megadetector 5.0.11__py3-none-any.whl → 5.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- megadetector/api/__init__.py +0 -0
- megadetector/api/batch_processing/__init__.py +0 -0
- megadetector/api/batch_processing/api_core/__init__.py +0 -0
- megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
- megadetector/api/batch_processing/api_core/batch_service/score.py +439 -0
- megadetector/api/batch_processing/api_core/server.py +294 -0
- megadetector/api/batch_processing/api_core/server_api_config.py +97 -0
- megadetector/api/batch_processing/api_core/server_app_config.py +55 -0
- megadetector/api/batch_processing/api_core/server_batch_job_manager.py +220 -0
- megadetector/api/batch_processing/api_core/server_job_status_table.py +149 -0
- megadetector/api/batch_processing/api_core/server_orchestration.py +360 -0
- megadetector/api/batch_processing/api_core/server_utils.py +88 -0
- megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
- megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +46 -0
- megadetector/api/batch_processing/api_support/__init__.py +0 -0
- megadetector/api/batch_processing/api_support/summarize_daily_activity.py +152 -0
- megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
- megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
- megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
- megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
- megadetector/api/synchronous/__init__.py +0 -0
- megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
- megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +152 -0
- megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +263 -0
- megadetector/api/synchronous/api_core/animal_detection_api/config.py +35 -0
- megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
- megadetector/api/synchronous/api_core/tests/load_test.py +110 -0
- megadetector/classification/__init__.py +0 -0
- megadetector/classification/aggregate_classifier_probs.py +108 -0
- megadetector/classification/analyze_failed_images.py +227 -0
- megadetector/classification/cache_batchapi_outputs.py +198 -0
- megadetector/classification/create_classification_dataset.py +627 -0
- megadetector/classification/crop_detections.py +516 -0
- megadetector/classification/csv_to_json.py +226 -0
- megadetector/classification/detect_and_crop.py +855 -0
- megadetector/classification/efficientnet/__init__.py +9 -0
- megadetector/classification/efficientnet/model.py +415 -0
- megadetector/classification/efficientnet/utils.py +607 -0
- megadetector/classification/evaluate_model.py +520 -0
- megadetector/classification/identify_mislabeled_candidates.py +152 -0
- megadetector/classification/json_to_azcopy_list.py +63 -0
- megadetector/classification/json_validator.py +699 -0
- megadetector/classification/map_classification_categories.py +276 -0
- megadetector/classification/merge_classification_detection_output.py +506 -0
- megadetector/classification/prepare_classification_script.py +194 -0
- megadetector/classification/prepare_classification_script_mc.py +228 -0
- megadetector/classification/run_classifier.py +287 -0
- megadetector/classification/save_mislabeled.py +110 -0
- megadetector/classification/train_classifier.py +827 -0
- megadetector/classification/train_classifier_tf.py +725 -0
- megadetector/classification/train_utils.py +323 -0
- megadetector/data_management/__init__.py +0 -0
- megadetector/data_management/annotations/__init__.py +0 -0
- megadetector/data_management/annotations/annotation_constants.py +34 -0
- megadetector/data_management/camtrap_dp_to_coco.py +237 -0
- megadetector/data_management/cct_json_utils.py +404 -0
- megadetector/data_management/cct_to_md.py +176 -0
- megadetector/data_management/cct_to_wi.py +289 -0
- megadetector/data_management/coco_to_labelme.py +283 -0
- megadetector/data_management/coco_to_yolo.py +662 -0
- megadetector/data_management/databases/__init__.py +0 -0
- megadetector/data_management/databases/add_width_and_height_to_db.py +33 -0
- megadetector/data_management/databases/combine_coco_camera_traps_files.py +206 -0
- megadetector/data_management/databases/integrity_check_json_db.py +493 -0
- megadetector/data_management/databases/subset_json_db.py +115 -0
- megadetector/data_management/generate_crops_from_cct.py +149 -0
