megadetector 5.0.11__py3-none-any.whl → 5.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (203) hide show
  1. megadetector/api/__init__.py +0 -0
  2. megadetector/api/batch_processing/__init__.py +0 -0
  3. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  4. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  5. megadetector/api/batch_processing/api_core/batch_service/score.py +439 -0
  6. megadetector/api/batch_processing/api_core/server.py +294 -0
  7. megadetector/api/batch_processing/api_core/server_api_config.py +97 -0
  8. megadetector/api/batch_processing/api_core/server_app_config.py +55 -0
  9. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +220 -0
  10. megadetector/api/batch_processing/api_core/server_job_status_table.py +149 -0
  11. megadetector/api/batch_processing/api_core/server_orchestration.py +360 -0
  12. megadetector/api/batch_processing/api_core/server_utils.py +88 -0
  13. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  14. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +46 -0
  15. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  16. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +152 -0
  17. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  18. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  19. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  20. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  21. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
  22. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  23. megadetector/api/synchronous/__init__.py +0 -0
  24. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  25. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +152 -0
  26. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +263 -0
  27. megadetector/api/synchronous/api_core/animal_detection_api/config.py +35 -0
  28. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  29. megadetector/api/synchronous/api_core/tests/load_test.py +110 -0
  30. megadetector/classification/__init__.py +0 -0
  31. megadetector/classification/aggregate_classifier_probs.py +108 -0
  32. megadetector/classification/analyze_failed_images.py +227 -0
  33. megadetector/classification/cache_batchapi_outputs.py +198 -0
  34. megadetector/classification/create_classification_dataset.py +627 -0
  35. megadetector/classification/crop_detections.py +516 -0
  36. megadetector/classification/csv_to_json.py +226 -0
  37. megadetector/classification/detect_and_crop.py +855 -0
  38. megadetector/classification/efficientnet/__init__.py +9 -0
  39. megadetector/classification/efficientnet/model.py +415 -0
  40. megadetector/classification/efficientnet/utils.py +607 -0
  41. megadetector/classification/evaluate_model.py +520 -0
  42. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  43. megadetector/classification/json_to_azcopy_list.py +63 -0
  44. megadetector/classification/json_validator.py +699 -0
  45. megadetector/classification/map_classification_categories.py +276 -0
  46. megadetector/classification/merge_classification_detection_output.py +506 -0
  47. megadetector/classification/prepare_classification_script.py +194 -0
  48. megadetector/classification/prepare_classification_script_mc.py +228 -0
  49. megadetector/classification/run_classifier.py +287 -0
  50. megadetector/classification/save_mislabeled.py +110 -0
  51. megadetector/classification/train_classifier.py +827 -0
  52. megadetector/classification/train_classifier_tf.py +725 -0
  53. megadetector/classification/train_utils.py +323 -0
  54. megadetector/data_management/__init__.py +0 -0
  55. megadetector/data_management/annotations/__init__.py +0 -0
  56. megadetector/data_management/annotations/annotation_constants.py +34 -0
  57. megadetector/data_management/camtrap_dp_to_coco.py +237 -0
  58. megadetector/data_management/cct_json_utils.py +404 -0
  59. megadetector/data_management/cct_to_md.py +176 -0
  60. megadetector/data_management/cct_to_wi.py +289 -0
  61. megadetector/data_management/coco_to_labelme.py +283 -0
  62. megadetector/data_management/coco_to_yolo.py +662 -0
  63. megadetector/data_management/databases/__init__.py +0 -0
  64. megadetector/data_management/databases/add_width_and_height_to_db.py +33 -0
  65. megadetector/data_management/databases/combine_coco_camera_traps_files.py +206 -0
  66. megadetector/data_management/databases/integrity_check_json_db.py +493 -0
  67. megadetector/data_management/databases/subset_json_db.py +115 -0
  68. megadetector/data_management/generate_crops_from_cct.py +149 -0
  69. megadetector/data_management/get_image_sizes.py +189 -0
  70. megadetector/data_management/importers/add_nacti_sizes.py +52 -0
  71. megadetector/data_management/importers/add_timestamps_to_icct.py +79 -0
  72. megadetector/data_management/importers/animl_results_to_md_results.py +158 -0
  73. megadetector/data_management/importers/auckland_doc_test_to_json.py +373 -0
  74. megadetector/data_management/importers/auckland_doc_to_json.py +201 -0
  75. megadetector/data_management/importers/awc_to_json.py +191 -0
  76. megadetector/data_management/importers/bellevue_to_json.py +273 -0
