mappings if they are unused,
|
|
44
|
-
error if they are.
|
|
45
|
-
'remap' == Remap to unused category IDs. This is reserved for future use, not currently implemented.
|
|
36
|
+
Currently only supports remapping detection categories, not classification categories.
|
|
46
37
|
|
|
38
|
+
Args:
|
|
39
|
+
input_file (str): the MD .json results file to remap
|
|
40
|
+
output_file (str): the remapped .json file to write
|
|
41
|
+
target_category_map (dict): the category mapping that should be used in the output file.
|
|
42
|
+
This can also be a MD results file, in which case we'll use that file's
|
|
43
|
+
detection_categories dictionary.
|
|
44
|
+
extra_category_handling (str, optional): specifies what we should do if categories are present
|
|
45
|
+
in the source file that are not present in the target mapping:
|
|
46
|
+
|
|
47
|
+
* 'error' == Error in this case.
|
|
48
|
+
* 'drop_if_unused' == Don't include these in the output file's category mappings if they are
|
|
49
|
+
unused, error if they are.
|
|
50
|
+
* 'remap' == Remap to unused category IDs. This is reserved for future use, not currently
|
|
51
|
+
implemented.
|
|
52
|
+
overwrite (bool, optional): whether to overwrite [output_file] if it exists; if this is True and
|
|
53
|
+
[output_file] exists, this function is a no-op
|
|
54
|
+
|
|
47
55
|
"""
|
|
48
56
|
|
|
49
57
|
if os.path.exists(output_file) and (not overwrite):
|
|
50
|
-
print('File {} exists, bypassing remapping'.format(output_file))
|
|
58
|
+
print('File {} exists, bypassing remapping'.format(output_file))
|
|
51
59
|
return
|
|
52
60
|
|
|
53
61
|
assert os.path.isfile(input_file), \
|
|
@@ -130,7 +138,7 @@ def remap_detection_categories(input_file,
|
|
|
130
138
|
|
|
131
139
|
|
|
132
140
|
print('Saved remapped results to {}'.format(output_file))
|
|
133
|
-
|
|
141
|
+
|
|
134
142
|
|
|
135
143
|
#%% Interactive driver
|
|
136
144
|
|
|
@@ -160,4 +168,3 @@ if False:
|
|
|
160
168
|
#%% Command-line driver
|
|
161
169
|
|
|
162
170
|
# TODO
|
|
163
|
-
|
|
@@ -1,12 +1,12 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
render_detection_confusion_matrix.py
|
|
4
|
+
|
|
5
|
+
Given a CCT-formatted ground truth file and a MegaDetector-formatted results file,
|
|
6
|
+
render an HTML confusion matrix. Typically used for multi-class detectors. Currently
|
|
7
|
+
assumes a single class per image.
|
|
8
|
+
|
|
9
|
+
"""
|
|
10
10
|
|
|
11
11
|
#%% Imports and constants
|
|
12
12
|
|
|
@@ -33,7 +33,10 @@ from multiprocessing.pool import Pool
|
|
|
33
33
|
|
|
34
34
|
#%% Support functions
|
|
35
35
|
|
|
36
|
-
def
|
|
36
|
+
def _image_to_output_file(im,preview_images_folder):
|
|
37
|
+
"""
|
|
38
|
+
Produces a clean filename from im (if [im] is a str) or im['file'] (if [im] is a dict).
|
|
39
|
+
"""
|
|
37
40
|
|
|
38
41
|
if isinstance(im,str):
|
|
39
42
|
filename_relative = im
|
|
@@ -44,7 +47,10 @@ def image_to_output_file(im,preview_images_folder):
|
|
|
44
47
|
return os.path.join(preview_images_folder,fn_clean)
|
|
45
48
|
|
|
46
49
|
|
|
47
|
-
def
|
|
50
|
+
def _render_image(im,render_image_constants):
|
|
51
|
+
"""
|
|
52
|
+
Internal function for rendering a single image to the confusion matrix preview folder.