- megadetector/data_management/get_image_sizes.py +189 -0
- megadetector/data_management/importers/add_nacti_sizes.py +52 -0
- megadetector/data_management/importers/add_timestamps_to_icct.py +79 -0
- megadetector/data_management/importers/animl_results_to_md_results.py +158 -0
- megadetector/data_management/importers/auckland_doc_test_to_json.py +373 -0
- megadetector/data_management/importers/auckland_doc_to_json.py +201 -0
- megadetector/data_management/importers/awc_to_json.py +191 -0
- megadetector/data_management/importers/bellevue_to_json.py +273 -0
- megadetector/data_management/importers/cacophony-thermal-importer.py +793 -0
- megadetector/data_management/importers/carrizo_shrubfree_2018.py +269 -0
- megadetector/data_management/importers/carrizo_trail_cam_2017.py +289 -0
- megadetector/data_management/importers/cct_field_adjustments.py +58 -0
- megadetector/data_management/importers/channel_islands_to_cct.py +913 -0
- megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +180 -0
- megadetector/data_management/importers/eMammal/eMammal_helpers.py +249 -0
- megadetector/data_management/importers/eMammal/make_eMammal_json.py +223 -0
- megadetector/data_management/importers/ena24_to_json.py +276 -0
- megadetector/data_management/importers/filenames_to_json.py +386 -0
- megadetector/data_management/importers/helena_to_cct.py +283 -0
- megadetector/data_management/importers/idaho-camera-traps.py +1407 -0
- megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +294 -0
- megadetector/data_management/importers/jb_csv_to_json.py +150 -0
- megadetector/data_management/importers/mcgill_to_json.py +250 -0
- megadetector/data_management/importers/missouri_to_json.py +490 -0
- megadetector/data_management/importers/nacti_fieldname_adjustments.py +79 -0
- megadetector/data_management/importers/noaa_seals_2019.py +181 -0
- megadetector/data_management/importers/pc_to_json.py +365 -0
- megadetector/data_management/importers/plot_wni_giraffes.py +123 -0
- megadetector/data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -0
- megadetector/data_management/importers/prepare_zsl_imerit.py +131 -0
- megadetector/data_management/importers/rspb_to_json.py +356 -0
- megadetector/data_management/importers/save_the_elephants_survey_A.py +320 -0
- megadetector/data_management/importers/save_the_elephants_survey_B.py +329 -0
- megadetector/data_management/importers/snapshot_safari_importer.py +758 -0
- megadetector/data_management/importers/snapshot_safari_importer_reprise.py +665 -0
- megadetector/data_management/importers/snapshot_serengeti_lila.py +1067 -0
- megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +150 -0
- megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +153 -0
- megadetector/data_management/importers/sulross_get_exif.py +65 -0
- megadetector/data_management/importers/timelapse_csv_set_to_json.py +490 -0
- megadetector/data_management/importers/ubc_to_json.py +399 -0
- megadetector/data_management/importers/umn_to_json.py +507 -0
- megadetector/data_management/importers/wellington_to_json.py +263 -0
- megadetector/data_management/importers/wi_to_json.py +442 -0
- megadetector/data_management/importers/zamba_results_to_md_results.py +181 -0
- megadetector/data_management/labelme_to_coco.py +547 -0
- megadetector/data_management/labelme_to_yolo.py +272 -0
- megadetector/data_management/lila/__init__.py +0 -0
- megadetector/data_management/lila/add_locations_to_island_camera_traps.py +97 -0
- megadetector/data_management/lila/add_locations_to_nacti.py +147 -0
- megadetector/data_management/lila/create_lila_blank_set.py +558 -0
- megadetector/data_management/lila/create_lila_test_set.py +152 -0
- megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
- megadetector/data_management/lila/download_lila_subset.py +178 -0
- megadetector/data_management/lila/generate_lila_per_image_labels.py +516 -0
- megadetector/data_management/lila/get_lila_annotation_counts.py +170 -0
- megadetector/data_management/lila/get_lila_image_counts.py +112 -0
- megadetector/data_management/lila/lila_common.py +300 -0
- megadetector/data_management/lila/test_lila_metadata_urls.py +132 -0
- megadetector/data_management/ocr_tools.py +870 -0
- megadetector/data_management/read_exif.py +809 -0
- megadetector/data_management/remap_coco_categories.py +84 -0
