megadetector 5.0.11__py3-none-any.whl → 5.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (203) hide show
  1. megadetector/api/__init__.py +0 -0
  2. megadetector/api/batch_processing/__init__.py +0 -0
  3. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  4. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  5. megadetector/api/batch_processing/api_core/batch_service/score.py +439 -0
  6. megadetector/api/batch_processing/api_core/server.py +294 -0
  7. megadetector/api/batch_processing/api_core/server_api_config.py +97 -0
  8. megadetector/api/batch_processing/api_core/server_app_config.py +55 -0
  9. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +220 -0
  10. megadetector/api/batch_processing/api_core/server_job_status_table.py +149 -0
  11. megadetector/api/batch_processing/api_core/server_orchestration.py +360 -0
  12. megadetector/api/batch_processing/api_core/server_utils.py +88 -0
  13. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  14. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +46 -0
  15. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  16. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +152 -0
  17. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  18. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  19. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  20. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  21. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +125 -0
  22. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  23. megadetector/api/synchronous/__init__.py +0 -0
  24. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  25. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +152 -0
  26. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +263 -0
  27. megadetector/api/synchronous/api_core/animal_detection_api/config.py +35 -0
  28. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  29. megadetector/api/synchronous/api_core/tests/load_test.py +110 -0
  30. megadetector/classification/__init__.py +0 -0
  31. megadetector/classification/aggregate_classifier_probs.py +108 -0
  32. megadetector/classification/analyze_failed_images.py +227 -0
  33. megadetector/classification/cache_batchapi_outputs.py +198 -0
  34. megadetector/classification/create_classification_dataset.py +627 -0
  35. megadetector/classification/crop_detections.py +516 -0
  36. megadetector/classification/csv_to_json.py +226 -0
  37. megadetector/classification/detect_and_crop.py +855 -0
  38. megadetector/classification/efficientnet/__init__.py +9 -0
  39. megadetector/classification/efficientnet/model.py +415 -0
  40. megadetector/classification/efficientnet/utils.py +607 -0
  41. megadetector/classification/evaluate_model.py +520 -0
  42. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  43. megadetector/classification/json_to_azcopy_list.py +63 -0
  44. megadetector/classification/json_validator.py +699 -0
  45. megadetector/classification/map_classification_categories.py +276 -0
  46. megadetector/classification/merge_classification_detection_output.py +506 -0
  47. megadetector/classification/prepare_classification_script.py +194 -0
  48. megadetector/classification/prepare_classification_script_mc.py +228 -0
  49. megadetector/classification/run_classifier.py +287 -0
  50. megadetector/classification/save_mislabeled.py +110 -0
  51. megadetector/classification/train_classifier.py +827 -0
  52. megadetector/classification/train_classifier_tf.py +725 -0
  53. megadetector/classification/train_utils.py +323 -0
  54. megadetector/data_management/__init__.py +0 -0
  55. megadetector/data_management/annotations/__init__.py +0 -0
  56. megadetector/data_management/annotations/annotation_constants.py +34 -0
  57. megadetector/data_management/camtrap_dp_to_coco.py +237 -0
  58. megadetector/data_management/cct_json_utils.py +404 -0
  59. megadetector/data_management/cct_to_md.py +176 -0
  60. megadetector/data_management/cct_to_wi.py +289 -0
  61. megadetector/data_management/coco_to_labelme.py +283 -0
  62. megadetector/data_management/coco_to_yolo.py +662 -0
  63. megadetector/data_management/databases/__init__.py +0 -0
  64. megadetector/data_management/databases/add_width_and_height_to_db.py +33 -0
  65. megadetector/data_management/databases/combine_coco_camera_traps_files.py +206 -0
  66. megadetector/data_management/databases/integrity_check_json_db.py +493 -0
  67. megadetector/data_management/databases/subset_json_db.py +115 -0
  68. megadetector/data_management/generate_crops_from_cct.py +149 -0
  69. megadetector/data_management/get_image_sizes.py +189 -0