  77. megadetector/data_management/importers/cacophony-thermal-importer.py +793 -0
  78. megadetector/data_management/importers/carrizo_shrubfree_2018.py +269 -0
  79. megadetector/data_management/importers/carrizo_trail_cam_2017.py +289 -0
  80. megadetector/data_management/importers/cct_field_adjustments.py +58 -0
  81. megadetector/data_management/importers/channel_islands_to_cct.py +913 -0
  82. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +180 -0
  83. megadetector/data_management/importers/eMammal/eMammal_helpers.py +249 -0
  84. megadetector/data_management/importers/eMammal/make_eMammal_json.py +223 -0
  85. megadetector/data_management/importers/ena24_to_json.py +276 -0
  86. megadetector/data_management/importers/filenames_to_json.py +386 -0
  87. megadetector/data_management/importers/helena_to_cct.py +283 -0
  88. megadetector/data_management/importers/idaho-camera-traps.py +1407 -0
  89. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +294 -0
  90. megadetector/data_management/importers/jb_csv_to_json.py +150 -0
  91. megadetector/data_management/importers/mcgill_to_json.py +250 -0
  92. megadetector/data_management/importers/missouri_to_json.py +490 -0
  93. megadetector/data_management/importers/nacti_fieldname_adjustments.py +79 -0
  94. megadetector/data_management/importers/noaa_seals_2019.py +181 -0
  95. megadetector/data_management/importers/pc_to_json.py +365 -0
  96. megadetector/data_management/importers/plot_wni_giraffes.py +123 -0
  97. megadetector/data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -0
  98. megadetector/data_management/importers/prepare_zsl_imerit.py +131 -0
  99. megadetector/data_management/importers/rspb_to_json.py +356 -0
  100. megadetector/data_management/importers/save_the_elephants_survey_A.py +320 -0
  101. megadetector/data_management/importers/save_the_elephants_survey_B.py +329 -0
  102. megadetector/data_management/importers/snapshot_safari_importer.py +758 -0
  103. megadetector/data_management/importers/snapshot_safari_importer_reprise.py +665 -0
  104. megadetector/data_management/importers/snapshot_serengeti_lila.py +1067 -0
  105. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +150 -0
  106. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +153 -0
  107. megadetector/data_management/importers/sulross_get_exif.py +65 -0
  108. megadetector/data_management/importers/timelapse_csv_set_to_json.py +490 -0
  109. megadetector/data_management/importers/ubc_to_json.py +399 -0
  110. megadetector/data_management/importers/umn_to_json.py +507 -0
  111. megadetector/data_management/importers/wellington_to_json.py +263 -0
  112. megadetector/data_management/importers/wi_to_json.py +442 -0
  113. megadetector/data_management/importers/zamba_results_to_md_results.py +181 -0
  114. megadetector/data_management/labelme_to_coco.py +547 -0
  115. megadetector/data_management/labelme_to_yolo.py +272 -0
  116. megadetector/data_management/lila/__init__.py +0 -0
  117. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +97 -0
  118. megadetector/data_management/lila/add_locations_to_nacti.py +147 -0
  119. megadetector/data_management/lila/create_lila_blank_set.py +558 -0
  120. megadetector/data_management/lila/create_lila_test_set.py +152 -0
  121. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  122. megadetector/data_management/lila/download_lila_subset.py +178 -0
  123. megadetector/data_management/lila/generate_lila_per_image_labels.py +516 -0
  124. megadetector/data_management/lila/get_lila_annotation_counts.py +170 -0
  125. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  126. megadetector/data_management/lila/lila_common.py +300 -0
  127. megadetector/data_management/lila/test_lila_metadata_urls.py +132 -0
  128. megadetector/data_management/ocr_tools.py +870 -0
  129. megadetector/data_management/read_exif.py +809 -0
  130. megadetector/data_management/remap_coco_categories.py +84 -0
  131. megadetector/data_management/remove_exif.py +66 -0
  132. megadetector/data_management/rename_images.py +187 -0
  133. megadetector/data_management/resize_coco_dataset.py +189 -0
  134. megadetector/data_management/wi_download_csv_to_coco.py +247 -0
  135. megadetector/data_management/yolo_output_to_md_output.py +446 -0
  136. megadetector/data_management/yolo_to_coco.py +676 -0
  137. megadetector/detection/__init__.py +0 -0
  138. megadetector/detection/detector_training/__init__.py +0 -0
  139. megadetector/detection/detector_training/model_main_tf2.py +114 -0
  140. megadetector/detection/process_video.py +846 -0
  141. megadetector/detection/pytorch_detector.py +355 -0
  142. megadetector/detection/run_detector.py +779 -0
  143. megadetector/detection/run_detector_batch.py +1219 -0
  144. megadetector/detection/run_inference_with_yolov5_val.py +1087 -0
  145. megadetector/detection/run_tiled_inference.py +934 -0
  146. megadetector/detection/tf_detector.py +192 -0
  147. megadetector/detection/video_utils.py +698 -0
  148. megadetector/postprocessing/__init__.py +0 -0
  149. megadetector/postprocessing/add_max_conf.py +64 -0