- megadetector/data_management/remove_exif.py +66 -0
- megadetector/data_management/rename_images.py +187 -0
- megadetector/data_management/resize_coco_dataset.py +189 -0
- megadetector/data_management/wi_download_csv_to_coco.py +247 -0
- megadetector/data_management/yolo_output_to_md_output.py +446 -0
- megadetector/data_management/yolo_to_coco.py +676 -0
- megadetector/detection/__init__.py +0 -0
- megadetector/detection/detector_training/__init__.py +0 -0
- megadetector/detection/detector_training/model_main_tf2.py +114 -0
- megadetector/detection/process_video.py +846 -0
- megadetector/detection/pytorch_detector.py +355 -0
- megadetector/detection/run_detector.py +779 -0
- megadetector/detection/run_detector_batch.py +1219 -0
- megadetector/detection/run_inference_with_yolov5_val.py +1087 -0
- megadetector/detection/run_tiled_inference.py +934 -0
- megadetector/detection/tf_detector.py +192 -0
- megadetector/detection/video_utils.py +698 -0
- megadetector/postprocessing/__init__.py +0 -0
- megadetector/postprocessing/add_max_conf.py +64 -0
- megadetector/postprocessing/categorize_detections_by_size.py +165 -0
- megadetector/postprocessing/classification_postprocessing.py +716 -0
- megadetector/postprocessing/combine_api_outputs.py +249 -0
- megadetector/postprocessing/compare_batch_results.py +966 -0
- megadetector/postprocessing/convert_output_format.py +396 -0
- megadetector/postprocessing/load_api_results.py +195 -0
- megadetector/postprocessing/md_to_coco.py +310 -0
- megadetector/postprocessing/md_to_labelme.py +330 -0
- megadetector/postprocessing/merge_detections.py +412 -0
- megadetector/postprocessing/postprocess_batch_results.py +1908 -0
- megadetector/postprocessing/remap_detection_categories.py +170 -0
- megadetector/postprocessing/render_detection_confusion_matrix.py +660 -0
- megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +211 -0
- megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +83 -0
- megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1635 -0
- megadetector/postprocessing/separate_detections_into_folders.py +730 -0
- megadetector/postprocessing/subset_json_detector_output.py +700 -0
- megadetector/postprocessing/top_folders_to_bottom.py +223 -0
- megadetector/taxonomy_mapping/__init__.py +0 -0
- megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
- megadetector/taxonomy_mapping/map_new_lila_datasets.py +150 -0
- megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -0
- megadetector/taxonomy_mapping/preview_lila_taxonomy.py +588 -0
- megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
- megadetector/taxonomy_mapping/simple_image_download.py +219 -0
- megadetector/taxonomy_mapping/species_lookup.py +834 -0
- megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
- megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
- megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
- megadetector/utils/__init__.py +0 -0
- megadetector/utils/azure_utils.py +178 -0
- megadetector/utils/ct_utils.py +613 -0
- megadetector/utils/directory_listing.py +246 -0
- megadetector/utils/md_tests.py +1164 -0
- megadetector/utils/path_utils.py +1045 -0
- megadetector/utils/process_utils.py +160 -0
- megadetector/utils/sas_blob_utils.py +509 -0
- megadetector/utils/split_locations_into_train_val.py +228 -0
- megadetector/utils/string_utils.py +92 -0
- megadetector/utils/url_utils.py +323 -0
- megadetector/utils/write_html_image_list.py +225 -0
- megadetector/visualization/__init__.py +0 -0
- megadetector/visualization/plot_utils.py +293 -0
- megadetector/visualization/render_images_with_thumbnails.py +275 -0
- megadetector/visualization/visualization_utils.py +1536 -0
- megadetector/visualization/visualize_db.py +552 -0
- megadetector/visualization/visualize_detector_output.py +405 -0
- {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/LICENSE +0 -0
- {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/METADATA +2 -2
- megadetector-5.0.13.dist-info/RECORD +201 -0
- megadetector-5.0.13.dist-info/top_level.txt +1 -0
- megadetector-5.0.11.dist-info/RECORD +0 -5
- megadetector-5.0.11.dist-info/top_level.txt +0 -1
- {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,355 @@
|
|
|
1
|
+
"""
|
|
2
|
+
|
|
3
|
+
pytorch_detector.py
|
|
4
|
+
|
|
5
|
+
Module to run MegaDetector v5, a PyTorch YOLOv5 animal detection model.
