llama-stack 0.4.3__py3-none-any.whl → 0.5.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- llama_stack/cli/stack/_list_deps.py +11 -7
- llama_stack/cli/stack/run.py +3 -25
- llama_stack/core/access_control/datatypes.py +78 -0
- llama_stack/core/configure.py +2 -2
- {llama_stack_api/internal → llama_stack/core/connectors}/__init__.py +2 -2
- llama_stack/core/connectors/connectors.py +162 -0
- llama_stack/core/conversations/conversations.py +61 -58
- llama_stack/core/datatypes.py +54 -8
- llama_stack/core/library_client.py +60 -13
- llama_stack/core/prompts/prompts.py +43 -42
- llama_stack/core/routers/datasets.py +20 -17
- llama_stack/core/routers/eval_scoring.py +143 -53
- llama_stack/core/routers/inference.py +20 -9
- llama_stack/core/routers/safety.py +30 -42
- llama_stack/core/routers/vector_io.py +15 -7
- llama_stack/core/routing_tables/models.py +42 -3
- llama_stack/core/routing_tables/scoring_functions.py +19 -19
- llama_stack/core/routing_tables/shields.py +20 -17
- llama_stack/core/routing_tables/vector_stores.py +8 -5
- llama_stack/core/server/auth.py +192 -17
- llama_stack/core/server/fastapi_router_registry.py +40 -5
- llama_stack/core/server/server.py +24 -5
- llama_stack/core/stack.py +54 -10
- llama_stack/core/storage/datatypes.py +9 -0
- llama_stack/core/store/registry.py +1 -1
- llama_stack/core/utils/exec.py +2 -2
- llama_stack/core/utils/type_inspection.py +16 -2
- llama_stack/distributions/dell/config.yaml +4 -1
- llama_stack/distributions/dell/doc_template.md +209 -0
- llama_stack/distributions/dell/run-with-safety.yaml +4 -1
- llama_stack/distributions/nvidia/config.yaml +4 -1
- llama_stack/distributions/nvidia/doc_template.md +170 -0
- llama_stack/distributions/nvidia/run-with-safety.yaml +4 -1
- llama_stack/distributions/oci/config.yaml +4 -1
- llama_stack/distributions/oci/doc_template.md +140 -0
- llama_stack/distributions/open-benchmark/config.yaml +9 -1
- llama_stack/distributions/postgres-demo/config.yaml +1 -1
- llama_stack/distributions/starter/build.yaml +62 -0
- llama_stack/distributions/starter/config.yaml +22 -3
- llama_stack/distributions/starter/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/starter/starter.py +13 -1
- llama_stack/distributions/starter-gpu/build.yaml +62 -0
- llama_stack/distributions/starter-gpu/config.yaml +22 -3
- llama_stack/distributions/starter-gpu/run-with-postgres-store.yaml +22 -3
- llama_stack/distributions/template.py +10 -2
- llama_stack/distributions/watsonx/config.yaml +4 -1
- llama_stack/log.py +1 -0
- llama_stack/models/llama/resources/dog.jpg +0 -0
- llama_stack/models/llama/resources/pasta.jpeg +0 -0
- llama_stack/models/llama/resources/small_dog.jpg +0 -0
- llama_stack/providers/inline/agents/meta_reference/__init__.py +1 -0
- llama_stack/providers/inline/agents/meta_reference/agents.py +57 -61
- llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py +183 -60
- llama_stack/providers/inline/agents/meta_reference/responses/streaming.py +94 -22
- llama_stack/providers/inline/agents/meta_reference/responses/types.py +2 -1
- llama_stack/providers/inline/agents/meta_reference/responses/utils.py +4 -1
- llama_stack/providers/inline/agents/meta_reference/safety.py +2 -2
- llama_stack/providers/inline/batches/reference/batches.py +2 -1
- llama_stack/providers/inline/eval/meta_reference/eval.py +40 -32
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.h +9 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/LocalInference.swift +189 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/Parsing.swift +238 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/PromptTemplate.swift +12 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl/SystemPrompts.swift +89 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.pbxproj +550 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/contents.xcworkspacedata +7 -0
- llama_stack/providers/inline/ios/inference/LocalInferenceImpl.xcodeproj/project.xcworkspace/xcshareddata/IDEWorkspaceChecks.plist +8 -0
- llama_stack/providers/inline/post_training/huggingface/post_training.py +33 -38
- llama_stack/providers/inline/post_training/huggingface/utils.py +2 -5
- llama_stack/providers/inline/post_training/torchtune/post_training.py +28 -33
- llama_stack/providers/inline/post_training/torchtune/recipes/lora_finetuning_single_device.py +2 -4
- llama_stack/providers/inline/safety/code_scanner/code_scanner.py +12 -15
- llama_stack/providers/inline/safety/llama_guard/llama_guard.py +15 -18
- llama_stack/providers/inline/safety/prompt_guard/prompt_guard.py +11 -17
- llama_stack/providers/inline/scoring/basic/scoring.py +13 -17
- llama_stack/providers/inline/scoring/braintrust/braintrust.py +15 -15
- llama_stack/providers/inline/scoring/llm_as_judge/scoring.py +13 -17
- llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +1 -1
- llama_stack/providers/registry/agents.py +1 -0
- llama_stack/providers/registry/inference.py +1 -9
- llama_stack/providers/registry/vector_io.py +136 -16
- llama_stack/providers/remote/datasetio/nvidia/README.md +74 -0
- llama_stack/providers/remote/eval/nvidia/README.md +134 -0
- llama_stack/providers/remote/eval/nvidia/eval.py +22 -21
- llama_stack/providers/remote/files/s3/README.md +266 -0
- llama_stack/providers/remote/files/s3/config.py +5 -3
- llama_stack/providers/remote/files/s3/files.py +2 -2
- llama_stack/providers/remote/inference/gemini/gemini.py +4 -0
- llama_stack/providers/remote/inference/nvidia/NVIDIA.md +203 -0
- llama_stack/providers/remote/inference/openai/openai.py +2 -0
- llama_stack/providers/remote/inference/together/together.py +4 -0
- llama_stack/providers/remote/inference/vertexai/config.py +3 -3
- llama_stack/providers/remote/inference/vertexai/vertexai.py +5 -2
- llama_stack/providers/remote/inference/vllm/config.py +37 -18
- llama_stack/providers/remote/inference/vllm/vllm.py +0 -3
- llama_stack/providers/remote/inference/watsonx/watsonx.py +4 -0
- llama_stack/providers/remote/post_training/nvidia/README.md +151 -0
- llama_stack/providers/remote/post_training/nvidia/post_training.py +31 -33
- llama_stack/providers/remote/safety/bedrock/bedrock.py +10 -27
- llama_stack/providers/remote/safety/nvidia/README.md +78 -0
- llama_stack/providers/remote/safety/nvidia/nvidia.py +9 -25
- llama_stack/providers/remote/safety/sambanova/sambanova.py +13 -11
- llama_stack/providers/remote/vector_io/elasticsearch/__init__.py +17 -0
- llama_stack/providers/remote/vector_io/elasticsearch/config.py +32 -0
- llama_stack/providers/remote/vector_io/elasticsearch/elasticsearch.py +463 -0
- llama_stack/providers/remote/vector_io/oci/__init__.py +22 -0
- llama_stack/providers/remote/vector_io/oci/config.py +41 -0
- llama_stack/providers/remote/vector_io/oci/oci26ai.py +595 -0
- llama_stack/providers/remote/vector_io/pgvector/config.py +69 -2
- llama_stack/providers/remote/vector_io/pgvector/pgvector.py +255 -6
- llama_stack/providers/remote/vector_io/qdrant/qdrant.py +62 -38
- llama_stack/providers/utils/bedrock/client.py +3 -3
- llama_stack/providers/utils/bedrock/config.py +7 -7
- llama_stack/providers/utils/inference/embedding_mixin.py +4 -0
- llama_stack/providers/utils/inference/http_client.py +239 -0
- llama_stack/providers/utils/inference/litellm_openai_mixin.py +5 -0
- llama_stack/providers/utils/inference/model_registry.py +148 -2
- llama_stack/providers/utils/inference/openai_compat.py +2 -1
- llama_stack/providers/utils/inference/openai_mixin.py +41 -2
- llama_stack/providers/utils/memory/openai_vector_store_mixin.py +92 -5
- llama_stack/providers/utils/memory/vector_store.py +46 -19
- llama_stack/providers/utils/responses/responses_store.py +40 -6
- llama_stack/providers/utils/safety.py +114 -0
- llama_stack/providers/utils/tools/mcp.py +44 -3
- llama_stack/testing/api_recorder.py +9 -3
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/METADATA +14 -2
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/RECORD +131 -275
- llama_stack-0.5.0rc1.dist-info/top_level.txt +1 -0
- llama_stack/distributions/meta-reference-gpu/__init__.py +0 -7
- llama_stack/distributions/meta-reference-gpu/config.yaml +0 -140
- llama_stack/distributions/meta-reference-gpu/meta_reference.py +0 -163
- llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +0 -155
- llama_stack/models/llama/hadamard_utils.py +0 -88
- llama_stack/models/llama/llama3/args.py +0 -74
- llama_stack/models/llama/llama3/generation.py +0 -378
- llama_stack/models/llama/llama3/model.py +0 -304
- llama_stack/models/llama/llama3/multimodal/__init__.py +0 -12
- llama_stack/models/llama/llama3/multimodal/encoder_utils.py +0 -180
- llama_stack/models/llama/llama3/multimodal/image_transform.py +0 -409
- llama_stack/models/llama/llama3/multimodal/model.py +0 -1430
- llama_stack/models/llama/llama3/multimodal/utils.py +0 -26
- llama_stack/models/llama/llama3/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama3/quantization/loader.py +0 -316
- llama_stack/models/llama/llama3_1/__init__.py +0 -12
- llama_stack/models/llama/llama3_1/prompt_format.md +0 -358
- llama_stack/models/llama/llama3_1/prompts.py +0 -258
- llama_stack/models/llama/llama3_2/__init__.py +0 -5
- llama_stack/models/llama/llama3_2/prompts_text.py +0 -229
- llama_stack/models/llama/llama3_2/prompts_vision.py +0 -126
- llama_stack/models/llama/llama3_2/text_prompt_format.md +0 -286
- llama_stack/models/llama/llama3_2/vision_prompt_format.md +0 -141
- llama_stack/models/llama/llama3_3/__init__.py +0 -5