  150. megadetector/postprocessing/categorize_detections_by_size.py +165 -0
  151. megadetector/postprocessing/classification_postprocessing.py +716 -0
  152. megadetector/postprocessing/combine_api_outputs.py +249 -0
  153. megadetector/postprocessing/compare_batch_results.py +966 -0
  154. megadetector/postprocessing/convert_output_format.py +396 -0
  155. megadetector/postprocessing/load_api_results.py +195 -0
  156. megadetector/postprocessing/md_to_coco.py +310 -0
  157. megadetector/postprocessing/md_to_labelme.py +330 -0
  158. megadetector/postprocessing/merge_detections.py +412 -0
  159. megadetector/postprocessing/postprocess_batch_results.py +1908 -0
  160. megadetector/postprocessing/remap_detection_categories.py +170 -0
  161. megadetector/postprocessing/render_detection_confusion_matrix.py +660 -0
  162. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +211 -0
  163. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +83 -0
  164. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1635 -0
  165. megadetector/postprocessing/separate_detections_into_folders.py +730 -0
  166. megadetector/postprocessing/subset_json_detector_output.py +700 -0
  167. megadetector/postprocessing/top_folders_to_bottom.py +223 -0
  168. megadetector/taxonomy_mapping/__init__.py +0 -0
  169. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  170. megadetector/taxonomy_mapping/map_new_lila_datasets.py +150 -0
  171. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -0
  172. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +588 -0
  173. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  174. megadetector/taxonomy_mapping/simple_image_download.py +219 -0
  175. megadetector/taxonomy_mapping/species_lookup.py +834 -0
  176. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  177. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  178. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  179. megadetector/utils/__init__.py +0 -0
  180. megadetector/utils/azure_utils.py +178 -0
  181. megadetector/utils/ct_utils.py +613 -0
  182. megadetector/utils/directory_listing.py +246 -0
  183. megadetector/utils/md_tests.py +1164 -0
  184. megadetector/utils/path_utils.py +1045 -0
  185. megadetector/utils/process_utils.py +160 -0
  186. megadetector/utils/sas_blob_utils.py +509 -0
  187. megadetector/utils/split_locations_into_train_val.py +228 -0
  188. megadetector/utils/string_utils.py +92 -0
  189. megadetector/utils/url_utils.py +323 -0
  190. megadetector/utils/write_html_image_list.py +225 -0
  191. megadetector/visualization/__init__.py +0 -0
  192. megadetector/visualization/plot_utils.py +293 -0
  193. megadetector/visualization/render_images_with_thumbnails.py +275 -0
  194. megadetector/visualization/visualization_utils.py +1536 -0
  195. megadetector/visualization/visualize_db.py +552 -0
  196. megadetector/visualization/visualize_detector_output.py +405 -0
  197. {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/LICENSE +0 -0
  198. {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/METADATA +2 -2
  199. megadetector-5.0.13.dist-info/RECORD +201 -0
  200. megadetector-5.0.13.dist-info/top_level.txt +1 -0
  201. megadetector-5.0.11.dist-info/RECORD +0 -5
  202. megadetector-5.0.11.dist-info/top_level.txt +0 -1
  203. {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/WHEEL +0 -0
@@ -0,0 +1,700 @@
1
+ r"""
2
+
3
+ subset_json_detector_output.py
4
+
5
+ Creates one or more subsets of a detector results file (.json), doing either
6
+ or both of the following (if both are requested, they happen in this order):
7
+
8
+ 1) Retrieve all elements where filenames contain a specified query string,
9
+ optionally replacing that query with a replacement token. If the query is blank,
10
+ can also be used to prepend content to all filenames.
11
+
12
+ Does not support regex's, but supports a special case of ^string to indicate "must start with
13
+ to match".
14
+
15
+ 2) Create separate .jsons for each unique path, optionally making the filenames
16
+ in those .json's relative paths. In this case, you specify an output directory,
17
+ rather than an output path. All images in the folder blah/foo/bar will end up
18
+ in a .json file called blah_foo_bar.json.
19
+
20
+ Can also apply a confidence threshold.
21
+
22
+ Can also subset by categories above a threshold (programmatic invocation only, this is
23
+ not supported at the command line yet).
24
+
25
+ To subset a COCO Camera Traps .json database, see subset_json_db.py
26
+
27
+ **Sample invocation (splitting into multiple json's)**
28
+
29
+ Read from "1800_idfg_statewide_wolf_detections_w_classifications.json", split up into
30
+ individual .jsons in 'd:/temp/idfg/output', making filenames relative to their individual
31
+ folders:
32
+
33
+ python subset_json_detector_output.py "d:/temp/idfg/1800_idfg_statewide_wolf_detections_w_classifications.json" "d:/temp/idfg/output" --split_folders --make_folder_relative
34
+
35
+ Now do the same thing, but instead of writing .json's to d:/temp/idfg/output, write them to *subfolders*
36
+ corresponding to the subfolders for each .json file.