|
|
53
|
+
"""
|
|
48
54
|
|
|
49
55
|
filename_to_ground_truth_im = render_image_constants['filename_to_ground_truth_im']
|
|
50
56
|
image_folder = render_image_constants['image_folder']
|
|
@@ -56,7 +62,7 @@ def render_image(im,render_image_constants):
|
|
|
56
62
|
|
|
57
63
|
assert im['file'] in filename_to_ground_truth_im
|
|
58
64
|
|
|
59
|
-
output_file =
|
|
65
|
+
output_file = _image_to_output_file(im,preview_images_folder)
|
|
60
66
|
if os.path.isfile(output_file) and not force_render_images:
|
|
61
67
|
return output_file
|
|
62
68
|
|
|
@@ -105,9 +111,36 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
105
111
|
confidence_thresholds and rendering_confidence_thresholds are dictionaries mapping
|
|
106
112
|
class names to thresholds. "default" is a special token that will be used for all
|
|
107
113
|
classes not otherwise assigned thresholds.
|
|
114
|
+
|
|
115
|
+
Args:
|
|
116
|
+
ground_truth_file (str): the CCT-formatted .json file with ground truth information
|
|
117
|
+
results_file (str): the MegaDetector results .json file
|
|
118
|
+
image_folder (str): the folder where images live; filenames in [ground_truth_file] and
|
|
119
|
+
[results_file] should be relative to this folder.
|
|
120
|
+
preview_folder (str): the output folder, i.e. the folder in which we'll create our nifty
|
|
121
|
+
HTML stuff.
|
|
122
|
+
force_rendering_images (bool, optional): if False, skips images that already exist
|
|
123
|
+
confidence_thresholds (dict, optional): a dictionary mapping class names to thresholds;
|
|
124
|
+
all classes not explicitly named here will use the threshold for the "default" category.
|
|
125
|
+
rendering_thresholds (dict, optional): a dictionary mapping class names to thresholds;
|
|
126
|
+
all classes not explicitly named here will use the threshold for the "default" category.
|
|
127
|
+
target_image_size (tuple, optional): output image size, as a pair of ints (width,height). If one
|
|
128
|
+
value is -1 and the other is not, aspect ratio is preserved. If both are -1, the original image
|
|
129
|
+
sizes are preserved.
|
|
130
|
+
parallelize_rendering (bool, optional): enable (default) or disable parallelization when rendering
|
|
131
|
+
parallelize_rendering_n_core (int, optional): number of threads or processes to use for rendering, only
|
|
132
|
+
used if parallelize_rendering is True
|
|
133
|
+
parallelize_rendering_with_threads: whether to use threads (True) or processes (False) when rendering,
|
|
134
|
+
only used if parallelize_rendering is True
|
|
135
|
+
job_name (str, optional): job name to include in big letters in the output file
|
|
136
|
+
model_file (str, optional) model filename to include in HTML output
|
|
137
|
+
empty_category_name (str, optional): special category name that we should treat as empty, typically
|
|
138
|
+
"empty"
|
|
139
|
+
html_image_list_options (dict, optional): options listed passed along to write_html_image_list;
|
|
140
|
+
see write_html_image_list for documentation.
|
|
108
141
|
"""
|
|
109
142
|
|
|
110
|
-
|
|
143
|
+
##%% Argument and path handling
|
|
111
144
|
|
|
112
145
|
preview_images_folder = os.path.join(preview_folder,'images')
|
|
113
146
|
os.makedirs(preview_images_folder,exist_ok=True)
|
|
@@ -118,7 +151,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
118
151
|
rendering_confidence_thresholds = {'default':0.4}
|
|
119
152
|
|
|
120
153
|
|
|
121
|
-
|
|
154
|
+
##%% Load ground truth
|
|
122
155
|
|
|
123
156
|
with open(ground_truth_file,'r') as f:
|
|
124
157
|
ground_truth_data_cct = json.load(f)
|
|
@@ -129,14 +162,14 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
129
162
|
filename_to_ground_truth_im[im['file_name']] = im
|
|
130
163
|
|
|
131
164
|
|
|
132
|
-
|
|
165
|
+
##%% Confirm that the ground truth images are present in the image folder
|
|
133
166
|
|
|
134
167
|
ground_truth_images = find_images(image_folder,return_relative_paths=True,recursive=True)
|
|
135
168
|
assert len(ground_truth_images) == len(ground_truth_data_cct['images'])
|
|
136
169
|
del ground_truth_images
|
|
137
170
|
|
|
138
171
|
|
|
139
|
-
|
|
172
|
+
##%% Map images to categories
|
|
140
173
|
|
|
141
174
|
# gt_image_id_to_image = {im['id']:im for im in ground_truth_data_cct['images']}
|
|
142
175
|
gt_image_id_to_annotations = defaultdict(list)