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
#%% Imports and constants
|
|
10
|
+
|
|
11
|
+
import torch
|
|
12
|
+
import numpy as np
|
|
13
|
+
import traceback
|
|
14
|
+
|
|
15
|
+
from megadetector.detection.run_detector import CONF_DIGITS, COORD_DIGITS, FAILURE_INFER
|
|
16
|
+
from megadetector.utils import ct_utils
|
|
17
|
+
|
|
18
|
+
# We support a few ways of accessing the YOLOv5 dependencies:
|
|
19
|
+
#
|
|
20
|
+
# * The standard configuration as of 2023.09 expects that the YOLOv5 repo is checked
|
|
21
|
+
# out and on the PYTHONPATH (import utils)
|
|
22
|
+
#
|
|
23
|
+
# * Supported but non-default (used for PyPI packaging):
|
|
24
|
+
#
|
|
25
|
+
# pip install ultralytics-yolov5
|
|
26
|
+
#
|
|
27
|
+
# * Works, but not supported:
|
|
28
|
+
#
|
|
29
|
+
# pip install yolov5
|
|
30
|
+
#
|
|
31
|
+
# * Unfinished:
|
|
32
|
+
#
|
|
33
|
+
# pip install ultralytics
|
|
34
|
+
#
|
|
35
|
+
# If try_ultralytics_import is True, we'll try to import all YOLOv5 dependencies from
|
|
36
|
+
# ultralytics.utils and ultralytics.data. But as of 2023.11, this results in a "No
|
|
37
|
+
# module named 'models'" error when running MDv5, and there's no upside to this approach
|
|
38
|
+
# compared to using either of the YOLOv5 PyPI packages, so... punting on this for now.
|
|
39
|
+
|
|
40
|
+
utils_imported = False
|
|
41
|
+
try_yolov5_import = True
|
|
42
|
+
|
|
43
|
+
# See above; this should remain as "False" unless we update the MegaDetector .pt file
|
|
44
|
+
# to use more recent YOLOv5 namespace conventions.
|
|
45
|
+
try_ultralytics_import = False
|
|
46
|
+
|
|
47
|
+
# First try importing from the yolov5 package; this is how the pip
|
|
48
|
+
# package finds YOLOv5 utilities.
|
|
49
|
+
if try_yolov5_import and not utils_imported:
|
|
50
|
+
|
|
51
|
+
try:
|
|
52
|
+
from yolov5.utils.general import non_max_suppression, xyxy2xywh # noqa
|
|
53
|
+
from yolov5.utils.augmentations import letterbox # noqa
|
|
54
|
+
from yolov5.utils.general import scale_boxes as scale_coords # noqa
|
|
55
|
+
utils_imported = True
|
|
56
|
+
print('Imported YOLOv5 from YOLOv5 package')
|
|
57
|
+
except Exception:
|
|
58
|
+
# print('YOLOv5 module import failed, falling back to path-based import')
|
|
59
|
+
pass
|
|
60
|
+
|
|
61
|
+
# If we haven't succeeded yet, import from the ultralytics package
|
|
62
|
+
if try_ultralytics_import and not utils_imported:
|
|
63
|
+
|
|
64
|
+
try:
|
|
65
|
+
from ultralytics.utils.ops import non_max_suppression # noqa
|
|
66
|
+
from ultralytics.utils.ops import xyxy2xywh # noqa
|
|
67
|
+
from ultralytics.utils.ops import scale_coords # noqa