37
+
38
+ python subset_json_detector_output.py "d:/temp/idfg/1800_detections_S2.json" "d:/temp/idfg/output_to_folders" --split_folders --make_folder_relative --copy_jsons_to_folders
39
+
40
+ **Sample invocation (creating a single subset matching a query)**
41
+
42
+ Read from "1800_detections.json", write to "1800_detections_2017.json"
43
+
44
+ Include only images matching "2017", and change "2017" to "blah"
45
+
46
+ python subset_json_detector_output.py "d:/temp/1800_detections.json" "d:/temp/1800_detections_2017_blah.json" --query 2017 --replacement blah
47
+
48
+ Include all images, prepend with "prefix/"
49
+
50
+ python subset_json_detector_output.py "d:/temp/1800_detections.json" "d:/temp/1800_detections_prefix.json" --replacement "prefix/"
51
+
52
+ """
53
+
54
+ #%% Constants and imports
55
+
56
+ import argparse
57
+ import sys
58
+ import copy
59
+ import json
60
+ import os
61
+ import re
62
+
63
+ from tqdm import tqdm
64
+
65
+ from megadetector.utils.ct_utils import args_to_object, get_max_conf, invert_dictionary
66
+ from megadetector.utils.path_utils import top_level_folder
67
+
68
+
69
+ #%% Helper classes
70
+
71
+ class SubsetJsonDetectorOutputOptions:
72
+ """
73
+ Options used to parameterize subset_json_detector_output()
74
+ """
75
+
76
+ def __init__(self):
77
+
78
+ #: Only process files containing the token 'query'
79
+ self.query = None
80
+
81
+ #: Replace 'query' with 'replacement' if 'replacement' is not None. If 'query' is None,
82
+ #: prepend 'replacement'
83
+ self.replacement = None
84
+
85
+ #: Should we split output into individual .json files for each folder?
86
+ self.split_folders = False
87
+
88
+ #: Folder level to use for splitting ['bottom','top','n_from_bottom','n_from_top','dict']
89
+ #:
90
+ #: 'dict' requires 'split_folder_param' to be a dictionary mapping each filename
91
+ #: to a token.
92
+ self.split_folder_mode = 'bottom' # 'top'
93
+
94
+ #: When using the 'n_from_bottom' parameter to define folder splitting, this
95
+ #: defines the number of directories from the bottom. 'n_from_bottom' with
96
+ #: a parameter of zero is the same as 'bottom'.
97
+ #:
98
+ #: Same story with 'n_from_top'.
99
+ #:
100
+ #: When 'split_folder_mode' is 'dict', this should be a dictionary mapping each filename
101
+ #: to a token.
102
+ self.split_folder_param = 0
103
+
104
+ #: Only meaningful if split_folders is True: should we convert pathnames to be relative
105
+ #: the folder for each .json file?
106
+ self.make_folder_relative = False
107
+
108
+ #: Only meaningful if split_folders and make_folder_relative are True: if not None,
109
+ #: will copy .json files to their corresponding output directories, relative to
110
+ #: output_filename
111
+ self.copy_jsons_to_folders = False
112
+
113
+ #: Should we over-write .json files?
114
+ self.overwrite_json_files = False
115
+
116
+ #: If copy_jsons_to_folders is true, do we require that directories already exist?
117
+ self.copy_jsons_to_folders_directories_must_exist = True
118
+
119
+ #: Optional confidence threshold; if not None, detections below this confidence won't be
120
+ #: included in the output.
121
+ self.confidence_threshold = None
122
+
123
+ #: Should we remove failed images?
124
+ self.remove_failed_images = False
125
+
126
+ #: Either a list of category IDs (as string-ints) (not names), or a dictionary mapping category *IDs*
127
+ #: (as string-ints) (not names) to thresholds. Removes non-matching detections, does not
128
+ #: remove images. Not technically mutually exclusize with category_names_to_keep, but it's an esoteric
129
+ #: scenario indeed where you would want to specify both.
130
+ self.categories_to_keep = None
131
+
132
+ #: Either a list of category names (not IDs), or a dictionary mapping category *names* (not IDs) to thresholds.
133
+ #: Removes non-matching detections, does not remove images. Not technically mutually exclusize with
134
+ #: category_ids_to_keep, but it's an esoteric scenario indeed where you would want to specify both.
135
+ self.category_names_to_keep = None
136
+
137
+ #: Set to >0 during testing to limit the number of images that get processed.
138
+ self.debug_max_images = -1
139
+
140
+
141
+ #%% Main function
142
+
143
+ def _write_detection_results(data, output_filename, options):
144
+ """
145
+ Writes the detector-output-formatted dict *data* to *output_filename*.
146
+ """
147
+
148
+ if (not options.overwrite_json_files) and os.path.isfile(output_filename):
149
+ raise ValueError('File {} exists'.format(output_filename))
150
+
151
+ basedir = os.path.dirname(output_filename)
152
+
153
+ if options.copy_jsons_to_folders and options.copy_jsons_to_folders_directories_must_exist:
154
+ if not os.path.isdir(basedir):
155
+ raise ValueError('Directory {} does not exist'.format(basedir))
156
+ else:
157
+ os.makedirs(basedir, exist_ok=True)
158
+
159
+ print('Writing detection output to {}'.format(output_filename))
160
+ with open(output_filename, 'w') as f:
161
+ json.dump(data,f,indent=1)
162
+
163
+ # ..._write_detection_results()
164
+
165
+
166
+ def subset_json_detector_output_by_confidence(data, options):
167
+ """
168
+ Removes all detections below options.confidence_threshold.