  70. megadetector/data_management/importers/add_nacti_sizes.py +52 -0
  71. megadetector/data_management/importers/add_timestamps_to_icct.py +79 -0
  72. megadetector/data_management/importers/animl_results_to_md_results.py +158 -0
  73. megadetector/data_management/importers/auckland_doc_test_to_json.py +373 -0
  74. megadetector/data_management/importers/auckland_doc_to_json.py +201 -0
  75. megadetector/data_management/importers/awc_to_json.py +191 -0
  76. megadetector/data_management/importers/bellevue_to_json.py +273 -0
  77. megadetector/data_management/importers/cacophony-thermal-importer.py +793 -0
  78. megadetector/data_management/importers/carrizo_shrubfree_2018.py +269 -0
  79. megadetector/data_management/importers/carrizo_trail_cam_2017.py +289 -0
  80. megadetector/data_management/importers/cct_field_adjustments.py +58 -0
  81. megadetector/data_management/importers/channel_islands_to_cct.py +913 -0
  82. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +180 -0
  83. megadetector/data_management/importers/eMammal/eMammal_helpers.py +249 -0
  84. megadetector/data_management/importers/eMammal/make_eMammal_json.py +223 -0
  85. megadetector/data_management/importers/ena24_to_json.py +276 -0
  86. megadetector/data_management/importers/filenames_to_json.py +386 -0
  87. megadetector/data_management/importers/helena_to_cct.py +283 -0
  88. megadetector/data_management/importers/idaho-camera-traps.py +1407 -0
  89. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +294 -0
  90. megadetector/data_management/importers/jb_csv_to_json.py +150 -0
  91. megadetector/data_management/importers/mcgill_to_json.py +250 -0
  92. megadetector/data_management/importers/missouri_to_json.py +490 -0
  93. megadetector/data_management/importers/nacti_fieldname_adjustments.py +79 -0
  94. megadetector/data_management/importers/noaa_seals_2019.py +181 -0
  95. megadetector/data_management/importers/pc_to_json.py +365 -0
  96. megadetector/data_management/importers/plot_wni_giraffes.py +123 -0
  97. megadetector/data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -0
  98. megadetector/data_management/importers/prepare_zsl_imerit.py +131 -0
  99. megadetector/data_management/importers/rspb_to_json.py +356 -0
  100. megadetector/data_management/importers/save_the_elephants_survey_A.py +320 -0
  101. megadetector/data_management/importers/save_the_elephants_survey_B.py +329 -0
  102. megadetector/data_management/importers/snapshot_safari_importer.py +758 -0
  103. megadetector/data_management/importers/snapshot_safari_importer_reprise.py +665 -0
  104. megadetector/data_management/importers/snapshot_serengeti_lila.py +1067 -0
  105. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +150 -0
  106. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +153 -0
  107. megadetector/data_management/importers/sulross_get_exif.py +65 -0
  108. megadetector/data_management/importers/timelapse_csv_set_to_json.py +490 -0
  109. megadetector/data_management/importers/ubc_to_json.py +399 -0
  110. megadetector/data_management/importers/umn_to_json.py +507 -0
  111. megadetector/data_management/importers/wellington_to_json.py +263 -0
  112. megadetector/data_management/importers/wi_to_json.py +442 -0
  113. megadetector/data_management/importers/zamba_results_to_md_results.py +181 -0
  114. megadetector/data_management/labelme_to_coco.py +547 -0
  115. megadetector/data_management/labelme_to_yolo.py +272 -0
  116. megadetector/data_management/lila/__init__.py +0 -0
  117. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +97 -0
  118. megadetector/data_management/lila/add_locations_to_nacti.py +147 -0
  119. megadetector/data_management/lila/create_lila_blank_set.py +558 -0
  120. megadetector/data_management/lila/create_lila_test_set.py +152 -0
  121. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  122. megadetector/data_management/lila/download_lila_subset.py +178 -0
  123. megadetector/data_management/lila/generate_lila_per_image_labels.py +516 -0
  124. megadetector/data_management/lila/get_lila_annotation_counts.py +170 -0
  125. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  126. megadetector/data_management/lila/lila_common.py +300 -0
  127. megadetector/data_management/lila/test_lila_metadata_urls.py +132 -0
  128. megadetector/data_management/ocr_tools.py +870 -0
  129. megadetector/data_management/read_exif.py +809 -0
  130. megadetector/data_management/remap_coco_categories.py +84 -0
  131. megadetector/data_management/remove_exif.py +66 -0