|
|
68
|
+
from ultralytics.data.augment import LetterBox
|
|
69
|
+
|
|
70
|
+
# letterbox() became a LetterBox class in the ultralytics package
|
|
71
|
+
def letterbox(img,new_shape,stride,auto=True): # noqa
|
|
72
|
+
L = LetterBox(new_shape,stride=stride,auto=auto)
|
|
73
|
+
letterbox_result = L(image=img)
|
|
74
|
+
return [letterbox_result]
|
|
75
|
+
utils_imported = True
|
|
76
|
+
print('Imported YOLOv5 from ultralytics package')
|
|
77
|
+
except Exception:
|
|
78
|
+
# print('Ultralytics module import failed, falling back to yolov5 import')
|
|
79
|
+
pass
|
|
80
|
+
|
|
81
|
+
# If we haven't succeeded yet, assume the YOLOv5 repo is on our PYTHONPATH.
|
|
82
|
+
if not utils_imported:
|
|
83
|
+
|
|
84
|
+
try:
|
|
85
|
+
# import pre- and post-processing functions from the YOLOv5 repo
|
|
86
|
+
from utils.general import non_max_suppression, xyxy2xywh # noqa
|
|
87
|
+
from utils.augmentations import letterbox # noqa
|
|
88
|
+
|
|
89
|
+
# scale_coords() became scale_boxes() in later YOLOv5 versions
|
|
90
|
+
try:
|
|
91
|
+
from utils.general import scale_coords # noqa
|
|
92
|
+
except ImportError:
|
|
93
|
+
from utils.general import scale_boxes as scale_coords
|
|
94
|
+
utils_imported = True
|
|
95
|
+
print('Imported YOLOv5 as utils.*')
|
|
96
|
+
|
|
97
|
+
except ModuleNotFoundError as e:
|
|
98
|
+
raise ModuleNotFoundError('Could not import YOLOv5 functions:\n{}'.format(str(e)))
|
|
99
|
+
|
|
100
|
+
assert utils_imported, 'YOLOv5 import error'
|
|
101
|
+
|
|
102
|
+
print(f'Using PyTorch version {torch.__version__}')
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
#%% Classes
|
|
106
|
+
|
|
107
|
+
class PTDetector:
|
|
108
|
+
|
|
109
|
+
#: Image size passed to YOLOv5's letterbox() function; 1280 means "1280 on the long side, preserving
|
|
110
|
+
#: aspect ratio"
|
|
111
|
+
#:
|
|
112
|
+
#: :meta private:
|
|
113
|
+
IMAGE_SIZE = 1280
|
|
114
|
+
|
|
115
|
+
#: Stride size passed to YOLOv5's letterbox() function
|
|
116
|
+
#:
|
|
117
|
+
#: :meta private:
|
|
118
|
+
STRIDE = 64
|
|
119
|
+
|
|
120
|
+
def __init__(self, model_path, force_cpu=False, use_model_native_classes= False):
|
|
121
|
+
|
|
122
|
+
self.device = 'cpu'
|
|
123
|
+
if not force_cpu:
|
|
124
|
+
if torch.cuda.is_available():
|
|
125
|
+
self.device = torch.device('cuda:0')
|
|
126
|
+
try:
|
|
127
|
+
if torch.backends.mps.is_built and torch.backends.mps.is_available():
|
|
128
|
+
self.device = 'mps'
|
|
129
|
+
except AttributeError:
|
|
130
|
+
pass
|
|
131
|
+
try:
|
|
132
|
+
self.model = PTDetector._load_model(model_path, self.device)
|
|
133
|
+
except Exception as e:
|
|
134
|
+
# In a very estoeric scenario where an old version of YOLOv5 is used to run
|
|
135
|
+
# newer models, we run into an issue because the "Model" class became
|
|
136
|
+
# "DetectionModel". New YOLOv5 code handles this case by just setting them
|
|
137
|
+
# to be the same, so doing that via monkey-patch doesn't seem *that* rude.
|
|
138
|
+
if "Can't get attribute 'DetectionModel'" in str(e):
|
|
139
|
+
print('Forward-compatibility issue detected, patching')
|
|
140
|
+
from models import yolo
|
|
141
|
+
yolo.DetectionModel = yolo.Model
|
|
142
|
+
self.model = PTDetector._load_model(model_path, self.device)
|
|
143
|
+
else:
|
|
144
|
+
raise
|
|
145
|
+
if (self.device != 'cpu'):
|
|
146
|
+
print('Sending model to GPU')
|
|
147
|
+
self.model.to(self.device)
|
|
148
|
+
|
|
149
|
+
self.printed_image_size_warning = False
|
|
150
|
+
self.use_model_native_classes = use_model_native_classes
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
@staticmethod
|
|
154
|
+
def _load_model(model_pt_path, device):
|
|
155
|
+
|
|
156
|
+
# There are two very slightly different ways to load the model, (1) using the
|
|
157
|
+
# map_location=device parameter to torch.load and (2) calling .to(device) after
|
|
158
|
+
# loading the model. The former is what we did for a zillion years, but is not
|
|
159
|
+
# supported on Apple silicon at of 2029.09. Switching to the latter causes
|
|
160
|
+
# very slight changes to the output, which always make me nervous, so I'm not
|
|
161
|
+
# doing a wholesale swap just yet. Instead, we'll just do this on M1 hardware.
|
|
162
|
+
use_map_location = (device != 'mps')
|
|
163
|
+
|
|
164
|
+
if use_map_location:
|
|
165
|
+
checkpoint = torch.load(model_pt_path, map_location=device)
|
|
166
|
+
else:
|
|
167
|
+
checkpoint = torch.load(model_pt_path)
|
|
168
|
+
|
|
169
|
+
# Compatibility fix that allows us to load older YOLOv5 models with
|
|
170
|
+
# newer versions of YOLOv5/PT
|
|
171
|
+
for m in checkpoint['model'].modules():
|
|
172
|
+
t = type(m)
|
|
173
|
+
if t is torch.nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
|
174
|
+
m.recompute_scale_factor = None
|
|
175
|
+
|
|
176
|
+
if use_map_location:
|
|
177
|
+
model = checkpoint['model'].float().fuse().eval()
|
|
178
|
+
else:
|
|
179
|
+
model = checkpoint['model'].float().fuse().eval().to(device)
|
|
180
|
+
|
|
181
|
+
return model
|
|
182
|
+
|
|
183
|
+
def generate_detections_one_image(self, img_original, image_id='unknown',
|
|
184
|
+
detection_threshold=0.00001, image_size=None,
|
|
185
|
+
skip_image_resizing=False):
|
|
186
|
+
"""
|
|
187
|
+
Applies the detector to an image.