169
+
170
+ Args:
171
+ data (dict): data loaded from a MD results file
172
+ options (SubsetJsonDetectorOutputOptions): parameters for subsetting
173
+
174
+ Returns:
175
+ dict: Possibly-modified version of data (also modifies in place)
176
+ """
177
+
178
+ if options.confidence_threshold is None:
179
+ return data
180
+
181
+ images_in = data['images']
182
+ images_out = []
183
+
184
+ print('Subsetting by confidence >= {}'.format(options.confidence_threshold))
185
+
186
+ n_max_changes = 0
187
+
188
+ # im = images_in[0]
189
+ for i_image, im in tqdm(enumerate(images_in), total=len(images_in)):
190
+
191
+ # Always keep failed images; if the caller wants to remove these, they
192
+ # will use remove_failed_images
193
+ if ('detections' not in im) or (im['detections'] is None):
194
+ images_out.append(im)
195
+ continue
196
+
197
+ p_orig = get_max_conf(im)
198
+
199
+ # Find all detections above threshold for this image
200
+ detections = [d for d in im['detections'] if d['conf'] >= options.confidence_threshold]
201
+
202
+ # If there are no detections above threshold, set the max probability
203
+ # to -1, unless it already had a negative probability.
204
+ if len(detections) == 0:
205
+ if p_orig <= 0:
206
+ p = p_orig
207
+ else:
208
+ p = -1
209
+
210
+ # Otherwise find the max confidence
211
+ else:
212
+ p = max([d['conf'] for d in detections])
213
+
214
+ im['detections'] = detections
215
+
216
+ # Did this thresholding result in a max-confidence change?
217
+ if abs(p_orig - p) > 0.00001:
218
+
219
+ # We should only be *lowering* max confidence values (i.e., making them negative)
220
+ assert (p_orig <= 0) or (p < p_orig), \
221
+ 'Confidence changed from {} to {}'.format(p_orig, p)
222
+ n_max_changes += 1
223
+
224
+ if 'max_detection_conf' in im:
225
+ im['max_detection_conf'] = p
226
+
227
+ images_out.append(im)
228
+
229
+ # ...for each image
230
+
231
+ data['images'] = images_out
232
+ print('done, found {} matches (of {}), {} max conf changes'.format(
233
+ len(data['images']),len(images_in),n_max_changes))
234
+
235
+ return data
236
+
237
+ # ...subset_json_detector_output_by_confidence()
238
+
239
+
240
+ def subset_json_detector_output_by_categories(data, options):
241
+ """
242
+ Removes all detections without detections above a threshold for specific categories.
243
+
244
+ Args:
245
+ data (dict): data loaded from a MD results file
246
+ options (SubsetJsonDetectorOutputOptions): parameters for subsetting
247
+
248
+ Returns:
249
+ dict: Possibly-modified version of data (also modifies in place)
250
+ """
251
+
252
+ # If categories_to_keep is supplied as a list, convert to a dict
253
+ if options.categories_to_keep is not None:
254
+ if not isinstance(options.categories_to_keep, dict):
255
+ dict_categories_to_keep = {}
256
+ for category_id in options.categories_to_keep:
257
+ # Set unspecified thresholds to a silly negative value
258
+ dict_categories_to_keep[category_id] = -100000.0
259
+ options.categories_to_keep = dict_categories_to_keep
260
+
261
+ # If category_names_to_keep is supplied as a list, convert to a dict
262
+ if options.category_names_to_keep is not None:
263
+ if not isinstance(options.category_names_to_keep, dict):
264
+ dict_category_names_to_keep = {}
265
+ for category_name in options.category_names_to_keep:
266
+ # Set unspecified thresholds to a silly negative value
267
+ dict_category_names_to_keep[category_name] = -100000.0
268
+ options.category_names_to_keep = dict_category_names_to_keep
269
+
270
+ category_name_to_category_id = invert_dictionary(data['detection_categories'])
271
+
272
+ # If some categories are supplied as names, convert all to IDs and add to "categories_to_keep"
273
+ if options.category_names_to_keep is not None:
274
+ if options.categories_to_keep is None:
275
+ options.categories_to_keep = {}
276
+ for category_name in options.category_names_to_keep:
277
+ assert category_name in category_name_to_category_id, \
278
+ 'Category {} not in detection categories'.format(category_name)
279
+ category_id = category_name_to_category_id[category_name]
280
+ assert category_id not in options.categories_to_keep, \
281
+ 'Category {} ({}) specified as both a name and an ID'.format(
282
+ category_name,category_id)
283
+ options.categories_to_keep[category_id] = options.category_names_to_keep[category_name]
284
+
285
+ if options.categories_to_keep is None:
286
+ return data
287
+
288
+ images_in = data['images']
289
+ images_out = []
290
+
291
+ print('Subsetting by categories (keeping {} categories):'.format(
292
+ len(options.categories_to_keep)))
293
+
294
+ for category_id in sorted(list(options.categories_to_keep.keys())):
295
+ if category_id not in data['detection_categories']:
296
+ print('Warning: category ID {} not in category map in this file'.format(category_id))
297
+ else:
298
+ print('{} ({}) (threshold {})'.format(
299
+ category_id,
300
+ data['detection_categories'][category_id],
301
+ options.categories_to_keep[category_id]))
302
+
303
+ n_detections_in = 0
304
+ n_detections_kept = 0
305
+
306
+ # im = images_in[0]
307
+ for i_image, im in tqdm(enumerate(images_in), total=len(images_in)):
308
+
309
+ # Always keep failed images; if the caller wants to remove these, they
310
+ # will use remove_failed_images
311
+ if ('detections' not in im) or (im['detections'] is None):
312
+ images_out.append(im)
313
+ continue
314
+
315
+ n_detections_in += len(im['detections'])
316
+
317
+ # Find all matching detections for this image
318
+ detections = []
319
+ for d in im['detections']:
320
+ if (d['category'] in options.categories_to_keep) and \
321
+ (d['conf'] > options.categories_to_keep[d['category']]):
322
+ detections.append(d)
323
+
324
+ im['detections'] = detections
325
+
326
+ if 'max_detection_conf' in im:
327
+ if len(detections) == 0:
328
+ p = 0
329
+ else:
330
+ p = max([d['conf'] for d in detections])
331
+ im['max_detection_conf'] = p
332
+
333
+ n_detections_kept += len(im['detections'])
334
+
335
+ images_out.append(im)
336
+
337
+ # ...for each image
338
+
339
+ data['images'] = images_out
340
+ print('done, kept {} detections (of {})'.format(
341
+ n_detections_kept,n_detections_in))
342
+
343
+ return data
344
+
345
+ # ...subset_json_detector_output_by_categories()
346
+
347
+
348
+ def remove_failed_images(data,options):
349
+ """
350
+ Removed failed images from [data]
351
+
352
+ Args:
353
+ data (dict): data loaded from a MD results file
354
+ options (SubsetJsonDetectorOutputOptions): parameters for subsetting
355
+
356
+ Returns:
357
+ dict: Possibly-modified version of data (also modifies in place)
358
+ """
359
+
360
+ images_in = data['images']
361
+ images_out = []
362
+
363
+ if not options.remove_failed_images:
364
+ return data
365
+
366
+ print('Removing failed images...', end='')
367
+
368
+ # i_image = 0; im = images_in[0]
369
+ for i_image, im in tqdm(enumerate(images_in), total=len(images_in)):
370
+
371
+ if 'failure' in im and isinstance(im['failure'],str):
372
+ continue
373
+ else:
374
+ images_out.append(im)
375
+
376
+ # ...for each image
377
+
378
+ data['images'] = images_out
379
+ n_removed = len(images_in) - len(data['images'])
380
+ print('Done, removed {} of {}'.format(n_removed, len(images_in)))
381
+
382
+ return data
383
+
384
+ # ...remove_failed_images()
385
+
386
+
387
+ def subset_json_detector_output_by_query(data, options):
388
+ """
389
+ Subsets to images whose filename matches options.query; replace all instances of
390
+ options.query with options.replacement. No-op if options.query_string is None or ''.
391
+
392
+ Args:
393
+ data (dict): data loaded from a MD results file
394
+ options (SubsetJsonDetectorOutputOptions): parameters for subsetting
395
+
396
+ Returns:
397
+ dict: Possibly-modified version of data (also modifies in place)
398
+ """
399
+
400
+ images_in = data['images']
401
+ images_out = []
402
+
403
+ print('Subsetting by query {}, replacement {}...'.format(options.query, options.replacement), end='')
404
+
405
+ query_string = options.query
406
+ query_starts_with = False
407
+
408
+ # Support a special case regex-like notation for "starts with"
409
+ if query_string is not None and query_string.startswith('^'):
410
+ query_string = query_string[1:]
411
+ query_starts_with = True
412
+
413
+ # i_image = 0; im = images_in[0]
414
+ for i_image, im in tqdm(enumerate(images_in), total=len(images_in)):
415
+
416
+ fn = im['file']
417
+
418
+ # Only take images that match the query
419
+ if query_string is not None:
420
+ if query_starts_with:
421
+ if (not fn.startswith(query_string)):
422
+ continue
423
+ else:
424
+ if query_string not in fn:
425
+ continue
426
+
427
+ if options.replacement is not None:
428
+ if query_string is not None:
429
+ fn = fn.replace(query_string, options.replacement)
430
+ else:
431
+ fn = options.replacement + fn
432
+
433
+ im['file'] = fn
434
+
435
+ images_out.append(im)
436
+
437
+ # ...for each image
438
+
439
+ data['images'] = images_out
440
+ print('done, found {} matches (of {})'.format(len(data['images']), len(images_in)))
441
+
442
+ return data
443
+
444
+ # ...subset_json_detector_output_by_query()
445
+
446
+
447
+ def subset_json_detector_output(input_filename, output_filename, options, data=None):
448
+ """
449
+ Main entry point; creates one or more subsets of a detector results file. See the
450
+ module header comment for more information about the available subsetting approaches.