|
|
@@ -175,7 +208,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
175
208
|
'No ground truth category assigned to {}'.format(filename)
|
|
176
209
|
|
|
177
210
|
|
|
178
|
-
|
|
211
|
+
##%% Load results
|
|
179
212
|
|
|
180
213
|
with open(results_file,'r') as f:
|
|
181
214
|
md_formatted_results = json.load(f)
|
|
@@ -183,7 +216,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
183
216
|
results_category_id_to_name = md_formatted_results['detection_categories']
|
|
184
217
|
|
|
185
218
|
|
|
186
|
-
|
|
219
|
+
##%% Render images with detections
|
|
187
220
|
|
|
188
221
|
render_image_constants = {}
|
|
189
222
|
render_image_constants['filename_to_ground_truth_im'] = filename_to_ground_truth_im
|
|
@@ -211,7 +244,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
211
244
|
print('Rendering images with {} {}'.format(parallelize_rendering_n_cores,
|
|
212
245
|
worker_string))
|
|
213
246
|
|
|
214
|
-
_ = list(tqdm(pool.imap(partial(
|
|
247
|
+
_ = list(tqdm(pool.imap(partial(_render_image,render_image_constants=render_image_constants),
|
|
215
248
|
md_formatted_results['images']),
|
|
216
249
|
total=len(md_formatted_results['images'])))
|
|
217
250
|
|
|
@@ -219,10 +252,10 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
219
252
|
|
|
220
253
|
# im = md_formatted_results['images'][0]
|
|
221
254
|
for im in tqdm(md_formatted_results['images']):
|
|
222
|
-
|
|
255
|
+
_render_image(im,render_image_constants)
|
|
223
256
|
|
|
224
257
|
|
|
225
|
-
|
|
258
|
+
##%% Map images to predicted categories, and vice-versa
|
|
226
259
|
|
|
227
260
|
filename_to_predicted_categories = defaultdict(set)
|
|
228
261
|
predicted_category_name_to_filenames = defaultdict(set)
|
|
@@ -247,7 +280,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
247
280
|
# ...for each image
|
|
248
281
|
|
|
249
282
|
|
|
250
|
-
|
|
283
|
+
##%% Create TP/TN/FP/FN lists
|
|
251
284
|
|
|
252
285
|
category_name_to_image_lists = {}
|
|
253
286
|
|
|
@@ -301,7 +334,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
301
334
|
# ...for each filename
|
|
302
335
|
|
|
303
336
|
|
|
304
|
-
|
|
337
|
+
##%% Create confusion matrix
|
|
305
338
|
|
|
306
339
|
gt_category_name_to_category_index = {}
|
|
307
340
|
|
|
@@ -383,7 +416,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
383
416
|
# open_file(cm_figure_fn_abs)
|
|
384
417
|
|
|
385
418
|
|
|
386
|
-
|
|
419
|
+
##%% Create HTML confusion matrix
|
|
387
420
|
|
|
388
421
|
html_confusion_matrix = '<table class="result-table">\n'
|
|
389
422
|
html_confusion_matrix += '<tr>\n'
|
|
@@ -423,7 +456,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
423
456
|
title = '<b>Image</b>: {}, <b>Max conf</b>: {:0.3f}'.format(
|
|
424
457
|
image_filename_relative, max_conf)
|
|
425
458
|
image_link = 'images/' + os.path.basename(
|
|
426
|
-
|
|
459
|
+
_image_to_output_file(image_filename_relative,preview_images_folder))
|
|
427
460
|
html_image_info = {
|
|
428
461
|
'filename': image_link,
|
|
429
462
|
'title': title,
|
|
@@ -527,7 +560,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
527
560
|
title = '<b>Image</b>: {}, <b>Max conf</b>: {:0.3f}'.format(
|
|
528
561
|
image_filename_relative, max_conf)
|
|
529
562
|
image_link = 'images/' + os.path.basename(
|
|
530
|
-
|
|
563
|
+
_image_to_output_file(image_filename_relative,preview_images_folder))
|
|
531
564
|
html_image_info = {
|
|
532
565
|
'filename': image_link,
|
|
533
566
|
'title': title,
|
|
@@ -618,7 +651,7 @@ def render_detection_confusion_matrix(ground_truth_file,
|
|
|
618
651
|
f.write(html)
|
|
619
652
|
|
|
620
653
|
|
|
621
|
-
|
|
654
|
+
##%% Prepare return data
|
|
622
655
|
|
|
623
656
|
confusion_matrix_info = {}
|
|
624
657
|
confusion_matrix_info['html_file'] = target_html_file
|
|
@@ -1,24 +1,26 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
1
|
+
r"""
|
|
2
|
+
|
|
3
|
+
find_repeat_detections.py
|
|
4
|
+
|
|
5
|
+
If you want to use this script, we recommend that you read the RDE user's guide:
|
|
6
|
+
|
|
7
|
+
https://github.com/agentmorris/MegaDetector/tree/master/api/batch_processing/postprocessing/repeat_detection_elimination
|
|
8
|
+
|
|
9
|
+
Really, don't try to run this script without reading the user's guide, you'll think
|
|
10
|
+
it's more magical than it is.