|
|
188
|
+
|
|
189
|
+
Args:
|
|
190
|
+
img_original (Image): the PIL Image object with EXIF rotation taken into account
|
|
191
|
+
image_id (str, optional): a path to identify the image; will be in the "file" field
|
|
192
|
+
of the output object
|
|
193
|
+
detection_threshold (float, optional): only detections above this confidence threshold
|
|
194
|
+
will be included in the return value
|
|
195
|
+
image_size (tuple, optional): image size to use for inference, only mess with this
|
|
196
|
+
if (a) you're using a model other than MegaDetector or (b) you know what you're
|
|
197
|
+
doing
|
|
198
|
+
skip_image_resizing (bool, optional): whether to skip internal image resizing (and rely on external
|
|
199
|
+
resizing)
|
|
200
|
+
|
|
201
|
+
Returns:
|
|
202
|
+
dict: a dictionary with the following fields:
|
|
203
|
+
- 'file' (filename, always present)
|
|
204
|
+
- 'max_detection_conf' (removed from MegaDetector output files by default, but generated here)
|
|
205
|
+
- 'detections' (a list of detection objects containing keys 'category', 'conf', and 'bbox')
|
|
206
|
+
- 'failure' (a failure string, or None if everything went fine)
|
|
207
|
+
"""
|
|
208
|
+
|
|
209
|
+
result = {
|
|
210
|
+
'file': image_id
|
|
211
|
+
}
|
|
212
|
+
detections = []
|
|
213
|
+
max_conf = 0.0
|
|
214
|
+
|
|
215
|
+
if detection_threshold is None:
|
|
216
|
+
detection_threshold = 0
|
|
217
|
+
|
|
218
|
+
try:
|
|
219
|
+
|
|
220
|
+
img_original = np.asarray(img_original)
|
|
221
|
+
|
|
222
|
+
# padded resize
|
|
223
|
+
target_size = PTDetector.IMAGE_SIZE
|
|
224
|
+
|
|
225
|
+
# Image size can be an int (which translates to a square target size) or (h,w)
|
|
226
|
+
if image_size is not None:
|
|
227
|
+
|
|
228
|
+
assert isinstance(image_size,int) or (len(image_size)==2)
|
|
229
|
+
|
|
230
|
+
if not self.printed_image_size_warning:
|
|
231
|
+
print('Warning: using user-supplied image size {}'.format(image_size))
|
|
232
|
+
self.printed_image_size_warning = True
|
|
233
|
+
|
|
234
|
+
target_size = image_size
|
|
235
|
+
|
|
236
|
+
else:
|
|
237
|
+
|
|
238
|
+
self.printed_image_size_warning = False
|
|
239
|
+
|
|
240
|
+
# ...if the caller has specified an image size
|
|
241
|
+
|
|
242
|
+
if skip_image_resizing:
|
|
243
|
+
img = img_original
|
|
244
|
+
else:
|
|
245
|
+
letterbox_result = letterbox(img_original, new_shape=target_size,
|
|
246
|
+
stride=PTDetector.STRIDE, auto=True)
|
|
247
|
+
img = letterbox_result[0]
|
|
248
|
+
|
|
249
|
+
# HWC to CHW; PIL Image is RGB already
|
|
250
|
+
img = img.transpose((2, 0, 1))
|
|
251
|
+
img = np.ascontiguousarray(img)
|
|
252
|
+
img = torch.from_numpy(img)
|
|
253
|
+
img = img.to(self.device)
|
|
254
|
+
img = img.float()
|
|
255
|
+
img /= 255
|
|
256
|
+
|
|
257
|
+
# In practice this is always true
|
|
258
|
+
if len(img.shape) == 3:
|
|
259
|
+
img = torch.unsqueeze(img, 0)
|
|
260
|
+
|
|
261
|
+
pred: list = self.model(img)[0]
|
|
262
|
+
|
|
263
|
+
# NMS
|
|
264
|
+
if self.device == 'mps':
|
|
265
|
+
# As of v1.13.0.dev20220824, nms is not implemented for MPS.
|
|
266
|
+
#
|
|
267
|
+
# Send prediction back to the CPU to fix.
|
|
268
|
+
pred = non_max_suppression(prediction=pred.cpu(), conf_thres=detection_threshold)
|
|
269
|
+
else:
|
|
270
|
+
pred = non_max_suppression(prediction=pred, conf_thres=detection_threshold)
|
|
271
|
+
|
|
272
|
+
# format detections/bounding boxes
|
|
273
|
+
#
|
|
274
|
+
# normalization gain whwh
|
|
275
|
+
gn = torch.tensor(img_original.shape)[[1, 0, 1, 0]]