451
+
452
+ Makes a copy of [data] before modifying if a data dictionary is supplied.
453
+
454
+ Args:
455
+ input_filename (str): filename to load and subset; can be None if [data] is supplied
456
+ output_filename (str): file or folder name (depending on [options]) to which we should
457
+ write subset results.
458
+ options (SubsetJsonDetectorOutputOptions): parameters for .json splitting/subsetting;
459
+ see SubsetJsonDetectorOutputOptions for details.
460
+ data (dict, optional): data loaded from a .json file; if this is not None, [input_filename]
461
+ will be ignored. If supplied, this will be copied before it's modified.
462
+
463
+ Returns:
464
+ dict: Results that are either loaded from [input_filename] and processed, or copied
465
+ from [data] and processed.
466
+
467
+ """
468
+
469
+ if options is None:
470
+ options = SubsetJsonDetectorOutputOptions()
471
+ else:
472
+ options = copy.deepcopy(options)
473
+
474
+ # Input validation
475
+ if options.copy_jsons_to_folders:
476
+ assert options.split_folders and options.make_folder_relative, \
477
+ 'copy_jsons_to_folders set without make_folder_relative and split_folders'
478
+
479
+ if options.split_folders:
480
+ if os.path.isfile(output_filename):
481
+ raise ValueError('When splitting by folders, output must be a valid directory name, you specified an existing file')
482
+
483
+ if data is None:
484
+ print('Reading json...', end='')
485
+ with open(input_filename) as f:
486
+ data = json.load(f)
487
+ print(' ...done, read {} images'.format(len(data['images'])))
488
+ if options.debug_max_images > 0:
489
+ print('Trimming to {} images'.format(options.debug_max_images))
490
+ data['images'] = data['images'][:options.debug_max_images]
491
+ else:
492
+ print('Copying data')
493
+ data = copy.deepcopy(data)
494
+ print('...done')
495
+
496
+ if options.query is not None:
497
+
498
+ data = subset_json_detector_output_by_query(data, options)
499
+
500
+ if options.remove_failed_images:
501
+
502
+ data = remove_failed_images(data, options)
503
+
504
+ if options.confidence_threshold is not None:
505
+
506
+ data = subset_json_detector_output_by_confidence(data, options)
507
+
508
+ if (options.categories_to_keep is not None) or (options.category_names_to_keep is not None):
509
+
510
+ data = subset_json_detector_output_by_categories(data, options)
511
+
512
+ if not options.split_folders:
513
+
514
+ _write_detection_results(data, output_filename, options)
515
+ return data
516
+
517
+ else:
518
+
519
+ # Map images to unique folders
520
+ print('Finding unique folders')
521
+
522
+ folders_to_images = {}
523
+
524
+ # im = data['images'][0]
525
+ for im in tqdm(data['images']):
526
+
527
+ fn = im['file']
528
+
529
+ if options.split_folder_mode == 'bottom':
530
+
531
+ dirname = os.path.dirname(fn)
532
+
533
+ elif options.split_folder_mode == 'n_from_bottom':
534
+
535
+ dirname = os.path.dirname(fn)
536
+ for n in range(0, options.split_folder_param):
537
+ dirname = os.path.dirname(dirname)
538
+
539
+ elif options.split_folder_mode == 'n_from_top':
540
+
541
+ # Split string into folders, keeping delimiters
542
+
543
+ # Don't use this, it removes delimiters
544
+ # tokens = _split_path(fn)
545
+ tokens = re.split(r'([\\/])',fn)
546
+
547
+ n_tokens_to_keep = ((options.split_folder_param + 1) * 2) - 1;
548
+
549
+ if n_tokens_to_keep > len(tokens):
550
+ raise ValueError('Cannot walk {} folders from the top in path {}'.format(
551
+ options.split_folder_param, fn))
552
+ dirname = ''.join(tokens[0:n_tokens_to_keep])
553
+
554
+ elif options.split_folder_mode == 'top':
555
+
556
+ dirname = top_level_folder(fn)
557
+
558
+ elif options.split_folder_mode == 'dict':
559
+
560
+ assert isinstance(options.split_folder_param, dict)
561
+ dirname = options.split_folder_param[fn]
562
+
563
+ else:
564
+
565
+ raise ValueError('Unrecognized folder split mode {}'.format(options.split_folder_mode))
566
+
567
+ folders_to_images.setdefault(dirname, []).append(im)
568
+
569
+ # ...for each image
570
+
571
+ print('Found {} unique folders'.format(len(folders_to_images)))
572
+
573
+ # Optionally make paths relative
574
+ # dirname = list(folders_to_images.keys())[0]
575
+ if options.make_folder_relative:
576
+
577
+ print('Converting database-relative paths to individual-json-relative paths...')