- llama_stack/models/llama/llama3_3/prompts.py +0 -259
- llama_stack/models/llama/llama4/args.py +0 -107
- llama_stack/models/llama/llama4/ffn.py +0 -58
- llama_stack/models/llama/llama4/moe.py +0 -214
- llama_stack/models/llama/llama4/preprocess.py +0 -435
- llama_stack/models/llama/llama4/quantization/__init__.py +0 -5
- llama_stack/models/llama/llama4/quantization/loader.py +0 -226
- llama_stack/models/llama/llama4/vision/__init__.py +0 -5
- llama_stack/models/llama/llama4/vision/embedding.py +0 -210
- llama_stack/models/llama/llama4/vision/encoder.py +0 -412
- llama_stack/models/llama/quantize_impls.py +0 -316
- llama_stack/providers/inline/inference/meta_reference/__init__.py +0 -20
- llama_stack/providers/inline/inference/meta_reference/common.py +0 -24
- llama_stack/providers/inline/inference/meta_reference/config.py +0 -68
- llama_stack/providers/inline/inference/meta_reference/generators.py +0 -201
- llama_stack/providers/inline/inference/meta_reference/inference.py +0 -542
- llama_stack/providers/inline/inference/meta_reference/model_parallel.py +0 -77
- llama_stack/providers/inline/inference/meta_reference/parallel_utils.py +0 -353
- llama_stack-0.4.3.dist-info/top_level.txt +0 -2
- llama_stack_api/__init__.py +0 -945
- llama_stack_api/admin/__init__.py +0 -45
- llama_stack_api/admin/api.py +0 -72
- llama_stack_api/admin/fastapi_routes.py +0 -117
- llama_stack_api/admin/models.py +0 -113
- llama_stack_api/agents.py +0 -173
- llama_stack_api/batches/__init__.py +0 -40
- llama_stack_api/batches/api.py +0 -53
- llama_stack_api/batches/fastapi_routes.py +0 -113
- llama_stack_api/batches/models.py +0 -78
- llama_stack_api/benchmarks/__init__.py +0 -43
- llama_stack_api/benchmarks/api.py +0 -39
- llama_stack_api/benchmarks/fastapi_routes.py +0 -109
- llama_stack_api/benchmarks/models.py +0 -109
- llama_stack_api/common/__init__.py +0 -5
- llama_stack_api/common/content_types.py +0 -101
- llama_stack_api/common/errors.py +0 -95
- llama_stack_api/common/job_types.py +0 -38
- llama_stack_api/common/responses.py +0 -77
- llama_stack_api/common/training_types.py +0 -47
- llama_stack_api/common/type_system.py +0 -146
- llama_stack_api/connectors.py +0 -146
- llama_stack_api/conversations.py +0 -270
- llama_stack_api/datasetio.py +0 -55
- llama_stack_api/datasets/__init__.py +0 -61
- llama_stack_api/datasets/api.py +0 -35
- llama_stack_api/datasets/fastapi_routes.py +0 -104
- llama_stack_api/datasets/models.py +0 -152
- llama_stack_api/datatypes.py +0 -373
- llama_stack_api/eval.py +0 -137
- llama_stack_api/file_processors/__init__.py +0 -27
- llama_stack_api/file_processors/api.py +0 -64
- llama_stack_api/file_processors/fastapi_routes.py +0 -78
- llama_stack_api/file_processors/models.py +0 -42
- llama_stack_api/files/__init__.py +0 -35
- llama_stack_api/files/api.py +0 -51
- llama_stack_api/files/fastapi_routes.py +0 -124
- llama_stack_api/files/models.py +0 -107
- llama_stack_api/inference.py +0 -1169
- llama_stack_api/inspect_api/__init__.py +0 -37
- llama_stack_api/inspect_api/api.py +0 -25
- llama_stack_api/inspect_api/fastapi_routes.py +0 -76
- llama_stack_api/inspect_api/models.py +0 -28
- llama_stack_api/internal/kvstore.py +0 -28
- llama_stack_api/internal/sqlstore.py +0 -81
- llama_stack_api/llama_stack_api/__init__.py +0 -945
- llama_stack_api/llama_stack_api/admin/__init__.py +0 -45
- llama_stack_api/llama_stack_api/admin/api.py +0 -72
- llama_stack_api/llama_stack_api/admin/fastapi_routes.py +0 -117
- llama_stack_api/llama_stack_api/admin/models.py +0 -113
- llama_stack_api/llama_stack_api/agents.py +0 -173
- llama_stack_api/llama_stack_api/batches/__init__.py +0 -40
- llama_stack_api/llama_stack_api/batches/api.py +0 -53
- llama_stack_api/llama_stack_api/batches/fastapi_routes.py +0 -113
- llama_stack_api/llama_stack_api/batches/models.py +0 -78
- llama_stack_api/llama_stack_api/benchmarks/__init__.py +0 -43
- llama_stack_api/llama_stack_api/benchmarks/api.py +0 -39
- llama_stack_api/llama_stack_api/benchmarks/fastapi_routes.py +0 -109
- llama_stack_api/llama_stack_api/benchmarks/models.py +0 -109
- llama_stack_api/llama_stack_api/common/__init__.py +0 -5
- llama_stack_api/llama_stack_api/common/content_types.py +0 -101
- llama_stack_api/llama_stack_api/common/errors.py +0 -95
- llama_stack_api/llama_stack_api/common/job_types.py +0 -38
- llama_stack_api/llama_stack_api/common/responses.py +0 -77
- llama_stack_api/llama_stack_api/common/training_types.py +0 -47
- llama_stack_api/llama_stack_api/common/type_system.py +0 -146
- llama_stack_api/llama_stack_api/connectors.py +0 -146
- llama_stack_api/llama_stack_api/conversations.py +0 -270
- llama_stack_api/llama_stack_api/datasetio.py +0 -55
- llama_stack_api/llama_stack_api/datasets/__init__.py +0 -61