  132. megadetector/data_management/rename_images.py +187 -0
  133. megadetector/data_management/resize_coco_dataset.py +189 -0
  134. megadetector/data_management/wi_download_csv_to_coco.py +247 -0
  135. megadetector/data_management/yolo_output_to_md_output.py +446 -0
  136. megadetector/data_management/yolo_to_coco.py +676 -0
  137. megadetector/detection/__init__.py +0 -0
  138. megadetector/detection/detector_training/__init__.py +0 -0
  139. megadetector/detection/detector_training/model_main_tf2.py +114 -0
  140. megadetector/detection/process_video.py +846 -0
  141. megadetector/detection/pytorch_detector.py +355 -0
  142. megadetector/detection/run_detector.py +779 -0
  143. megadetector/detection/run_detector_batch.py +1219 -0
  144. megadetector/detection/run_inference_with_yolov5_val.py +1087 -0
  145. megadetector/detection/run_tiled_inference.py +934 -0
  146. megadetector/detection/tf_detector.py +192 -0
  147. megadetector/detection/video_utils.py +698 -0
  148. megadetector/postprocessing/__init__.py +0 -0
  149. megadetector/postprocessing/add_max_conf.py +64 -0
  150. megadetector/postprocessing/categorize_detections_by_size.py +165 -0
  151. megadetector/postprocessing/classification_postprocessing.py +716 -0
  152. megadetector/postprocessing/combine_api_outputs.py +249 -0
  153. megadetector/postprocessing/compare_batch_results.py +966 -0
  154. megadetector/postprocessing/convert_output_format.py +396 -0
  155. megadetector/postprocessing/load_api_results.py +195 -0
  156. megadetector/postprocessing/md_to_coco.py +310 -0
  157. megadetector/postprocessing/md_to_labelme.py +330 -0
  158. megadetector/postprocessing/merge_detections.py +412 -0
  159. megadetector/postprocessing/postprocess_batch_results.py +1908 -0
  160. megadetector/postprocessing/remap_detection_categories.py +170 -0
  161. megadetector/postprocessing/render_detection_confusion_matrix.py +660 -0
  162. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +211 -0
  163. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +83 -0
  164. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1635 -0
  165. megadetector/postprocessing/separate_detections_into_folders.py +730 -0
  166. megadetector/postprocessing/subset_json_detector_output.py +700 -0
  167. megadetector/postprocessing/top_folders_to_bottom.py +223 -0
  168. megadetector/taxonomy_mapping/__init__.py +0 -0
  169. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  170. megadetector/taxonomy_mapping/map_new_lila_datasets.py +150 -0
  171. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -0
  172. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +588 -0
  173. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  174. megadetector/taxonomy_mapping/simple_image_download.py +219 -0
  175. megadetector/taxonomy_mapping/species_lookup.py +834 -0
  176. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  177. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  178. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  179. megadetector/utils/__init__.py +0 -0
  180. megadetector/utils/azure_utils.py +178 -0
  181. megadetector/utils/ct_utils.py +613 -0
  182. megadetector/utils/directory_listing.py +246 -0
  183. megadetector/utils/md_tests.py +1164 -0
  184. megadetector/utils/path_utils.py +1045 -0
  185. megadetector/utils/process_utils.py +160 -0
  186. megadetector/utils/sas_blob_utils.py +509 -0
  187. megadetector/utils/split_locations_into_train_val.py +228 -0
  188. megadetector/utils/string_utils.py +92 -0
  189. megadetector/utils/url_utils.py +323 -0
  190. megadetector/utils/write_html_image_list.py +225 -0
  191. megadetector/visualization/__init__.py +0 -0
  192. megadetector/visualization/plot_utils.py +293 -0
  193. megadetector/visualization/render_images_with_thumbnails.py +275 -0
  194. megadetector/visualization/visualization_utils.py +1536 -0
  195. megadetector/visualization/visualize_db.py +552 -0
  196. megadetector/visualization/visualize_detector_output.py +405 -0
  197. {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/LICENSE +0 -0
  198. {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/METADATA +2 -2
  199. megadetector-5.0.13.dist-info/RECORD +201 -0
  200. megadetector-5.0.13.dist-info/top_level.txt +1 -0
  201. megadetector-5.0.11.dist-info/RECORD +0 -5
  202. megadetector-5.0.11.dist-info/top_level.txt +0 -1
  203. {megadetector-5.0.11.dist-info → megadetector-5.0.13.dist-info}/WHEEL +0 -0
@@ -0,0 +1,355 @@
1
+ """
2
+
3
+ pytorch_detector.py
4
+
5
+ Module to run MegaDetector v5, a PyTorch YOLOv5 animal detection model.