|
|
11
|
+
|
|
12
|
+
This script looks through a sequence of detections in the API output json file, and finds
|
|
13
|
+
candidates that might be "repeated false positives", i.e. that random branch that the
|
|
14
|
+
detector thinks is an animal/person/vehicle.
|
|
15
|
+
|
|
16
|
+
Typically after running this script, you would do a manual step to remove
|
|
17
|
+
true positives, then run remove_repeat_detections to produce a final output file.
|
|
18
|
+
|
|
19
|
+
There's no way that statement was self-explanatory; see the user's guide.
|
|
20
|
+
|
|
21
|
+
This script is just a command-line driver for repeat_detections_core.py.
|
|
22
|
+
|
|
23
|
+
"""
|
|
22
24
|
|
|
23
25
|
#%% Constants and imports
|
|
24
26
|
|
|
@@ -51,7 +53,7 @@ if False:
|
|
|
51
53
|
options.maxSuspiciousDetectionSize = 0.2
|
|
52
54
|
|
|
53
55
|
options.filterFileToLoad = ''
|
|
54
|
-
options.filterFileToLoad = os.path.join(baseDir,'
|
|
56
|
+
options.filterFileToLoad = os.path.join(baseDir,r'..\detectionIndex.json')
|
|
55
57
|
|
|
56
58
|
options.debugMaxDir = -1
|
|
57
59
|
options.debugMaxRenderDir = -1
|
|
@@ -75,15 +77,16 @@ def main():
|
|
|
75
77
|
defaultOptions = repeat_detections_core.RepeatDetectionOptions()
|
|
76
78
|
|
|
77
79
|
parser = argparse.ArgumentParser()
|
|
78
|
-
|
|
80
|
+
|
|
81
|
+
parser.add_argument('inputFile', type=str, help='MD results .json file to process')
|
|
79
82
|
|
|
80
83
|
parser.add_argument('--outputFile', action='store', type=str, default=None,
|
|
81
|
-
help=
|
|
82
|
-
|
|
84
|
+
help='.json file to write filtered results to... do not use this if you are going to ' + \
|
|
85
|
+
'do manual review of the repeat detection images (which you should)')
|
|
83
86
|
|
|
84
87
|
parser.add_argument('--imageBase', action='store', type=str, default='',
|
|
85
|
-
help='Image base dir, relevant if renderHtml is True or if
|
|
86
|
-
|
|
88
|
+
help='Image base dir, relevant if renderHtml is True or if ' + \
|
|
89
|
+
'"omitFilteringFolder" is not set')
|
|
87
90
|
|
|
88
91
|
parser.add_argument('--outputBase', action='store', type=str, default='',
|
|
89
92
|
help='HTML or filtering folder output dir')
|
|
@@ -99,22 +102,22 @@ def main():
|
|
|
99
102
|
parser.add_argument('--iouThreshold', action='store', type=float,
|
|
100
103
|
default=defaultOptions.iouThreshold,
|
|
101
104
|
help='Detections with IOUs greater than this are considered ' + \
|
|
102
|
-
|
|
105
|
+
'"the same detection"')
|
|
103
106
|
|
|
104
107
|
parser.add_argument('--occurrenceThreshold', action='store', type=int,
|
|
105
108
|
default=defaultOptions.occurrenceThreshold,
|
|
106
109
|
help='More than this many near-identical detections in a group ' + \
|
|
107
|
-
|
|
110
|
+
'(e.g. a folder) is considered suspicious')
|
|
108
111
|
|
|
109
112
|
parser.add_argument('--minSuspiciousDetectionSize', action='store', type=float,
|
|
110
113
|
default=defaultOptions.minSuspiciousDetectionSize,
|
|
111
114
|
help='Detections smaller than this fraction of image area are not ' + \
|
|
112
|
-
|
|
115
|
+
'considered suspicious')
|
|
113
116
|
|
|
114
117
|
parser.add_argument('--maxSuspiciousDetectionSize', action='store', type=float,
|
|
115
118
|
default=defaultOptions.maxSuspiciousDetectionSize,
|
|
116
119
|