- llama_stack_api/llama_stack_api/datasets/api.py +0 -35
- llama_stack_api/llama_stack_api/datasets/fastapi_routes.py +0 -104
- llama_stack_api/llama_stack_api/datasets/models.py +0 -152
- llama_stack_api/llama_stack_api/datatypes.py +0 -373
- llama_stack_api/llama_stack_api/eval.py +0 -137
- llama_stack_api/llama_stack_api/file_processors/__init__.py +0 -27
- llama_stack_api/llama_stack_api/file_processors/api.py +0 -64
- llama_stack_api/llama_stack_api/file_processors/fastapi_routes.py +0 -78
- llama_stack_api/llama_stack_api/file_processors/models.py +0 -42
- llama_stack_api/llama_stack_api/files/__init__.py +0 -35
- llama_stack_api/llama_stack_api/files/api.py +0 -51
- llama_stack_api/llama_stack_api/files/fastapi_routes.py +0 -124
- llama_stack_api/llama_stack_api/files/models.py +0 -107
- llama_stack_api/llama_stack_api/inference.py +0 -1169
- llama_stack_api/llama_stack_api/inspect_api/__init__.py +0 -37
- llama_stack_api/llama_stack_api/inspect_api/api.py +0 -25
- llama_stack_api/llama_stack_api/inspect_api/fastapi_routes.py +0 -76
- llama_stack_api/llama_stack_api/inspect_api/models.py +0 -28
- llama_stack_api/llama_stack_api/internal/__init__.py +0 -9
- llama_stack_api/llama_stack_api/internal/kvstore.py +0 -28
- llama_stack_api/llama_stack_api/internal/sqlstore.py +0 -81
- llama_stack_api/llama_stack_api/models.py +0 -171
- llama_stack_api/llama_stack_api/openai_responses.py +0 -1468
- llama_stack_api/llama_stack_api/post_training.py +0 -370
- llama_stack_api/llama_stack_api/prompts.py +0 -203
- llama_stack_api/llama_stack_api/providers/__init__.py +0 -33
- llama_stack_api/llama_stack_api/providers/api.py +0 -16
- llama_stack_api/llama_stack_api/providers/fastapi_routes.py +0 -57
- llama_stack_api/llama_stack_api/providers/models.py +0 -24
- llama_stack_api/llama_stack_api/py.typed +0 -0
- llama_stack_api/llama_stack_api/rag_tool.py +0 -168
- llama_stack_api/llama_stack_api/resource.py +0 -37
- llama_stack_api/llama_stack_api/router_utils.py +0 -160
- llama_stack_api/llama_stack_api/safety.py +0 -132
- llama_stack_api/llama_stack_api/schema_utils.py +0 -208
- llama_stack_api/llama_stack_api/scoring.py +0 -93
- llama_stack_api/llama_stack_api/scoring_functions.py +0 -211
- llama_stack_api/llama_stack_api/shields.py +0 -93
- llama_stack_api/llama_stack_api/tools.py +0 -226
- llama_stack_api/llama_stack_api/vector_io.py +0 -941
- llama_stack_api/llama_stack_api/vector_stores.py +0 -53
- llama_stack_api/llama_stack_api/version.py +0 -9
- llama_stack_api/models.py +0 -171
- llama_stack_api/openai_responses.py +0 -1468
- llama_stack_api/post_training.py +0 -370
- llama_stack_api/prompts.py +0 -203
- llama_stack_api/providers/__init__.py +0 -33
- llama_stack_api/providers/api.py +0 -16
- llama_stack_api/providers/fastapi_routes.py +0 -57
- llama_stack_api/providers/models.py +0 -24
- llama_stack_api/py.typed +0 -0
- llama_stack_api/rag_tool.py +0 -168
- llama_stack_api/resource.py +0 -37
- llama_stack_api/router_utils.py +0 -160
- llama_stack_api/safety.py +0 -132
- llama_stack_api/schema_utils.py +0 -208
- llama_stack_api/scoring.py +0 -93
- llama_stack_api/scoring_functions.py +0 -211
- llama_stack_api/shields.py +0 -93
- llama_stack_api/tools.py +0 -226
- llama_stack_api/vector_io.py +0 -941
- llama_stack_api/vector_stores.py +0 -53
- llama_stack_api/version.py +0 -9
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/WHEEL +0 -0
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/entry_points.txt +0 -0
- {llama_stack-0.4.3.dist-info → llama_stack-0.5.0rc1.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,412 +0,0 @@
|
|
|
1
|
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# This source code is licensed under the terms described in the LICENSE file in
|
|
5
|
-
# the root directory of this source tree.
|
|
6
|
-
|
|
7
|
-
from collections.abc import Callable
|
|
8
|
-
from typing import Any
|
|
9
|
-
|
|
10
|
-
import fairscale.nn.model_parallel.initialize as fs_init
|
|
11
|
-
import torch
|
|
12
|
-
import torch.nn as nn
|
|
13
|
-
import torch.nn.functional as F
|
|
14
|
-
from fairscale.nn.model_parallel.layers import ColumnParallelLinear, RowParallelLinear
|
|
15
|
-
from torch import einsum
|
|
16
|
-
|
|
17
|
-
from ..args import ModelArgs
|
|
18
|
-
from ..model import Attention
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
class LayerNorm(nn.LayerNorm):
|
|
22
|
-
"""Subclass torch's LayerNorm to handle fp16."""
|
|
23
|
-
|
|
24
|
-
def forward(self, x: torch.Tensor):
|
|
25
|
-
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
|
26
|
-
return x
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
class ColumnParallelConv2dPatch(torch.nn.Module):
|
|
30
|
-
"""Conv2D Patching layer with model parallelism.