6
+
7
+ """
8
+
9
+ #%% Imports and constants
10
+
11
+ import torch
12
+ import numpy as np
13
+ import traceback
14
+
15
+ from megadetector.detection.run_detector import CONF_DIGITS, COORD_DIGITS, FAILURE_INFER
16
+ from megadetector.utils import ct_utils
17
+
18
+ # We support a few ways of accessing the YOLOv5 dependencies:
19
+ #
20
+ # * The standard configuration as of 2023.09 expects that the YOLOv5 repo is checked
21
+ # out and on the PYTHONPATH (import utils)
22
+ #
23
+ # * Supported but non-default (used for PyPI packaging):
24
+ #
25
+ # pip install ultralytics-yolov5
26
+ #
27
+ # * Works, but not supported:
28
+ #
29
+ # pip install yolov5
30
+ #
31
+ # * Unfinished:
32
+ #
33
+ # pip install ultralytics
34
+ #
35
+ # If try_ultralytics_import is True, we'll try to import all YOLOv5 dependencies from
36
+ # ultralytics.utils and ultralytics.data. But as of 2023.11, this results in a "No
37
+ # module named 'models'" error when running MDv5, and there's no upside to this approach
38
+ # compared to using either of the YOLOv5 PyPI packages, so... punting on this for now.
39
+
40
+ utils_imported = False
41
+ try_yolov5_import = True
42
+
43
+ # See above; this should remain as "False" unless we update the MegaDetector .pt file
44
+ # to use more recent YOLOv5 namespace conventions.
45
+ try_ultralytics_import = False
46
+
47
+ # First try importing from the yolov5 package; this is how the pip
48
+ # package finds YOLOv5 utilities.
49
+ if try_yolov5_import and not utils_imported:
50
+
51
+ try:
52
+ from yolov5.utils.general import non_max_suppression, xyxy2xywh # noqa
53
+ from yolov5.utils.augmentations import letterbox # noqa
54
+ from yolov5.utils.general import scale_boxes as scale_coords # noqa
55
+ utils_imported = True
56
+ print('Imported YOLOv5 from YOLOv5 package')
57
+ except Exception:
58
+ # print('YOLOv5 module import failed, falling back to path-based import')
59
+ pass
60
+
61
+ # If we haven't succeeded yet, import from the ultralytics package
62
+ if try_ultralytics_import and not utils_imported:
63
+
64
+ try:
65
+ from ultralytics.utils.ops import non_max_suppression # noqa
66
+ from ultralytics.utils.ops import xyxy2xywh # noqa
67
+ from ultralytics.utils.ops import scale_coords # noqa
68
+ from ultralytics.data.augment import LetterBox
69
+
70
+ # letterbox() became a LetterBox class in the ultralytics package
71
+ def letterbox(img,new_shape,stride,auto=True): # noqa
72
+ L = LetterBox(new_shape,stride=stride,auto=auto)
73
+ letterbox_result = L(image=img)
74
+ return [letterbox_result]
75
+ utils_imported = True
76
+ print('Imported YOLOv5 from ultralytics package')
77
+ except Exception:
78
+ # print('Ultralytics module import failed, falling back to yolov5 import')
79
+ pass
80
+
81
+ # If we haven't succeeded yet, assume the YOLOv5 repo is on our PYTHONPATH.
82
+ if not utils_imported:
83
+
84
+ try:
85
+ # import pre- and post-processing functions from the YOLOv5 repo
86
+ from utils.general import non_max_suppression, xyxy2xywh # noqa
87
+ from utils.augmentations import letterbox # noqa
88
+
89
+ # scale_coords() became scale_boxes() in later YOLOv5 versions
90
+ try:
91
+ from utils.general import scale_coords # noqa
92
+ except ImportError:
93
+ from utils.general import scale_boxes as scale_coords
94
+ utils_imported = True
95
+ print('Imported YOLOv5 as utils.*')
96
+
97
+ except ModuleNotFoundError as e:
98
+ raise ModuleNotFoundError('Could not import YOLOv5 functions:\n{}'.format(str(e)))
99
+
100
+ assert utils_imported, 'YOLOv5 import error'
101
+
102
+ print(f'Using PyTorch version {torch.__version__}')
103
+
104
+
105
+ #%% Classes
106
+
107
+ class PTDetector:
108
+
109
+ #: Image size passed to YOLOv5's letterbox() function; 1280 means "1280 on the long side, preserving
110
+ #: aspect ratio"
111
+ #:
112
+ #: :meta private:
113
+ IMAGE_SIZE = 1280
114
+
115
+ #: Stride size passed to YOLOv5's letterbox() function
116
+ #:
117
+ #: :meta private:
118
+ STRIDE = 64
119
+
120
+ def __init__(self, model_path, force_cpu=False, use_model_native_classes= False):
121
+
122
+ self.device = 'cpu'
123
+ if not force_cpu:
124
+ if torch.cuda.is_available():
125
+ self.device = torch.device('cuda:0')
126
+ try:
127
+ if torch.backends.mps.is_built and torch.backends.mps.is_available():
128
+ self.device = 'mps'
129
+ except AttributeError:
130
+ pass
131
+ try:
132
+ self.model = PTDetector._load_model(model_path, self.device)
133
+ except Exception as e:
134
+ # In a very estoeric scenario where an old version of YOLOv5 is used to run
135
+ # newer models, we run into an issue because the "Model" class became
136
+ # "DetectionModel". New YOLOv5 code handles this case by just setting them
137
+ # to be the same, so doing that via monkey-patch doesn't seem *that* rude.