help='Detections larger than this fraction of image area are not ' + \
|
|
117
|
-
|
|
120
|
+
'considered suspicious')
|
|
118
121
|
|
|
119
122
|
parser.add_argument('--maxImagesPerFolder', action='store', type=int,
|
|
120
123
|
default=defaultOptions.maxImagesPerFolder,
|
|
@@ -138,26 +141,32 @@ def main():
|
|
|
138
141
|
|
|
139
142
|
parser.add_argument('--filterFileToLoad', action='store', type=str, default='',
|
|
140
143
|
help='Path to detectionIndex.json, which should be inside a ' + \
|
|
141
|
-
|
|
142
|
-
|
|
144
|
+
'folder of images that are manually verified to _not_ ' + \
|
|
145
|
+
'contain valid animals')
|
|
143
146
|
|
|
144
147
|
parser.add_argument('--omitFilteringFolder', action='store_false',
|
|
145
148
|
dest='bWriteFilteringFolder',
|
|
146
149
|
help='Should we create a folder of rendered detections for post-filtering?')
|
|
147
150
|
|
|
148
|
-
parser.add_argument('--debugMaxDir', action='store', type=int, default=-1
|
|
149
|
-
|
|
150
|
-
parser.add_argument('--
|
|
151
|
-
|
|
151
|
+
parser.add_argument('--debugMaxDir', action='store', type=int, default=-1,
|
|
152
|
+
help='For debugging only, limit the number of directories we process')
|
|
153
|
+
parser.add_argument('--debugMaxRenderDir', action='store', type=int, default=-1,
|
|
154
|
+
help='For debugging only, limit the number of directories we render')
|
|
155
|
+
parser.add_argument('--debugMaxRenderDetection', action='store', type=int, default=-1,
|
|
156
|
+
help='For debugging only, limit the number of detections we process per folder')
|
|
157
|
+
parser.add_argument('--debugMaxRenderInstance', action='store', type=int, default=-1,
|
|
158
|
+
help='For debugging only, limit the number of instances we process per detection')
|
|
152
159
|
|
|
153
160
|
parser.add_argument('--forceSerialComparisons', action='store_false',
|
|
154
|
-
dest='bParallelizeComparisons'
|
|
161
|
+
dest='bParallelizeComparisons',
|
|
162
|
+
help='Disable parallelization during the comparison stage')
|
|
155
163
|
parser.add_argument('--forceSerialRendering', action='store_false',
|
|
156
|
-
dest='bParallelizeRendering'
|
|
164
|
+
dest='bParallelizeRendering',
|
|
165
|
+
help='Disable parallelization during the rendering stage')
|
|
157
166
|
|
|
158
167
|
parser.add_argument('--maxOutputImageWidth', action='store', type=int,
|
|
159
168
|
default=defaultOptions.maxOutputImageWidth,
|
|
160
|
-
help='Maximum output size for thumbnail images')
|
|
169
|
+
help='Maximum output size for thumbnail images')
|
|
161
170
|
|
|
162
171
|
parser.add_argument('--lineThickness', action='store', type=int,
|
|
163
172
|
default=defaultOptions.lineThickness,
|
|
@@ -170,16 +179,17 @@ def main():
|
|
|
170
179
|
parser.add_argument('--nDirLevelsFromLeaf', type=int,
|
|
171
180
|
default=defaultOptions.nDirLevelsFromLeaf,
|
|
172
181
|
help='Number of levels from the leaf folders to use for repeat ' + \
|
|
173
|
-
|
|
182
|
+
'detection (0 == leaves)')
|
|
174
183
|
|
|
175
184
|
parser.add_argument('--bRenderOtherDetections', action='store_true',
|
|
176
185
|
help='Show non-target detections in light gray on each image')
|
|
177
186
|
|
|
178
187
|
parser.add_argument('--bRenderDetectionTiles', action='store_true',
|
|
179
|
-
help='Should we render a grid showing every instance for each detection?')