|
|
31
|
-
Column parallel over unfolded input.
|
|
32
|
-
Arguments:
|
|
33
|
-
in_channels: Input channels.
|
|
34
|
-
out_channels: Output channels.
|
|
35
|
-
kernel_size: Size of convolution kernel.
|
|
36
|
-
stride (default 1): Stride for convolution.
|
|
37
|
-
bias (default False): Use bias in Conv2d.
|
|
38
|
-
Input: (bsz, in_channels, height, width)
|
|
39
|
-
Output: (bsz, num_tokens, out_channels)
|
|
40
|
-
"""
|
|
41
|
-
|
|
42
|
-
def __init__(
|
|
43
|
-
self,
|
|
44
|
-
in_channels: int,
|
|
45
|
-
out_channels: int,
|
|
46
|
-
kernel_size: int | tuple[int, int],
|
|
47
|
-
stride: int | tuple[int, int],
|
|
48
|
-
bias: bool | None = False,
|
|
49
|
-
) -> None:
|
|
50
|
-
super().__init__()
|
|
51
|
-
if isinstance(kernel_size, int):
|
|
52
|
-
kernel_size = (kernel_size, kernel_size)
|
|
53
|
-
self._unfold = torch.nn.Unfold(kernel_size=kernel_size, stride=stride)
|
|
54
|
-
self._linear = ColumnParallelLinear(
|
|
55
|
-
in_channels * kernel_size[0] * kernel_size[1],
|
|
56
|
-
out_channels,
|
|
57
|
-
bias=bias,
|
|
58
|
-
)
|
|
59
|
-
|
|
60
|
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
61
|
-
x = self._unfold(x)
|
|
62
|
-
x = x.permute(0, 2, 1)
|
|
63
|
-
x = self._linear(x)
|
|
64
|
-
return x
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
class _FeedForward(torch.nn.Module):
|
|
68
|
-
def __init__(
|
|
69
|
-
self,
|
|
70
|
-
dim: int,
|
|
71
|
-
hidden_dim: int,
|
|
72
|
-
dropout: float,
|
|
73
|
-
act_layer: Callable = nn.GELU,
|
|
74
|
-
):
|
|
75
|
-
super().__init__()
|
|
76
|
-
# layers
|
|
77
|
-
self.c_fc = ColumnParallelLinear(
|
|
78
|
-
dim,
|
|
79
|
-
hidden_dim,
|
|
80
|
-
bias=True,
|
|
81
|
-
gather_output=False,
|
|
82
|
-
init_method=lambda x: x,
|
|
83
|
-
)
|
|
84
|
-
self.c_proj = RowParallelLinear(
|
|
85
|
-
hidden_dim,
|
|
86
|
-
dim,
|
|
87
|
-
bias=True,
|
|
88
|
-
input_is_parallel=True,
|
|
89
|
-
init_method=lambda x: x,
|
|
90
|
-
)
|
|
91
|
-
self.non_linearity = act_layer()
|
|
92
|
-
self.dropout = dropout
|
|
93
|
-
|
|
94
|
-
def forward(self, x):
|
|
95
|
-
hidden = self.c_fc(x)
|
|
96
|
-
hidden = self.non_linearity(hidden)
|
|
97
|
-
hidden = F.dropout(hidden, p=self.dropout, training=self.training)
|
|
98
|
-
return self.c_proj(hidden)
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
class _TransformerBlock(nn.Module):
|
|
102
|
-
def __init__(
|
|
103
|
-
self,
|
|
104
|
-
d_model: int,
|
|
105
|
-
n_head: int,
|
|
106
|
-
mlp_ratio: float = 4.0,
|
|
107
|
-
act_layer: Callable = nn.GELU,
|
|
108
|
-
gated: bool = False,
|
|
109
|
-
):
|
|
110
|
-
super().__init__()
|
|
111
|
-
assert d_model % n_head == 0
|
|
112
|
-
self.n_heads = n_head
|
|
113
|
-
self.head_dim = d_model // self.n_heads
|
|
114
|
-
|
|
115
|
-
attn_args = ModelArgs(
|
|
116
|
-
dim=d_model,
|
|
117
|
-
head_dim=self.head_dim,
|
|
118
|
-
n_heads=self.n_heads,
|
|
119
|
-
n_kv_heads=self.n_heads,
|
|
120
|
-
)
|
|
121
|
-
self.attn = Attention(attn_args, use_rope=True, use_qk_norm=False, add_bias=True)
|
|
122
|
-
self.ln_1 = LayerNorm(d_model)
|
|
123
|
-
self.mlp = _FeedForward(
|
|
124
|
-
dim=d_model,
|
|
125
|
-
hidden_dim=int(mlp_ratio * d_model),
|
|
126
|
-
dropout=0.0,
|
|
127
|
-
act_layer=act_layer,
|
|
128
|
-
)
|
|
129
|
-
self.ln_2 = LayerNorm(d_model)
|
|
130
|
-
self.gated = gated
|
|
131
|
-
if gated:
|
|
132
|
-
self.gate_attn = nn.Parameter(torch.zeros(1))
|
|
133
|
-
self.gate_ffn = nn.Parameter(torch.zeros(1))
|
|
134
|
-
|
|
135
|
-
def attention(
|
|
136
|
-
self,
|
|
137
|
-
x: torch.Tensor,
|
|
138
|
-
freq_cis: torch.Tensor | None = None,
|
|
139
|
-
):
|
|
140
|
-
return self.attn(x=x, start_pos=0, freqs_cis=freq_cis)
|
|
141
|
-
|
|
142
|
-
def forward(
|
|
143
|
-
self,
|
|
144
|
-
x: torch.Tensor,
|
|
145
|
-
mask: torch.Tensor | None = None,
|
|
146
|
-
freq_cis: torch.Tensor | None = None,
|
|