138
+ if "Can't get attribute 'DetectionModel'" in str(e):
139
+ print('Forward-compatibility issue detected, patching')
140
+ from models import yolo
141
+ yolo.DetectionModel = yolo.Model
142
+ self.model = PTDetector._load_model(model_path, self.device)
143
+ else:
144
+ raise
145
+ if (self.device != 'cpu'):
146
+ print('Sending model to GPU')
147
+ self.model.to(self.device)
148
+
149
+ self.printed_image_size_warning = False
150
+ self.use_model_native_classes = use_model_native_classes
151
+
152
+
153
+ @staticmethod
154
+ def _load_model(model_pt_path, device):
155
+
156
+ # There are two very slightly different ways to load the model, (1) using the
157
+ # map_location=device parameter to torch.load and (2) calling .to(device) after
158
+ # loading the model. The former is what we did for a zillion years, but is not
159
+ # supported on Apple silicon at of 2029.09. Switching to the latter causes
160
+ # very slight changes to the output, which always make me nervous, so I'm not
161
+ # doing a wholesale swap just yet. Instead, we'll just do this on M1 hardware.
162
+ use_map_location = (device != 'mps')
163
+
164
+ if use_map_location:
165
+ checkpoint = torch.load(model_pt_path, map_location=device)
166
+ else:
167
+ checkpoint = torch.load(model_pt_path)
168
+
169
+ # Compatibility fix that allows us to load older YOLOv5 models with
170
+ # newer versions of YOLOv5/PT
171
+ for m in checkpoint['model'].modules():
172
+ t = type(m)
173
+ if t is torch.nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
174
+ m.recompute_scale_factor = None
175
+
176
+ if use_map_location:
177
+ model = checkpoint['model'].float().fuse().eval()
178
+ else:
179
+ model = checkpoint['model'].float().fuse().eval().to(device)
180
+
181
+ return model
182
+
183
+ def generate_detections_one_image(self, img_original, image_id='unknown',
184
+ detection_threshold=0.00001, image_size=None,
185
+ skip_image_resizing=False):
186
+ """
187
+ Applies the detector to an image.
188
+
189
+ Args:
190
+ img_original (Image): the PIL Image object with EXIF rotation taken into account
191
+ image_id (str, optional): a path to identify the image; will be in the "file" field
192
+ of the output object
193
+ detection_threshold (float, optional): only detections above this confidence threshold
194
+ will be included in the return value
195
+ image_size (tuple, optional): image size to use for inference, only mess with this
196
+ if (a) you're using a model other than MegaDetector or (b) you know what you're
197
+ doing
198
+ skip_image_resizing (bool, optional): whether to skip internal image resizing (and rely on external
199
+ resizing)
200
+
201
+ Returns:
202
+ dict: a dictionary with the following fields:
203
+ - 'file' (filename, always present)
204
+ - 'max_detection_conf' (removed from MegaDetector output files by default, but generated here)
205
+ - 'detections' (a list of detection objects containing keys 'category', 'conf', and 'bbox')
206
+ - 'failure' (a failure string, or None if everything went fine)
207
+ """
208
+
209
+ result = {
210
+ 'file': image_id
211
+ }
212
+ detections = []
213
+ max_conf = 0.0
214
+
215
+ if detection_threshold is None:
216
+ detection_threshold = 0
217
+
218
+ try:
219
+
220
+ img_original = np.asarray(img_original)
221
+
222
+ # padded resize
223
+ target_size = PTDetector.IMAGE_SIZE
224
+
225
+ # Image size can be an int (which translates to a square target size) or (h,w)
226
+ if image_size is not None:
227
+
228
+ assert isinstance(image_size,int) or (len(image_size)==2)
229
+
230
+ if not self.printed_image_size_warning:
231
+ print('Warning: using user-supplied image size {}'.format(image_size))
232
+ self.printed_image_size_warning = True
233
+
234
+ target_size = image_size
235
+
236
+ else:
237
+
238
+ self.printed_image_size_warning = False
239
+
240
+ # ...if the caller has specified an image size
241
+
242
+ if skip_image_resizing:
243
+ img = img_original
244
+ else:
245
+ letterbox_result = letterbox(img_original, new_shape=target_size,
246
+ stride=PTDetector.STRIDE, auto=True)
247
+ img = letterbox_result[0]
248
+
249
+ # HWC to CHW; PIL Image is RGB already
250
+ img = img.transpose((2, 0, 1))
251
+ img = np.ascontiguousarray(img)
252
+ img = torch.from_numpy(img)
253
+ img = img.to(self.device)
254
+ img = img.float()
255
+ img /= 255
256
+
257
+ # In practice this is always true
258
+ if len(img.shape) == 3:
259
+ img = torch.unsqueeze(img, 0)
260
+
261
+ pred: list = self.model(img)[0]
262
+
263
+ # NMS
264
+ if self.device == 'mps':
265
+ # As of v1.13.0.dev20220824, nms is not implemented for MPS.