|
|
188
|
+
help='Should we render a grid showing every instance (up to a limit) for each detection?')
|
|
180
189
|
|
|
181
190
|
parser.add_argument('--detectionTilesPrimaryImageWidth', type=int,
|
|
182
|
-
default=defaultOptions.detectionTilesPrimaryImageWidth
|
|
191
|
+
default=defaultOptions.detectionTilesPrimaryImageWidth,
|
|
192
|
+
help='The width of the main image when rendering images with detection tiles')
|
|
183
193
|
|
|
184
194
|
parser.add_argument('--renderHtml', action='store_true',
|
|
185
195
|
dest='bRenderHtml', help='Should we render HTML output?')
|
|
@@ -197,6 +207,5 @@ def main():
|
|
|
197
207
|
|
|
198
208
|
repeat_detections_core.find_repeat_detections(args.inputFile, args.outputFile, options)
|
|
199
209
|
|
|
200
|
-
|
|
201
210
|
if __name__ == '__main__':
|
|
202
211
|
main()
|
api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py
CHANGED
|
@@ -1,15 +1,15 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
remove_repeat_detections.py
|
|
4
|
+
|
|
5
|
+
Used after running find_repeat_detections, then manually filtering the results,
|
|
6
|
+
to create a final filtered output file.
|
|
7
|
+
|
|
8
|
+
If you want to use this script, we recommend that you read the RDE user's guide:
|
|
9
|
+
|
|
10
|
+
https://github.com/agentmorris/MegaDetector/tree/master/api/batch_processing/postprocessing/repeat_detection_elimination
|
|
11
|
+
|
|
12
|
+
"""
|
|
13
13
|
|
|
14
14
|
#%% Constants and imports
|
|
15
15
|
|
|
@@ -21,7 +21,19 @@ from api.batch_processing.postprocessing.repeat_detection_elimination import rep
|
|
|
21
21
|
#%% Main function
|
|
22
22
|
|
|
23
23
|
def remove_repeat_detections(inputFile,outputFile,filteringDir):
|
|
24
|
-
|
|
24
|
+
"""
|
|
25
|
+
Given an index file that was produced in a first pass through find_repeat_detections,
|
|
26
|
+
and a folder of images (from which the user has deleted images they don't want removed),
|
|
27
|
+
remove the identified repeat detections from a set of MD results and write to a new file.
|
|
28
|
+
|
|
29
|
+
Args:
|
|
30
|
+
inputFile (str): .json file of MD results, from which we should remove repeat detections
|
|
31
|
+
outputFile (str): output .json file to which we should write MD results (with repeat
|
|
32
|
+
detections removed)
|
|
33
|
+
filteringDir (str): the folder produced by find_repeat_detections, containing a
|
|
34
|
+
detectionIndex.json file
|
|
35
|
+
"""
|
|
36
|
+
|
|
25
37
|
assert os.path.isfile(inputFile), "Can't find file {}".format(inputFile)
|
|
26
38
|
assert os.path.isdir(filteringDir), "Can't find folder {}".format(filteringDir)
|
|
27
39
|
options = repeat_detections_core.RepeatDetectionOptions()
|
|
@@ -66,6 +78,5 @@ def main():
|
|
|
66
78
|
args = parser.parse_args()
|
|
67
79
|
remove_repeat_detections(args.inputFile, args.outputFile, args.filteringDir)
|
|
68
80
|
|
|
69
|
-
|
|
70
81
|
if __name__ == '__main__':
|
|
71
82
|
main()
|