147
|
-
):
|
|
148
|
-
_gate_attn = 1 if not self.gated else self.gate_attn.tanh()
|
|
149
|
-
_gate_ffn = 1 if not self.gated else self.gate_ffn.tanh()
|
|
150
|
-
|
|
151
|
-
x = x + _gate_attn * self.attention(self.ln_1(x), freq_cis=freq_cis)
|
|
152
|
-
x = x + _gate_ffn * self.mlp(self.ln_2(x))
|
|
153
|
-
return x
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
class _Transformer(nn.Module):
|
|
157
|
-
def __init__(
|
|
158
|
-
self,
|
|
159
|
-
dim: int,
|
|
160
|
-
layers: int,
|
|
161
|
-
heads: int,
|
|
162
|
-
mlp_ratio: float = 4.0,
|
|
163
|
-
act_layer: Callable = nn.GELU,
|
|
164
|
-
gated: bool = False,
|
|
165
|
-
):
|
|
166
|
-
super().__init__()
|
|
167
|
-
self.resblocks = nn.ModuleList(
|
|
168
|
-
[
|
|
169
|
-
_TransformerBlock(
|
|
170
|
-
d_model=dim,
|
|
171
|
-
n_head=heads,
|
|
172
|
-
mlp_ratio=mlp_ratio,
|
|
173
|
-
act_layer=act_layer,
|
|
174
|
-
gated=gated,
|
|
175
|
-
)
|
|
176
|
-
for _ in range(layers)
|
|
177
|
-
]
|
|
178
|
-
)
|
|
179
|
-
|
|
180
|
-
def forward(self, x: torch.Tensor, return_intermediate=None, mask=None, freq_cis=None):
|
|
181
|
-
out = []
|
|
182
|
-
for idx, r in enumerate(self.resblocks):
|
|
183
|
-
if return_intermediate is not None and idx in return_intermediate:
|
|
184
|
-
out.append(x)
|
|
185
|
-
x = r(x, mask=mask, freq_cis=freq_cis)
|
|
186
|
-
if return_intermediate is not None:
|
|
187
|
-
return x, torch.stack(out, dim=-1)
|
|
188
|
-
return x
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
class PackingIndex:
|
|
192
|
-
Z = 0 # Z (time) coordinate of the token in the original sample
|
|
193
|
-
Y = 1 # Y (height) coordinate of the token in the original sample
|
|
194
|
-
X = 2 # X (width) coordinate of the token in the original sample
|
|
195
|
-
TIME = 3 # Total number of time units (frames) in the original sample
|
|
196
|
-
HEIGHT = 4 # Height of the original sample
|
|
197
|
-
WIDTH = 5 # Width of the original sample
|
|
198
|
-
# USE INDEX TO CHECK THE TYPE OF THE TOKEN (see ID fields below)
|
|
199
|
-
IDX = 6 # Full index of the token in the original sample (x + y * w + z * w * h)
|
|
200
|
-
BATCH_IDX = 7 # Which batch element this token belongs to. Note the batch idx of padding tokens is BATCH_SIZE
|
|
201
|
-
|
|
202
|
-
# Total size of the enum, remember to update this!
|
|
203
|
-
NUM_METADATA = 8
|
|
204
|
-
|
|
205
|
-
# Note: For padding tokens IDX = -1
|
|
206
|
-
# For cls tokens, IDX = -2
|
|
207
|
-
ID_CLS_TOKEN = -2
|
|
208
|
-
ID_PAD_TOKEN = -1
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
class VisionEncoder(nn.Module):
|
|
212
|
-
def __init__(
|
|
213
|
-
self,
|
|
214
|
-
image_size: tuple[int, int],
|
|
215
|
-
patch_size: tuple[int, int],
|
|
216
|
-
dim: int,
|
|
217
|
-
layers: int,
|
|
218
|
-
heads: int,
|
|
219
|
-
mlp_ratio: float,
|
|
220
|
-
in_channels: int = 3,
|
|
221
|
-
):
|
|
222
|
-
super().__init__()
|
|
223
|
-
self.image_size = image_size
|
|
224
|
-
self.patch_size = patch_size
|
|
225
|
-
self.grid_size = (
|
|
226
|
-
self.image_size[0] // self.patch_size[0],
|
|
227
|
-
self.image_size[1] // self.patch_size[1],
|
|
228
|
-
)
|
|
229
|
-
self.conv1 = ColumnParallelConv2dPatch(
|
|
230
|
-
in_channels=in_channels,
|
|
231
|
-
out_channels=dim,
|
|
232
|
-
kernel_size=patch_size,
|
|
233
|
-
stride=patch_size,
|
|
234
|
-
bias=False,
|
|
235
|
-
)
|
|
236
|
-
scale = dim**-0.5
|
|
237
|
-
self.class_embedding = nn.Parameter(scale * torch.randn(dim))
|
|
238
|
-
|
|
239
|
-
self.positional_embedding_vlm = nn.Parameter(
|
|
240
|
-
scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, dim)
|
|
241
|
-
)
|
|
242
|
-
|
|
243
|
-
self.ln_pre = LayerNorm(dim)
|
|
244
|
-
self.ln_post = LayerNorm(dim)
|
|
245
|
-
self.transformer = _Transformer(
|
|
246
|
-
dim,
|
|
247
|
-
layers,
|
|
248
|
-
heads,
|
|
249
|
-
mlp_ratio,
|
|
250
|
-
act_layer=nn.GELU,