578
+
579
+ for dirname in tqdm(folders_to_images):
580
+ # im = folders_to_images[dirname][0]
581
+ for im in folders_to_images[dirname]:
582
+ fn = im['file']
583
+ relfn = os.path.relpath(fn, dirname).replace('\\', '/')
584
+ im['file'] = relfn
585
+
586
+ # ...if we need to convert paths to be folder-relative
587
+
588
+ print('Finished converting to json-relative paths, writing output')
589
+
590
+ os.makedirs(output_filename, exist_ok=True)
591
+ all_images = data['images']
592
+
593
+ # dirname = list(folders_to_images.keys())[0]
594
+ for dirname in tqdm(folders_to_images):
595
+
596
+ json_fn = dirname.replace('/', '_').replace('\\', '_') + '.json'
597
+
598
+ if options.copy_jsons_to_folders:
599
+ json_fn = os.path.join(output_filename, dirname, json_fn)
600
+ else:
601
+ json_fn = os.path.join(output_filename, json_fn)
602
+
603
+ # Recycle the 'data' struct, replacing 'images' every time... medium-hacky, but
604
+ # forward-compatible in that I don't take dependencies on the other fields
605
+ dir_data = data
606
+ dir_data['images'] = folders_to_images[dirname]
607
+ _write_detection_results(dir_data, json_fn, options)
608
+ print('Wrote {} images to {}'.format(len(dir_data['images']), json_fn))
609
+
610
+ # ...for each directory
611
+
612
+ data['images'] = all_images
613
+
614
+ return data
615
+
616
+ # ...if we're splitting folders
617
+
618
+ # ...subset_json_detector_output()
619
+
620
+
621
+ #%% Interactive driver
622
+
623
+ if False:
624
+
625
+ #%%
626
+
627
+ #%% Subset a file without splitting
628
+
629
+ input_filename = r"c:\temp\sample.json"
630
+ output_filename = r"c:\temp\output.json"
631
+
632
+ options = SubsetJsonDetectorOutputOptions()
633
+ options.replacement = None
634
+ options.query = 'S2'
635
+
636
+ data = subset_json_detector_output(input_filename,output_filename,options,None)
637
+
638
+
639
+ #%% Subset and split, but don't copy to individual folders
640
+
641
+ input_filename = r"C:\temp\xxx-20201028_detections.filtered_rde_0.60_0.85_10_0.05_r2_export\xxx-20201028_detections.filtered_rde_0.60_0.85_10_0.05_r2_export.json"
642
+ output_filename = r"c:\temp\out"
643
+
644
+ options = SubsetJsonDetectorOutputOptions()
645
+ options.split_folders = True
646
+ options.make_folder_relative = True
647
+ options.split_folder_mode = 'n_from_top'
648
+ options.split_folder_param = 1
649
+
650
+ data = subset_json_detector_output(input_filename,output_filename,options,None)
651
+
652
+
653
+ #%% Subset and split, copying to individual folders
654
+
655
+ input_filename = r"c:\temp\sample.json"
656
+ output_filename = r"c:\temp\out"
657
+
658
+ options = SubsetJsonDetectorOutputOptions()
659
+ options.split_folders = True
660
+ options.make_folder_relative = True
661
+ options.copy_jsons_to_folders = True
662
+
663
+ data = subset_json_detector_output(input_filename,output_filename,options,data)
664
+
665
+
666
+ #%% Command-line driver
667
+
668
+ def main():
669
+
670
+ parser = argparse.ArgumentParser()
671
+ parser.add_argument('input_file', type=str, help='Input .json filename')
672
+ parser.add_argument('output_file', type=str, help='Output .json filename')
673
+ parser.add_argument('--query', type=str, default=None, help='Query string to search for (omitting this matches all)')
674
+ parser.add_argument('--replacement', type=str, default=None, help='Replace [query] with this')
675
+ parser.add_argument('--confidence_threshold', type=float, default=None, help='Remove detections below this confidence level')
676
+ parser.add_argument('--split_folders', action='store_true', help='Split .json files by leaf-node folder')
677
+ parser.add_argument('--split_folder_param', type=int, help='Directory level count for n_from_bottom and n_from_top splitting')
678
+ parser.add_argument('--split_folder_mode', type=str, help='Folder level to use for splitting ("top" or "bottom")')
679
+ parser.add_argument('--make_folder_relative', action='store_true', help='Make image paths relative to their containing folder (only meaningful with split_folders)')
680
+ parser.add_argument('--overwrite_json_files', action='store_true', help='Overwrite output files')
681
+ parser.add_argument('--copy_jsons_to_folders', action='store_true', help='When using split_folders and make_folder_relative, copy jsons to their corresponding folders (relative to output_file)')
682
+ parser.add_argument('--create_folders', action='store_true', help='When using copy_jsons_to_folders, create folders that don''t exist')
683
+
684
+ if len(sys.argv[1:]) == 0:
685
+ parser.print_help()
686
+ parser.exit()
687
+
688
+ args = parser.parse_args()
689
+
690
+ # Convert to an options object
691
+ options = SubsetJsonDetectorOutputOptions()
692
+ if args.create_folders:
693
+ options.copy_jsons_to_folders_directories_must_exist = False
694
+
695
+ args_to_object(args, options)
696
+
697
+ subset_json_detector_output(args.input_file, args.output_file, options)
698
+
699
+ if __name__ == '__main__':
700
+ main()