|
|
276
|
+
|
|
277
|
+
# This is a loop over detection batches, which will always be length 1 in our case,
|
|
278
|
+
# since we're not doing batch inference.
|
|
279
|
+
for det in pred:
|
|
280
|
+
|
|
281
|
+
if len(det):
|
|
282
|
+
|
|
283
|
+
# Rescale boxes from img_size to im0 size
|
|
284
|
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img_original.shape).round()
|
|
285
|
+
|
|
286
|
+
for *xyxy, conf, cls in reversed(det):
|
|
287
|
+
|
|
288
|
+
# normalized center-x, center-y, width and height
|
|
289
|
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
|
|
290
|
+
|
|
291
|
+
api_box = ct_utils.convert_yolo_to_xywh(xywh)
|
|
292
|
+
|
|
293
|
+
conf = ct_utils.truncate_float(conf.tolist(), precision=CONF_DIGITS)
|
|
294
|
+
|
|
295
|
+
if not self.use_model_native_classes:
|
|
296
|
+
# MegaDetector output format's categories start at 1, but the MD
|
|
297
|
+
# model's categories start at 0.
|
|
298
|
+
cls = int(cls.tolist()) + 1
|
|
299
|
+
if cls not in (1, 2, 3):
|
|
300
|
+
raise KeyError(f'{cls} is not a valid class.')
|
|
301
|
+
else:
|
|
302
|
+
cls = int(cls.tolist())
|
|
303
|
+
|
|
304
|
+
detections.append({
|
|
305
|
+
'category': str(cls),
|
|
306
|
+
'conf': conf,
|
|
307
|
+
'bbox': ct_utils.truncate_float_array(api_box, precision=COORD_DIGITS)
|
|
308
|
+
})
|
|
309
|
+
max_conf = max(max_conf, conf)
|
|
310
|
+
|
|
311
|
+
# ...for each detection in this batch
|
|
312
|
+
|
|
313
|
+
# ...if this is a non-empty batch
|
|
314
|
+
|
|
315
|
+
# ...for each detection batch
|
|
316
|
+
|
|
317
|
+
# ...try
|
|
318
|
+
|
|
319
|
+
except Exception as e:
|
|
320
|
+
|
|
321
|
+
result['failure'] = FAILURE_INFER
|
|
322
|
+
print('PTDetector: image {} failed during inference: {}\n'.format(image_id, str(e)))
|
|
323
|
+
traceback.print_exc(e)
|
|
324
|
+
|
|
325
|
+
result['max_detection_conf'] = max_conf
|
|
326
|
+
result['detections'] = detections
|
|
327
|
+
|
|
328
|
+
return result
|
|
329
|
+
|
|
330
|
+
# ...def generate_detections_one_image(...)
|
|
331
|
+
|
|
332
|
+
# ...class PTDetector
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
#%% Command-line driver
|
|
336
|
+
|
|
337
|
+
# For testing only... you don't really want to run this module directly.
|
|
338
|
+
|
|
339
|
+
if __name__ == '__main__':
|
|
340
|
+
|
|
341
|
+
pass
|
|
342
|
+
|
|
343
|
+
#%%
|
|
344
|
+
|
|
345
|
+
import os
|
|
346
|
+
from megadetector.visualization import visualization_utils as vis_utils
|
|
347
|
+
|
|
348
|
+
model_file = os.environ['MDV5A']
|
|
349
|
+
im_file = os.path.expanduser('~/git/MegaDetector/images/nacti.jpg')
|
|
350
|
+
|
|
351
|
+
detector = PTDetector(model_file)
|
|
352
|
+
image = vis_utils.load_image(im_file)
|
|
353
|
+
|
|
354
|
+
res = detector.generate_detections_one_image(image, im_file, detection_threshold=0.00001)
|
|
355
|
+
print(res)
|