|
|
251
|
-
)
|
|
252
|
-
|
|
253
|
-
# NOTE: hack for the fixed res
|
|
254
|
-
image_h, image_w = self.image_size
|
|
255
|
-
patch_h, patch_w = self.patch_size
|
|
256
|
-
idx_h, idx_w = image_h // patch_h, image_w // patch_w
|
|
257
|
-
img_idx = torch.arange(image_h * image_w // (patch_h * patch_w), dtype=torch.int32)
|
|
258
|
-
img_idx = img_idx.reshape(idx_h * idx_w, 1)
|
|
259
|
-
img_idx = torch.cat([img_idx, img_idx[:1]], dim=0)
|
|
260
|
-
img_idx[-1, -1] = PackingIndex.ID_CLS_TOKEN
|
|
261
|
-
|
|
262
|
-
packed_img_idx = torch.empty(
|
|
263
|
-
img_idx.shape[0],
|
|
264
|
-
img_idx.shape[1],
|
|
265
|
-
PackingIndex.NUM_METADATA - 1,
|
|
266
|
-
dtype=torch.int32,
|
|
267
|
-
)
|
|
268
|
-
packed_img_idx[:, :, PackingIndex.Y] = img_idx // idx_w
|
|
269
|
-
packed_img_idx[:, :, PackingIndex.X] = img_idx % idx_w
|
|
270
|
-
packed_img_idx[:, :, PackingIndex.HEIGHT].fill_(idx_h)
|
|
271
|
-
packed_img_idx[:, :, PackingIndex.WIDTH].fill_(idx_w)
|
|
272
|
-
packed_img_idx[:, :, PackingIndex.IDX] = img_idx
|
|
273
|
-
packed_img_idx = packed_img_idx.reshape(1, -1, PackingIndex.NUM_METADATA - 1)
|
|
274
|
-
self.packed_img_idx = packed_img_idx # for positional embedding load hook
|
|
275
|
-
|
|
276
|
-
# compute rope freqs
|
|
277
|
-
rope_freq = self.get_rope_freqs(dim // heads // 2)
|
|
278
|
-
freqs_x = self.compute_rope_freqs(rope_freq, packed_img_idx[:, :, PackingIndex.X] + 1)
|
|
279
|
-
freqs_y = self.compute_rope_freqs(rope_freq, packed_img_idx[:, :, PackingIndex.Y] + 1)
|
|
280
|
-
freqs = torch.cat([freqs_x, freqs_y], dim=-1).float().contiguous()[..., ::2]
|
|
281
|
-
# disable RoPE for padding and cls tokens
|
|
282
|
-
freqs = freqs.masked_fill(packed_img_idx[:, :, PackingIndex.IDX, None] < 0, 0)
|
|
283
|
-
# compute complex freqs
|
|
284
|
-
self.freq_cis = torch.view_as_complex(torch.stack([torch.cos(freqs), torch.sin(freqs)], dim=-1))
|
|
285
|
-
# xlf automatically broadcasts
|
|
286
|
-
self.freq_cis = self.freq_cis.squeeze(0)
|
|
287
|
-
self.n_heads = heads // fs_init.get_model_parallel_world_size()
|
|
288
|
-
|
|
289
|
-
self._register_load_state_dict_pre_hook(self.load_hook)
|
|
290
|
-
|
|
291
|
-
def get_rope_freqs(self, dim, theta=10000):
|
|
292
|
-
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
293
|
-
return freqs
|
|
294
|
-
|
|
295
|
-
@torch.amp.autocast("cuda", enabled=False)
|
|
296
|
-
def compute_rope_freqs(self, freqs, t):
|
|
297
|
-
freqs = einsum("..., f -> ... f", t.type(freqs.dtype), freqs)
|
|
298
|
-
freqs = freqs.repeat_interleave(2, dim=-1)
|
|
299
|
-
return freqs
|
|
300
|
-
|
|
301
|
-
def load_hook(
|
|
302
|
-
self,
|
|
303
|
-
state_dict: dict[str, Any],
|
|
304
|
-
prefix: str,
|
|
305
|
-
local_metadata: dict[str, Any],
|
|
306
|
-
strict: bool = True,
|
|
307
|
-
missing_keys: list[str] = None,
|
|
308
|
-
unexpected_keys: list[str] = None,
|
|
309
|
-
error_msgs: list[str] = None,
|
|
310
|
-
return_state_dict: bool = False,
|
|
311
|
-
) -> None:
|
|
312
|
-
orig_pos_embed = state_dict.get(prefix + "positional_embedding")
|
|
313
|
-
if orig_pos_embed is not None and orig_pos_embed.shape[-2:] != self.positional_embedding_vlm.shape[-2:]:
|
|
314
|
-
raise ValueError(
|
|
315
|
-
f"Positional embedding shape {orig_pos_embed.shape} does not match expected shape {self.positional_embedding_vlm.shape}"
|
|
316
|
-
)
|
|
317
|
-
|
|
318
|
-
batch_size, token_per_image, _ = self.packed_img_idx.shape
|
|
319
|
-
# Input points for idx are [x, y, w, h]
|
|
320
|
-
idx = self.packed_img_idx.reshape(batch_size * token_per_image, 1, -1)
|
|
321
|
-
total_windows, window_size, _ = idx.shape
|
|
322
|
-
|
|
323
|
-
# Grid values are [-1, 1] and coords are w, h
|
|
324
|
-
grid = (
|
|
325
|
-
(idx[:, :, [PackingIndex.X, PackingIndex.Y]] / idx[:, :, [PackingIndex.WIDTH, PackingIndex.HEIGHT]]) * 2 - 1
|
|
326
|
-
)[None, ...]