266
+ #
267
+ # Send prediction back to the CPU to fix.
268
+ pred = non_max_suppression(prediction=pred.cpu(), conf_thres=detection_threshold)
269
+ else:
270
+ pred = non_max_suppression(prediction=pred, conf_thres=detection_threshold)
271
+
272
+ # format detections/bounding boxes
273
+ #
274
+ # normalization gain whwh
275
+ gn = torch.tensor(img_original.shape)[[1, 0, 1, 0]]
276
+
277
+ # This is a loop over detection batches, which will always be length 1 in our case,
278
+ # since we're not doing batch inference.
279
+ for det in pred:
280
+
281
+ if len(det):
282
+
283
+ # Rescale boxes from img_size to im0 size
284
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img_original.shape).round()
285
+
286
+ for *xyxy, conf, cls in reversed(det):
287
+
288
+ # normalized center-x, center-y, width and height
289
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
290
+
291
+ api_box = ct_utils.convert_yolo_to_xywh(xywh)
292
+
293
+ conf = ct_utils.truncate_float(conf.tolist(), precision=CONF_DIGITS)
294
+
295
+ if not self.use_model_native_classes:
296
+ # MegaDetector output format's categories start at 1, but the MD
297
+ # model's categories start at 0.
298
+ cls = int(cls.tolist()) + 1
299
+ if cls not in (1, 2, 3):
300
+ raise KeyError(f'{cls} is not a valid class.')
301
+ else:
302
+ cls = int(cls.tolist())
303
+
304
+ detections.append({
305
+ 'category': str(cls),
306
+ 'conf': conf,
307
+ 'bbox': ct_utils.truncate_float_array(api_box, precision=COORD_DIGITS)
308
+ })
309
+ max_conf = max(max_conf, conf)
310
+
311
+ # ...for each detection in this batch
312
+
313
+ # ...if this is a non-empty batch
314
+
315
+ # ...for each detection batch
316
+
317
+ # ...try
318
+
319
+ except Exception as e:
320
+
321
+ result['failure'] = FAILURE_INFER
322
+ print('PTDetector: image {} failed during inference: {}\n'.format(image_id, str(e)))
323
+ traceback.print_exc(e)
324
+
325
+ result['max_detection_conf'] = max_conf
326
+ result['detections'] = detections
327
+
328
+ return result
329
+
330
+ # ...def generate_detections_one_image(...)
331
+
332
+ # ...class PTDetector
333
+
334
+
335
+ #%% Command-line driver
336
+
337
+ # For testing only... you don't really want to run this module directly.
338
+
339
+ if __name__ == '__main__':
340
+
341
+ pass
342
+
343
+ #%%
344
+
345
+ import os
346
+ from megadetector.visualization import visualization_utils as vis_utils
347
+
348
+ model_file = os.environ['MDV5A']
349
+ im_file = os.path.expanduser('~/git/MegaDetector/images/nacti.jpg')
350
+
351
+ detector = PTDetector(model_file)
352
+ image = vis_utils.load_image(im_file)
353
+
354
+ res = detector.generate_detections_one_image(image, im_file, detection_threshold=0.00001)
355
+ print(res)