|
|
327
|
-
|
|
328
|
-
# In this mode, cls token has no position embedding
|
|
329
|
-
if orig_pos_embed is not None:
|
|
330
|
-
posemb = (
|
|
331
|
-
orig_pos_embed[1:].view(1, self.grid_size[0], self.grid_size[1], -1).permute(0, 3, 1, 2).contiguous()
|
|
332
|
-
)
|
|
333
|
-
posemb = posemb.to(device=grid.device, dtype=grid.dtype)
|
|
334
|
-
sample = F.grid_sample(
|
|
335
|
-
posemb, grid, padding_mode="zeros"
|
|
336
|
-
) # padding tokens / class token will get zero for posemb
|
|
337
|
-
sample = sample.view(-1, total_windows, window_size).permute(1, 2, 0).contiguous()
|
|
338
|
-
sample = torch.where(
|
|
339
|
-
idx[:, :, PackingIndex.IDX, None] == PackingIndex.ID_CLS_TOKEN,
|
|
340
|
-
orig_pos_embed[0].view(1, 1, -1).to(device=sample.device, dtype=sample.dtype),
|
|
341
|
-
sample,
|
|
342
|
-
)
|
|
343
|
-
|
|
344
|
-
new_pos_embed = sample.reshape(batch_size, token_per_image, -1)
|
|
345
|
-
|
|
346
|
-
state_dict[prefix + "positional_embedding_vlm"] = new_pos_embed.squeeze(0)
|
|
347
|
-
|
|
348
|
-
if return_state_dict:
|
|
349
|
-
return state_dict
|
|
350
|
-
|
|
351
|
-
def apply_class_embedding(self, x):
|
|
352
|
-
x = torch.cat(
|
|
353
|
-
[
|
|
354
|
-
x,
|
|
355
|
-
self.class_embedding.to(x.dtype)
|
|
356
|
-
+ torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
|
357
|
-
],
|
|
358
|
-
dim=1,
|
|
359
|
-
) # shape = [*, grid ** 2 + 1, width]
|
|
360
|
-
return x
|
|
361
|
-
|
|
362
|
-
def forward(self, images: torch.Tensor) -> torch.Tensor:
|
|
363
|
-
# NOTE: in Llama4 bsz=bsz*num_tiles, num_chunks=1
|
|
364
|
-
if images.ndim == 5:
|
|
365
|
-
num_concurrent_media = 1
|
|
366
|
-
bsz, num_chunks, nch, h, w = images.shape
|
|
367
|
-
else:
|
|
368
|
-
bsz, num_concurrent_media, num_chunks, nch, h, w = images.shape
|
|
369
|
-
|
|
370
|
-
images = images.reshape(bsz * num_concurrent_media * num_chunks, nch, h, w)
|
|
371
|
-
# patch embedding
|
|
372
|
-
x = images.reshape(bsz * num_concurrent_media * num_chunks, nch, h, w)
|
|
373
|
-
x = self.conv1(x) # shape = [*, width, grid ** 2]
|
|
374
|
-
_, ntok, dim = x.shape
|
|
375
|
-
x = x.reshape(bsz * num_concurrent_media * num_chunks, ntok, dim)
|
|
376
|
-
|
|
377
|
-
# apply cls token
|
|
378
|
-
x = self.apply_class_embedding(x)
|
|
379
|
-
ntok += 1
|
|
380
|
-
|
|
381
|
-
# apply position embeddings
|
|
382
|
-
if self.positional_embedding_vlm is not None:
|
|
383
|
-
x = x + self.positional_embedding_vlm.to(x.dtype)
|
|
384
|
-
|
|
385
|
-
x = x.reshape(bsz * num_concurrent_media, num_chunks, ntok, dim)
|
|
386
|
-
|
|
387
|
-
x = self.ln_pre(x)
|
|
388
|
-
x = x.view(bsz * num_concurrent_media, -1, dim)
|
|
389
|
-
freq_cis = self.freq_cis.to(images.device)
|
|
390
|
-
|
|
391
|
-
tf_output = self.transformer(
|
|
392
|
-
x,
|
|
393
|
-
freq_cis=freq_cis,
|
|
394
|
-
)
|
|
395
|
-
|
|
396
|
-
int_x = None
|
|
397
|
-
if isinstance(tf_output, tuple):
|
|
398
|
-
x, int_x = tf_output
|
|
399
|
-
else:
|
|
400
|
-
x = tf_output
|
|
401
|
-
x = self.ln_post(x)
|
|
402
|
-
|
|
403
|
-
# remove cls token output
|
|
404
|
-
x = x[:, :-1, :]
|
|
405
|
-
|
|
406
|
-
# add and output x + int_x features
|
|
407
|
-
if int_x is not None:
|
|
408
|
-
int_x = int_x[:, :-1, :, :]
|
|
409
|
-
int_x = int_x.reshape(bsz * num_concurrent_media, ntok - 1, -1)
|
|
410
|
-
x = torch.cat([x, int_x], dim=-1)
|
|
411
|
-
|
|
412
|
-
return x
|